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The fractional diffusion-wave equation (FDWE)1,2 is a recent generalization of 


diffusion and wave equations via time and space fractional derivatives. The 


equation underlies Levy random walk and fractional Brownian motion2,3 and is 


foremost important in mathematical physics for such multidisciplinary applications 


as in finance, computational biology, acoustics, just to mention a few. Although the 


FDWE has been found to reflect anomalous energy dissipations4,5, the physical 


significance of the equation has not been clearly explained in this regard. Here the 


attempt is made to interpret the FDWE via a new time-space fractional derivative 


wave equation which models frequency-dependent dissipations observed in such 


complex phenomena as acoustic wave propagating through human tissues, 


sediments, and rock layers. Meanwhile, we find a new bound (inequality (6) further 


below) on the orders of time and space derivatives of the FDWE, which indicates the 


so-called sub-diffusion process contradicts the real world frequency power law 


dissipation. This study also shows that the standard approach, albeit 


mathematically plausible, is physically inappropriate to derive the normal diffusion 


equation from the damped wave equation, also known as Telegrapher’s equation.  


 


  The fractional diffusion wave equation1,2 reads 
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where ∆ is the Laplacian operator, and κ denotes a physical constant. λ and β can be 


arbitrary real number. For λ=β=2, equation (1) is the normal wave equation 







utu ∆=∂∂ κ22 ; for λ=2, β=1, it is the normal diffusion equation utu ∆=∂∂ κ . For non-


integer λ and β, equation (1) presents the fractional time derivative and the fractional 


Laplacian. For detailed discussions on the fractional derivative see ref. 6. 


 


Table. I. Attenuation coefficients of frequency-dependent power law dissipation 


 Water Fat Duct cancer Body tissue 


α0 (dB/cm/MHzy) 0.0022 0.158 0.57 0.87 


 y 2 1.7 1.3 1.5 


• Boundary layer loss of rigid tube: y=0.5 


• Underwater sediments and rock layers: y≈1  


 


  Essentially, equation (1) models non-conservative systems4 and accounts for possible 


non-local and memory effects on energy dissipations5, namely, the frequency-dependent 


dissipation  observed, for example, in medical ultrasonic and seismic wave 


propagations


( )zeEE ωα−= 0


7-9. Here E represents the amplitude of an acoustic field variable such as 


velocity or pressure, and ω is angular frequency. The attenuation coefficient α(ω) is 


characterized for a wide range of frequencies of practical interest by a power law function 


( ) yωαωα 0= ,  y∈[0,2],  (2) 


where α0 and y are media-specific attenuation parameters obtained through a fitting of 


measured data. For most solid and highly viscous materials, y is close to 2; while for 


some media of practical interest such as biomaterials, y is from 1 to 1.7 (Table 1). For 


y≠0,2, the attenuation process can not be well described by common partial differential 


equation of integer order7-9, and thus, is often called anomalous attenuation or diffusion. 


In recent decades, the fractional calculus has been found to be a powerful mathematical 


apparatus in modeling anomalous diffusion process8-11. However, unfortunately, the 







explicit relationship between the fractional diffusion wave equation (1) and the power 


law dissipation (2) has not clearly been unveiled. This is a major issue to be addressed in 


this study. 


  It is noted that in anomalous dissipation modeling, most effort has been concentrated on 


using the fractional time derivative8,11. Instead, very recently the present authors 


developed space fractional Laplacian lossy wave equation models12. By using both the 


fractional space/time derivatives, we have a new wave equation model for frequency 


dependent lossy media 
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where γ is viscous constant, s and η can be arbitrary real number. By using time and 


space Fourier transforms7, it is easy to verify that model equation (3) satisfies the power 


law (2). If ∆p is relatively small7, the hyperbolic wave equation (3) can be approximated 


to the parabolic equation by removing ∆p, namely,  
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 Integrating (4) with respect to time t and multiplying by  gives 2
0c
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Compared with equation (1), one can see that equation (5) is the fractional diffusion-


wave equation exhibiting frequency dependent dissipation obeying the power law (2), 


where the power coefficient y=s+η-1. Thus, we can interpret the fractional diffusion-


wave equation (1) physically through the empirical power law frequency dissipation (2).  







  Comparing equations (1) with (5), it is straightforward that y=s+η-1∈[0,2] in equation 


(5) leads to a bound on the derivative orders of fractional diffusion-wave equation (1) 


11 ≤−≤− βλ .     (6) 


To the best of the author’s knowledge, inequality bound (6) is new. For λ=2, (6) requires 


β≥1. Therefore, the so-called sub-diffusion (λ=2, 0<β<1)1 does not agree with the power 


law (2), except of a negative exponent y which indicates the inverse dependency of 


dissipation on frequency and is rarely, if not, found in the real world (in fact, vast 


majority falls in 1≤y≤2). On the other hand, the so-called super-diffusion process1 (λ=2, 


β>1 or 0<λ<2, β=1) satisfies inequality bound (6). The Baglegy-Torvik viscous 


equation10 (λ=0, β=0.5) also meets (6). 


  Note that if η>2, the attenuation coefficient bound in equation (3) requires s=0, and the 


fractional diffusion equation (5) then degenerates into the reaction equation 


222 cptp γηη −=∂∂ −− . On the other hand, for η=1, s=0, equation (3) turns out to be the 


damped wave equation, also known as Telegrapher’s equation 
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Assuming the velocity c is very high, the second right-hand term can therefore be ignored 


and equation (7) then simplifies to the normal diffusion equation utu ∆=∂∂γ . This is a 


standard approach to derive the parabolic diffusion equation from hyperbolic wave 


equation. It is well known that the normal diffusion equation exhibits the frequency- 


squared dependent dissipation8,11,12. However, in stark contrast, the Telegrapher’s 


equation (7) itself describes frequency-independent dissipation7. Therefore, in the regime 







of the frequency dependent power, it is mathematically plausible but not physically sound 


to derive the normal diffusion equation from the Telegrapher’s equation. 


  Considering the thermoviscous wave equation (η=1, s=2 in equation (3))7 


p
tt


p
c


p ∆
∂
∂


−
∂
∂


=∆ γ2


2


2
0


1 ,    (8) 


and assuming that ∆p is relatively small and can be neglected, equation (8) can then be 


reduced to the normal diffusion equation. It is noted that the thermoviscous wave 


equation conforms the normal diffusion equation in underlying the same square 


dependency of dissipation coefficient on frequency. Thus, this derivation is both 


mathematically and physically reasonable.  


  In the context of kinetic physics, equation (1) reflects the Levy stable process and 


fractional Brownian motion2, where probability density function u≥0 requires 0 2≤λp . 


However, it is not clear if β>0 is physically necessary. For λ,β<0 and η,s<0, equations 


(1) and (3) are fractional integral equation.  


  As verified by Blackstock (1985), the nonlinear viscous wave equations also imply the 


frequency dependent dissipation. For instance, we can extend the fractional diffusion-


wave equation (1) to the generalized fractional Bergers equation, 
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which has the frequency dependent power y=λ-β+1 in terms of power law (2). 
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