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The Hénon-Heiles Hamiltonian is investigated in the context of chaotic scattering, in the range of energies
where escaping from the scattering region is possible. Special attention is paid to the analysis of the different
nature of the orbits, and the the invariant sets, such as the stable and unstable manifolds and the chaotic saddle.
Furthermore, a discussion on the average decay time associated to the typical chaotic transients, which are
present in this problem, is presented. The main goal of this paper is to show, by using various computational
methods, that the corresponding exit basins of this open Hamiltonian are not only fractal, but they also verify
the more restrictive property of Wada. We argue that this property is verified by typical open Hamiltonian
systems with three or more escapes.
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I. INTRODUCTION


The phenomenon of chaotic scattering is usually ass
ated with the dynamics of open Hamiltonian systems p
sessing chaotic properties. One of the basic attributes
these Hamiltonian systems is the possibility of an orbit
escape from the attraction of the potential. Typically, a p
ticle bounces back and forth for a certain time in a bound
area called thescattering region, and eventually leaves i
through one of the several exits, escaping towards infin
Many recent studies have focused in the analysis of th
Hamiltonians in two dimensions, the main reason for t
interest is they are being used to model a wide range
phenomena in very different fields. Some applications are
analysis of the escape of stars from galaxies@1,2#, the dy-
namics of ions in electromagnetic traps@3#, the interaction
between the Earth’s magnetotail and the solar wind@4#, and
the study of geodesics in gravitational waves@5#, to cite just
a few. From a wide point of view, all these applications a
varied manifestations of chaotic scattering, which mai
consists of the interaction of a particle with a system t
scatters it, in a way that the final conditions of speed a
direction depend on the initial conditions in an extreme
sensitive way~see Ref.@6# for a detailed study of this phe
nomenon!.


For energies below a certain threshold value, which
commonly called theescape energy, the orbits are bounded
and the test particles cannot leave the scattering region, b
the energy is above this threshold value, several exits m
appear and it is possible to escape towards infinity thro
anyone of them. Since we are considering a conserva
Hamiltonian system, the total energy is conserved, and t
we cannot speak about attractors nor basins of attractio
basin of attraction is defined as the set of points that, take
initial conditions, are attracted to a specific attractor. Wh
there are two different attractors in a certain region of ph
space, two basins exist, which are separated by a b
boundary. This basin boundary can be a smooth curve or
be instead a fractal curve. While we cannot talk about attr
tors in Hamiltonian systems, we can however defineexit ba-
sins in an analogous way to the basins of attraction in
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dissipative system. In our case, an exit basin is the se
initial conditions that lead to a certain exit. In particular, w
have focused our attention in the analysis of exit basins
the Hénon-Heiles Hamiltonian, which is a well-know
model for an axisymmetrical galaxy@7#, and it has been use
as a paradigm in Hamiltonian nonlinear dynamics. It is
two-dimensional time-independent dynamical system an
has three different exits for orbits over the escape energ
has been shown by Bleheret al. @8# that when two or more
escapes are possible in Hamiltonian systems, fractal bou
aries typically appear. Hence, the dynamics of the system
in some sense unpredictable, as the boundary that sepa
one basin from another one is not clearly defined.


Our goal in this paper is twofold. First, we have studi
the Hénon-Heiles Hamiltonian as a paradigmatic example
chaotic scattering, paying special attention to the invari
sets related to it. Second, we have obtained numerical
dence of the special character of the final uncertainty in
Hamiltonian, because we show that its exit basins are
only fractal, but they verify the stronger property of Wad
@9–14#. A basin B verifies the property of Wada if any
boundary point also belongs to the boundary of two ot
basins. In other words, every open neighborhood of a poix
belonging to a Wada basin boundary has a nonempty in
section with at least three different basins. Hence, if the
tial conditions of a particle are in the vicinity of the Wad
basin boundary, we will not be able to be sure by which o
of the three exits the orbit will escape to infinity. It has be
proved by @15# that the property of Wada is verified in
triangular configuration of three billiard balls, and it has be
claimed that it could be a typical feature of chaotic scatter
systems. In fact, a recent experimental evidence of the
currence of the Wada property in chaotic scattering was
ported in@17#. For a higher-dimensional case of chaotic sc
tering, see@16#.


In this paper, we review the necessary conditions to sh
that a system indeed verifies the property of Wada, and
apply them to the case of the He´non-Heiles Hamiltonian.
Recent results@18,19# strongly suggest that the escape pro
erties in two-dimensional~2D! Hamiltonians depend on ge
neric phase-space characteristics rather than the detai
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individual potentials, and they have motivated a claim
universality. Our paper is focused in this direction, suppo
ing the claim that the Wada property is a general feature
2D Hamiltonians with three or more escapes.


The organization of this paper is as follows. In Sec. II, w
study the model and the nature of the orbits. In Sec. III,
plot the exit basins for different initial conditions. In Sec. I
the invariant sets of the system and their dimensions
calculated, in particular, the nonattracting chaotic set form
by the orbits that will stay in the bounded region for a
times, positive and negative, and its stable and unst
manifolds. We also pay attention to the average decay ti
In Sec. V, we review the conditions that a Wada basin m
satisfy, and apply them to our case. In particular, we cal
late the only period-1 accessible boundary orbit, and
show that its unstable manifold intersects all basins. In S
VI, we summarize our main conclusions.


II. DESCRIPTION OF THE MODEL


The Hénon-Heiles system was first studied by the astro
mers Hénon and Heiles in 1964@7#, in the context of analyz-
ing if there exists two or three constants of motion in t
galactic dynamics. A system with a galactic potential tha
axisymmetrical and time independent, possesses a 6D p
space. As there are six variables, we can find five indep
dent conservative integrals, some of them being isolating
other nonisolating~which are physically meaningless!. The
question that He´non and Heiles tried to answer is which pa
of this 6D phase space is filled by the trajectories of a s
after very long times. By that time, it was obvious that bo
the total energyET and thez component of the angular mo
mentumLz were isolating integrals, while another two we
usually nonisolating. Therefore, the real target became
find a third conserved quantity. In order to solve this pro
lem, Hénon and Heiles proposed a 2D potential. Their res
was that a third isolating integral may be found for on
some few initial conditions. In fact, the He´non-Heiles Hamil-
tonian is one of the first examples used to show how v
simple systems might possess highly complicated dynam
and since then, it has been extensively studied as a para
for 2D time-independent Hamiltonians.


The Hénon-Heiles Hamiltonian has a 2p/3 rotation sym-
metry, and it is written as


H5
1


2
~ ẋ21 ẏ2!1


1


2
~x21y2!1x2y2


1


3
y3. ~1!


This Hamiltonian has been extensively studied for
range of energy values below the escape energy, where o
are bounded and a variety of chaotic and periodic moti
exist. On the other hand, if the energy is higher than t
threshold value, the escape energyEe , the trajectories may
escape from the bounded region and go on to infinity thro
three different exits. This fact can be clearly seen in Fig
where its isopotential lines are plotted. Due to its symme
properties, the exits are separated by an angle 2p/3 radians,
and for the sake of clarity we call exit 1 the upper exity
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→1`), exit 2, the left exit (y→2`,x→2`), and exit 3,
the right exit (y→2`,x→1`).


The Hénon-Heiles potential has four terms. The first tw
termsx2 andy2 form a potential well, which is responsibl
for the oscillations of the particle, while the third and four
termsx2y and 1


3 y3 are responsible for the existence of th
exits. In fact, the third termx2y creates exits 2 and 3. How
ever, it does not affect exit 1. If it disappears, thenE2→`
andE3→` and we obtain a Hamiltonian where only exit 1
possible. On the other hand, the fourth term (1/3)y3 is only
responsible for exit 1. Without it,E1→`, exit 1 disappears
and we find a chaotic scattering problem with only two sy
metric escapes, exits 2 and 3.


To calculate each escape energy, it is necessary to find
value of the energy in the maxima of the potential. We obt
the same value for all three exits. There is a triangular sy
metry, andE15E25E351/650.1666. As we are intereste
in the general behavior of the two-dimensional tim
independent Hamiltonians with escapes, we have only c
sidered values of the energy above this escape energy.


In general, the particles wander to and fro for a cert
time in the scattering region until they cross one of the th
frontiers and escape to infinity, as it is shown in Fig. 2~a!.
The time they spend in the bounded region is namedescape
time. These frontiers are extremely unstable periodic orb
known as Lyapunov orbits @2# @see Fig. 2~c!#. These
Lyapunov orbits exist for all energies overEe . When any
orbit crosses one of them in the outer direction, that is,
velocity components pointing outwards, then the particle
forced to escape to infinity and it never comes back. As
system has three exits, there are three of these orbits.


As it can be easily understood, the higher the energy,
shorter escape times are found. However, even if the en
is high enough to allow escaping~i.e., if E.Ee), there are
several orbits that remain in the scattering region forev
being some of them periodic, some aperiodic, and some q
siperiodic@see Fig. 2~b! for the latter case#.


FIG. 1. Isopotential curves for the He´non-Heiles potential. They
are closed for energies under Ee51/6, but they show three exits i
the energy is higher than this threshold value.
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FIG. 2. Different kinds of orbits:~a! A typical
escaping orbit, choosing exit 1.~b! A quasiperi-
odic orbit. ~c! A Lyapunov orbit ~LO1 for E
50.25).
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III. EXIT BASINS IN THE HE ´ NON-HEILES
HAMILTONIAN


As we have mentioned before, in Hamiltonian system
we cannot talk about attractors or basins of attraction. Ho
ever, if our system has several escapes, we may define
basins in a similar way to the basins of attraction in dissi
tive systems, saying that an exit basin is the set of ini
conditions that lead to a certain exit. This means that we
able to construct an exit basin diagram for our system
gives us information about how the system might beh
according to its initial conditions. In order to obtain the e
basin diagram for the He´non-Heiles Hamiltonian, we mus
calculate each trajectory solving the differential equations
motion for a fine grid of initial conditions. We follow eac
orbit until it escapes from the scattering region crossing
of the three exits. If it escapes through exit 1, its initial co
ditions will belong to the exit 1 basin, and the same app
for exits 2 and 3. In order to visualize it, we plot each init
condition with a different color, according to the exit the
have used to escape to infinity. The color code we have c
sen is black for exit 1, dark gray for exit 2, and pale gray
exit 3. White represents the initial conditions that are n
allowed for that particular value of the energy.


As we are studying a two-dimensional time-independ
Hamiltonian, the phase space depends on (x,y,ẋ,ẏ) and a
conserved quantity, which is the energy. For this reason,
phase space is three dimensional, and consequently, we
fix three variables to define a trajectory. Throughout this
per, we will use a Poincare´ surface of section to show ou
results, and the initial velocity is generically expressed b


v i5Aẋ21 ẏ25A2E2xi
22yi


222xi
2yi1


2


3
yi


3. ~2!


Among the many ways of choosing the initial conditions,
is very convenient to do it in a way that includes a Lyapun
orbit. As will be seen in Sec. V, in order to demonstrate t
the Hénon-Heiles Hamiltonian verifies the property of Wad
it is necessary to find an accessible unstable periodic orb~a
saddle point! and plot its associated manifolds. Th
Lyapunov orbits verify all these conditions. A boundary po
P is accessiblefrom a basinB if it is possible to draw a finite
curve from an interior point inB to P in a way that it con-
tains no boundary points butP.


The two different choices of initial conditions used to pl
the exit basin diagrams are sketched in Figs. 3~a! and 3~b!. It

06620

,
-
xit
-
l
re
at
e


f


e
-
s


o-
r
t


t


e
ust
-


t
v
t
,


t


is possible to have an exit basin diagram where the varia
are (x,y), and where the 2p/3 rotation symmetry is mani-
fest. This choice of initial conditions is shown in Fig. 3~b!,
and the exit basin diagram resulting from it is plotted in F
4. Apart from x and y, we have fixed the initial shooting
direction for each (x,y) in a way that it is perpendicular to
the radial line that goes from~0,0! to (x,y), in the counter-
clockwise sense. Thus, the Poincare´ surface of section is a
map defined by the points of the trajectories that verify t
condition, which is expressed byrW•vW 50 (xẋ1yẏ50) and
(rW3vW ) pointing in the positive sense ofz-axis (xẏ2yẋ


FIG. 3. Different choices for the initial conditions when plottin


the exit basin diagrams.~a! Plotting (y,u) and (y,ẏ). ~b! Plotting
(x,y) and tangential shooting.

8-3







es
y
h
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FIG. 4. Exit basin diagram with 100031000
initial conditions (x,y) and E50.25. The initial
conditions are plotted black if the orbit escap
through exit 1, dark gray for exit 2, and pale gra
for exit 3. The Lyapunov orbits are remarked wit
arrows.
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.0). With this choice of initial conditions, all the
three Lyapunov orbits~LO! are represented in the ex
basin diagram~Fig. 4! and their positions are LO1, (0,yLO),
LO2, @2yLO(A2/2),2yLO(A2/2)# and LO3: @yLO(A2/2),
2yLO(A2/2)#. The valueyLO , which is the distance betwee
the origin of coordinates~0,0! and the position of each
Lyapunov orbit, depends on the energy and is calculated
merically ~see Sec. V!.


In order to simplify the verification of the Wada proper
in Sec. V, we have also calculated the exit basins for a
ferent choice of initial conditions. They are the ones sketc
in Fig. 3~a!, where we can see that the fixed initial conditio
are now x50,y5(ymin ,y.yLO) and u5(0,2p). u is the
shooting angle, or in other words, the angle thatv i forms
with the positivey axis, in the counterclockwise sense. T
Poincare´ map is defined by the planex50 andẋ.0, and for
this choice of initial conditions, Eq.~2! becomes v i


5A2E2yi
21(2/3)yi


3. As the radicand must be positive, th
range of allowed values ofyi is bounded from below and
must be bigger thanymin , whereymin is the real solution of
2E2yi


21(2/3)yi
350. The exit basin diagram for the choic


of initial conditions (y,u) is shown in Fig. 5~a!. The figure
shows a clear mirror symmetry, and if (y,u) escapes through
exit 2, (y,2p2u) will escape through exit 3 and vice vers
Each initial value ofu has a related value of initial vertica
velocity ẏi expressed byẏi5v icosu. Therefore, we can plo
the exit diagram using the choice (y,ẏ) as initial conditions
instead of (y,u). We have done this in Fig. 5~b!. However, in
this case, there is no symmetry at all, because cosu5cos(u
1p) and two different values ofu i correspond to oneẏi .
Only the Lyapunov orbit related to exit 1~LO1! is included
in Figs. 5~a! and 5~b!. Its coordinates will be (yLO ,u
5p/2) and (yLO ,ẏi50), whereyLO depends on the energy
and it is the same value as in Fig. 4.


The obtained basin boundaries are clearly fractal.
have computed several exit basin diagrams varying the v
of the energy, and it is evident that forE51/6 the fractality is

06620
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maximum, while it decreases whenE gets higher, results tha
were first obtained in@20#. The fractal regions that occup
most of the phase space for low energies, get narrower w
E increases and are difficult to recognize forE.1, although
the fractality is maintained for all values ofE. The fractal
dimension of the invariant sets of the He´non-Heiles Hamil-
tonian will be thoroughly analyzed in the next section.


IV. INVARIANT SETS


Systems where chaotic motion is nonattracting are v
common, and the He´non-Heiles Hamiltonian for energie
above the escape energy is a good example of this phen
enon. The invariant sets related to the He´non-Heiles Hamil-
tonian give us much information about the dynamical pro
erties of the system. We have computed the nonattrac
chaotic invariant set, its stable and unstable manifold, and
have also calculated the dimensions of each set dependin
the energy. Finally, we have studied the average decay t
a remarkable quantity that gives us an idea of how fast or
escape from the scattering region, which is very much rela
to the dimension of the invariant sets@21#.


A. Chaotic set and invariant manifolds


The nonattracting chaotic set, also known aschaotic
saddleor strange saddle, is formed by a set of Lebesgu
measure zero of orbits that will never escape from the s
tering region for botht→` or t→2` @12#. Its stable mani-
fold contains the orbits that will never escape ift→`, while
the unstable manifold is formed by the ones that will nev
escape ift→2`. The orbits that constitute the chaotic s
are unstable periodic orbits, of any period, or aperiodic. F
thermore, this set is formed by the intersection of its sta
and unstable manifolds, each of them being a fractal set w
dimension between two and three in the three-dimensio
phase space. As these two manifolds are invariant sets,
their intersection is invariant, and for that reason, all orb
that start in one point belonging to the chaotic set, will nev

8-4
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FIG. 5. Exit basin diagrams with 1000
31000 initial conditions andE50.25, wherey
5(ymin ,y.yLO) and u5(0,2p). The initial con-
ditions are plotted black if their orbits escap
through exit 1, dark gray for exit 2 and pale gra
for exit 3. Only LO1 is defined with these initia
conditions, and it is shown twice in~a! because of
the symmetry of the system.~a! Initial conditions


(y,u). ~b! Initial conditions (y,ẏ).
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leave the set. In fact, the stable and unstable manifolds o
chaotic set are composed of the whole set of stable and
stable manifolds of each unstable point in the chaotic se


The fractal basin boundary coincides with the sta
manifold of the chaotic set, and consequently is constitu
by the orbits that do not escape from the scattering region
matter how long we wait. If an orbit is born by the bounda
the trajectory advances slowly following the stable manifo
towards a saddle point of the chaotic set, spends a long
in its vicinity and it escapes to infinity following the unstab
manifold. For that reason, the trajectories that are born c
to the fractal boundary are the ones that spend a longer
in the scattering region. In order to obtain the stable a
unstable manifold of the chaotic invariant set, as well as
chaotic set itself, we have used the ‘‘sprinkler algorithm
which was first introduced in@22#. The main idea consists o
sprinkling a large number of initial conditions from a regio
that contains the strange saddle. We have used a gri
200032000 points in the phase space. Then, every poin
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iterated until a certain iterationt. The election of the correc
value oft is not difficult, it is sufficient to find a time where
most orbits have already escaped. The closer an initial p
is to the stable manifold, the longer it will take to escape, a
it will follow the unstable manifold to exit. Therefore, th
initial points that remain in the neighborhood for a certa
iteration t form the stable manifold. Theirt iterations form
the unstable manifold, and the iterations that are more or
in the middle between the first~stable manifold! and the last
~unstable manifold! will form the chaotic set. Furthermore
the chaotic set does not depend critically on the iterat
chosen to draw it. The proper interior maximum~PIM! triple
method @23# is a more accurate algorithm to calculate t
chaotic set, but we do not need such a high precision, so
sprinkler algorithm is enough for our purposes. This meth
gives nice results for the stable manifold and the stra
saddle, but for the unstable manifold it is better to change
sign of every differential equation and draw the stable ma
fold of the dynamical system. The result will be the unsta
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FIG. 6. Stable manifold, unstable manifold
and strange saddle forE50.25. The initial con-
ditions are (x,y) and tangential shooting, with a
fine grid of 200032000 dots. The arrows show
the three Lyapunov Orbits~LO1, LO2, and LO3!.
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manifold of the former system. As we mentioned previous
the dimension of these fractal sets is between two and th
and so we can only plot its intersection with a Poincare´ map.
Obviously, these plots will depend on the choice of init
conditions defined in Fig. 3. In fact, Fig. 6 shows the Po
carésurface of section of the stable manifold, unstable ma
fold, and chaotic set forE50.25, which corresponds to th
exit basin diagram in Fig. 4~see initial conditions defined in
Fig. 3~b!, Sec. III!. In a similar way, Fig. 7 shows the sam
structures forE50.25, but the Poincare´ map and the initial
conditions coincide with the ones defined in Fig. 3~a!. The
exit basin diagram related to them is the one in Fig. 5~b!.


In Figs. 6 and 7, we can see that the stable manifold
the unstable manifold of the chaotic set are symmetric
each other. This is reasonable, as the He´non-Heiles potential
is conservative and invariant under time-reversal transfor
tions (t→2t,v→2v). If we compare each figure with it
corresponding exit diagram@Fig. 6 with Fig. 4, Fig. 7 with
Fig. 5~b!# we can see that the stable manifold really co
cides with the fractal basin boundaries. It is also interest
to emphasize that the chaotic set is the intersection o
stable and an unstable manifold that are never tangent,
therefore, every saddle point is hyperbolic. The Lyapun
orbits are unstable periodic orbits, and therefore, must
long to the chaotic set. We have clearly marked them in
figures with arrows. As it was commented in Sec. III, there
only one Lyapunov orbit in Fig. 6, while Fig. 7 contains th
three of them.


In order to measure the fractality of these invariant se
we have computed the uncertainty dimension@24# for differ-
ent values of the energy. Obviously, this quantity is indep
dent of the initial conditions used to compute it. The way
do it is the following. We calculate the exit for certain initia
condition (y,u). Then, we compute the exit for the initia
conditions (y1e,u) and (y2e,u) for a smalle, and if all of
them coincide, then this point is labeled as ‘‘certain.’’ If the
do not, it will be labeled as ‘‘uncertain.’’ We repeat this o
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eration for different values ofe. We calculate the fraction o
initial conditions that lead to uncertain final statesf (e).
There exists a power law betweenf (e) and e, f (e)}ea,
wherea is the uncertainty exponent. The uncertainty dime
sion D0 of the fractal set embedded in the initial conditio
is obtained from the relationD05D2a, where D is the
dimension of the phase space. If we plot lnf(e) against lne,
the slope will be equal toD2D0, and we may finally obtain
D0 from this value, as may be seen from


f ~e!}eD2D0⇒ ln f ~e!5~D2D0!ln e1k. ~3!


It is typical to use a fine grid of values ofy andu to calculate
the uncertainty dimension. However, this makes the al
rithm very slow, and in order to solve this problem, we ha
fixed y50 and variedu. We have realized that there are n
significant changes in the results as the fractality is simila
all regions of phase space, while the computing time is
duced substantially. The evolution of the exit basins wh
the energy is increased is shown in Fig. 8~a!. The test particle
is always launched from (x50,y50), and the range of the
shooting angles isuP(0,2p). The decreasing uncertainty d
mension of each invariant set for increasing energies is il
trated in Fig. 8~b!, and we may compare it with the decrea
ing fractal structures of Fig. 8~a!. As it has just been
explained, the computation of the uncertainty dimension w
done for only a ‘‘1D slice’’ of initial conditions@the vertical
line y50 of Fig. 5~a!#, and for that reasonD0P(0,1). Ac-
cording to@26#, DS5D01N215D012, whereN is the di-
mension of the phase space (N53 in our case! andDS is the
fractal dimension of the stable manifold associated to
chaotic set. As the stable and unstable manifolds are s
metric, their fractal dimension is the sameDS5DU . Since
the invariant chaotic set is the intersection of its stable a
unstable manifold, hence, its dimension is expressed byDC
5DS1DU2N52D011.

,


v


FIG. 7. Stable manifold, unstable manifold
and strange saddle forE50.25. The initial con-


ditions are (y,ẏ), with a fine grid of 2000
32000 dots. The arrows show the only Lyapuno
Orbit ~LO1!.
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It is remarkable that the dimension of these three invar
sets tends to three, that is, the full dimension of the pha
space, when the energy tends to its minimum valueEe
51/6. This means that for that critical value, there is a to
fractalization of the phase space, and the chaotic set beco
‘‘dense’’ in the limit. Consequently, in this limit there are n
smooth sets of initial conditions@see Fig. 8~a!# and the only
defined structures that can be recognized are
Kolmogorov-Arnold-Moser~KAM !-tori of quasiperiodic or-
bits, that disappear whenE'0.195. When the energy is in
creased, the different smooth sets appear and tend to g
while the fractal structures that coincide with the bound
between basins decrease. As it was noticed in@20#, the frac-
tality remains in the He´non-Heiles system for allE, while in
many other 2D Hamiltonians it disappears when the ene
reaches a certain value. In our case, the dimension of
stable and unstable manifold tends to 2.2 whenE→`, and
therefore DS5DUP(2.2,3) ~being D52 nonfractality!
while the dimension of the chaotic set tends to 1.4 wheE
increases, andDCP(1.4,3) ~whereD51 is nonfractality!.


B. Average decay time


One of the main consequences of nonattracting cha
sets is the phenomenon of transient chaos@21,24,25#. An


FIG. 8. ~a! Evolution of the exit basin diagram for differen
values of the energy. The initial conditions are (x50,y50) andu
P(0,2p). Exit 1 is plotted in black, exit 2 in dark gray, and exit
in pale gray.~b! Fractal dimension of the invariant sets for differe
values of the energy:DS5DU for the stable and unstable manifold
DC for the nonattracting chaotic set.
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orbit may spend a long time~the escape time! orbiting in the
scattering region, in the vicinity of the chaotic set, befo
crossing one of the three exits and escaping to infinity. D
ing this time, its dynamics could be confused with the one
a chaotic attractor. It is usually stated that in a nonattract
chaotic system, the number of orbits that remain in the s
tering region after a timet decreases exponentially. If 1/t is
the exponential decreasing rate, theaverage decay timet or
average transient lifetimeis expressed by


1


t
5 lim


t→`


1


t
lnS N0


Nt
D ~4!


and consequently,


Nt5N0e2(t/t) ~5!


for high values of timet, whereN0 is the total number of
initial orbits andNt is the number of orbits remaining in th
scattering region at timet. It is common, however, that the
system spends a transient timet0 before any orbit escapes. I
that case, Eq.~5! becomes


Nt5N0e2(t2t0 /t) ~6!


where t0 is the time at which orbits start to escape. It
remarkable that this approximation is very precise for hight,
while for low times, it is clearly unacceptable. In Fig. 9~a!,
we have plotted using a continuous line the fraction of
maining orbits (Nt /N0) in function of the time t for E


FIG. 9. ~a! Fraction of remaining orbits in the scattering regio
in a function of the time forE50.25, 0.5, and 4~continuous line!,
and exponential approximation for all of them~dashed line!. ~b!
Evolution of the average decay timet with the energy. It increases
indefinitely whenE→Ee51/6 from above, and tends to 0 whe
E→`.
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50.25,0.5 and 4. The initial conditions are 2000 orbits w
(x,y)5(0,0) and shooting angleu5(0,2p) @see vertical line
y50 in Fig. 5~a!#. These fractions are constant and equa
one while no orbits escape from the system. Suddenly, t
start to decrease and are formed by several differenti
components separated by ‘‘peaks,’’ while a smooth expon
tial decay would be expected in a nonfractal system. T
explanation of this peculiar behavior must be searched in
escape time diagram, where the escape timete is plotted for
each initialu ~see Ref.@20#!. Every smooth~nonfractal! re-
gion of initial conditions@see Fig. 5~a!# shows a minimum in
the escape time for an initial condition more or less in
center of the region, while the escape time tends to infinity
both extremes, as we reach its fractal boundary. Howe
each smooth region has a different minimum escape t
te,i , where the regions with more initial conditions are t
ones with shorter escape times. As the system has triang
symmetry, there are always three smooth regions with
same te,i , each of them composed of orbits that esca
through the same exit. When the timet reaches the minimum
escape timete,1 for the smooth region with the lowest tim
escape, the orbits in that area of initial conditions start
escape and, consequently, the number of total remaining
bits in the system decreases, creating the componentA of the
curves in Fig. 9~a!. In this component, it is important to
remark that only orbits that started from this particular reg
are escaping. After a certain time, the system reaches
minimum escape timete,2 for the smooth region with the
second lowest time escape, and thus the curve in partB is the
addition of the decreasing curve associated to the orbits
started in the first smooth region, plus the decreasing cu
due to the orbits that started in the second smooth region
have just begun to escape. For this reason, the curves in
9~a! change their slope dramatically inte,2 . In the same way,
whent5te,3 , the orbits that started in a certain third smoo
region reach an exit, and the curves inC are now the addition
of three different curves. This structure is repeatedad infini-
tum, as there are infinite smooth intervals of initial cond
tions embedded in the fractal boundary. However, after e
addition, as the smooth regions that are being added own
and less orbits, the change in the slope is less prominent,
for that reason, after a few ‘‘peaks’’ the curves seem to
more and more regular. Whent increases and more and mo
curves are added, the exponential approximation beco
quite precise. This fact is clearly shown in Fig. 9~a!, where
we have plotted the exponential approximations~dashed
lines! over each of the three curves. Surprisingly, the ca
with the lowest energy are the ones with worst approxim
tion for low times, but best exponential fittings. Certainly, t
approximation for the curve related toE50.25 is almost
indistinguishable from the real one aftert'20.


In order to calculatet, the usual method is based o
counting how many orbits remain for different values of tim
t. As the relation betweenN0 andNt must be exponential, i
is possible to linearize Eq.~6! in the decreasing regime~after
t0) and obtain


ln
N0


Nt
5


t2t0


t
5mt1c, ~7!
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wherem is the slope andc the intercept in the linear regres
sion. Therefore, we can obtaint and t0 from the simple
expressionst51/m andt052c/m, and use them to plot the
approximations shown in Fig. 9~a!.


In Fig. 9~b!, we have plottedt for different values of the
energyE. As expected, the main features of this depende
are thatt is infinitely high for E51/6, when test particles
bounce around slowly and indefinitely, and decays to 0 wh
E tends to infinity and the test particles move and esc
extremely fast.


V. BASINS OF WADA


The main goal of this paper is to show that the exit bas
of the Hénon-Heiles Hamiltonian and other related chao
scattering problems are not only fractal, but they also ve
the property of Wada. Although it is hard to imagine, it
possible to have three or more regions sharing the s
boundary. Usually, three regions in two dimensions, for e
ample, three countries, may only coincide in one point,
topologically, this is not necessarily true for open sets. If
talk about basins, a basinB verifies the property of Wada i
any initial condition that is on the boundary of one basin
also simultaneously on the boundary of three~or more! ba-
sins. In other words, every open neighborhood of a poinx
belonging to a Wada basin boundary has a nonempty in
section with at least three different basins. The first exam
of a system with this property was given by Yoneyama
1917@27#, who attributed it to Wada, from whom it took th
name. The ‘‘Lakes of Wada’’ are a useful example of how
construct three regions that verify this condition, and th
are widely explained in@9#. Logically, the boundaries o
these sets must verify unusual topological properties. To
logically, the Wada property is associated to the concep
indecomposable continuum@9,28–30#. Such indecompos-
able sets are compact, metric, and connected sets with
strange property that when one attempts to divide them
two pieces, they split up into infinitely many pieces. The
fore, if a dynamical system verifies the property of Wada,
unpredictability is even stronger than if it only had fract
basin boundaries. If a trajectory starts close to any poin
the boundary, it will not be possible to predict its futu
behavior, as its initial conditions could belong to any of t
three basins. This particular property is verified by seve
dynamical systems, such as the forced damped pendulu
the Hénon map for certain values of the parameters@9,10#.


The study of 2D Hamiltonians recently has attracted
interest of numerous scientists from different disciplines
has been shown that the existence of fractal basin bound
is typical in them@8#, and Poonet al. @15# proved that they
are indeed Wada in a billiard problem. In this sense, we h
obtained numerical evidence that confirms that the W
property is verified by the He´non-Heiles Hamiltonian, and
we conjecture that it is a general property of other rela
two-dimensional time-independent Hamiltonians with e
capes, very widely used in the modelization of astrophys
systems.
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FIG. 10. The unstable manifold of the onl
accessible unstable periodic orbit~LO1! crosses
all the basins in this zoom of Fig. 5~b!. Therefore,
the Hénon-Heiles Hamiltonian verifies the prop
erty of Wada.
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A. Computational conditions to verify the Wada property


Although it might be easy to visualize from an intuitiv
point of view whether or not a dynamical system verifies
Wada property, the numerical verification presents sev
difficulties that must be solved, as the topology behind t
property is not trivial. A thorough analysis of this subject w
done in @9,10#, and some computational conditions we
found to assure that a basin is Wada, which for the sak
clarity we sketch in the following:


a. Main condition: Let P be an unstable periodic orbi
accessible from a basinB. It must be verified that its unstabl
manifold intersects every basin.


b. Secondary conditions: If such a saddle point exists, th
basinB verifies the property of Wada if any of the followin
next points are true:


~1! The stable manifold of the saddle pointP is dense in
the boundary of the three regions.


~2! The periodic orbitP is the only accessible orbit from
basinB. In case there exists more than one accessible p
odic orbit, every unstable manifold must intersect all bas
~Theorem 1 of@10#!.


~3! The periodic orbitP generates a basin cell~Theorem 2
of @10#!.


Thebasin cellswere first introduced by Nusse and York
@10#. However, before introducing the concept of a ba
cell, it is necessary to define atrapping region. A trapping
region A is a compact region formed by initial condition
that, after iterations, become a different regionB that belongs
to A and is smaller thanA. Formally,A is a trapping region
⇔F(A),A and F(A)ÞA. Therefore, if the particle enter
the trapping region, it will never be able to escape from it
basin cell is a trapping region constructed in a way that
boundary is made out ofn pieces of stable and unstab
manifolds of an-periodic orbit that also lies on the bounda
of the trapping region.
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B. Verification of the Wada property


In order to do all the computations and show the results
the simplest way, we make the choice of initial conditio
(y,ẏ), although the conclusions are extensible to any ot
choice. Therefore, the initial conditions are the ones defi
in Fig. 3~a!, and the exit basin diagram is the one shown
Fig. 5~b!. Recall that for this particular choice, only th
Lyapunov orbit related to exit 1~the upper one! is plotted
@see Fig. 5~b!#. As it has been sufficiently explained, an a
cessible unstable periodic orbit is needed. The perio
Lyapunov orbit related to exit 1 fulfills this condition, an
hence, we compute it with very high precision. As can
seen in Fig. 2, LO1 is symmetric with respect to they axis.
For that reason, we know that just whenx50 the trajectory
must be perpendicular to they axis ~tangent slope zero!, and
so the initial value forẏ is known without any ambiguity and
equal to 0. As the phase space variables are (y,ẏ), the LO1
coordinates areyLO5 f (E), ẏ50. Therefore, it would be
necessary to find the relation betweenyLO and the value of
the energy, but for our purposes, it is enough to have it fo
certain energy. We have computed it forE50.25, and the
result isyLO51.024 611 462 679. We have computed it wi
twelve digits, since the algorithm used later to calculate
stable and unstable manifolds requires very high precis
Several authors have used quadruple precision for calcu
ing LO in very similar Hamiltonians@2#, but our aim is to
draw part of its unstable manifold, and for this purpos
double precision is enough. This orbit is accessible by c
struction, as we are sure that if instead of theyLO value for
LO1 we had yLO1«, ~with the sameẏ50) the particle
would clearly belong to basin 1, escaping through exit 1, a
not even being able to enter the scattering region@see Fig.
5~b!#. For the same reason, if instead ofẏ50, we hadẏ
5« , the particle would be shot towards outside of the sc
tering region, and therefore it would never return.


In order to draw the stable and the unstable manifold oP
~LO1!, we use the algorithm explained in@31# based on plot-
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ting several iterations of points very close toP in the direc-
tion of the eigenvectors. We show in Fig. 10, that the He´non-
Heiles Hamiltonian verifies the first and basic hypothesis
the unstable manifold of an accessible periodic orbit ind
crosses all three basins. However, although this fact
strong point in favor of our assumption, we should che
conditions 1, 2, or 3. Unfortunately, this is not an easy ta
as it is computationally very difficult to authenticate any
them. First of all, it is hard to confirm that the unstab
manifold is dense~condition 1! using computational tools
and it is already shown with a similar system in@15#. On the
other hand, it is even more complicated to assure that
periodic orbit is the only one accessible from basin 1~con-
dition 2!. We can find as many periodic orbits as we wa
but we will never be absolutely sure that we have not l
any in the numerical search, specially for very high perio
Finally, it is not possible to build a basin cell with the invar
ant manifolds ofP, as we are not working with attractors an
the manifolds do not cross as we would like to. The ‘‘attra
tors’’ are now in the infinity, wherey5` and ẏ5`. What
we see is that the unstable manifold twice intersects the s
branch of the stable manifold, but never the other one,
this is a necessary condition to create a basin cell. In s
mary, this is only possible for dissipative systems.


Both conditions 1 and 2 are possible, and we have
cided to work with the latter, showing that LO1 is the on
unstable periodic orbit that is also accessible from the ex
basin. We use an argument based on@32#, where it is proved
that if all the periodic points in the boundary of a basin a
hyperbolic, and there exists an accessible periodic poin
minimum periodq, then every accessible point in the bas
boundary either is a periodic point of minimum periodq or is
in the stable manifold of such a periodic point. From he
we may assume that in our boundary, only period-1 orb
may be found. This theorem provides us with a very pow
ful tool to verify condition 2, as there are no big problems
finding period-1 orbits in the boundary of basin 1. A fe
periodic orbits forE50.25 have been found, although no
of them were in the boundary. Therefore, we have obtai
enough numerical evidence to affirm that basin 1, formed
the initial conditions of the orbits that escape towardsy
→`, satisfies the property of Wada. For the other two bas
the same reasoning can be followed, as the He´non-Heiles
Hamiltonian has a 2p/3 symmetry. The only difference
would be to change the initial conditions in a way that t
new y axis forms a 2p/3 angle with the former one, an
therefore contains a different Lyapunov orbit.
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VI. CONCLUSIONS


In this paper, we have studied in detail the dynamics
the Hénon-Heiles Hamiltonian in the range of energy valu
higher than the escape energyEe51/6, where consequently
exits are present. We have analyzed the different natur
the orbits and paid special attention to the computation of
exit basin diagrams, which show a rich pattern of frac
structures. As an important ingredient of our paper, the
variant sets associated to the system have received cons
able attention. In particular, computations of the stable a
unstable manifolds, and the chaotic saddle, which is the
tersection of the invariant manifolds, have been carried o
Since they are fractal sets, we have calculated the co
sponding fractal dimensions for different values of the e
ergy. Moreover, we have calculated the average decay t
as a useful tool to characterize how fast orbits escape f
the scattering region. We have found that the number of
bits that remain in the bounded region depends on time
very particular way, showing a curve formed by infinite d
creasing intervals, each of them depending on every smo
part of a basin, and it decreases exponentially only when
time t gets large enough. The main conclusion of this pa
has been to show that the He´non-Heiles system possess
Wada basins, meaning that any initial condition that is on
boundary of a basin, is also simultaneously on the bound
of the other two basins. Furthermore, a detailed summar
the conditions to be verified for a system to have the Wa
property is presented. We believe it may be useful as a g
eral procedure for conservative and dissipative systems
nally, we would like to point out that interesting aspects
this problem are still open, such as a detailed analysis of
abrupt transition at the escape energy, and a simpler for
lation of the conditions to be verified for a Hamiltonian sy
tem to possess the Wada property, even for higher dim
sions.
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