spectral theory, random operators, multiscale analysis, integrated density of states, Lifshitz tails.







Localization for divergence operators with long
range random perturbations


Hatem NAJAR∗


Abstract


The object of this paper is to study Anderson and strong dy-
namical localizations on the internal band edges of the spectrum for
random perturbations of periodic divergence operators of the form
Aω = −∇ · aω · ∇, where aω is a long range perturbation of a periodic
matrix function. Our results rely on the study of Lifshitz tails from
which we get the initial estimate necessary for the multiscale analysis.


1 Introduction


This paper is devoted to study one of the most important properties of ran-
dom operators: localization. By localization we mean a pure point spectrum
associated with exponential decaying eigenfunctions. In this case we often
say that we have Anderson localization. Localization is said to be a strong
dynamical localization to an order p, on an interval I of the spectrum, when
for PI , the spectral projector onto that interval, and compact set K, we have


E
{


sup
t>0


∥∥|x|p eitAωPI(Aω)χK


∥∥
}


< +∞.


Those two types of localization have been intensively studied during last years
for their important physical consequences. We quote localization of classical
(for instance, electromagnetic or acoustic) waves in a periodic medium per-
turbed by random impurities. See [8, 9, 10, 11].
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Localization at the edge of the spectrum was conjectured for the first time
by the physicists at the end of the fifties [2] for Schrödinger operators. It is
widely accepted that random models should exhibit localization near fluc-
tuation boundaries. The latter are those parts of the spectrum which are
determined by rather rare events. Such phenomenon occurs in various cases
(large disorder, extreme energies, Lifshitz tails, etc.). In this context the
multiscale analysis is a powerful technique, initially developed for the pur-
pose of proving Anderson localization [7, 8]. It was later shown to also yield
dynamical localization (non spreading of the wave packets) [14] and more
recently strong dynamical localization (dynamical localization not only with
probability one, but in expectation) up to some order [6]. Strong dynamical
localization up to any order and in the Hilbert-Schmidt norm is proved in [13].


In literature, operators considered have, in general, either the Schrödinger
form [3, 4, 6, 19, 20, 36]:


Aω = −∆ + Wper + Vω,


or the divergence form [8, 34]


Aω = −∇ · aω · ∇.


In these references, localization near the so called fluctuation boundaries
is proved. In what follows, we consider the self-adjoint operator on L2(Rd)
formally defined by


Aω = A(aω) = −∇ · aω · ∇ = −
∑


1≤i,j≤d


∂xi
ai,j,ω∂xj


, (1.1)


where aω = (ai,j(ω))1≤i,j≤d is assumed to be a random bounded and uniformly
elliptic matrix; i.e. there exists constants a+ > a− > 0 such that for any
ξ ∈ Rd we have


a− ‖ξ‖2 ≤ 〈aωξ, ξ〉 ≤ a+ ‖ξ‖2 . (1.2)


Let us notice that when aω = 1
ρω
· Id (where Id is the identity matrix) Aω


described by (1.1) will be the acoustic operator treated in [8, 29, 30, 34].


The main difference with [8, 34] is that our approach to prove localization
near the band edges is based on the fact that near those edges the integrated
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density of states of the divergence operator exhibits Lifshitz tails. This, en-
ables us to use a weaker assumption on the probability distribution. Such
technique was used for the Schrödinger case in [27, 36]. By this our result
extends in sense the results of [8, 34].
Briefly, the paper is orgaized as follows:
In section 1, we define the model to be studied and specify various assump-
tions. We introduce a periodic reference operator A0. We state the main
results (Theorem 1.1 and 1.2). Section 2 contains the proof of Lifshits tails
(Theorem 1.2). It is composed of three subsections: introduction to the pe-
riodic approximations and statements of some useful lemmas, lower bound
and upper bound. In section 3 we prove Theorem 1.1. From [6] and [13] this
theorem is proved using a powerful technique called multiscale analysis. (See
section 3.1.) So the proof is based on verifying the two main ingredients nec-
essary for this analysis called initial estimate and uniform Wegner estimate,
see [17, 20]. In section 3.2, Theorem 1.2 is used to get the initial estimate.
We end this work by an appendix where we prove some technical lemmas
used previously.


1.1 The model


We start this section by giving the expression of the coefficients of the matrix
aω = (ai,j,ω(x))1≤i,j≤d. We assume that aω is a matrix which satisfies the
following
(A.0)


ai,j,ω (x) = ai,j,0 (x) +
∑


γ∈Zd


ωi,j
γ ui,j(x− γ);


where
(i) (ai,j,0)1≤i,j≤d is a family of measurable, real valued and Zd-periodic func-
tions i.e.


ai,j,0(x + γ) = ai,j,0(x), ∀x ∈ Rd, γ ∈ Zd.


(ii) There exists constants a0,+ > a0,− > 0 such that for any ξ ∈ Rd and
almost all x ∈ Rd, we have


a0,− ‖ξ‖2 ≤ ai,j,0(x)ξiξj ≤ a0,+ ‖ξ‖2 . (1.3)


(iii) (ui,j)1≤i,j≤d is a family of real-valued functions, such that there exists
ν ∈ (d, d + 2] and 0 < g− ≤ g+ two non vanishing functions, such that for
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any γ ∈ Zd and almost every x in the unit box, C0 one has


g− · ‖ξ‖2 ≤
∑


1≤i,j≤d


ui,j(x + γ) · (1 + |γ|)νξiξj ≤ g+ · ‖ξ‖2 ; (1.4)


and for all 1 ≤ s ≤ d,


g− ≤ |(∂xsui,j)(x + γ)| · (1 + |γ|)ν ≤ g+. (1.5)


(iv) (ωi,j
γ ) γ∈Zd


1≤i,j≤d


is a family of independents identically distributed random


variables taking values in the interval [0, 1], whose common probability dis-
tribution P0 has a bounded density g a.e in [0, 1]. More precisely if we note
the probability space by (Ω,F ,P) then, our probability space has a product
structure i.e. Ω = [0, 1]d


2Zd
and P = ⊗ γ∈Zd


1≤i,j≤d


P0.


Let A(aω) the quadratic form defined as follow: for u ∈ H1(Rd) = D(A(%ω))


A(aω)[u, u] =


∫


Rd


aω(x) · ∇u(x)∇u(x)dx


=
∑


1≤i,j≤d


∫


Rd


ai,j,ω(x) · ∂xi
u(x)∂xj


u(x)dx.


A(aω) is a symmetric positive and closed quadratic form. Aω given by (1.1)
is defined as the self adjoint operator associated to A(aω) [33].
Assumption (A.0) ensures that Aω is a measurable family of self adjoint
and ergodic operators [32]. Indeed, if τγ refers to the translation by γ, then
(τγ)γ∈Zd is a group of unitary operators on L2(Rd) and for γ ∈ Zd we have


τγAωτ−γ = Aτγω.


According to [32] we know that there exists Σ, Σpp, Σac and Σsc closed and
non random sets of R such that Σ is the spectrum of Aω with probability one
and such that if σpp (respectively σac and σsc) notice the pure point spectrum
(respectively the absolutely continuous and singular continuous spectrum) of
Aω, then Σpp = σpp, Σac = σac and Σsc = σsc with probability one.


1.2 Reference operator


Notice that Aω can be written as a perturbation of some background operator
A0. More precisely we write:


Aω = A0 + ∆Aω,
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with
A0 = A(a0)


and
∆Aω = A(aω − a0).


1.2.1 Some Floquet Theory


Now we review some standard facts from the Floquet theory for periodic
operators. Basic references of this material are [33, 35].
As (a0,i,j)1≤i,j≤d is a family of Zd-periodic functions, for any γ ∈ Zd, we have


τγA0τ
∗
γ = τγA0τ−γ = A0.


Let T∗ = Rd/(2πZd). We define H by


H = {u(x, θ) ∈ L2
loc(Rd)⊗L2(T∗);∀(x, θ, γ) ∈ Rd×T∗×Zd; u(x+γ, θ) = eiγθu(x, θ)}.


There exists U a unitary isometry from L2(Rd) to H such that A0 admits
the Floquet decomposition [35]


UA0U
∗ =


∫ ⊕


T∗
A0(θ)dθ.


Here A0(θ) is the operator A0 acting on Hθ, defined by


Hθ = {u ∈ L2
loc(Rd); ∀γ ∈ Zd, u(x + γ) = eiγθu(x)}.


As A0 is elliptic, we know that, A0(θ) has a compact resolvent; hence its spec-
trum is discrete [33]. We denote its eigenvalues, called Floquet eigenvalues of
A0, by


E0(θ) ≤ E1(θ) ≤ · · · ≤ En(θ) ≤ · · ·.
The corresponding eigenfunctions are denoted by (w(x, ·)j)j∈N. The functions
(θ → En(θ))n∈N are Lipshitz-continuous, and we have


En(θ) → +∞ as n → +∞ uniformly in θ.


The spectrum σ(A0) of A0 has a band structure. (i.e σ(A0) = ∪n∈NEn(T∗).)
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1.2.2 The main assumptions


We assume that A0 has a spectral gap below E+. More precisely we assume
that:
(A.1)
There exists E+ and δ > 0 such that σ(A0) ∩ [E+, E+ + δ) = [E+, E+ + δ)
and σ(A0) ∩ (E+ − δ, E+] = ∅.


As, ∆Aω ≥ 0 , Σ contains an interval of the form [E+, E+ + a] (a > 0)
[18]. As we are interested in the behavior of the IDS in the neighborhood
of E+, we require that E+ remains always the edge of a gap for Σ, when
the perturbation is turned on. More precisely, if for all t ∈ [0, 1], we define
Aω,t = A0 + t∆Aω and Σt is the almost sure spectrum of Aω,t, then one
requires that the following assumption holds.
(A.2)
There exists δ′ > 0 such that for all t ∈ [0, 1], Σt ∩ [E+ − δ′, E+) = ∅.
We assume also the following:
(A.3)


lim sup
ε→0+


log | logP0([0, ε])|
| log ε| = 0 (1.6)


.


1.3 The main results


Let us consider the wave equation:


∂2v


∂t2
= −Aωv, v(0) = v0,


∂v


∂t


∣∣∣
t=0


= v1. (1.7)


The solution of the equation (1.7) is given by:


v(t) = cos
(
t
√


Aω


)
v0 + sin


(
t
√


Aω


)
w1,


where v1 =
√


Aωw1 and v0, w1 are in the domain of Aω.
The result which we present can be summarized as follow:
• the spectrum of Aω is pure point in a neighborhood of the edge of Σ\{0}.
• the eigenfunctions corresponding to eigenvalues in this neighborhood decay
exponentially.
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• for a good choice of v0 and w1, v(t) does not disperse in the space.
The first and second assertion are often named Anderson localization.
The last one is called strong dynamical localization.
The main theorem is:


Theorem 1.1 Let Aω defined by (1.1). We assume that (A.1), (A.2) and
(A.3) hold. There exists ε0 > 0 such that
(i) Σ ∩ [E+, E+ + ε0] = Σpp ∩ [E+, E+ + ε].
(ii) an eigenfunction corresponding to an eigenvalue in [E+, E+ + ε0] decays
exponentially .
(iii) there exist p > 0 such that


E
{


sup
t>0


∣∣∣
∣∣∣
∣∣∣X


∣∣∣
p


cos
(
t
√


Aω


)
P[E+,E++ε0](Aω)χK


∣∣∣
∣∣∣
}


< +∞;


and
E


{
sup
t>0


∣∣∣
∣∣∣
∣∣∣X


∣∣∣
p


sin
(
t
√


Aω


)
P[E+,E++ε0](Aω)χK


∣∣∣
∣∣∣
}


< +∞.


Here PI(Aω) is the spectral projection on the interval I, χK is the character-
istic function of K, K is a compact of Rd and X is the position operator.


The result of Theorem 1.1 can be related to the behavior of the integrated
density of states in the neighborhood of the so-called fluctuation boundary
E+ [25, 27, 31, 32]. For this, we recall that the integrated density of states is
defined as follows: we note by Aω,Λ the restriction of Aω to Λ with self ad-
joint boundary conditions. As Aω is elliptic, the resolvent of Aω,Λ is compact
and, consequently, the spectrum of Aω,Λ is discrete and is made of isolated
eigenvalues of finite multiplicity [33]. We define


NΛ(E) =
1


vol(Λ)
·#{eigenvalues of Aω,Λ ≤ E}. (1.8)


Here vol(Λ) is the volume of Λ in the Lebesgue sense and #E is the cardinal
of E.
It is shown that the limit of NΛ(E) when Λ tends to Rd exists almost surely
and is independent of the boundary conditions. It is called the integrated
density of states of Aω (IDS for the short form). See [16].
For what concern the IDS, we prove that an operator defined by (1.1) exhibits
Lifshitz tails in the neighborhood E+, this was done for various families of
random operators (See [18, 23, 24, 28, 29, 30, 32]). For acoustic operators
this is proved in [29] under the assumption of non-degeneracy of the IDS of
the back-ground operator A0 which is relaxed here.
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Theorem 1.2 Let Aω the operator defined by (1.1). We assume that (A.1),
(A.2) and (A.3) hold. Then


lim
ε→0,ε>0


log | log
(
N(E+ + ε)−N(E+)


)|
log ε


= − d


ν − d
. (1.9)


We end this section by a remark.


Remark 1.3 Theorems 1.1 and 1.2 are stated for upper bands edges of spec-
tral gap. Under adequate assumption their results are also true for lower
bands edges.


2 Lifshitz tails: the proof of Theorem 1.2


In this section we will prove that the IDS of the operator defined by (1.1)
exhibits Lifshitz tails. Such result is proved for several random models. For
relevant results on Lifshitz tails we refer to [23, 24, 29, 30]. The proof that
we give use the technique of periodic approximations [23, 29] and it consists
of two essential parts; lower and upper bounds.


2.1 The periodic approximations


Let us consider the following periodic operator


Aω,k = −∇ · aω,k · ∇,


where the function aω,k is the matrix with the coefficient


ai,j(ω, k) = a0,i,j +
∑


γ∈Ck∩Zd


ωγ


∑


β∈(2k+1)Zd


ui,j(· − γ − β)


Ck is the cube


Ck = {x ∈ Rd;∀1 ≤ j ≤ d, −2k + 1


2
< xj ≤ 2k + 1


2
}.


Aω,k is (2k + 1)Zd-periodic and essentially self adjoint operator. Let T∗k =
(Rd)/2(2k + 1)πZd. We define Nω,k the IDS of Aω,k by


Nω,k(E) =
1


(2π)d


∑


n∈N


∫


{θ∈T∗k, Eω,k,n(θ)≤E}
dθ. (2.10)
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Let dNω,k the derivative of Nω,k in the distribution sense. As Nω,k is increas-
ing, dNω,k is a positive measure; it is the density of states of Aω,k. We denote
by dN the density of states of Aω. For all ϕ ∈ C∞


0 (R), dNω,k verifies (see [23])


〈ϕ, dNω,k〉 =
1


(2π)d


∫


θ∈T∗k
trHθ


(
ϕ(Aω,k,θ)


)
dθ,


=
1


vol(Ck)
tr


(
χCk


ϕ(Aω,k)χCk


)
, (2.11)


where for Λ ⊂ Rd, χΛ will design the characteristic function of Λ and tr(A)
is the trace of A (we index by Hθ if the trace is taken in Hθ). The proof of
(2.11) is given in [23].


Theorem 2.1 [23, 28] For any ϕ ∈ C∞
0 (R) and for almost all ω ∈ Ω we


have
lim
k→∞


〈ϕ, dNω,k〉 = 〈ϕ, dN〉.


In what follow we prove that the IDS of Aω is exponentially well approxi-
mated by the expectation of the IDS of the periodic operators Aω,k when k
is polynomial in ε−1. More precisely we prove


Lemma 2.2 For any η0 > 0, there exists ν0 > 0 and ε0 > 0 such that, for
0 < ε < ε0 and k ≥ k1 = ε−ν0, we have


E[Nω,k(E + ε/2)−Nω,k(E − ε/2)]− eε−η0


≤ N(E + ε)−N(E)


≤ E[Nω,k(E + 2ε)−Nω,k(E − 2ε)] + e−ε−η0 . (2.12)


Proof. The last result is well known for operators with compact single sit
potentials [24, 26]. For this we need to define another operator. More pre-
cisely a function f on Rd , one define f ε(x) = f(x)χ{ε·|x|≤1}, f ε is compactly
supported. we define the following random operator:


Aε,ω = ∇ · aε,ω · ∇,


where aε,ω = (aε,i,j,ω)1≤i,j≤d is the matrix given by


aε,i,j,ω(·) = aε
i,j,0(·) +


∑


γ∈Zd


ωi,j
γ uε


i,j(· − γ).
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The periodic approximations of Aε,ω it is defined analogously to Aω,k and
will be denoted by Aε,ω,k. Let Nε ( respectively Nε,ω,k ) be the IDS of Aε,ω


(respectively of Aε,ω,k). Notice that from the decaying assumption (1.4) and
the fact that the random variables are bounded uniformly in k and ω, we get
that there exits C > 0 such that for any Ψ = (−1−∆)−1ϕ, where ϕ ∈ L2(Rd)


0 ≤ 〈AωΨ, Ψ〉 − 〈Aε,ωΨ, Ψ〉 ≤ C · εν−d · ‖Ψ‖2 .


The same inequality holds for the periodic approximations. This yields that,
uniformly in k and ω and locally uniformly in the energy E, we have


Nε(E − C · εν−d) ≤ N(E) ≤ Nε(E + C · εν−d), (2.13)


and


Nε,ω,k(E − C · εν−d) ≤ Nω,k(E) ≤ Nε,ω,k(E + C · εν−d). (2.14)


This tells us that the IDS of Aω is well approximated by that of Aε,ω. But for
the last operator the singles sites potentials are compactly supported and so
many techniques and results are available [24]. We need the following lemma


Lemma 2.3 [24] We assume that the single sit potential is supported in a
ball of radius Rε. Let I, a relatively compact open interval in R. For any
β ∈ (0, 1), there exists C > 1 and ρ > 0 such that , for any ϕ ∈ C∞


0 (I), for
n ∈ N∗ and k > Rε, we have


|E(〈ϕ, dNω,k〉)− 〈ϕ, dN〉|
≤ C · |k −Rε|−(1−β)k · nn · sup


x∈R,0≤j≤n+ρ


∣∣∣(|x|+ 1)ρ+nϕ(j)(x)
∣∣∣. (2.15)


Remark 2.4 This lemma is proven in [24] for the Schrödinger case. It is
still true for our case. The proof is based on the Helffer Sjöstrand formula
and the resolvent equation with the exponential decay of the resolvent kernels
(the Combes-Thomas argument).


Let ϕ be a Gevrey class function, of Gevrey exponent α > 1 (see [15]) such
that ϕ is supported in [−1, 2], 0 ≤ ϕ ≤ 1 and ϕ ≡ 1 on [0, 1]. For 0 < ε < 1,
we set


ϕE+,ε(·) = ϕ
( · − E+


ε


)
.
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From Lemma 2.3 and properties of Gevrey class functions, we deduce that
there exists C > 1 such that for all k > Rε, n ≥ 1 and 0 < ε < 1 we have


∣∣∣E(〈ϕE+,ε, dNω,k〉)− 〈ϕE+,ε, dN〉
∣∣∣
≤ ε−n−ρ(n + ρ)2α(n+ρ)(k −Rε)


−(1−β)n.


We pick n ≤ (k −Rε)
(1−β)/4α − ρ. For k −Rε large, we get that, there exists


C > 1 such that for k > Rε + 2, n > ρ and 0 < ε < 1, we have


∣∣∣E(〈ϕE+,ε, dNω,k〉)− 〈ϕE+,ε, dN〉
∣∣∣ ≤


(
ε−1(k −Rε)


(1−β)/4
)(k−Rε)(1−β)/4α


.


As Rε ∼ ε1/(d−ν), for η0 > 1 such that α · η0 > 1 and k = k1 = ε−ν0 >
ε−η04α/(1−β) + Rε, (it suffice to take ν0 > sup(η04α/(1− β), 1


d−ν
)) we get that


there exist ε0 > 0 such that, for 0 < ε < ε0, we have


∣∣∣E(〈ϕE+,ε, dNω,kε〉)− 〈ϕE+,ε, dN〉
∣∣∣ ≤ e−ε−η0 . (2.16)


As dNε and dNε,ω,k are positive measures and by the definition of ϕ, we have


E
(
Nε,ω,k(E + ε)−Nε,ω,k(E − ε)


)


≤ E(〈ϕE,ε, dNε,ω,k〉
)


≤ E(
Nε,ω,k(E + 2ε)−Nε,ω,k(E − 2ε)


)


and


Nε(E + ε)−Nε(E − ε) ≤ 〈ϕE,ε, dN〉 ≤ Nε(E + 2ε)−Nε(E − 2ε).


This, gives (2.12), for Aε,ω. To get (2.12) for Aω, it suffices to pick ε = ε1/ν−d


and take into account (2.13), (2.14) and (2.16).


Now we turn to the prof of the lower bound.


2.2 The lower bound


The lower bound is proven in the same way as in [28] and consists on proving
the following theorem.
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Theorem 2.5 Let Aω, the operator defined by (1.1). We assume that (A.1),
(A.2) and (A.3) hold. Then, we have


lim inf
ε→0+


log
∣∣∣ log


(
N(E+ + ε)−N(E+)


)∣∣∣
log ε


≥ − d


ν − 2
. (2.17)


Proof. As by assumption, there is a spectral gap below E+ of length at least
δ′ > 0. Thus, for ε < δ′ we have


N(E+ + ε)−N(E+) = N(E+ + ε)−N(E+ − ε).


To prove Theorem 2.5, we will lower bound N(E+ + ε) − N(E+ − ε). So,
for N large, we will show that Aω,ΛN


(Aω,ΛN
is Aω restricted to ΛN with


Dirichlet boundary conditions) has a large number of eigenvalues in [E+ −
ε, E+ + ε] with large a probability. For this we will construct a family of
approximate eigenvectors associated to approximate eigenvalues of Aω,ΛN


in
[E+−ε, E++ε]. These functions will be constructed from an eigenvector of A0


associated to E+. Locating this eigenvector in θ, one obtains an approximate
eigenfunction of Aω,ΛN


. Locating this eigenfunction in x in several disjointed
places, we get several eigenfunctions two by two orthogonal.
In order to simplify the notations, in what follows we assume that θ0 = 0
is a point where E1(θ) reaches E+. From [23, 28] there exists C > 1, V a
neighborhood of 0 and f : θ ∈ V → f(·, θ) a real analytic function such that,
||f(·, θ)||L2(C0) = 1 and


||(A0(θ)− E+)f(·, θ)||L2(C0) ≤ C|θ|2. (2.18)


Let 0 < ξ < 1 be a small constant. Let χ ∈ C∞
0 (R) such that it is positif,


supported in [ ξ
2
, ξ] and


∫


[ ξ
2
,ξ]


χ(t)2dt = 2.


For ε > 0, we define


Wε(θ) = ε−d/4


d∏
j=1


χ(ε−
1
2 θj) ∈ L2(T∗)


and
Wf


ε (·, θ) = Wε(θ) · f(·, θ).
In [29, 30] it’s proved that if we choose ξ small enough we have


||(A0 − E+)Wf
ε ||2H ≤


ε2


8
. (2.19)
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For β ∈ Zd, we define


Wf
ε,β(·, θ) = e−iβ·θWf


ε (·, θ) and W f
α,ε,β,ζ(·, θ) = e−iβ·θ(ΠΛα(ζ)W f


ε)(·, θ),
where Λα(ζ) is the cube defined by


Λα(ζ) = {γ ∈ Zd; for 1 ≤ j ≤ d; |γj| ≤ ζ−( 1
ν−d


+α)},
and ΠΛα(ζ) is the orthogonal projection on Λα(ζ).
We set


Uf
ε,β(x) =


∫


T∗
Wf


ε,β(x, θ)dθ and Uf
α,ε,β,ζ(x) =


∫


T∗
Wf


α,ε,β,ζ(x, θ)dθ.


For N large and well chosen β and (ωi,j
γ )γ∈Zd,1≤i,j≤d, Uf


α,ε,β,ζ will be an ap-
proximate eigenfunction of Aω,ΛN


associated with an approximate eigenvalue
in the interval [E+ − ε, E+ + ε].
As in [23] using the non-stationary phase we see that Uf


α,ε,β,ζ and Uf
ε,β are


close to each others. More precisely, for any n ∈ N and β ∈ Zd, there exists
Cn > 0 such that


(vol(T∗)) · ||Uf
α,ε,β,ζ − Uf


ε,β||L2(R) = ||Wf
α,ε,β,ζ −Wf


ε,β||H ≤ Cnε−n/2ζn( 1
ν−d


+α).
(2.20)


So, for ζ = ε small enough, we get


||Uf
α,ε,β,ζ ||L2(Rd) ≥ 1.


Now we have to look to the conditions under which we have∣∣∣
∣∣∣
(
Aω − E+


)
Uf


α,ε,β,ζ


∣∣∣
∣∣∣
2


≤ ε2.


Notice that
∣∣∣
∣∣∣
(
Aω,ΛN


− E+


)
Uf


α,ε,β,ζ


∣∣∣
∣∣∣
2


≤
∣∣∣
∣∣∣
(
Aω − E+


)
Uf


α,ε,β,ζ


∣∣∣
∣∣∣
2


≤ 2
∣∣∣
∣∣∣
(
A0 − E+


)
Uf


α,ε,β,ζ


∣∣∣
∣∣∣
2


+ 2
∣∣∣
∣∣∣∆AωUf


α,ε,β,ζ


∣∣∣
∣∣∣
2


. (2.21)


Equations (2.19) and (2.20) give the bound on the first member of (2.21), it
just remains to us to control the second term. We have


∣∣∣
∣∣∣
(
∆Aω


)
Uf


α,ε,β,ζ


∣∣∣
∣∣∣
2


≤ 2
∣∣∣
∣∣∣


∑


γ∈Zd,1≤i,j≤d


ωi,j
γ (∂xi


ui,j)(· − γ) ·
(
∂xj
Uf


α,ε,β,ζ


)∣∣∣
∣∣∣
2


+


2
∣∣∣
∣∣∣


∑


γ∈Zd,1≤i,j≤d


ωi,j
γ ui,j(· − γ)∂2


xixj
Uf


α,ε,β,ζ


∣∣∣
∣∣∣
2


. (2.22)
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To estimate (2.22), one needs the following lemmas.


Lemma 2.6 [29, 30]There exists K > 0, such that for any 1 ≤ i, j ≤ d we
have
∣∣∣
∣∣∣


∑


γ∈Zd,


ωi,j
γ (∂xi


ui,j)(·−γ)·
(
∂xj
Uf


α,ε,β,ζ


)∣∣∣
∣∣∣
2


≤ ε4+K
(
εsα(ν−d)·ε+ sup


γ∈β+2Λα(ε)
1≤i,j≤d


ωi,j
γ


)2


.


(2.23)


Lemma 2.7 [29, 30]There exists K > 0, such that for any 1 ≤ i, j ≤ d we
have
∣∣∣
∣∣∣
∑


γ∈Zd


ωi,j
γ ui,j(· − γ)∂2


xixj
Uf


α,ε,β,ζ


∣∣∣
∣∣∣
2


≤ ε4 + K
(
εsα(ν−d) · ε + sup


γ∈β+2Λα(ε)
1≤i,j≤d


ωi,j
γ


)2


.


(2.24)


Now, combining (2.23), (2.24) and taking (2.22) into account we get that
there exists K > 0 such that


∣∣∣
∣∣∣(∆Aω)Uf


α,ε,β,ε


∣∣∣
∣∣∣
2


≤ ε3 + K
(
εsα(ν−d) · ε + sup


γ∈β+2Λα(ε)
1≤i,j≤d


ωi,j
γ


)2


. (2.25)


By (2.19),(2.20) and (2.25), it follows that:


∣∣∣
∣∣∣
(
Aω − E+


)
Uf


α,ε,β,ε


∣∣∣
∣∣∣
2


≤ ε2


2
+ K


(
εsα(ν−d) · ε + sup


γ∈β+2Λα(ε)
1≤i,j≤d


ωi,j
γ


)2


. (2.26)


Now, for N large, we may divide ΛN into N(ε) disjoints cubes of size 2Λα(ε).
One has


N(ε) ' (2N)d


ε−d( 1
ν−d


+α)
; (2.27)


and
∪N(ε)


j=1 (βj + Λα(ε)) ⊂ ΛN


and for j 6= j′,
(βj + 2Λα(ε)) ∩ (βj′ + 2Λα(ε)) = ∅.


This implies that for j 6= j′, Uf
α,ε,βj ,ε and Uf


α,ε,βj′ ,ε
are orthogonal.


We denote the counting function of the eigenvalues of Aω,ΛN
below E by


ΘΛN
(E), then


E
(
ΘΛN


(E+ε)−ΘΛN
(E−ε)


)
= E


(
#


{
eigenvalues of ΠNAωΠN in [E+−ε, E++ε]


})
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≥ E
(
#


{
1 ≤ j ≤ N(ε); ||(Aω − E+)Uf


α,ε,βj ,ε||L2(Rd) ≤ ε
})


≥ E
( N(ε)∑


j=1


Bj(ω)
)
,


(2.28)
where


Bj(ω) =







1 if K



εsα(ν−d) · ε + sup


γ∈β+2Λα(ε)
1≤i,j≤d


ωi,j
γ






2


≤ ε2


2
.


0 if not.


The (Bj)1≤j≤N(ε) are independent, identically distributed, Bernoulli random
variables. So equations (2.27) and (2.28), imply that there exists C > 0, such
that one has


NΛN
(E + ε)−NΛN


(E − ε) =


1


((2N + 1))d
E


(
#


{
eigenvalues of ΠNAωΠN in [E+ − ε, E+ + ε]


})


≥ N(ε)


(2N + 1)d
P(B1 = 1) ≥ 1


C
εd(1/(ν−d)+αP(B1 = 1).


Hence, taking the limit N →∞, we get that, for ε > 0 small, we obtain


N(E+ + ε)−N(E+ − ε) ≥ 1


C
εdP(B1 = 1). (2.29)


It just remains to estimate P(B1 = 1). If for 1 ≤ j ≤ N(ε), and any γ ∈
βj + Λα(ε); 1 ≤ i, j ≤ d, one has ωi,j


γ ≤ ε


2K
, then for ε rather small


K
(
εα(ν−d) · ε + sup


γ∈β+2Λα(ε)
1≤i,j≤d


ωi,j
γ


)2


≤ ε2 ·K
(
εα(ν−d) +


1


2K


)2


≤ ε2


2
.


As the random variables are independent identically distributed, one has the
estimate


P(Bj = 1) ≥
(
P(ω1,1


0 ≤ ε


2K
)
)d2#Λα(ε)


.


So, taking the double logarithm of (2.29), using assumption (A.3) and the


fact that #Λα(ε) = ε−d( 1
ν−d


+α), we get that


lim
ε→0+


log
∣∣∣ log


(
N(E+ + ε)−N(E+)


)∣∣∣
log ε


≥ − d


ν − d
− dα. (2.30)
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The equation (2.30) is true for any α > 0, by taking α small we end the proof
of Theorem 2.5 and hence the subsection.


2.3 The upper bound


The proof of the upper bound in [29] is given in the case of the non degeneracy
of the IDS of the back ground operator which is relaxed here.
From Lemma 2.2 and for η0 > 1/(ν − d) and k ∼ ε−δ such that δ > ν0 the
proof of the upper bound is reduced to prove that


lim sup
ε→0+


log | log(E(Nω,k(E+ + ε)−Nω,k(E+)))|
log ε


≤ − d


ν − d
. (2.31)


Lemma 2.8 Let k ∼ ε−ρ with ρ > 1/(ν − d). Define the event,


Eε,ω = {ω; ∆Aω,k ≥ −ε∆ = −ε


d∑
i=1


∂2
xi
}.


Then Eε,ω has a probability at least 1− Pε where Pε satisfies


lim sup
ε→0+


log | log(Pε)|
log ε


≤ − d


ν − d
. (2.32)


Proof. Using equation (1.4) we get that for any ϕ ∈ C∞
0 (Rd) we have


〈∆Aω,kϕ, ϕ〉 =
∑


γ∈Zd;1≤i,j≤d


ωi,jeγ 〈ui,j(· − γ)∂xj
ϕ, ∂xi


ϕ〉 where γ̃ = γ mod (2k + 1)Zd


≥ g−
∑


α∈Zd


Aα(ω)|∇ϕ|2.


Here Aα(ω) =
∑


γ∈Zd;1≤i,j≤d


ωi,jeγ (1 + |α− γ|)−ν .


Notice that for any 1 ≤ i, j ≤ d; ωi,jeγ is (2k + 1)Zd periodic so is Aα(ω). We


set Zd
2k+1 = {γ ∈ Zd; |γ| < k}. Then we have


P({∆Aω,k ≥ −ε∆}) ≥ P({∀γ ∈ Zd
2k+1; g−


∑


α∈Zd


Aα ≥ ε})


≥ 1−
∑


γ∈Zd
2k+1


P({Aγ(ω) ≤ ε}).
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As the random variables are i.i.d, we have


P({∆Aω,k ≥ −ε∆}) ≥ 1− (2k + 1)dP({A0(ω) ≤ ε}). (2.33)


To estimate P({A0(ω) ≤ ε}) it suffices to follow the same computation done
in [24] and based on the Markov’s inequality, and the Taylor expansion of
e−x to get that


P({A0(ω) ≤ ε}) ≤ e−
1
C


ε
− d


ν−d
. (2.34)


This complete the proof of Lemma 2.8.


Lemma 2.9 There exists C > 0 and ε0 > 0 (uniform in k and ω) such that,
if 0 < ε < ε0 and ω satisfies ∆ω,k ≥ −Cε∆, for k ∈ N, one has


Nω,k(E+) = Nω,k(E+ + ε).


Lemma 2.9 says that if ∆Aω,k ≥ −Cε∆, then the spectrum of Aω,k does
not intersect (E+, E+ + ε) for ε small . This lemma will be proved in the
appendix.
Now estimate (2.31) is an immediate consequence of Lemma 2.8 and 2.9.
Indeed, picking C as in Lemma 2.9; one computes


E
(
Nω,k(E+ + ε)−Nω,k(E+)


)
= E


(
[Nω,k(E+ + ε)−Nω,k(E+)]1{ω;∆Aω,k≥−Cε∆}


)


+ E
(
[Nω,k(E+ + ε)−Nω,k(E+)]1{ω;∆Aω,k<−Cε∆}


)


≤ C0P({ω; ∆Aω,k < −Cε∆})
= C0(1− P(EC·ε,ω)) = C0PC·ε.


Here, we have used the fact that Nω,k is bounded, locally uniformly in energy,
uniformly in ω, k by C0. Taking (2.32) into account, we end the proof of
(2.31), and consequently the proof of the upper bound.


3 The proof of Theorem 1.1.


All the proofs of localization, except in the discrete case [1] for the multi-
dimensional case, use the method of the multiscale analysis. This method
was used for the first time by Fröhlich and Spencer, at the beginning of the
eighties [12] and it knew many extensions and simplifications to lead to the
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form described in the section below. This analysis makes possible to obtain
information on the operator in the hole space, starting from information on
the operator restricted to cubes of finished size [7]. For sake of completeness
in the following section we briefly recall the technique of multiscale analy-
sis. We refer the reader to [7, 17, 20, 34] for detailed description of results
mentioned below.


3.1 Multiscale analysis .


We start by introducing some notations. Let Λk(x), be the cube of center
x ∈ Zd and with side length 2k. The restriction of Aω on Λk(x) with Dirichlet
boundary condition is noted by Ax,k. Each Ax,k is a positive operator with
compact resolvent Rx,k(z) = (Ax,k − z)−1. The norm on L2(Λk(x)) is noted
by ‖ ·‖x,k. The operator of multiplication by ϕ ( where ϕ ∈ L∞(Λ)) on L2(Λ)
will be simply indicated by ϕ. In what follows we consider k ∈ 3N.
Let


Υk(x) =
{


y ∈ Γ; ||y − x|| = k


3
− 1


}
.


We set
Γx,k =


∑


y∈Υk(x)


χy.


where χy is the characteristic function of the unit cube centered in y. Note
that |Υk(x)| ≤ cdkd−1.
For Λ ⊂ Zd we consider the following probability space ([0, 1]d


2·Λ,F ′,PΛ)


when A ∈ F ′ we set A′ = A⊗j /∈Λ [0, 1]d
2 ∈ F , and take


PΛ(A) = P(A′).


By EΛ we denote the expectation corresponding to PΛ and when Λ ⊂ Rd we
identify Λ to Λ ∩ Zd.


Definition 3.1 Let m > 0, E > 0, x ∈ Γ. We said that Λk(x) is (m,E)-
regular if E /∈ σ(Ax,k) and


||Γx,kRx,k(E)χx||x,k ≤ e−m k
2 . (3.35)


The multiscale analysis is based on two fundamental assumptions, namely:
Initial estimate: (P1) (k0,m0, p) for E0 ∈ [E+, E++ε0], p > d and m0 > 0,
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there exists k0 ∈ N such that


PΛk0


{
Λk0(0) is (m0, E0)− regular


}
≥ 1− 1


kp
0


.


uniform Wegner estimate: (P2) there exists ε0 > 0, Cw > 0 such that
for all E in [E+, E+ + ε0/2], for all ε < ε0/2 we have


PΛk


{
ω|d(σ(A0,k), E) ≤ ε


}
≤ Cw · ε · |Λk|2.


The multiscale analysis is a method of recurrence [7] on a succession of scale
kj, defined by recurrence as follow kj+1 = [kζ


j ]3 where ζ ∈]1, 2[ and [t]3 is the
greatest multiple of 3 which is smaller than t. For each scale kj one shows
that R0,kj


(z) decay exponentially with probability which tends to 1 when j
tends to the infinity. Such operation consists in proving that if we have (P2)
then


(P1) (kj,mj, p) ⇒ (P1) (kj+1, mj+1, p
′). (3.36)


The decay rate mj+1 and the scale kj+1 are such: for all ξ > 0 there exists
c1, c2, c3 such that


mj+1 ≥ mj


(
1− 4kj


kj+1


)
− c1


kj


− c2
log kj+1


kj+1


, (3.37)


kp′
j+1 ≤ c3


(kj+1


kj


)2d


k2p
j +


k−ξ
j+1


2
. (3.38)


Roughly, the idea of the proof of (3.36) is to divide a large cube of side
kj+1 into small cubes of side kj and variable centers x and then to develop
R0,kj+1


(z) according to Rx,kj
(z). Such operation is based on the inequality


called of Simon-Lieb (SLI); see Lemma 26 of [8]. One points out this inequal-
ity, the proof is given in [8].


Lemma 3.2 (SLI) For all k, k′ ∈ 3N, such that k ≥ 4


||Γx,k′Rx,k′(z)χy||x,k′ ≤ Czk
d−1||Γy,kRy,k(E)χy||y,k||Γx,k′Rx,k′(z)χy′||x,k′ .


For some y′ ∈ Υk(y) and Cz = C(z, d, a+, a−).


To make this development successfully one needs two main ingredients:
1) A succession of regular cubes Λkj


(x) which join the edges of Λkj+1
(0). It
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is shown that this is the case with a large probability.
2) A fundamental estimate of R0,kj+1


(E) for each E ∈ [E+, E+ + ε0], with a
sufficiently large probability. This is a consequence of the uniform Wegner
estimate (P2).
Then, we obtain an estimate on the decay of R0,kj+1


(z) with a rate slightly
smaller compared to that of R0,kj


, but with a higher probability.
Here we use the uniform Wegner estimate [17] instead of the Wegner estimate
[8], to overcome the difficulty caused by the long range potential. Notice that
the crucial probabilistic estimates in [7] (See Lemma 4.1) can be done using
the fact that for any Λ1, Λ2 in Z2, we have


PΛ2(A) ≤ PΛ1(A) if Λ1 ⊂ Λ2


and
PΛ1∪Λ2(A ∩B) ≤ PΛ1(A) · PΛ2(B) if Λ1 ∩ Λ2 = ∅.


3.2 Localization for the divergence operator


Our strategy, in proving localization, consists in proving that from Theorem
1.2 we are able to obtain the necessary standard ingredients for recurrence
procedure and, thus, to start the machinery of multiscale analysis, and prove
the existence located states on edge of the almost sure spectrum Σ\{0}. In-
deed, points (i) and (ii) of Theorem 1.1 are proven in [8] and in [34] as a
consequence of (P1) and (P2). For the strong dynamical localization (point
(iii) of Theorem 1.1); Damanik and Stollmann in [6], show that this can be
seen as a result of Anderson localization (hypothesis EDI in [34]); which is
guaranteed by points (i) and (ii) of Theorem 1.1.
Recently, Strong dynamical localization up to any order, is proved by Ger-
minet and Klein in [13]. It is given for Schrödinger operators, but it is also
true for our model.
From what it was said previously to prove Theorem 1.1, it is enough to
check the necessary assumptions to start the multiscale analysis i.e; (P1)
and (P2).


3.3 Initial estimate


We start by verifying (P1). This already has been done in [3, 4, 6, 19, 20]
for Schrödinger operators and in [34] for the model given by the form of (1.1)
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under the assumption of a special mode of disorder. More precisely their
approach requires a sufficiently fast decay of the probability distribution µ
at the approach to the edges of the support. Indeed, they assumed that there
exists some τ > 0 (τ > 3d


2
in [3]; τ > d in [19] and τ > d


2
in [20]): such that


∀ε > 0,


P0([0, ε]) =


∫ ε


0


g(s)(s)ds ≤ ετ ,


or


P0([1− ε, 1]) =


∫ 1


1−ε


g(s)ds ≤ ετ .


According to whether one considers the higher or lower edges of the gap.
Those conditions are relaxed here.
In what follows, to get (P1) one will adapt an other approach which uses
the fact that at the internal band edges, the IDS of Aω exhibits Lifshitz tails.
See [21, 36, 29, 30].
Let us consider the following assumption


(P’ 1) PΛk0


{
d(σ(A0,k0), [E+, E+ + ε0]) < 1


2
k−α


0


}
≤ 1


kp
0
,


with α ∈]0, 1[ and ε0 > 0.
In the appendix we prove the following statement:


Lemma 3.3 (P’1) implies (P1) for certain m0 ≥ Ck−2
0 .


So the proof of the Theorem 1.1 is reduced to the proof of:


Proposition 3.4 Under the assumptions of Theorem 1.1, (P’1) holds.


3.3.1 The proof of the Proposition 3.4.


To get (P’1), in an interval of energy which contains E+ one will compare
the number of states of Aω to that of A0,k. This will be done by a comparison
between N(Aω, E) and N(A0,k, E). At the bottom of the spectrum, such
technique was used with the Čebǐseve inequality by Klopp, in [21], and by
Kirsch, Stollman and Stolz in [19]. In the medium of the spectrum one refers
to the work of Veselić in [27, 36]. All results quoted here are given in the
Schrödinger case.
Notice that (1.9) is a limit when one approaches the band edges. We ask
for an estimate to hold on an interval. This is the purpose of the following
computation.
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Lemma 3.5 For all n ∈ N and α ∈]0, 1[; there exists k2 ∈ N such that if
k ≥ k2 we have


EΛk


(
Nω,k(E+ + k−α)−Nω,k(E+)


)
≤ k−n. (3.39)


Proof. By the use of the result of Theorem 1.2, and Lemma 2.2; for ε = k−α


and k > k1 (k1 of Lemma 2.2) we get that for all n ∈ N, there exists k2 > 0
such that if k ≥ k2 > k1, we have


EΛk


(
Nω,k(E+ + k−α)−Nω,k(E+)


)
≤ k−n. (3.40)


So the proof of Lemma 3.5 is ended
We need also the following lemma.


Lemma 3.6 [36] For all ε > 0, we have


∫


T∗k
PΛk


(
{ω|σ(Aω,k(θ))∩[E+, E++ε] 6= ∅}


)
dθ ≤ (2π)dEΛk


(
Nω,k(E++ε)−Nω,k(E+)


)
.


Let us note the jth eigenvalue of Aω,k(θ)by Ej(Aω,k(θ)). In the appendix one
shows the following lemma.


Lemma 3.7 For all θ, θ′ ∈ T∗k and j ∈ N there exists Mj,k > 0 such that


|Ej(Aω,k(θ)− Ej(Aω,k(θ
′)| ≤ Mj,k|θ − θ′|. (3.41)


Now using Lemma 3.6 and Lipshitz continuity in θ of the Floquet eigenvalues,
we will be able to estimate the probability to find an eigenvalue of A0,k(θ


0)
in the interval [E+, E+ + ε]. Here A0,k(θ


0) = A0,k|θ0


Λk
is the operator A0,k


restricted to Λk with θ0-periodic conditions. More precisely we have


Lemma 3.8 Let θ0 ∈ T∗k. For all ε > 0 we have


PΛk


(
{ω|σ(Aω,k(θ


0)) ∩ [E+, E+ + ε] 6= ∅}
)


≤ (2π)d


vol(T∗k)
EΛk


(
Nω,k(E+ + ε + ck−1)−Nω,k(E+)


)
. (3.42)
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Proof. From Lemma 3.7 we know that there exists Mj,k > 0 such that for
all j ∈ N we have


|Ej(A0,k(θ))− Ej(A0,k(θ
′))| ≤ Mj,k|θ − θ′|.


As we are interested only in the eigenvalues in [E+, E+ + ε], the Mj,k can be
chosen uniformly in j and k. So there exists M > 0 such that


M ≥ Mj,k, ∀j, k ∈ N.


Now we will use this to estimate


PΛk
({ω|σ(A0,k(θ


0)) ∩ [E+, E+ + ε] 6= ∅}).


For this it is enough to estimate


PΛk
({ω|∃ j ∈ N; Ej(A0,k(θ


0)) ∈ [E+, E+ + ε]}) =


1


vol(T∗k)


∫


T∗k
PΛk


({ω|∃ j ∈ N; Ej(A0,k(θ
0)) ∈ [E+, E+ + ε]})dθ. (3.43)


Thus if Ej(A0,k(θ
0)) ∈ [E+, E+ + ε], the Lipshitz continuity implies that


Ej(A0,k(θ)) ∈ [E+, E+ + ε + Mdiam(T∗k)], ∀θ ∈ T∗k with diam(T∗k) ≤ ck−1.
So we get that


(3.43) ≤ 1


vol(T∗k)


∫


T∗k
PΛk


({ω|∃ j ∈ N; Ej(A0,k(θ)) ∈ [E+, E+ + ε + ck−1]})dθ


=
1


vol(T∗k)


∫


T∗k
PΛk


({ω|; σ(A0,k(θ)) ∩ [E+, E+ + ε + ck−1] 6= ∅})dθ


≤ (2π)d


vol(T∗k)
EΛk


[
Nω,k(E+ + ε + ck−1)−Nω,k(E+)


]
.


This proves Lemma 3.8.


For α < 1, (α given in Lemma 3.5) and ε = k−α > 0 there exists k3 ∈ N such
that if k > k3, we have k−α + ck−1 ≤ 2k−α where k3 depends on α and c. By
using equation (3.40) we obtain that for k > k3;


EΛk


(
Nω,k(E+ + 2k−α)−Nω,k(E+)


)
≤ ck−n.
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So Lemma 3.8 gives:


PΛk


(
{ω|σ(A0,k(θ


0)) ∩ [E+, E+ + k−α] 6= ∅}
)
≤ ck−n+d.


Let p > d and n given in Lemma 3.5 such that n > p+d. There exists k4 ∈ N
such that if k ≥ k4 we have ck−n+d ≤ k−p. This implies that for k > k4 we
have


PΛk


(
{ω|σ(A0,k(θ


0)) ∩ [E+, E+ + k−α] 6= ∅}
)
≤ k−p. (3.44)


This ends the proof of the Proposition 3.4 (P’1).


3.4 Wegner estimate


As it was mentioned previously the estimate we are aiming at is one of the
basic ingredients of the multiscale analysis. Roughly speaking it is an upper
bound on the probability that the spectrum of the local operator Ax,k lies
within an ε-neighborhood of a given energy. This probability vanishes as the
size of the energy neighborhood shrinks to zero. Such an estimate is proved
by Klopp, in [21], for energies at the bottom of the spectrum, which applies
to Schrödinger operators with Anderson perturbation. Kirsch Stollman and
Stolz proved in [20] a Wegner estimate with minimal decay conditions on the
single site potential. For random divergence operators, a Wegner estimate
is proved in [34]. In [3] the authors obtain a Wegner estimate with |Λk|-
dependence. We refer to [22] for more details and explanation on this subject.


Proposition 3.9 There exists cw, ε0 such that for all E ∈ [E+, E+ + ε0]


PΛk
{dist(σ(A0,k), E) ≤ ε} ≤ Cw · ε · |Λk|2. (3.45)


Proof. The proof given here is classic and very similar to those in [17, 34, 36],
and it is based on the study of the mobility of the eigenvalues of A0,k as
function of ω. For this it is not strange to use the derivative with respect to
ω. Let ρ a monotone C1function : R −→ [0, 1] which is 1 on [ε, +∞) and 0


24







on (−∞,−ε]. Let us estimate


PΛk
{dist(σ(A0,k), E) ≤ ε} ≤ EΛk


{trχ[E−ε,E+ε](A0,k)}
≤ EΛk


{tr[ρ(A0,k − E + 2ε)− ρ(A0,k − E − 2ε)]}


≤ EΛk
{tr[


∫ 2ε


−2ε


ρ′(A0,k − E + t)dt]}


=
∑


n


EΛk
(


∫ 2ε


−2ε


ρ′(En(ω)− E + t)dt)


=
∑


n


∫ 2ε


−2ε


EΛk
(ρ′(En(ω)− E + t)dt). (3.46)


Here


EΛk
{ρ′(En(ω)− E + t)} =


∫ 1


0


· · ·
∫ 1


0


ρ′(En(ω)− E + t)
∏


γ∈Λ,1≤i,j≤d


P0(dωi,j
γ );


and the sum is over the eigenvalues of A0,k in [E+ − ε, E+ + ε].
Let us notice that for any eigenvalue En(ω) associated an eigenfunction Ψn


and for γ′ ∈ Λk and 1 ≤ i′, j′ ≤ d we have


∂En (ω)


∂ωi′,j′
γ′


=
∂


∂ωi′,j′
γ′


( ∑
γ∈Λk


1≤i,j≤d


ωi,j
γ 〈ui,j(· − γ)∇Ψn,∇Ψn〉


)


= 〈ui′,j′(· − γ′)∇Ψn,∇Ψn〉.
This yields to


∑


γ′∈Λk
1≤i′,j′≤d


∂En(ω)


∂ωi′,j′
γ′


=
∑


γ′∈Λ
1≤i′,j′≤d


〈ui′,j′(· − γ)∇Ψn,∇Ψn〉


≥ g− · 〈∇Ψn,∇Ψn〉
≥ g− · a−1


+ · 〈A (aω) Ψn, Ψn〉
≥ g− · a−1


+ · En(ω) > 0.


As we are interested in E > E+ > 0, we can get that


∑


γ′∈Λk
1≤i′,j′≤d


∂En (ω)


∂ωi′,j′
γ′


≥ g− · a−1
+ · E+,
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and consequently we have


1 ≤ 1


g− · a−1
+ · E+


·
∑


γ′∈Λk
1≤i′,j′≤d


∂En (ω)


∂ωi′,j′
γ′


.


Since ρ is monotone, we get


ρ′(En(ω)) ≤ 1


g− · a−1
+ · E+


·
∑


γ′∈Λk
1≤i′,j′≤d


∂En(ω)


∂ωi,j
γ


ρ′(En(ω))


=
1


g− · a−1
+ · E+


·
∑


γ′∈Λk
1≤i′,j′≤d


∂ρ(En(ω))


∂ωi′,j′
γ′


. (3.47)


So by the use of equation (3.46) and (3.47) we get


PΛk
{dist(σ(A0,k), E) ≤ ε} ≤


1


g− · a−1
+ · E+


·
∑


n


∫ 2ε


−2ε


dt·
∫ 1


0


· · ·
∫ 1


0


∑


γ′∈Λk
1≤i′,j′≤d


∂ρ(En


(
ωi,j


γ


)− E + t)


∂ωi′,j′
γ′


∏


γ∈Λ,1≤i,j≤d


P0(dωi,j
γ ).


But for any fixed γ′ ∈ Λk, and 1 ≤ i′, j′ ≤ d, we have∫ 1


0


· · ·
∫ 1


0


∂ρ(En


(
ωi,j


γ


)− E + t)


∂ωi′,j′
γ′


∏


γ∈Λ,1≤i,j≤d


P0(dωi,j
γ ) =


∫ 1


0


· · ·
∫ 1


0


∏


γ∈Λ1≤i,j≤d
γ 6=γ′,i6=i′,j 6=j′


g(ωi,j
γ )dωi,j


γ


×
∫ 1


0


g(ωi′,j′
γ′ )


∂ρ(En


(
ωi,j


γ


)− E + t)


∂ωi′,j′
γ′


dωi′,j′
γ′ ;


and
∫ 1


0


g(ωi′,j′
γ′ )


∂ρ(En


(
ωi,j


γ


)− E + t)


∂ωi′,j′
γ′


dωi′,j′
γ′ =


ρ(En(ωi,j
γ , ωi′,j′


γ′ = 1)− E + t)− ρ(En(ωi,j
γ , ωi′,j′


γ′ = 0)− E + t).
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Here En(ωi,j
γ , ωi′,j′


γ′ = α) is the n-th eigenvalue of A0,k when ωi′,j′
γ′ is changed


by α. So


PΛk
{dist(σ(A0,k), E) ≤ ε} ≤


C · ‖g‖∞
∑


n


∑


γ′∈Λk
1≤i′,j′≤d


∫ 2ε


−2ε


dt


∫ 1


0


· · ·
∫ 1


0


∏


γ∈Λ,1≤i,j≤d
γ 6=γ′,i6=i′,j 6=j′


g(ωi,j
γ )dωi,j


γ


× {ρ(En(ωi,j
γ , ωi′,j′


γ′ = 1)− E + t)− ρ(En(ωi,j
γ , ωi′,j′


γ′ = 0)− E + t)}.
For our choice of ρ we get that


PΛk
{dist(σ(A0,k), E) ≤ ε} ≤ C ·


∑
n


∑


γ′∈Λk
1≤i′,j′≤d


∫ 2ε


−2ε


dt.


Notice that the number of terms in the sum over γ, i and j can be bounded
by d2|Λk| and by the Weyl’s law we know that there are at most C |Λk| eigen-
values of A0,k below some fixed energy. This ends the proof of the Proposition
3.9.


4 Appendix .


The proof of Lemma 2.9. Let us take ∆Aω,k > −Cε∆. Let ϕ ∈ D(Aω,k)
such that 〈Aω,kϕ, ϕ〉 > E+, then


〈Aω,kϕ, ϕ〉 = 〈A0,kϕ, ϕ〉+ 〈∆Aω,kϕ, ϕ〉
≥ 〈A0,kϕ, ϕ〉+ Cε|∇ϕ|2
> 〈A0,kϕ, ϕ〉+ Cεa−1


+ E+. (4.48)


But by assumption (A.1), below the energy E+ there is a gap in the spec-
trum of A0 of length at least δ > 0; taking (1.2) into account, we get that
for < 0ε < ε0 = δa+


E+C
; Aω has no spectrum in (E+, E+ + CεE+a−1


+ ). So the


proof of Lemma 2.9 is ended if we choose C = a+


E+
> 0.


The proof of Lemma 3.3. The proof is based on the Combes-Thomas
argument [8], leading that there exists c, c′ > 0 such that


‖χyRx,k(E)χx||x,k ≤ c


d(E, σ(Ax,k))
· e−c′d(E,σ(Ax,k))‖x−y‖.
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We have


||Γx,kRx,k(E)χx||x,k ≤
∑


y∈Υ(x)


‖χyRx,k(E)χx||x,k


≤ cdkd−1 1


d(E, σ(Ax,k))
· e−c′d(E,σ(Ax,k))( k


3
−1).


Let us notice that


PΛk0


{
Λk0(0) is (m0, E0)− regular


}
≥ 1− 1


kp
0


⇔ PΛk0


{
Λk0(0) is not (m0, E0)− regular


}
≤ 1


kp
0


and


PΛk0


{
Λk0(0) is not (m0, E0)− regular


}
≤


PΛk0


{
cdkd−1


0


1


d(E, σ(A0,k0))
· e−c′d(E,σ(A0,k0


))(
k0
3
−1) > e−m0


k0
2


}
.


however


PΛk0


{
d
(
σ(A0,k0), [E+, E+ + ε0]


)
<


1


2
k−α


0


}
≤ 1


kp
0


⇔


PΛk0


{
cdkd−1


0


1


d(E, σ(A0,k0))
· e−c′d(σ(A0,k0


),E)(
k0
3
−1) >


cdk
(d−1)+α
0 e−


k−α
0
2


(
k0
3
−1)


}
≤ 1


kp
0


.


Let m0 ≥ ck−2
0 such that e−m0


k0
2 > cdk


(d−1)+α
0 e−


k−α
0
2


(
k0
3
−1). Thus we obtain


that if (P’1) hold we have


PΛk0


{
cdkd−1


0


1


d(E, σ(A0,k0))
· e−c′d(E,σ(A0,k0


))(
k0
2
−1) > e−m0


k0
2


}
≤ 1


kp
0


.


This completes the proof of Lemma 3.2.
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The proof of Lemma 3.7. The proof is based on the variational formula.
Indeed from the Theorem XIII.2 of [33] for ϕ ∈ C+∞


0 (Rd) we have


Ej(Aω,k(θ)) = sup
ψ1,...,ψj−1


inf
ϕ∈(vect〈ψ1,...,ψj−1〉)⊥


‖ϕ‖=1


〈Aω,k(θ)ϕ, ϕ〉. (4.49)


As
〈Aω,k(θ)ϕ, ϕ〉 = 〈aω,k(∇− iθ)ϕ, (∇− iθ)ϕ〉.


Then


〈Aω,k(θ)ϕ, ϕ〉 − 〈Aω,k(θ
′)ϕ, ϕ〉


= 〈aω,k(∇− iθ)ϕ, (∇− iθ)ϕ〉 − 〈aω,k(∇− iθ′)ϕ, (∇− iθ′)ϕ〉
=


∑


1≤i,j≤d


〈aω,k,i,j(θiθj − θ′i, θ
′
j)ϕ, ϕ〉+ 2<e


(
〈aω,k∇ · ϕ,−i(θ − θ′) · ϕ〉


)


≤ C
( ∑


1≤i,j≤d


|θiθj − θ′iθ
′
j| · ||ϕ||2 + |θ − θ′| · ||∇ϕ||2


)


≤ C
( ∑


1≤i≤d


|θi − θ′i|2 · ||ϕ||2 + |θ − θ′| · ||∇ϕ||2
)


≤ C|θ − θ′|
(
||ϕ||2 + ||∇ϕ||2


)
.


So


〈Aω,k(θ)ϕ, ϕ〉 ≤ 〈Aω,k(θ
′)ϕ, ϕ〉+ C|θ − θ′|


(
||ϕ||2 + ||∇ϕ||2


)
. (4.50)


Now we take the inf on ϕ in the orthogonal to spaces of dimension j − 1 in
the left side of equation (4.50) then in the right side. By applying the sup
on all spaces of dimension j − 1 in the right-hand side then in the left-hand
side and taking into account (1.2) and (4.49), we get that


Ej(Aω,k(θ))− Ej(Aω,k(θ
′)) ≤ |θ − θ′|(1 + Ek(θ)).


As it is symmetric in θ we obtain that


Ej(Aω,k(θ
′))− Ej(Aω,k(θ)) ≤ |θ − θ′|(1 + Ek(θ)).


This achieve the proof of Lemma 3.7.
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