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Abstract


In this paper, we construct a parallel image of the conventional Maxwell theory by replac-
ing the observer-time by the proper-time of the source. This formulation is mathematically,
but not physically, equivalent to the conventional form. The change induces a new sym-
metry group which is distinct from, but closely related to the Lorentz group, and fixes
the clock of the source for all observers. The new wave equation contains an additional
term (dissipative), which arises instantaneously with acceleration. This shows that the
origin of radiation reaction is not the action of a “charge” on itself but arises from inertial
resistance to changes in motion. This dissipative term is equivalent to an effective mass
so that classical radiation has both a massless and a massive part. Hence, at the local
level the theory is one of particles and fields but there is no self-energy divergence (nor
any of the other problems). We also show that, for any closed system of particles, there is
a global inertial frame and unique (invariant) global proper-time (for each observer) from
which to observe the system. This global clock is intrinsically related to the proper clocks
of the individual particles and provides a unique definition of simultaneity for all events
associated with the system. We suggest that this clock is the historical clock of Horwitz,
Piron, and Fanchi. At this level, the theory is of the action-at-a-distance type and the
absorption hypothesis of Wheeler and Feynman follows from global conservation of energy.
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1.0 Introduction


It was 1865 when James Clark Maxwell published his theory of electrodynamics. The slow


but steady progress made by our understanding and use of mechanics and thermodynamics


was given a major boost by Maxwell’s theory made practical. For example, starting from


1866, a continuous communications link has existed between Europe and the US ( due in


no small part to the efforts of Lord Kelvin). By 1883, Edison had a workable light bulb,


while Bell invented the telephone in 1886. The radio waves predicted by Maxwell were


discovered by Hertz in 1887, and electricity, producing new inventions weekly, was well on


the way to providing what we now consider normal.


In the intervening 41 years between Maxwell and the introduction of the special theory


of relativity in 1905, a scientific and technological revolution had taken firm roots. Indeed,


it has been suggested by Feynman1 that, “ From the long view of the history of mankind-


seen from, say ten thousand years... there can be little doubt that the most significant event


of the 19th century will be judged as Maxwell’s discovery of the laws of electrodynamics.”


When the founding fathers, Lorentz, Poincaré, Einstein, and their contemporaries


began to study the issues associated with the foundations of electrodynamics; they had a


number of options open to them in addressing the fact that the Newtonian theory and the


Maxwell theory were invariant under different transformation groups: (see Jackson2 )


1. Both theories are incorrect and a correct theory is yet to be found.


2. The “proper” Maxwell theory will be invariant under the Galilean group.


3. The “proper” Newtonian theory will be invariant under the Lorentz group.


4. The assumption of an ether for electromagnetic propagation is correct so that
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Galilean relativity applies to mechanics while electromagnetism has a pre-


ferred reference frame.


At the time, it was unthinkable that the Maxwell theory had any serious flaws.


Lorentz3,4 had recently shown that all of the macroscopic phenomena of electrodynam-


ics and optics could be accounted for based on an analysis of the microscopic behavior of


electrons and ions.


Einstein5 rejected the fourth possibility and, as noted by Spencer and Shama6, was


the “ first scientist with the foresight to realize that a formal postulate on the velocity


of light was necessary.” He proposed that all physical theories should satisfy the (now


well-known) postulates of special relativity:


1. The physical laws of nature and the results of all experiments are independent


of the particular inertial frame of the observer (in which the experiment is


performed).


2. The speed of light in empty space is constant and is independent of the motion


of the source or receiver.


The first postulate abandons the notion of an absolute space , while the second abandons


absolute time. In a later paper, Einstein7 modified the second postulate to make it explicit


that he always referred to observers in inertial frames:


2′. The speed of light in empty space is constant and independent of the


motion of the source or receiver in any inertial frame.


Einstein formulated his theory in the usual three-dimensional notation, making a
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distinction between time and space. It was noted by Poincaré8 that the transformations of


Lorentz could be treated as rotations if time is made an imaginary coordinate. Poincaré


had also introduced the metric now attributed to Minkowski9.


Although Poincaré discovered the proper-time, it was Minkowski who recognized its


importance in physical theory and showed that it is the only unique variable associated


with the source and available to all observers. Motivated by philosophical concerns, he


further proposed that space and time should not be treated separately, but should be


unified in the now well-known fashion leading to Minkowski space. Given the tremendous


impact of the then-recent work in geometry on science, it was natural for him to think


along these lines. Once he accepted this approach, it was also natural to assume that the


proper-time of the source be used to parameterize the motion, acting as the metric for the


underlying geometrization of the special theory of relativity, thus implicitly requiring that


another postulate be added:


3. The correct implementation of the first two postulates requires that time be


treated as a fourth coordinate, and the relationship between components so


constrained to satisfy the natural invariance induced by the Lorentz group of


electrodynamics, (Minkowski space).


The four-geometry postulate was very popular at the time and was embraced by many;


but other important physical thinkers, including Einstein, Lorentz, Poincaré, and Ritz,


regarded it as a mathematical abstraction lacking physical content and maintained that


space and time have distinct physical properties. Although Einstein demurred, the feeling


among many of the leading physicists at that time was that an alternative implementation
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should be possible which preserves some remnant of an absolute time variable (true time),


while still allowing for the constancy of the speed of light. It was noted by Whittaker10


that a few weeks before he died, Lorentz is reported to have maintained his belief in the


existence of this “true time”. Dresden11 reports that “· · · He retained his beliefs in a


Euclidean, Newtonian space time, and in absolute simultaneity · · ·.”


1.1 Perspective


The general focus on, and excitement about, the four-geometry left little room for serious


alternative investigations (separated from philosophical debates). This is unfortunate since


the diversion is part of the reason that the physical foundations of classical electrodynam-


ics did not receive the early intense investigation accorded mechanics. Possibly because


of the apparent completeness of the special theory, interest in statistical mechanics, quan-


tum theory, and the problem of accelerated motion (the general theory), Einstein was


preoccupied with these other important areas. On the other hand, the physics community


lost three important thinkers on the subject by 1912. Ritz died in 1908, Minkowski died


(shortly after his paper appeared) in 1909, and Poincaré died in 1912. The First World


War began in 1914 and within four years decimated a whole generation. Furthermore, by


1913 interests had already shifted from electrodynamics to the new quantum theory. The


longer this investigation into classical electrodynamics was delayed, the more Minkowski’s


approach became embedded in the culture of physics, permeating the foundations for all


future theories. By the time problems in attempts to merge the special theory of relativity


with quantum theory forced researchers to take a new look at the foundations of classical


electrodynamics, the Minkowski approach to the implementation of the special theory was
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considered almost sacred.


We are now taking our first steps into the twenty first century, one hundred and forty-


five years later. Electromagnetism is now in the hands of the engineers, mathematicians,


and philosophers, and much of it is not considered mainstream physics. For those who


learned physics in the sixties and seventies, “electrodynamics seems as old as mechanics”.


The continued success of quantum mechanics and the “apparent” successes of quantum


electrodynamics and the standard model has made the subject passé. Today, students


study the subject as an introduction to the special theory, preparation for advanced quan-


tum theory, and as a simple example of a gauge theory. From this perspective, there is


no real reason to believe that the first possibility should be rejected out of hand (i.e., that


both the Newtonian and Maxwell theories could in some way be incorrect). Such a possi-


bility is even more likely in light of the fact that the problems facing the early workers are


still with us in one form or another. Furthermore, additional problems have arisen from


both theory and experiment.


1.2 Problems


Newtonian Mechanics


Once it was accepted that the ”proper” Newtonian theory should be invariant under the


Lorentz group, work on this problem was generally ignored until after World War Two


when everyone realized that the quantum theory did not solve the problems left open by the


classical theory. In particular, it was first noticed that (at the classical level) Minkowski’s


approach only works (as expected) in the one-particle case. It was 1948 when Pryce12


showed that the canonical center-of-mass is not the three-vector part of a four-vector.
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This variable is required for any “natural” relativistic many-particle theory. Virtually all


research since then has focused on attempts to avoid this problem while maintaining use


of the proper-time of the observer as the fourth coordinate for Minkowski geometry.


In order to provide a simple approach to the problem encountered by Pryce, let us


consider two inertial observers X and X ′ with the same orientation. Assume that the


(proper) clocks of X and X ′ both begin when their origins coincide and X ′ is moving with


uniform velocity v as seen by X. Let two particles, each the source of an electromagnetic


field, move with velocities wi (i = 1, 2), as seen by X, and w′
i (i = 1, 2), as seen by X ′, so


that:


x′
i = xi − γ(v)vt + (γ(v) − 1)(xi · v/ ‖v‖2)v, (1.1a)


xi = x′
i + γ(v)vt′ + (γ(v) − 1)


(
x′


i · v/ ‖v‖2
)
v, (1.1b)


with γ(v) = 1/
[
1 − (v/c)2


]1/2


, represent the spacial Lorentz transformations between the


corresponding observers. Thus, there is clearly no problem in requiring that the positions


transform as expected. However, when we try to transform the clocks, we see the problem


at once since we must have, for example,


t′ = γ(v)
(
t − x1 · v/c2


)
, t′ = γ(v)


(
t − x2 · v/c2


)
. (1.2a)


This is clearly impossible except under very special conditions on all other observers.


Furthermore, if we write down the center-of-mass position X and require that it transform


as above, we add another (impossible) constraint on the clock of any other observer. Pryce’s


approach is more abstract (and complicated), but leads to the same result.


In his 1949 paper, Dirac13 observed that we must choose a particular realization of


the Poincaré algebra in order to identify the appropriate variables for theory formulation.
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He showed that there are three possible choices of distinct three-dimensional hypersurfaces


that are invariant under subgroups of the Poincaré group and intersect every particle world-


line once; the instant form, the point form, and the front form. (It was later shown by


Leutwyler and Stern14 that there are five choices. However, the other two are not especially


interesting.) The instant form is best known. It is based on normal time-evolution and uses


spacelike hyperplanes in Minkowski space; the point form is based on mass hyperboloids;


while the front form is based on null hyperplanes.


Following Dirac’s work, Bakamjian and Thomas15 showed that one can construct a


quantizable many-particle theory that satisfies the first two postulates of Einstein. How-


ever, they suggested that when interaction is introduced, their approach would not permit


both a global theory and provide an invariant particle world-line description (satisfy the


third postulate). This conjecture was generalized and later proved by Currie et al16 to the


effect that the requirements of Hamiltonian formulation, (canonical) independent-particle


variables, and relativistic covariance (i.e the canonical positions transform as geomet-


ric coordinates), are only compatible with noninteracting particles (The No-Interaction


Theorem). There are many references on the subject, but the book by Sudarshan and


Mukunda17 gives a comprehensive review of the problems and attempts to solve them (up


to 1974). All attempts have ended in failure for one or more reasons which usually include


the inability to quantize.


The No-Interaction Theorem led many to suspend the requirement that canonical po-


sitions transform as geometric coordinates and to focus on the construction of the “correct


many-particle representation for the Poincaré algebra”. However, a very important (but
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not well-known) theorem was proved by Fong and Sucher18 in 1964 for the quantum case,


and by Peres19 in 1971 for the classical case:


Theorem 1.0 (Fong-Sucher-Peres) Suppose that no restriction is put on the transforma-


tion law of the canonical variables of a many-particle system. Then given any Hamiltonian


H, total momentun P, and angular momentum J satisfying:


dH/dt = 0, [H, Pm] = 0, [H, Jm] = 0,
[Pm, Pn] = 0, [Jm, Pn] = εmnsPs, [Jm, Jn] = εmnsJs,


it is always possible to find a boost generator L so that the full set of commutation relations


of the Poincaré algebra for the inhomogeneous Lorentz group will be satisfied.


In order to underscore the importance of this theorem, Peres showed explicitly how to


construct a “clearly” nonrelativistic Hamiltonian and appropriate boost generator (along


with canonical center-of-mass, total momentum, and angular momentum). Thus, this


theorem implies that a relativistic classical (or quantum) many-particle theory requires


something else besides the commutation relations for the inhomogeneous Lorentz group.


On the other hand, this is the only requirement imposed on us by Maxwell’s equations!


It follows that, contrary to common belief, our historical (intellectual) state of affairs is


not dictated by the Maxwell theory. We conclude that the Minkowski postulate imposes


an additional condition on the special theory (not required by Maxwell’s equations), but


we are still unable to correctly account for Newtonian mechanics (after almost a hundred


years). Those willing to dismiss the issue as arcane should be aware that the same problem


also exists for the general theory. Thus, the major problem facing us in the twenty first


century is to construct a quantizable classical theory which satisfies the first two postulates


of Einstein in some reasonable form and includes Newtonian Mechanics.
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Interpretation


There are interpretation problems with the Minkowski approach that are not well-known.


First, it should be noted that the conventional use of the words coordinate time tends


to obscure the fact that this is the proper-time of the observer. This makes physical


interpretation complicated and strange because one is required to refer back to the proper-


time of the source (or the postulated clock of a co-moving observer) in order to acquire


a complete interpretation and analysis of experiments. Thus, the “parameter” (used to


define the four-geometry) must also be viewed as a physically real measurable quantity


when the theory is used for experimental analysis. At the classical level this asymmetrical


relationship may be vexing, but it is not contradictory. However, at the quantum level


this same problem becomes more fundamental. At this level, the observer proper-time is a


c-number that transforms to an operator under the Lorentz group, while the proper-time


of the source is an operator that remains invariant (see Wigner20).


Radiation Reaction and the Lorentz-Dirac Equation


The problems associated with the radiation of accelerated charged particles, and those


of the Lorentz-Dirac equation are old and well-known. Two books that have contributed


to a clearer understanding of these basic problems are those of Rohrlich21 and Parrott22.


Rohrlich provides a comprehensive study of the classical theory up to 1965, which includes


a nice review of the history. (Those unaware of the continuing effort to solve the classical


electron problem should also see Rohrlich23.) Parrott’s book is both clear and insightful.


(His chapter on the Lorentz-Dirac equation is unbiased, well done, and should be required


reading for any serious student of the subject.) The classics, Panofsky and Phillips24, and
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Jackson2 are also important sources of insight and history. The elementary (but correct)


account by Feynman1 in volume II of his famous lecture series has done much to educate


those with little or no concern with the foundations.


The radiation of accelerated charged particles is known to occur instantaneously with


acceleration and its nature has been the object of much speculation (see Wheeler and


Feynman25). The great success of Lorentz in using the Maxwell (field) theory, along


with his aether, to show that all of the macroscopic electrodynamics and optics could be


derived from a microscopic analysis has done much to foster our faith in the correctness


of the theory. This success carried with it our first introduction to the divergences of a


field theory. He found that the energy density and the field momentum for each particle


diverges unless the particle has a finite radius. In addition, the derived (Lorentz) force


law did not provide the appropriate dissipation to account for the observed radiation. It


was also known that the electromagnetic mass defined by the electrostatic energy divided


by c2 and that defined via the electomagnetic momentum did not agree, giving the well


known 4/3’s problem (see Schwinger26).


These problems led to the study of various finite-size models for charged particles


and, in turn, forced serious consideration of the action of one part of a charge on itself


(self-energy) and also required the introduction of extra forces to hold the particle together


(Poincaré stresses).


The appearance of the classical divergence difficulties in the quantized theory (along


with a few new ones) led many to hope that the successful construction of a consistent clas-


sical theory would help to solve the corresponding problems in quantum electrodynamics.
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For this reason, many attempts were made to formulate such a theory. The most well-


known early attempts are due to Born and Infield27, Dirac28, Bopp29, and Wheeler and


Feynman25. (Less well-known other attempts are due to Rosen30, Podolsky and Schwed31,


and Feynman32.) Each ran into problems with quantization and are a part of the history.


However, the point particle reduction theory of Dirac and the Wheeler-Feynman approach


have special importance.


The use of particles of finite radius causes serious problems with Lorentz invariance,


so a major advance was made when Dirac constructed a point particle reduction theory


for the Lorentz model. To do this, he used Maxwell’s equations to find the retarded field


of the particle, assuming that at large distances the field only contains outgoing waves,


and then calculated the advanced field assuming that at large distances the field only


contains converging waves. He then defined half the difference between the retarded and


the advanced fields evaluated at the particle position, multiplied by the charge, as the force


of radiation reaction. This term was added to the Lorentz force to provide the appropriate


dissipation term (the Lorentz-Dirac equation). This provided the same dissipation term


obtained by Lorentz (in a nonrelativistic calculation), but was independent of the particle


radius. Thus, Dirac produced a point particle theory while all the other problems remained


unchanged, and this is essentially what we have today. It should also be noted that point


particles of finite mass imply infinite density. This was a real problem during Newton’s


time, but does not appear to cause problems today.


Wheeler and Feynman took a different ploy. They showed that we could use point


particles, obtain the same radiation reaction term as above, and eliminate the self-energy
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divergence. Their approach assumes that the field which acts on a given particle arises


only from other particles (adjunct field). They used half the sum of the retarded and


the advanced fields, and assumed that there are sufficiently many particles in the system


to completely absorb all radiation given off from any one of them (absorption hypothe-


sis). The theory is of the action-at-a-distance type and also eliminates the divergences


associated with the energy and momentum densities. Unfortunately, the theory could not


be quantized, but this work made it clear that the action-at-a-distance and field theory


approaches are much closer than was generally expected. (Indeed, Wheeler and Feynman


argued that the two theories are complimentary views.)


The two best-known problems with the Lorentz-Dirac equation are runaway solutions


and preacceleration. The equation has solutions for a free particle (with no force) that can


self-accelerate off to infinity. It was conjectured that these solutions were eliminated by


the asymptotic condition proposed by Haag33. However, Parrott22 (pg. 196) notes that


the asymptotic condition is necessary to ensure conservation of energy-momentum, but


may not be sufficient to eliminate all strange solutions. Furthermore, the recent paper of


Parrott and Endres34 makes this conjecture doubtful. It has been recently shown by Low35


that this problem also shows up at the nonrelativistic quantum level. Things are better


for quantum electrodynamics (they don’t appear), but caution is required as the possible


existence of a Landau-like anomalous pole in the photon propagator or the electron-massive


photon forward scattering amplitude could produce the runaway effect.


The preacceleration problem arises because the equation is nonlocal in time. This


means that the particle can accelerate prior to the action of a force. The problem is
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generally ignored with the observation that the natural time interval for this effect (say for


an electron) is of the order of 6.2 × 10−24 sec, so that no classical particle can enter from


a free state into interaction over such a small time interval.


These problems have existed for sometime now and no solution seems to be in sight.


It is clear that the first problem is based on the assumption that the dissipation should


be in the Lorentz force and, since this term is of third order in the position variable, the


difficulty follows. The second problem can be traced back to the use of advanced fields


which are necessary for the theory (Dirac and Wheeler and Feynman), and to get the


correct dissipation term.


Mach’s Principle and the 2.7 ◦K MBR


Today, we know that a unique preferred frame of rest exists throughout the universe


and is available to all observers. This is the 2.7 ◦K microwave background radiation


(MBR) which was discovered by Penzias and Wilson36 in 1965 using basic microwave


equipment (by today’s standards). This radiation is now known to be highly isotropic


with anisotropy limits set at 0.001%. Futhermore, direct measurements have been made


of the velocity of both our Solar System and Galaxy through this radiation (370 and


600 km/sec respectively, see Peebles37 ). One can only speculate as to what impact this


information would have had on the thinking of Einstein, Lorentz, Minkowski, Poincaré,


Ritz and the many other investigators of the early 1900’s who were concerned with the


foundations of electrodynamics and mechanics. The importance of this discovery for the


foundations of electrodynamics in our view is that this frame is caused by radiation from


accelerated charged particles (independent of the various cosmological suggestions).
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As noted by Peebles, the MBR does not violate the special theory. However, general


relativity predicts that at each point we can adjust our acceleration locally to find a freely


falling frame where the special theory holds. In this frame, all observers with constant


velocity are equivalent. Thus, according to the general theory we have an infinite family


of freely falling frames. Within this context, the Penzias and Wilson findings show that


there is a unique frame in which both the acceleration and velocity can be set equal to


zero at each point in the universe.


As suggested by Rohrlich21, “Mach’s principle was originally designed to ensure that


there is no difference between the rotation of the earth with repect to the fixed stars or the


fixed stars with respect to the earth.” It now appears that the fixed stars are not needed


and the earth really does rotate. Our concern with this principle is associated with the fact


that an accelerated charged particle experiences a damping force simultaneously with the


moment of acceleration (relative to any inertial frame). Thus, it appears that a charged


particle can be used to identify accelerating frames and raises the question: what is a


charged particle accelerating with respect to? Put another way, charged particles appear


to know when they experience a force. Furthermore, even if the force is constant, the


effect cannot be transformed away. This is a problem for any theory that seeks to unify


electromagnetism with gravity.


1.3 Purpose


Dirac41 was critical of the use of Minkowski geometry as fundamental. As late as 1963,


he noted that “...the picture with four-dimensional symmetry does not give us the whole


situation... Quantum theory has taught us that we must take a three-dimensional section
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of what appears to our consciousness at one time (an observation), and relate it to another


three-dimensional section at another time.” In reviewing attempts to merge gravitation


with quantum theory, Dirac goes on to question the fundamental nature of the four-


dimensional requirement in physics and notes that, in some cases, physical descriptions


are simplified when one departs from it. The real question is: What do we replace it with


that solves the outstanding problems and has some contact with the physics we know?


A major part of our strong belief in the fundamental nature of the covariant Minkowski


approach to theory construction is based on the Feynman-Schwinger-Tomonaga formu-


lation of QED and their great computational success in accounting for the Lamb shift


and the anomalous magnetic moment. The correct history is at variance with this belief


(see Schweber38). It should first be noted that, using noncovariant methods, French and


Weisskopf39, and Kroll and Lamb40 were the first to get the correct results. The history


of the French and Weisskopf paper can be found in Schweber and is well worth reading.


Both Schwinger and Feynman initially got incorrect results using their covariant formula-


tion and only after the work of French and Weisskopf was circulated did they find their


mistakes. Later, Tomonaga got the correct results but used noncovariant methods in the


middle of the calculation (see Schweber38, pg. 270).


In attempting to solve the problems of the classical electron, almost every possible change


has been explored except the Minkowski four-geometry requirement. Our purpose in this


paper is to carefully study the mathematical and physical implications that arise when


we replace the observer proper-time by the source proper-time in Maxwell’s equations. In


order to see how this is possible, we first recall Minkowski’s definition of the proper-time
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of a source:


dτ2 = dt2 − 1
c2


dx2 = dt2
[
1 −


(w
c


)2
]


, w =
dx
dt


, (1.3a)


dτ2 = dt′
2 − 1


c2
dx′2 = dt2


[
1 −


(
w′


c


)2
]


, w′ =
dx′


dt′
. (1.3b)


Minkowski was aware that dτ is not an exact one-form and this observation may have


affected his decision to restrict its use to being a parameter for the four-geometry. However,


there is an important physical reason why it is not an exact (mathematical) one-form.


Physically, a particle can traverse many different paths (in space) during any given τ


interval. This reflects the fact that the distance a particle can travel in a given time


interval depends on the forces acting on it. This implies that the clock of the source


carries physical information, and there is no a priori physical reason to believe that this


information is properly encoded when τ is used as a parameter. We rewrite (1.3) as


dt2 = dτ2 +
1
c2


dx2 = (dτ)2
[
1 +


(u
c


)2
]


, u =
dx
dτ


, (1.4a)


dt′
2 = dτ2 +


1
c2


dx′2 = (dτ)2
[
1 +


(
u′


c


)2
]


, u′ =
dx′


dτ
. (1.4b)


Thus, another possibility appears (which does give an exact one-form). In case we have


two or more particles, our new time transformations are replaced by (in the simplest case)


a′
iτi = γ(v)[aiτi − xi · v/c2], (1.2b)


where τi is the proper-time of the i-th particle and ai and a′
i are terms which depend only


on τi.


In Section 2 we construct the invariance group which fixes the proper-time of the


source in the single particle case and then explore some of the physical implications and
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interpretations of this approach. At this level we see that the speed of particles may be


faster than the speed of light. The physical interpretation is that the mass and the mean


lifetime of unstable particles are now both constant, while the velocity computed using the


clock of the source replaces the velocity computed using the observer clock. Thus, as will


be seen, there is no contradiction with the second postulate, only a change in conventions.


The second postulate is shown to always hold for experiments conducted with the source


at rest in the frame of the observer, as is the case for the Michelson-Morley experiment.


In Section 3 we show explicitly that Maxwell’s equations have an equivalent repre-


sentation which fixes the proper-time of the source for all observers. We then prove that


this formulation is left covariant under the action of the proper-time group. Although


the fields have the same transformation properties as the conventional formulation, both


the current and charge densities transform differently. In particular, we prove that if the


charge density is at rest in any inertial frame then it is invariant (not just covariant) for


all observers. By example, even in the accelerating case when the proper velocity is 2c,


the relative velocity of our observers must be a subtantial fraction of c for them to detect


any difference in their measured properties of the charge distribution.


In this Section we also derive the corresponding wave equations and show that they


contain an additional dissipative term,which arises instantaneously with acceleration. By


a change of variables, we show that the dissipative term is equivalent to an effective mass


for electromagnetic radiation. We validate this interpretation by directly calculating the


energy radiated by an accelerated charge in the proper-time formulation. The radiation


formulas obtained are close in form but differ from those computed via the conventional
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formulation, but agree in the low-velocity limit. In particular, the proper-time theory


predicts an additional term for the E-field which acts along the direction of motion (longi-


tudinal), proving the validity of our interpretation of the wave equation. This result means


that in the proper-time formulation, there is no need to to require that the charge act back


on itself in order to account for radiation reaction. When we couple this result with the


the invariance of the charge density, we are able to prove that the proper-time theory is


independent of the particle size, structure and geometry.


In Section 4 we derive the related versions of the optical Doppler effect and the aberra-


tion of wave vectors. These two phenomena are both well-known and ubiquitous. However,


the general forms are usually derived using Lorentz transformations2,42. Here, we derive


them from the proper-time theory, using the new invariance group. In addition to the


usual terms, we obtain new results because of the nonlocal frequency effects implied by


our theory. These effects play an important role in our derivation of the group velocity for


electromagnetic waves. Here we show that the group velocity is c only when measured in


the (rest) frame of the observer, but will not be c for any other observer moving relative


to that frame. The new value (in the simplest case) will be either c+v or c−v, depending


on the direction of the relative motion. However, as will be shown in Section 6, this effect


is in the noise for experiments conducted up to now because of theory interpretation.


In Section 5 we formulate a global interacting many-particle theory. With an eye to-


wards the quantum theory, we require that the change from observer proper-time to source


proper-time be canonical. This leads to the Hamiltonian which generates τ translations.


To accomplish this, we use a representation of the proper-time that is independent of the
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number of particles. We derive our many-particle theory via the commutation relations


for the Poincaré algebra. As a side benefit, we show that the global system has a (unique)


proper-time (avaliable for all observers). This clock provides a unique definition of simul-


taneity for all events associated with the system and is (shown to be) intrinsically related


to the proper-times of the particles (in the system). From these results, it follows that at


the local level, during interaction, the proper-time group is a nonlinear and nonlocal rep-


resentation of the Lorentz group. On the other hand, at the global level, the proper-time


group differs from the Lorentz group by a scale transformation. It follows from the work


in this Section and in Section 2 that the group representation space is Euclidean.


In Section 6 we explore the ramifications and implications of our formulation and


discuss some apparent disadvantages.


2.0 Proper-Time Transformations


In this section, we derive the transformations that fix the proper-time of the source for all


observers. If we set b2 = u2 + c2, then from (1.1) and (1.4) we have that


t = (1/c)


τ∫
0


b(s)ds and t′ = (1/c)


τ∫
0


b(s)′ds. (2.0)


It follows that t and t′ are nonlocal as functions of τ in the sense that their values depend


on the particular physical history (proper-time path) of the source. By the mean value


property for integrals, we can find a unique s(τ) for each τ , 0 < s(τ) < τ , such that


uτ = u(τ − s(τ)), and


t = (1/c)


τ∫
0


b(s)ds = (b̄τ/c)τ, (2.1a)
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t′ = (1/c)


τ∫
0


b′(s)ds = (b̄′τ/c)τ. (2.1b)


It is clear that this property is observer-independent since


t′ = γ(v)(t − x · v/c2) ⇒ (b̄′τ/c)τ = γ(v)[(b̄τ/c)τ − (x · v/c2)]. (2.2)


With a fixed clock for all observers, we can now develop a theory in which only the spatial


coordinates are transformed. Using (2.2), the required transformations are


x′ = x − γ(v )(b̄τ/c)vτ + (γ(v ) − 1)(x · v/||v||2)v, (2.3a)


x = x′ + γ(v )(b̄′τ/c)vτ + (γ(v ) − 1)(x′ · v/||v||2)v. (2.3b)


From a physical point of view, (2.3) tells us (explicitly) that observers can only share


information about the past position of a given physical system. The above approach also


gives us the only (presently known) rational solution to the problem of distant simultaneity.


It is clear that all observers have the option of using their proper clocks with no hope of


agreeing on the time occurrence of any event associated with the source. On the other


hand, if each observer agrees to use the proper clock of the source, we see that they will


always agree on the time occurrence of any event associated with the source.


We now see that ai = (b̄i/c) and a′
i = (b̄′i/c) in equation (1.2b). The unit for b and b′


is velocity so that physical interpretation is very important. It will arise naturally when


we represent Maxwell’s equations using the proper-time of the source. For now, we note


that they are related by


b′ = γ(v)
[
b − u · v


c


]
, b = γ(v)


[
b′ +


u′ · v
c


]
. (2.4)
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For any vector d, set


d† = d/γ(v) − (1 − γ(v))
[
v · d/(γ(v)v2)


]
v. (2.5)


Then the full set of transformations between observers that fix the proper-time of the


source take the (almost) familiar form


x′ = γ(v)
[
x† − (v/c)b̄ττ


]
, x = γ(v)


[
x′† + (v/c)b̄′ττ


]
, (2.6)


u′ = γ(v)
[
u† − (v/c)b


]
, u = γ(v)


[
u′† + (v/c)b′


]
, (2.7)


a′ = γ(v)
{
a† − v [u · a/(bc)]


}
, a = γ(v)


{
a′† + v [u′ · a′/(b′c)]


}
, (2.8)


where a (a′) is the particle proper-(three) acceleration. The above transformations (along


with (2.4)) form the proper-time group. In this formulation, we now have only one clock


as an intrinsic part of the theory.


The above transformations are so close to Lorentz transformations that one might


wonder if any new physics is possible. Not only is there new physics, as will be seen later,


but just as importantly, there are new physical interpretations of old ideas. For example,


relativistic momentum increase is attributed to relativistic mass increase so that


p = mw, m = m0[1 − w2/c2]−1/2. (2.9a)


In the new interpretation,


p = m0u, u = w[1 − w2/c2]−1/2, (2.9b)


so there is no mass increase, the (proper) velocity increases. Thus, in particle experiments


the particle will have a fixed mass and decay constant, independent of its velocity. On the
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other hand, the particle can have (proper) speeds larger than the speed of light since its


velocity is now interpreted to be dx/dτ . All cases where time dilation is discussed in the


standard approach are replaced by statements about u in the new approach.


Note that the relationship between u and w can be viewed as dual in the sense that


u = w[1 − w2/c2]−1/2, (2.10)


w = u[1 + u2/c2]−1/2. (2.11a)


This relationship was first derived by Schott43 in the famous 1915 paper in which he also


derived the well-known Schott term of classical electrodynamics. Dividing by c in (2.11a),


we get


w
c


=
u
b
. (2.11b)


It is easy to show that [1 + u2
/
c2]1/2 = [1 − w2


/
c2]−1/2. Expanding both sides and using


(2.11b), we have


[1 + u2
/
c2]1/2 = 1 +


1
2


u2


c2
− 1


8
u4


c4
+ · · · , (2.12)


[1 − w2
/
c2]−1/2 = 1 +


1
2


w2


c2
+


3
8


w4


c4
+ · · · , (2.13a)


[1 − w2
/
c2]−1/2 = [1 − u2


/
b2]−1/2 = 1 +


1
2


u2


b2
+


3
8


u4


b4
+ · · · . (2.13b)


Thus, all three expressions agree in the low-velocity region. It follows that all the results


derived from the standard implementation of special relativity using w/c can also be con-


sistently derived using u/b. This result will be repeatedly exploited in this paper to provide


an alternative interpretation of much of classical electrodynamics. The real question that


arises is which of these definitions of velocity is appropriate in the construction of faithful


representations of physical reality. (see Section 6).
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3.0 Proper-Time Maxwell Equations


In order to formulate the corresponding Maxwell theory, we need the following theorem


which is derived from (2.0) and (2.6):


Theorem 3.1 The transformation properties of the derivatives when the observers use


the clock of the source are:


1
c


∂


∂t
=


1
b


∂


∂τ
,


1
c


∂


∂t′
=


1
b′


∂


∂τ
, (3.1)


∇ = γ(v) [∇′ − (v/cb′)(∂/∂τ)] . ∇′ = γ(v) [∇ + (v/cb)(∂/∂τ)] , (3.2)


Proof: For each case, we prove the first result. For the first case, we use the chain


rule so that (1/c)∂/∂t = (1/c)(∂τ/∂t)(∂/∂τ). Using equation (1.3a) and the fact that


[1 − w2/c2]1/2 = [1 + u2/c2]−1/2, we have


(1/c)(∂τ/∂t) = (1/c)[1 − w2/c2]1/2 = (1/c)[1 + u2/c2]−1/2 = (1/b). (3.3a)


This gives the first part of (3.1). To prove the first part of (3.2), we use equation (1.1a) to


get that (with an obvious abuse of notation)


∂


∂x
=


∂x′


∂x
∂


∂x′ +
∂t′


∂x
∂τ


∂t′
∂


∂τ
. (3.3b)


Now note that (∂x′/∂x) = γ(v), (∂t′/∂x) = −γ(v)v/c2, and (∂τ/∂t′) = (c/b′). Putting


these terms in equation (3.3b) gives our result.


We can now formulate the proper-time version of Maxwell’s equations. The conven-


tional form of these equations for two observers is (in Gaussian units):


∇ · B = 0, ∇× E +
1
c


∂B
∂t


= 0, (3.4a)
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∇ · E = 4πρ, ∇× B =
1
c


[
∂E
∂t


+ 4πρw
]


, (3.4b)


∇′ · B′ = 0, ∇′ × E′ +
1
c


∂B′


∂t′
= 0, (3.5a)


∇′ · E′ = 4πρ′, ∇′ × B′ =
1
c


[
∂E′


∂t′
+ 4πρ′w′


]
. (3.5b)


Using (2.11) and (3.1)− (3.2), the above equations can be rewritten using the proper-time


of the source to get


∇ · B = 0, ∇× E +
1
b


∂B
∂τ


= 0, (3.6a)


∇ · E = 4πρ, ∇× B =
1
b


[
∂E
∂τ


+ 4πρu
]


, (3.6b)


∇′ · B′ = 0, ∇′ × E′ +
1
b′


∂B′


∂τ
= 0, (3.7a)


∇′ · E′ = 4πρ′, ∇′ × B′ =
1
b′


[
∂E′


∂τ
+ 4πρ′u′


]
. (3.7b)


We see that when observers use the proper-time of the source, the velocity of electro-


magnetic waves depends on the motion (of the source), and has magnitude larger than c.


This may seem strange and even contradictory to the second postulate: “The speed of


light in any inertial frame is constant and is independent of the motion of the source or


receiver.” This is not the case. On closer inspection, it is clear that the second postulate


assumes that the observer’s proper-clock is being used to measure time. Thus, there is no


contradiction, just a change in conventions.


In the Michelson-Morley experiment, the source is at rest in the frame of the observer


so that u = 0 and b = c. It follows that this approach (also) explains the Michelson-Morley


null result. It also provides agreement with the conceptual (but not technical) framework


proposed by Ritz44; namely, that the speed of light does depend on the (proper) motion


of the source. In this sense, both Einstein and Ritz were correct.
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We could follow Einstein’s method5 in proving the covariance of the proper-time equa-


tions (using (3.1)−(3.2)). However, we use the four-vector approach first, to emphasize the


fact that our theory is compatible with four-vectors (in the one-particle case) and second,


because it will be convenient for our derivation of the proper-time transformation of plane


waves in Section 4. (The plane waves will be used to derive formulas for the Doppler effect


and aberration of wave vectors.) Writing our equations in four-dimensional form as


F =






0 Bz −By −iEx


−Bz 0 Bx −iEy


By −Bx 0 −iEz


iEx iEy iEz 0



 ,


∂


∂x4
= − i


b


∂


∂τ
, (3.8)


it follows that


∂Fαβ


∂xγ
+


∂Fβγ


∂xα
+


∂Fγα


∂xβ
= 0, (α, β, γ = 1, 2, 3, 4), (3.9)


is equivalent to the sourceless equations (3.4a) and


∂Fαβ


∂xβ
=


4π


b
Jα, Jα = (Jx, Jy, Jz, ibρ), (3.10)


is equivalent to the proper-time equations with sources (3.4b). It should be noted that,


in (3.9) and (3.10) and in the sequel, the summation convention is in force for repeated


indices. If we now define [aµν ] by


[aµν ] =






1 + (γ − 1)(v2
x/v2) (γ − 1)[(vxvy)/v2] (γ − 1)[(vxvz)/v2] iγ


vx


c


(γ − 1)[(vxvy)/v2] 1 + (γ − 1)(v2
y/v2) (γ − 1)[(vyvz)/v2] iγ


vy


c
(γ − 1)[(vxvz)/v2] (γ − 1)[(vyvz)/v2] 1 + (γ − 1)(v2


z/v2) iγ
vz


c


−iγ
vx


c −iγ
vy


c −iγ
vz


c γ



 , (3.11)


with γ = [1 − (v/c)2]−1/2; then the transformations


x′
µ = aµνxν (µ, ν = 1, 2, 3, 4), (3.12)


correspond for µ = 1, 2, 3 to the first set of equations in (2.6) with x4 = ib̄ττ = i
∫ τ


0
b(s)ds.


Integrating the first equation in (2.4), we have∫ τ


0


b′(s)ds = γ(v)
[∫ τ


0


b(s)ds − x · v
c


]
. (3.13)
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Since the transformations (3.12) are equivalent to our proper-time transformations, we


can transform the fields between observers using the four-vector approach just as is com-


monly done using Lorentz transformations24,45,46. Thus, we see that the transformations


F ′
µν = aµαaνβFαβ (µ, ν, α, β = 1, 2, 3, 4) are equivalent to


E′ = γ


[
E +


1
c


(v × B)
]
− (γ − 1)


(E · v)
v2


v, (3.14)


B′ = γ


[
B − 1


c
(v × E)


]
− (γ − 1)


(B · v)
v2


v. (3.15)


It should not be surprising that equations (3.14) and (3.15) are the same as would


be obtained if our observers used their own clocks. This is because the transformation


coefficient matrix (3.11) is the same as is used for Lorentz transformations between fields.


On the other hand, when we look at the current and charge densities, the transformations


J ′
µ = aµαJα (µ, α = 1, 2, 3, 4) are equivalent to


J′ = J + (γ − 1)
(J · v)


v2
v − γ


b


c
ρv, (3.16a)


b′ρ′ = γ(v) [bρ − (J · v/c)] . (3.16b)


Using the first equation of (2.4) in (3.16b), we get:


ρ′ =
ρ − (J · v/bc)
1 − (u · v/bc)


. (3.16c)


This result is different from the standard one, (which we obtain if we set b′ = b = c in


(3.16b)),


ρ′ = γ(v)
[
ρ − (J · v


/
c2)


]
. (3.16d)


To see a further difference, if we insert the expression J/c = ρ(u/b) for the current density


in (3.16c) and J = ρw in (3.16d); we obtain


ρ′ = ρ
1 − (u · v


/
b2)


1 − (u · v/bc)
, (3.17a)
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ρ′ = ργ(v)
[
1 − (w · v


/
c2)


]
. (3.17b)


In order to obtain a sense of the difference between ρ and ρ′, assume that


u = 2c ≈ u′, b =
√


5c, ⇒ w = 2√
5
c ≈ c,⇒


ρ′ = ρ


[
1 − 2v


5c


1 − 2v√
5c


]
, & ρ = ρ′


[
1 + 2v


5c


1 + 2v√
5c


]
.


It follows that, unless the relative speed of our two observers is a substantial fraction


of c, they will decide that ρ = ρ′. In fact, we obtain the following remarkable result from


equation (3.17a):


Theorem 3.2 If the source is at rest in the X frame then ρ = ρ′ for all other observers.


Proof: The proof is easy, just note that if u = 0 in X then b = c and, from equation


(2.17a), ρ = ρ′. Since X ′ is arbitrary, the result is true for all observers.


The above theorem means that, in the proper-time formulation, a spherical charge


distribution at rest in any inertial frame will appear spherical to all other inertial ob-


servers. As will be shown in the next section, the radiation from an accelerated charged


particle appears as a dissipative term in the wave equations for the fields (i.e., neither


self-interaction or advanced fields are required). From these two results, we see that the


proper-time formulation is independent of particle size or structure.


3.1 Proper-Time Wave Equations


If in equations (3.6), we set


B = ∇× A, E = −1
b


∂A
∂τ


−∇Φ, (3.18)


then we obtain


∇
[
∇ · A +


1
b


∂Φ
∂τ


]
+


1
b


∂


∂τ


[
1
b


∂A
∂τ


]
−∇2A =


1
b


(4πρu) , (3.19)
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and


−∇2Φ − 1
b


∂


∂τ
[∇ · A] = 4πρ. (3.20)


Imposing the (proper-time) Lorentz gauge


∇ · A +
1
b


∂Φ
∂τ


= 0, (3.21)


we get the wave equations


1
b2


∂2A
∂τ2


− 1
b4


(u · a)
∂A
∂τ


−∇2A =
1
b


[4πρu] , (3.22a)


1
b2


∂2Φ
∂τ2


− 1
b4


(u · a)
∂Φ
∂τ


−∇2Φ = 4πρ. (3.22b)


We thus obtain a new term that arises because the proper-time of the source carries


information about the interaction that is not available when the proper-time of the observer


is used in formulating theory. In Section 5 the wave equations will be derived for the fields


directly to get (no gauge required):


1
b2


∂2E
∂τ2


− 1
b4


(u · a)
∂E
∂τ


−∇2E = −∇ [4πρu] − 1
b


∂


∂τ


[
4πJ
b


]
, (3.23a)


1
b2


∂2B
∂τ2


− 1
b4


(u · a)
∂B
∂τ


−∇2B =
1
b


∂


∂τ


[
4π∇× J


b


]
. (3.23b)


Thus, the new term is independent of the gauge. The physical interpretation is clear, this


is a dissipative term which is zero if a is zero or orthogonal to u. Furthermore, it arises


instantaneously with the acceleration of the source. This is exactly what one expects of


the radiation caused by the inertial resistance of the source to accelerated motion and is


precisely what one means by radiation reaction (see Wheeler and Feynman25). It should


be noted that the creation of real physical conditions which will make a orthogonal to u is
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almost impossible since a arises because of an external force and has no relationship to u.


In order to get some insight into the meaning of the new dissipative terms, let us focus on


equation (3.22b). If we use p = m0u from equation (2.9b), we see that the external force


Fext satisfies (This is only approximate as will be seen in Section 5.4, equation (5.58).)


Fext =
dp
dτ


= m0a, (3.24a)


so that equation (3.22b) becomes


1
b2


∂2Φ
∂τ2


−
(u


b


)
·
(


Fext


m0b2


) (
1
b


∂Φ
∂τ


)
−∇2Φ = 4πρ. (3.24b)


If we identify m0b
2 with the effective interaction energy of the particle, then the middle


term can be interpreted as the reactive power loss per unit interaction energy of the particle


due to its resistance to Fext. To see this additional term in another physically important


way, use the change of variables Φ = (b/c)1/2
g in (3.22b) to get (see Courant and Hilbert47)


1
b2


∂2g


∂τ2
−∇2g +


[
b̈


2b3
− 5ḃ2


4b4


]
g = 4πρ


(c


b


)1/2


. (3.24c)


This is the Klein-Gordon equation with an effective mass µ given by


µ =


{
h̄2


b2


[
b̈


2b3
− 5ḃ2


4b4


]}1/2


. (3.25)


Hence, the reactive power loss per unit interaction energy in (3.24b) is equivalent to an


effective mass for the photon that depends on the external force acting on the particle.


We have only considered our equations at the source. If we look at them in a region


outside the source, there is a major change. The dissipative term is now constant with its


value fixed at the time the radiation left the source. Thus, a new picture emerges. Every
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accelerated charged particle emits a continuous stream of (very) small particles (photons)


in all directions. The energy and the velocity of the particles depend on the velocity of


the source at the moment of emission. The velocity of the particles remains constant until


they are scattered or absorbed.


3.2 Radiation From An Accelerated Charge


In this section, we compute the radiation from an accelerated charge using the proper-


time theory. We can solve equation (3.24b) directly, but a better approach is to first find


the solution using the proper-time of the observer and then transform the result to the


proper-time of the source. This makes the computations easier to follow and gives the


result quicker. We follow closely the approach in Panofsky and Phillips24. In this section,


(x(t), t) represents the field position and (x′(t′), t′) represents the retarded position of a


point charge source q, with r = x−x′, dr/dt′ = −w, and d2r/dt′2 = ẇ. The field solutions


using the standard Lienard-Wiechert potentials are given by


A =
qw
cs


, Φ =
q


s
, s = r −


(r · w
c


)
. (3.26)


The proper-time form is obtained by replacing w/c by u/b to get


A =
qu
bs


, Φ =
q


s
, s = r −


(r · u
b


)
. (3.27)


The field and source-point variables are related by the condition


r = |x − x′| = c(t − t′). (3.28)


Here, dr/dτ ′ = −u = −dx′/dτ ′, where τ ′ denotes the retarded proper-time of the source.


The corresponding E and B fields can be computed using equation (3.18) in the form


E(x, τ) = −1
b̄


∂A(x, τ)
∂τ


−∇Φ(x, τ), B(x, τ) = ∇× A(x, τ) (3.29)
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with ū = dx/dτ , where τ denotes the proper-time of the present position of the source


and b̄ =
(
ū2 + c2


)1/2. In order to compute the fields from the potentials, we note that the


components of the ∇ operator are partials at constant time τ , and therefore are not at


constant τ ′. Also, the partial derivatives with respect to τ imply constant x and hence refer


to the comparison of potentials at a given point over an interval in which the coordinates


of the source will have changed. Since only time variations with respect to τ ′ are given, we


must transform (∂/∂τ) |x and ∇ |τ to expressions in terms of ∂/∂τ ′ |x . To do this, we must


first transform (3.28) into a relationship between τ and τ ′. The required correspondence


is


c(t − t′) =
∫ τ


τ ′
b(s)ds. (3.30)


It is easier to first relate ∂/∂t |x to ∂/∂t′ |x and then convert them to relationships


between ∂/∂τ |x and ∂/∂τ ′|x . The following are in reference 24, pg. 298:


∂r


∂t′
= −r · w


r
,


∂r


∂t
= c


(
1 − ∂t′


∂t


)
=


∂r


∂t′
· ∂t′


∂t
= −r · w


r


∂t′


∂t
. (3.31)


Since ∂τ/∂t = c/b, we have


∂r


∂t
= c


∂


∂t
(t − t′) =


∂τ


∂t


∂


∂τ


∫ τ


τ ′
b(s)ds =


c


b̄


[
b̄ − b


∂τ ′


∂τ


]
. (3.32)


We also have, using ∂τ ′/∂t′ = c/b , that


∂r


∂t′
=


∂r


∂τ ′
∂τ ′


∂t′
=


c


b


∂r


∂τ ′ ⇒
1
b


∂r


∂τ ′ = −r · w
rc


= −r · u
rb


, (3.33)


so ∂r/∂τ ′ = −r · u/r and hence


∂r


∂t
=


∂r


∂τ


c


b̄
=


c


b̄


[
b̄ − b


∂τ ′


∂τ


]
⇒ ∂r


∂τ
=


[
b̄ − b


∂τ ′


∂τ


]
, (3.34)
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∂r


∂τ
=


∂r


∂τ ′
∂τ ′


∂τ
= −r · u


r


∂τ ′


∂τ
⇒ −r · u


r


∂τ ′


∂τ
=


[
b̄ − b


∂τ ′


∂τ


]
. (3.35)


Solving (3.35) for ∂τ ′/∂τ , we get


∂τ ′


∂τ
=


b̄


b


r


s
, s = r − r · u


b
. (3.36)


Using this, we see that


1
b̄


∂


∂τ
=


1
b
· r


s


∂


∂τ ′ . (3.37)


From ∇r = −c∇t′ = ∇1r + (∂r/∂t′)∇t′, we see that


∇r =
r
r
− c


b
· r · u


r
∇t′ ⇒ −c∇t′ =


r
r
− c


b
· r · u


r
∇t′. (3.38)


Using c∇t′ = b∇τ ′ and solving for ∇τ ′, we get ∇τ ′ = − (r/bs), so that


∇ = ∇1 −
r
bs


· ∂


∂τ ′ . (3.39)


We now compute ∇1s and ∂s/∂τ ′. The calculations are easy, so we simply state the results:


∇1s =
r
r
− u


b
=


1
r


(
r − ru


b


)
, (3.40)


∂s


∂τ ′ =
u2


b
− r · u


r
− r · a


b
+


(r · u) (u · a)
b3


. (3.41)


We can now calculate the fields. The computations are long but follow those of


reference 24, so we only record a few selected results. We obtain


−∇Φ =
q


s2
∇s =


q


s2


(
∇1s −


r
bs


· ∂s


∂τ


)
⇒


−∇Φ =
q
[
r
(
1 − u2


/
b2


)
− us/b


]
s3


+
qr (r · a)


b2s3
− qr (r · u) (u · a)


b4s3
.


(3.42)


Now use equation (3.37) to get


−1
b̄


∂A
∂τ


=
(
−1


b


) (r


s


) ∂A
∂τ ′ ⇒
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− 1
b̄


∂A


∂τ
=


− (qru/b) {(u/b) · [(r/r) − (u/b)]}
s3


+
−qr2a + qr {r × [a × (u/b)]}


b2s3
+


qu [(r · r) (u · a)]
b4s3


.


(3.43)


Combining (3.42) and (3.43), we get


E(x, τ) = −1
b̄


∂A(x, τ)
∂τ


−∇Φ(x, τ) ⇒


E(x, τ) =
q
[
r
(
1 − u2/b2


)
− us/b


]
s3


− (−qru/b) [(u/b) · (r/r − u/b)]
s3


+
−q


[
r2a − r (r · a)


]
+ qr [r × (a × u/b)]


b2s3
+


q (u · a)
[
ur2 − r (r · u)


]
b4s3


.


(3.44)


Finally, using standard vector identities and combining terms, we get (with ru = r−ur/b)


E(x, τ) =
q
[
ru


(
1 − u2/b2


)]
s3


+
q {r × [ru × a]}


b2s3


+
q (u · a) [r × (u × r)]


b4s3
.


(3.45)


The computation of B is similar:


B(x, τ) =
q
[
(r × ru)(1 − u2/b2)


]
rs3


+
qr × {r × [ru × a]}


rb2s3


+
qr(u · a)(r × u)


b4s3
.


(3.46)


It is easy to see that we have B = (r/r) × E so that B is orthogonal to E. The first


two terms in (3.45) and (3.46) are the same as (19-13) and (19-14) in reference 24 (pg.


299). The last term in each case arises because of the dissipative terms in equations (3.22)


and (3.23).


The last terms in (3.45) and (3.46) are zero if a is zero or orthogonal to u. In the


first case, there is no radiation and the particle moves with constant velocity so that


the field is massless. As noted earlier, the second case depends on conditions that are


impossible in practice, namely the creation of motion which keeps a orthogonal to u.


Since r × (u × r) = r2u − (u · r) r, we see that there is a component along the direction
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of propagation (longitudinal). Hence, in all other cases, there is a small mass associated


with electromagnetic radiation which varies with the acceleration of the particle.


3.3 Radiated Energy


In light of the difference in the calculated fields, it becomes important to also compute the


radiated energy for the proper-time theory and compare it with the Minkowski formulation.


It is well-known that the radiated energy is determined by the Poynting vector, which is


defined by P = (c/4π) (E × B).


To calculate the angular distribution of the radiated energy, we must be careful to


note that the rate of radiation is the amount of energy lost by the charge in a time


interval dτ ′ during the emission of the signal (−dU/dτ ′). However (at a field point), the


Poynting vector P represents the energy flow per unit time measured at the present time


(τ). With this understanding, the same approach that leads to the above formula gives


P =
(
b̄
/
4π


)
(E × B) in the proper-time formulation. We thus obtain the rate of energy


loss of a charged particle into a given infinitesimal solid angle dΩ as


−dU


dτ ′ (Ω)dΩ =
(
b̄
/
4π


)
[n · (E × B)] r2 dτ


dτ ′ dΩ. (3.47)


Using equation (3.36), we get that (dτ/dτ ′) = bs
/
b̄r, so that (3.47) becomes


−dU


dτ ′ (Ω)dΩ = (b/4π) [n · (E × B)] rsdΩ. (3.48)


As is well-known, only those terms that fall off as (1/r) (the radiation terms) in (3.45)


and (3.46) contribute to the integral of (3.48). It is easy to see that our theory gives the


following radiation terms:


Erad =
q {r × [ru × a]}


b2s3
+


q (u · a) [r × (u × r)]
b4s3


= Ec
rad + Ed


rad, (3.49)
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Brad =
qr × {r × [ru × a]}


rb2s3
+


qr (u · a) (r × u)
b4s3


= Bc
rad + Bd


rad, (3.50)


where Ec
rad,B


c
rad are of the same form as the classical terms with c replaced by b, w′ by u,


and ẇ′ by a. The two terms Ed
rad,B


d
rad, are new and come directly from the dissipation


term in the wave equations. (Note the characteristic (u · a)
/
b4.) We can easily integrate


the classical terms to see that∫∫
Ω


(−dU c/dτ)dΩ


= (b/4π)
∫∫


Ω


[n · (Ec
rad × Bc


rad)] rsdΩ =
2
3


q2 |a|2
b3


.


(3.51)


This agrees with the standard result for small proper- velocity and proper-acceleration of


the charge when b ≈ c and a ≈ dw/dt.


In the general case, our theory gives additional effects because of the dissipative terms.


To compute the integral of (3.48), we use spherical coordinates with the proper-velocity


u directed along the positive z-axis. Without loss of generality, we orient the coordinate


system so that the proper-acceleration a lies in the xz-plane. Let α denote the acute angle


between a and u, and substitute (3.49) and (3.50) in (3.48) to obtain


− dU


dτ
(Ω)dΩ =


=
q2 |a|2
4πb3


{ (1 − β cos θ)−4 [
1 − sin2 θ sin2 α cos φ


− cos2 θ cos2 α − (1/2) sin 2θ sin 2α cos φ
]


− 2β (1 − β cos θ)−5 (
sin2 θ cos α − (1/2) sin 2θ sinα cos φ


)
χ


+β2 sin2 θ (1 − β cos θ)−6
χ2


}
,


(3.52)


where


χ =
b2


r |a|
(
1 − β2


)
+ β cos α


(
1 − 1


β
cos θ


)
− sin θ sinα cos φ, (3.53)


36







and β = (|u|/b).


The integration of (3.52) over the surface of the sphere is elementary, and we obtain,


after some extensive but easy computations (which are summarized in the appendix):


lim
r→∞


∫∫
−dU


dτ
(Ω)dΩ


=
2
3


q2 |a|2
b3


(
1 − β2


)−3
[
1 − 1


5
β2


(
4 + β2


)
+


1
5
β2


(
6 + β2


)
sin2 α


]
.


(3.54)


As can be seen, this result agrees with (3.51) at the lowest order. For comparison, the


same calculation using the observer’s clock for the case of general orientation of velocity


dx′/dt′ and acceleration dw′/dt′ is


lim
r→∞


∫∫
−dU


dt
(Ω)dΩ =


2
3


q2 |ẇ′|2
c3


(
1 − β2


)−3
[1 − β2 sin2 α


]
, (3.55)


where β = (|w′|/c).


We observe that, in general, for an arbitrary angle α with 0 ≤ α ≤ π/2 and arbitrary


β between 0 and 1, our result does not agree with (3.55) even if we replace b with c and a


with dw′/dt′. This shows, along with our other results, that the apparently small change


in clocks induces large changes in the physical predictions. We will return to this point in


the conclusion of the paper.


4.0 Proper-Time Doppler Effect and Aberration


In this section, we apply our proper-time theory to compute the optical Doppler effect


and aberration. To do this, we first consider the transformation properties of plane wave


solutions to Maxwell’s equations. Assuming that our observers are in the far-field of the


source so that, to a good approximation, the waves are plane when they arrive at the
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observers’ positions, we want solutions of the form (E0 = const, B0 = const)


E = �
{
E0 exp


[
i


(
k · x − 1


c


∫ τ


0


ω(s)b(s)ds


)]}
, (4.1a)


B = �
{
B0 exp


[
i


(
k · x − 1


c


∫ τ


0


ω(s)b(s)ds


)]}
, (4.1b)


where, in accordance with equations (2.0), we have modified the plane wave representa-


tions to allow for proper-time (nonlocal) dependence of the frequency. Assuming that the


frequency is a differentiable function of time, we get that the above plane wave represen-


tations of the fields are solutions of the wave equations in the far-field region (where the


charge and current densities are zero),


1
b2


∂2E
∂τ2


− 1
b4


(u · a)
∂E
∂τ


−∇2E = 0, (3.23a)


1
b2


∂2B
∂τ2


− 1
b4


(u · a)
∂B
∂τ


−∇2B = 0, (3.23b)


provided that


k2 =
ω(τ)2


c2


[
1 + i


cω̇(τ)
bω(τ)2


]
. (4.2a)


In addition, from (3.4) we have


k · B0 = 0, k · E0 = 0, (4.2b)


k × E0 =
ω(τ)


c
B0. (4.2c)


It follows from (4.2a) that the wave vector k depends on ω(τ) and its derivative ω̇(τ).


To obtain the transformation properties of the plane waves, we use (3.14) and (3.15)


along with (4.1) to get


E′ = �
{
E′


0 exp
[
i


(
k · x − 1


c


∫ τ


0


ω(s)b(s)ds


)]}
, (4.3a)
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B′ = �
{
B′


0 exp
[
i


(
k · x − 1


c


∫ τ


0


ω(s)b(s)ds


)]}
, (4.3b)


with


E′
0 = γ


[
E0 +


1
c


(v × B0)
]
− (γ − 1)


(E0 · v)
v2


v. (4.3c)


B′
0 = γ


[
B0 −


1
c


(v × E0)
]
− (γ − 1)


(B0 · v)
v2


v. (4.3d)


We now use the inverse transformations (2.1a), (2.3b), and (2.4) to transform the phase


Φ = i


(
k · x − (1/c)


∫ τ


0


ω(s)b(s)ds


)
(4.3e)


in (4.3a) and (4.3b) to the corresponding expression in the primed variables:


Φ′ = i


(
k′ · x′ − (1/c)


∫ τ


0


ω′(s)b′(s)ds


)
, (4.3f)


where the wave number k′ and the frequency ω′(s) are to be determined by the requirement


that the transformed phase Φ′ has the indicated form. Substituting (2.1b) and (2.4) into


(4.3e), we get


Φ = i


[(
k + (γ(v) − 1)


(
k · v
||v||2


)
v
)
· x′


+γ(v)
k · v


c


τ∫
0


b′(s)ds − 1
c


∫ τ


0


ω(s)b′(s)ds






= i


[(
k + (γ − 1)


(
k · v
||v||2


)
v
)
· x′


−γ


c


τ∫
0


(ω(s) − k · v)b′(s)ds − γ


c2


∫ τ


0


ω(s)u′ · vds



 .


(4.4)


Integrating the last term in (4.4) by parts, we obtain the desired form for Φ′, where the


frequency relation is given by


ω′(τ) = γ(ω(τ) − k · v), (4.5)
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and the wave number relation (contributing the nonlocal part to Φ′) is given by:


k′ · x′(τ) = k · x′(τ) + (γ − 1)
[
(k · v)(v · x′(τ))


||v||2
]


− γω(τ)
c2


(v · x′(τ)) +
γω(0)


c2
(v · x′(0)) +


γ


c2


∫ τ


0


dω(s)
ds


[v · x′(s)] ds.


(4.6)


The wave vectors in our two frames differ by an extra nonlocal term compared to the


standard result, while the transformations of the frequencies (4.5) agree with the normal


case except for the τ dependence. This nonlocal term occurs because we allowed the


frequency of the wave to vary. It is easy to check that, if ω is constant (and the source


passes though the origin(s) at τ = 0), we get the standard result.


We now consider the planar representation (4.6) with the velocity v taken along the


x = x′ axes with angle θ defined as that between k and v, and θ′ the angle between k′


and v, ω constant, and assume that the source passes though the origin(s) at τ = 0. We


then obtain from (4.6) the following relations between the angles θ and θ′:


k′cosθ′ = γk cos θ − γ
ω


c2
v, (4.7)


k′sinθ′ = k sin θ. (4.8)


They combine in the standard manner to give


tan θ′ =
1
γ


sin θ


cos θ − v
c


ω
kc


. (4.9a)


This is the standard result for the aberration of wave vectors due to the relative motion of


the two reference frames. It should be noted that we have not assumed that the X frame


is at rest relative to the medium. Furthermore, we see from (4.2a) that kc = ω in free


space (under the above assumptions). In general, kc = ω(τ)
[
1 + i


(
cω̇(τ)


/
bω(τ)2


)]1/2 so


that our theory allows for nonlocal effects.
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For any homogeneous medium, ω/�k is equal to the phase velocity, vph, of the wave,


vph = c�
[
1 + i


(
cω̇(τ)


/
bω(τ)2


)]−1/2
, (4.10)


and c/vph is defined to be the index of refraction, n, of the medium. Thus, (4.9a) becomes:


tan θ′ =
1
γ


sin θ


cos θ − v
cn


. (4.9b)


This is what we would normally expect from the standard theory. However, the importance


of (4.10) becomes clear when we consider the group velocity, rather than the phase velocity,


of electromagnetic waves. As is well-known, the group velocity represents the rate of energy


transmission, and is defined by vg = �(dω/dk). We know that use of observer clocks


(proper-times) gives vg = v′g = c. The question is, what is this relationship in the source


proper-time theory ?


To determine how vg is related to v′g, we restrict ourselves to the case when the waves


are moving parallel to the motion of the X ′ frame relative to the X frame, so that the wave


vectors �k and �k′ are parallel to the velocity v. Then the frequency and wave number


relations (4.5) and (4.6) become (under these conditions)


ω′(τ) = γ(ω(τ) − k · v), (4.11)


k′x′ = γ


(
k − γvω(τ)


c2


)
x′(τ) +


γvω(0)
c2


x′(0) +
γv


c2


∫ τ


0


dω(s)
ds


[x′(s)] ds, (4.12)


where, in the last equation, we have replaced the vector x′(τ) by the scalar x′(τ) because


we are only interested in the τ dependence of the frequencies and wave numbers.


Defining the group velocity in the X, X ′ frames by


vg ≡ �(
dω


dk
) = �(


dω


dτ


/
dk


dτ
), v′g ≡ �(


dω′


dk′ ) = �(
dω′


dτ


/
dk′


dτ
), (4.13)
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we obtain from (4.11) the equation


dω′


dτ
= γ


(
dω


dτ
− v


dk


dτ


)
, (4.14)


and from (4.12) (after canceling terms),


dk′


dτ
x′(τ) = γ


dk


dτ
x′(τ). (4.15)


Substitution of (4.14) and (4.15) into (4.13) gives the relation


vg = v′g − v (4.16)


between the group velocities in the X and X ′ frames respectively. It is clear that, if the


group velocity of the source has the value c in one frame, it will not have that value in


the other frame and, indeed, may have a larger value. Furthermore, the Doppler formula


(4.11) can be written as


ω′(τ) = γω(τ)(1 − βn [ω(τ)] cos θ), (4.17)


where we have used β = v/c, k = ω/vph, and n = c/vph. Because of (4.10), this is a


nonlinear relationship.


5.0 Particle Theory


5.1 One-Particle Theory


In order to understand the additional changes implied by fixing the proper-time of the


source for all observers, we need only consider the question of particle dynamics. Since


our motivation is quantum theory, any change of variables must be canonical. (We focus
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on the X-frame equation, but the same results can also be derived for the X ′-frame.)


In the conventional formulation of quantum theory, the Hamiltonian H is the generator


of observer proper-time translations. We now seek to identify the Hamiltonian K which


will generate source proper-time translations. To see how this may be done, let W be


any classical observable so that the Poisson bracket defines Hamilton’s equations in the X


frame by: (here, H =
√


c2p2 + m2c4)


dW


dt
=


∂H


∂p
∂W


∂x
− ∂H


∂x
∂W


∂p
= {H, W} . (5.1)


Now use the fact that the Hamiltonian for a free particle of mass m can be represented as


H = mc2γ(w), so that γ(w) = H/mc2. This implies that


dτ = (mc2/H) dt.


The time evolution of the functional W is given by the chain rule:


dW


dτ
=


dt


dτ


dW


dt
=


H


mc2
{H, W} . (5.2)


The energy functional K conjugate to the proper-time τ must satisfy {K, W} =


(H/mc2){H, W}. The direct solution is obtained by rewriting the Poisson bracket relation


in (5.2) as
dW


dτ
=


[
H


mc2


∂H


∂p


]
∂W


∂x
−


[
H


mc2


∂H


∂x


]
∂W


∂p


=
∂


∂p


[
H2


2mc2
+ a


]
∂W


∂x
− ∂


∂x


[
H2


2mc2
+ a


]
∂W


∂p
.


(5.3)


Now impose the condition that p = 0 ⇒ K = H = mc2. This gives a = a′ = mc2/2, and


K =
H2


2mc2
+


mc2


2
=


p2


2m
+ mc2. (5.4)
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This equation was derived by Gill and Lindesay48. It looks like the nonrelativistic case


but is fully relativistic and (partially) eliminates the problems associated with the square


root in the conventional implementation. The most general solution is


K = mc2 +
∫ H


mc2
(dt/dτ)dH̄ = mc2 +


∫ H


mc2
(H̄/mc2)dH̄. (5.5)


There are three possible solutions to this equation depending on the assumptions made.


1. If we fix the Lorentz frame, then H/mc2 is constant and we get


K =
H2


mc2
=


p2


m
+ mc2. (5.6)


This form was first derived by Gill49, and used to give a particle representation for


the Klein-Gordon equation with positive probability density and with the source


proper-time as an operator.


2. If we keep the mass fixed and allow the Lorentz frame to vary (boost), we get


equation (5.4).


3. If we keep the momentum P = P0 fixed and allow the Lorentz frame H and


the mass m to vary, we get


K = mc2 =
√


H2 − c2P2
0. (5.7)


This is the appropriate Hamiltonian in the constant momentum frame. This


form has received the most attention, having been used to associate the source
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proper-time with the (off-shell) mass operator in parametrized relativistic quan-


tum theories. See Aparicio et al50 for a recent discussion of this case. The book


by Fanchi51 surveys all work up to 1993 (see also Fanchi52). In all three cases,


a generator can be constructed proving that they are true canonical transforma-


tions. For the first two cases, the generators are constructed in references 48 and


49 respectively. The construction of the generator for the third case was done in


the seminal work of Bakamjian and Thomas 15.


We plan to use equation (5.4) in our work for a number of interesting reasons. First,


it is simple, directly related to the nonrelativistic case, and the quantized version is (will


be) positive definite. Furthermore, since the mass is fixed, it, along with the spin, are nat-


ural choices to label the irreducible representations of the (proper-time) Poincaré algebra


describing elementary particles (see equations (5.24)-(5.32) and Wigner53). In addition, it


should be noted that some of the best models for quark dynamics within nucleons “appear”


to be nonrelativistic (see, for example, Strobel54 and references therein).


The following theorem provides an explicit representation of the generator for the


canonical change of variables for (5.4). (The result can be proved by direct computation55.)


Theorem 5.1. If S = (mc2 − K)τ, then S is the generator for the canonical change of


variables from (x,p, t, H) to (x,p, τ, K) (by our X-frame observer) and:


p · dx − Hdt = p · dx − Kdτ + dS. (5.8)


It follows that the proper-time (free particle) equations will be form invariant (covariant)


for all observers.
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5.2 Many-Particle Theory


Suppose we have a closed system of n particles with individual Hamiltonians Hi and total


Hamiltonian H (in the X-frame). We assume that H is of the form


H =
n∑


i=1


Hi. (5.9)


If we define the effective mass M and total momentum P by


Mc2 =
√


H2 − c2P2, P =
n∑


i=1


pi, (5.10)


H also has the representation


H =
√


c2P2 + M2c4. (5.11)


To construct the many-particle theory, we observe that the representation


dτ = (Mc2/H)dt (5.12)


does not depend on the number of particles in the system. Thus, we can uniquely define


the proper-time of the system for all observers. (In the primed frame, we have a similar


representation.) If we let L be the boost (generator of pure Lorentz transformations) and


define the total angular momentum J by


J =
n∑


i=1


xi × pi, (5.13)


we then have the following Poisson Bracket relations characteristic of the algebra for the


Poincaré group (when we use the observer proper-time):


dP
dt


= {H,P} = 0
dJ
dt


= {H,J} = 0 {Pi, Pj} = 0 (5.14)
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{Ji, Pj} = εijkPk {Ji, Jj} = εijkJk {Ji, Lj} = εijkLk (5.15)


dL
dt


= {H,L} = −P {Pi, Lj} = −δijH/c2, {Li, Lj} = −εijkJk/c2. (5.16)


It is easy to see that M commutes with H, P, and J, and to show that M commutes with


L. Constructing K as in the one-particle case, we have


K =
H2


2Mc2
+


Mc2


2
=


P2


2M
+ Mc2.


Thus, we can use the same definitions for P, J, and L to obtain our new commutation


relations:


dP
dτ


= {K,P} = 0,
dJ
dτ


= {K,J} = 0, {Pi, Pj} = 0, (5.17)


{Ji, Pj} = εijkPk, {Ji, Jj} = εijkJk, {Ji, Lj} = εijkLk, (5.18)


dL
dτ


= {K,L} =
−H


Mc2
P, {Pi, Lj} = −δijH/c2, {Li, Lj} = −εijkJk /c2. (5.19)


It follows that, except for a constant scale change, the proper-time group is generated by


the same algebra as the Lorentz group. This result is not surprising given the close relation


between the two groups. It also proves our earlier statement that the form of K is fully


relativistic.


Let the map from (xi, t) → (xi, τ) be denoted by C[ t, τ ], and let P(X ′, X) be the


Poincaré map from X → X ′.


Theorem 5.2 The proper-time coordinates of the system as seen by an observer at X are


related to those of an observer at X ′ by the transformation:


RM [τ ] = C[ t′, τ ]P(X ′, X)C−1[ t, τ ]. (5.20)
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Proof: The proof follows since the diagram below is commutative.


X({xi}, t) −→ X ′({x′
i}, t′)


C−1[ t, τ ]


#
% C[ t′, τ ]


X({xi}, τ) ←− X ′({x′
i}, τ)


(5.21)


The top diagram is the Poincaré map from X → X ′. It is important to note that this


map is between the coordinates of observers. In this sense, our approach may be viewed as


a direct generalization of the conventional theory. In the global case, when U is constant, t


is related to τ by a scale transformation so that we have a group with the same algebra as


the Poincaré group (up to a constant scale), but it has an Euclidean metric! In this case,


Theorem 5.2 proves that RM is in the proper-time group, formed by a similarity action


on the Poincaré group by the canonical group Cτ . On the other hand, Theorem 5.2 is


true in general. This means that in both the local and global cases (when the acceleration


is nonzero) t is related to τi and τ via nonlocal (nonlinear) transformations. It follows


that, in general, the group action is not linear, and hence is not covered by the Cartan


classification.


Since K does not depend on the center-of-mass position X, it is easy to see that


U =
dX
dτ


=
∂K


∂P
=


P
M


=
1
M


n∑
i=1


miui, (5.22)


where ui = dxi/dτi. We can now define b by


b =
√


U2 + c2 ⇒ H = Mcb. (5.23)


Thus, equation (5.12) can also be represented as


dτ = (c/b)dt. (5.24)
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If we set vi = dxi/dτ , an easy calculation shows that


ui =
dxi


dτi
=


dτ


dτi


dxi


dτ
=


bi


b
vi ⇒


ui


bi
=


vi


b
. (5.25)


The velocity vi is the one our observer sees when he uses the global proper-clock of


the system to compute the particle velocity, while ui is the one seen when he uses the local


proper clock of the particle to compute its velocity. Solving for ui and bi in terms of vi


and b, we get


ui =
cvi√


b2 − v2
i


, bi =
cb√


b2 − v2
i


or
bi


b
=


c√
b2 − v2


i


. (5.26)


Note that, since b2 = U2 + c2, if U is not zero, then any vi can be larger than c. On


the other hand, if U is zero, b = c and, from the global perspective, our theory looks like


the conventional one. Using (5.26), we can rewrite U as


U =
1
M


n∑
i=1


miui =
1
M


n∑
i=1


micvi√
b2 − v2


i


=
1
M


n∑
i=1


bimivi


b
=


1
H


n∑
i=1


Hivi. (5.27)


It follows that the position of the center-of-mass (energy) satisfies


X =
1
H


n∑
i=1


Hixi + Y,
dY
dτ


= 0. (5.28)


It is natural to choose Y so that X is the canonical center of mass:


X =
1
H


n∑
i=1


Hixi +
c2(S × P)


H(Mc2 + H)
, (5.29)


where S is the (conserved) spin of the system. The important point is that (X,P, τ, K) is


the new set of (global) variables for the system.


Theorem 5.3 If S = (mc2−K)τ , then S is the generator for the change of variables from


({xi}, {pi}, t,H) → ({xi}, {pi},τ ,K), from (X,P, t,H) → (X,P, τ ,K), and:


n∑
i=1


pidxi − Hdt =
n∑


i=1


pidxi − Kdτ + dS, (5.30)
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P · dX − Hdt=P · dX − Kdτ + dS. (5.31)


We can now write down the transformations that fix the proper-time of the system of


particles for any observer. If V is the relative velocity between two observers, we have


b′ = γ(V)
[
b − U · V/c


]
, b = γ(V)


[
b′ + U′ · V/c


]
, (5.32)


X′ = γ(V)
[
X† − (V/c)bτ


]
, X = γ(V)


[
X′† + (V/c)b′τ


]
, (5.33)


U′ = γ(V)
[
U† − (V/c)b


]
, U = γ(V)


[
U′† + (V/c)b′


]
. (5.34)


As our system is closed, U is constant and τ is linearly related to t. Yet, the physical


interpretation is different in the extreme if U is not zero. Furthermore, we see from


equation (5.34) that, even if U is zero in one frame, it will not be zero in any other frame


that is in relative motion. It is clear that τ is uniquely determined by the particles in


the system and is available to all observers. Just as important is the fact that there is a


very basic relationship between the global system clock and the clocks of the individual


particles. In order to derive this relationship, we return to our definition of the global


Hamiltonian K and let W be any observable. Then


dW


dτ
= {K, W} =


H


Mc2
{H, W} =


H


Mc2


n∑
i=1


{Hi, W}


=
H


Mc2


n∑
i=1


mic
2


Hi


[
Hi


mic2
{Hi, W}


]
=


n∑
i=1


Hmi


MHi
{Ki, W}


. (5.35)


Using the (easily derived) fact that dτi/dτ = Hmi/MHi = bi/b, we get


dW


dτ
=


n∑
i=1


dτi


dτ
{Ki, W}. (5.36)


Equation (5.36) is very important because it relates the global systems dynamics to the


local systems dynamics and provides the basis for a direct approach to the quantum rela-


tivistic many-body problem using one (universal) wave function. The use of a many-times


50







approach is not new and dates back to the early work of Dirac et al56. Our many-times


approach is like that of Rohrlich and Horwitz57 (see also Longhi et al58). Our approach is


distinct, as is clear from (5.36) and the fact that all our times are unique and invariant for


all observers.


5.3 Interaction (Global External)


In this section, we follow convention (in the simplest fashion) and introduce an external


global interaction via minimal coupling in the free Hamiltonian. This means that we fix the


position X, the momentum P, and the mass M. It is still possible for the angular momentum


J to be conserved but, in general, it need not be equal to the angular momentum in the


noninteracting case. Our interaction Hamiltonian becomes


K =
Π2


2M
+ Mc2 + V (X), (5.37)


where A = A(X, τ), V = V (X, τ) are the vector and scalar potentials of the external field,


and Π = P − (q/c)A. (In the next section, we derive an alternative equation appropriate


when the cause of the external field is included in the theory to form a closed system.)


Using (5.37) and Hamilton’s equations, we get


Ẋ = U =
Π
M


, Ṗ = −∇Π2


2M
−∇V. (5.38)


Using standard vector identities, elementary calculations give the (proper-time) Lorentz


force


Mc


b


dU
dτ


= qE +
q


b
U × B, (5.39)


E = −1
b


∂A
∂τ


−∇V, B = ∇× A. (5.40)
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The fact that we can derive (a generalized form of) the Lorentz force from a (appar-


ently) nonrelativistic Hamiltonian is well-known (see Hughes59). However, in order to see


how the nonuniqueness of the Maxwell-Lorentz theory shows up here, we need only recall


that W/c = U/b and (1/b)∂/∂τ = (1/c)∂/∂t, so we can also write equations (5.39) and


(5.40) as (W = dX/dt)


M
dU
dt


= qE +
q


c
W × B, (5.41)


E = −1
c


∂A
∂t


−∇V, B = ∇× A. (5.42)


This is the ”original” force derived by Lorentz3 (in 1892) and used as a part of his theory


of the electrodynamics and optics of macroscopic phenomena. What is truly remarkable


is the fact that the two equations (5.39) and (5.41) are mathematically equivalent, but


clearly not physically equivalent, with radically different physical interpretations.


Global Field Theory


We can now discuss the fields of our global system of particles in a given external field.


Using (1/c)(∂ /∂t) = (1/b)(∂ /∂τ) (as in the one-particle case), we can write Maxwell’s


equations for the global system of particles as:


∇ · B = 0, ∇× E +
1
b


∂B
∂τ


= 0, (5.43a)


∇ · E = 4πρ, ∇× B =
1
b


[
∂E
∂τ


+ 4πJ
]


, (5.43b)


where ρ and J represent the charge and current density of the system (as a whole) relative


to its external environment. Taking the curl of the last equations of (5.43a) and (5.43b),


using the standard vector identity (for any sufficiently differentiable W)


∇× (∇× W) = ∇(∇ · W) −∇2W,
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and the first equations of (5.43a) and (5.43b), we get the corresponding global wave equa-


tions
1
b


∂


∂τ


[
1
b


∂E
∂τ


]
−∇2 · E = −∇(4πρ) − 1


b
∂


∂τ


[
4πJ
b


]
,


1
b


∂


∂τ


[
1
b


∂B
∂τ


]
−∇2 · B =


1
b


∂


∂τ


[
4π∇× J


b


]
.


(5.44)


Computing the derivatives, these equations may also be written as


1
b2


∂2E
∂τ2


−
[
U
b4


· dU
∂τ


] [
∂E
∂τ


]
−∇2E = −∇(4πρ) − 1


b


∂


∂τ


[
4πJ
b


]
,


1
b2


∂2B
∂τ2


−
[
U
b4


· dU
∂τ


] [
∂B
∂τ


]
−∇2B =


1
b


∂


∂τ


[
4π∇× J


b


]
.


(5.45)


From (5.45), we see directly that the dissipative term does not depend on the gauge.


These equations imply that the field of the global system dissipates energy (radiation)


throughout the enclosing domain. Since U= (1/M)
∑n


i=1 miui, this radiation depends on


the average of the (local proper) motion of all the particles in the system (e.g., ui =


dxi/dτi). This suggests that the particles live in a heat bath of radiation created by the


global system’s (inertial) reaction to the external field. This heat bath will fill out any


domain enclosing the system of particles.


When U is constant, U̇ = 0 so that there are only velocity fields (and no radiation


fields). This is necessarily the case if energy is conserved on the global level and implies


the following theorem:


Theorem 5.4 If U is constant then all radiation generated by internal interactions must


be absorbed by the particles in the system.


The above theorem was a (required) postulate for the Wheeler-Feynman formulation.


It should be noted that our formulation does not require advanced fields. As will be seen


in the next Section, the individual particle interaction from the local point of view (using
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the particle proper-time), is of the local field type. In Section 5.5, we will see that the


individual particle interaction, from the global point of view (using the global proper-


time), is of the action-at-a-distance type. This confirms and refines the Wheeler-Feynman


conjecture concerning the relationship between these two views.


It is clear that, in general, the above theorem is only approximately true and it is


more reasonable to consider conservation of energy in a statistical sense. For example,


our galaxy is clearly not a conserved system in the absolute sense, but may be considered


conserved in the mean. Thus, the radiation we receive from the other galaxies is, on the


average, equal to the radiation leakage from our galaxy.


5.4 Interaction (Internal)


In this section we assume that the system of n interacting particles can be represented via:


H =
n∑


i=1


Hi = H0 + V, Hi = Hoi + Vi,


H0i =
√


c2π2
i + m2


i c
4, πi = pi −


ei


c
Ai,


(5.46)


H0 =
n∑


i=1


H0i, Ai =
∑
i �=j


Aji, eiAji =
eiej (wj − wi)


2sji
,


V =
n∑


i=1


Vi, Vi =
∑
i �=j


eiej


2sij
, sji = sij ,


∂


∂xi
(sij) = − ∂


∂xj
(sij).


(5.47)


Since we have specified the internal interactions, it is not a priori clear that the


system is closed. Under the stated conditions, the following results can be proven by


direct computation.


Lemma 5.1 Set P =
n∑


i=1


pi, Π =
n∑


i=1


πi, then Π = P.


Theorem 5.5 {H,P} = 0, {H, V } = 0, {P, V } = 0.
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It follows that, as in Section 5.2, we can define the total effective mass M by Mc2 =


√
H2 − c2P2, so that H =


√
c2P2 + M2c4.


Lemma 5.2 {H, M} = 0, {P, M} = 0.


Using the above results, it now follows that the set {Hi| 1 ≤ i ≤ n}, forms a closed system


satisfying all the conditions of Section 5.2.


5.5 Particle Interaction (Local View)


We are now ready to investigate the nature of the dynamics of the ith-particle (say) caused


by the action of the other particles on it. Since there are two possible clocks, τ and τi,


there are two different views, or answers, to our question. Let Wi be any observable of the


ith-particle, then
dWi


dτ
= {K, Wi} =


n∑
j=1


∂K


∂pj


∂Wi


∂xj
− ∂K


∂xj


∂Wi


∂pj
,


dWi


dτi
= {Ki, Wi} =


∂Ki


∂pi


∂Wi


∂xi
− ∂Ki


∂xi


∂Wi


∂pi
,


(5.48)


K =
H2


2Mc2
+


Mc2


2
, Ki =


H2
i


2mic2
+


mic
2


2
. (5.49)


The equations of motion can be computed rather easily in the second case. The Hamilto-


nian has an explicit representation as


Ki =
π2


i


2mi
+ mic


2 +
V 2


i


2mic2
+


Hi0Vi


mic2
,


⇒ dxi


dτi
=


∂Ki


∂pi
=


πi


mi


(
Hi


Hi0


)
, (5.50)


dpi


dτi
= −∂Ki


∂xi
= −∇iπ


2
i


2mi


(
Hi


Hi0


)
−∇iVi


(
Hi


mic2


)
. (5.51)


Using (Hi/Hi0)∇iπ
2
i = −2(ei/c) [(ui · ∇i)Ai + ui × (∇i × Ai)] , Bi = (∇i × Ai),
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and (Hi/mic
2) = (bi/c), we have


dpi


dτi
=


ei


c
[(ui · ∇i)Ai + ui × Bi] −


bi


c
∇iVi. (5.52)


Finally, using (ui · ∇i)Ai = (dAi/dτi) − (∂Ai/∂τi), and Vi = eiΦi, we have


c


bi


dπi


dτi
= eiEi +


ei


bi
(ui × Bi) , (5.53)


Ei = − 1
bi


∂Ai


∂τi
−∇iΦi. (5.54)


We call this the local view since it gives information about the action of the external


field on the particle but provides no information about the action of the particle on the


source of the external force. Equation (5.53) is of the same form as (5.39), so if we use


(1/bi)(∂/∂τi) = (1/c)(∂/∂t) and (ui/bi) = (wi/c), we have


dπi


dt
= eiEi +


ei


c
(wi × Bi) , (5.55)


Ei = −1
c


∂Ai


∂t
−∇iΦi. (5.56)


This is the same result we found in Section 5.3 when we used minimal coupling directly


for the global case. For later reference we return to equation (5.50), solve for πi, and


differentiate, to get


π̇i = m̄iu̇i − m̄iui


[
(ui · ∇i)Vi


Hi


]
, m̄i = mi


(
1 − Vi


Hi


)
. (5.57)


Putting this term in (5.53), and taking the dot product, we have


(ui · u̇i) =
1
2


d


dτi
‖ui‖2 = ‖ui‖2


[
(ui · ∇i)Vi


Hi


]
+


ei


m̂i
(ui · Ei, ) . (5.58)


m̂i =
c


bi
m̄i = mi


c


bi


[
1 − Vi


Hi


]
.
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5.6 Particle Interaction (Global View)


Let us now see what changes occur when we focus on the motion of the same particle as


seen from the global point of view. In this case, we have


dxi


dτ
= vi =


∂K


∂pi
=


(
H


M


)
πi


Hi0
, (5.59)


dpi


dτ
= −∂K


∂xi
= −


(
H


Mc2


) n∑
k=1


[
c2∇iπ


2
k


Hk0
−∇iVk


]
. (5.60)


Using standard calculations as in the local view, and (H/Mc2) = (b/c), we have


dpi


dτ
=


n∑
k=1


{
ek


c
[(vk · ∇i)Ak + vk × (∇i × Ak)] − b


c
∇iVk


}
. (5.61)


Now use


(vi · ∇i)Ai = (dAi/dτ) − (∂Ai/∂τ),


to get
dpi


dτ
− ei


c


dAi


dτ
=


ei


c
[vi × Bi] −


ei


c


∂Ai


∂τ
− b


c
∇iVi


+
n∑


k �=i


{
ek


c
[(vk · ∇i)Ak + vk × (∇i × Ak)] − b


c
∇iVk


}
.


(5.62)


From, (5.46) and (5.47) we see that (vk · ∇i)Ak = −(vk · ∇k)Aik, etc, so we may


write (5.62) in the form (using Ei = −(1/b)(∂Ai/∂τ) −∇iΦi,Bi = vi × Ai )


c


b


dπi


dτ
= eiEi +


ei


b
[vi × Bi]


−
n∑


k �=i


{ek


b
[(vk · ∇k)Aik + vk × (∇k × Aik)] − ek∇kΦik


}
.


(5.63)


If we now set (vk · ∇k)Aik = (dAik/dτ) − (∂Aik/∂τ), Bik = ∇k × Aik, Eik =


−(1/b)(∂Aik/∂τ) −∇kΦik, and Fik = ekEik + (ek/b)vk × Bik, we have


c


b


dπi


dτ
= Fi −


n∑
k �=i


{
Fik +


ek


b


dAik


dτ


}
. (5.64)
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If we use πi = m̄iui, m̄i = mi [1 − Vi/Hi] , ui =
[
cvi


/
(b2 − v2


i )
1/2


]
, we get (b is constant)


d


dτ



 m̃ivi√


1 −
(
v2


i


/
b2


)

 = Fi −


n∑
k �=i


{
Fik +


ek


b


dAik


dτ


}
, m̃i =


(c


b


)2


m̄i. (5.65)


In order to interpret equation (5.65), we return to equation (5.54) and use the fact


that (1/bi)(∂/∂τi) = (1/b)(∂/∂τ) and (ui/bi) = (vi/b) to get


− 1
bi


∂Ai


∂τi
−∇iΦi = −1


b


∂Ai


∂τ
−∇iΦi,


ei


bi
(ui × Bi) =


ei


b
(vi × Bi) .


This means that our force Fi in (5.65) is identical to the right-hand side of (5.53) (the local


Lorentz force). Equation (5.65) is our replacement for the Lorentz-Dirac equation. The


second term on the right-hand side is the necessary dissipative term required to satisfy


Newton’s third law, and represents the action of the i-th particle on all the other particles


in the system. It is important to note that this equation contains no third-order derivatives,


so that it will satisfy the standard conditions for existence and uniqueness of solutions for


initial value problems. It will not contain runaway solutions, nor advanced actions, etc.


Furthermore, the equation does not depend on the structure of the particles in the system.


We now see that the global view of particle interactions is a pure action-at a- distance


theory while from the local point of view particle interactions are mediated by the fields


(a field theory).


For future reference, we assume that the global system is interacting with an external


force, so that U̇ is not zero. If we differentiate the left-hand side of (5.65), we get ( using


(
β2


i = v2
i


/
b2


)
),


c


b


dπi


dτ
=


m̃iv̇i[
1 − β2


i


]1/2
+


m̃ivi


[
vi · v̇i − U · U̇


]
b2


[
1 − β2


i


]3/2


− m̃ivi[
1 − β2


i


]1/2


d


dτ


[
ln


(
1 − Vi


Hi


)]
, m̃i = mi


c2


b2


(
1 − Vi


Hi


)
.


(5.66)
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Taking the dot product with vi, we obtain the effective power transfer for the i-th particle


m̃i


2
[
1 − β2


i


]3/2


d ‖vi‖2


dτ
−


m̃i ‖vi‖2
[
U · U̇


]
b2


[
1 − β2


i


]3/2
− m̃i ‖vi‖2[


1 − β2
i


]1/2


d


dτ


[
ln


(
1 − Vi


Hi


)]


= vi · Fi −
n∑


k �=i


{
vi · Fik +


ek


b


(
vi ·


dAik


dτ


)}
.


(5.67)


If U = 0, (5.64) and (5.67) become (β2
i = v2


i


/
c2, m̃i = m̄i, and τ = t)


d


dt


(
m̄ivi√
1 − β2


i


)
= Fi −


n∑
k �=i


{
Fik +


ek


c


dAik


dt


}
, (5.68)


m̄i


2
[
1 − β2


i


]3/2


d ‖vi‖2


dt
− m̄i ‖vi‖2[


1 − β2
i


]1/2


d


dt


[
ln


(
1 − Vi


Hi


)]


= vi · Fi −
n∑


k �=i


{
vi · Fik +


ek


c


(
vi ·


dAik


dt


)}
.


(5.69)


It follows that, even when the global system is at rest in the frame of the observer, our


theory is distinct. In closing this section we note that summing equation (5.65) or (5.68)


on i gives zero as expected, reflecting conservation of the global momentum.


6.0 Discussion


6.1 Proper-time of the Source


In this paper, we have shown that Maxwell’s equations have a mathematically equivalent


formulation and additional symmetry group that fixes the proper-time of the source for


all observers. The new group is closely related to the Lorentz group and, in fact, at the


local level, is a nonlinear and nonlocal representation. We have constructed a dual theory


using the proper-time of the source and have shown that it is covariant with respect to this


group. However, the speed of light now depends on the motion of the source and the new
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group replaces time transformations between observers by transformations of the velocity


of light with respect to the source for different observers. This implies that the speed of


light can be greater than its value in any fixed inertial frame. In the new formulation, the


second postulate of the special relativity is only true when the source is in the rest frame


of the observer. We have further shown that, for any closed system of particles, there is


a global inertial frame and unique (invariant) global proper-clock (for each observer) from


which to observe the system. In this case, the corresponding group differs from the Lorentz


group by a scale transformation. This global proper-clock is intrinsically related to the


proper-clocks of the individual particles in the system and provides a unique definition of


simultaneity for all events associated with the system. Hence, at the global level, we can


always choose a unique observer-independent measure of time for the study of physical


systems. One important consequence of this result can be stated as a theorem.


Theorem 6.1 Suppose that the observable universe is representable in the sense that the


observed ratio of mass to total energy is constant and independent of our observed portion


of the universe. Then the universe has a unique clock that is available to all observers.


The above assumptions are equivalent to the homogeneity and isotropy of the energy and


mass density of the universe.


The use of a global variable without attaching physical meaning to it dates back to


the early work of Tetrode and Fock (for a review, see Fanchi51). However, starting in


the 1970’s, Horwitz and Piron60 and later Fanchi51 began to suggest the use of a special


clock for global systems which they called the historical time. They predicted that such a


variable should exist as a real physical parameter and Fanchi52 suggested experiments to
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detect this clock. In our approach we treat the transformation from observer proper-time


to global system proper-time as a canonical (contact) transformation on extended phase


space. This approach allows us to identify the canonical Hamiltonian and the associated


Lie algebra (Poisson) bracket. Hence, we suggest that this global proper-time is the one


sought by the above researchers. From an operational point of view, all observers can


identify the time according to this (global) clock by recording the time on their clock, use


the experimentally determine value for the velocity W , of the center of mass of the system,


and then use equation (1.3a).


Rohrlich61 has recently conducted a very interesting study of the classical self-force


for the dynamics of finite-sized particles with both electromagnetic and gravitational self-


interactions (using the Lorentz-Dirac equation). He posits his model as a replacement for


the point-particle model which is beyond the validity of the classical theory. His approx-


imations neglect the nonlinear terms in the derivatives of the acceleration and leads to


more reasonable equations of motion, but violates time-reversal invariance. This suggests


that a successful classical theory which does not require the point-particle concept may


help to explain time-reversal noninvariance at the macro-level.


As noted earlier, the proper-time theory does not depend on the size, structure, or


geometry of the charge distribution. Furthermore, the global fields of any system of radi-


ating particles in a closed domain will quickly leak radiation into every part of the domain.


Since the field equations carry intrinsic information about the velocity and acceleration


of each particle at the moment of dissipation, any observer will only receive information


about the past behavior of the particles in the system. Since the observed radiation is
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an average over all the particles, this provides an explanation for the arrow of time as a


statistical effect as suggested by Einstein. Also, since we only use the retarded solutions of


Maxwell’s equations, we may follow the suggestion of Feynman32 and Stückelberg62 and


treat antimatter as matter with its proper-time reversed.


The above approach also provides us with a simple answer for questions about con-


servation laws during the big bang. If we assume that the big bang created two separate


universes, one with matter (moving forward in proper-time), and one with antimatter


(moving backward in proper-time). Then all global (physical) quantities in our universe


will be conserved while providing us with a nice explanation for the lack of large concen-


trations of antimatter in our universe.


6.2 Equivalent Theories and Convention


It is no doubt more unsettling to many that the two theories could be mathematically


equivalent but not physically equivalent. It is more natural to expect that two mathemat-


ically equivalent theories would also be physically equivalent, and there are a number of


historical examples to support such expectations; the Lagrange-Hamiltonian formulation


of classical mechanics, the Heisenberg-Schrödinger formulation of quantum mechanics, and


the Feynman-Schwinger-Tomonaga formulation of quantum electrodynamics. In the first


case, both formulations have proved equally valuable depending on the purpose. However,


the latter two cases raise interesting questions.


After Feynman constructed a path integral formulation of quantum mechanics, it


was shown to physically include the Heisenberg-Schrodinger formulation. However, it


has never been shown to be mathematically equivalent since there are well-known serious
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foundational problems with the mathematical notion of a path integral for quantum theory.


On the other hand, it has not been shown that the Heisenberg-Schrödinger formulation is


physically equivalent to the Feynman path integral approach. (There are theories where the


path integral approach is easy, while the other two approaches are difficult to construct.)


In order to prove that the Feynman formulation of QED was physically equivalent


to the Schwinger-Tomonaga formulation, Dyson63 assumed that time had the additional


property of an index which kept track of the time an operator operates (time-ordering).


This represents a new physical input to theory formulation and has only recently received


any mathematical attention64,65,66. Thus, mathematical equivalence has not been shown,


and although some progress has been made, we are far from a solution.


In our opinion, the Feynman path integral approach is physically more general than


that of Heisenberg and Schrödinger, and his formulation of QED is physically more general


than that of Schwinger and Tomonaga. In both cases, he introduces new concepts that


make it physically easier to think about and solve problems. What Feynman did was to


show that it is still possible to formulate theories which more closely represent the way the


world appears to us in our consciousness.


It was Poincaré67 who first noticed that some hypotheses (assumptions), which are


made for theory construction, arise because of empirical data, while others occur because


they are convenient. The convenient hypotheses are generally imposed by the mathematical


structures we use to represent physical theories. These hypotheses are called conventions


by Poincaré in order to point out the fact that different conventions could lead to different


theories which would be mathematically equivalent. He was not sure that the theories
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would be physically different, but he seems to have left open that possibility. The work of


this paper shows that different conventions can lead to different physical theories. Since


all inerital reference frames are equivalent, the one chosen by any observer is a convention.


If we seek simplicity, we can all attach our frames to the MBR and use the proper-time


of the universe for our global clock. In this case, we could satisfy the two postulates of


the special theory, while the field and particle equations of any system would be invariant


under the action of the Lorentz group (for all observers).


6.3 Velocity of Light


The price paid for the results of this paper will certainly seem high to many. We have


rejected the third postulate of Minkowski that time be put on an equal footing with


position and made a coordinate for four-geometry. We have also rejected the assumption


(convention) that the observer proper-time be used to define the dynamics of an observed


system. Thus, in our approach, the time is a (intrinsic) dynamical variable which must be


determined by experiment along with other properties (of the observed system). This leads


to a new interpretive framework in which the second postulate is only true when the source


is at rest in the frame of the observer. Thus, we have reduced the observer reference frame


to the prerelativistic three-geometry of Euclidean space. The observer’s clock is now a part


of the measuring equipment which is used to determined the proper-time of the source.


The proper-time formulation has an obvious disadvantage since, it is generally believed


that, all the available experimental evidence supports the second postulate of special rel-


ativity (that the velocity of light is constant). Einstein68 pointed out in a footnote to his


second paper: “The principle of the constancy of the velocity of light is of course con-
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tained in Maxwell’s equations.” What he meant by this was that the second postulate


follows from the fact that the constant c in Maxwell’s equations is an invariant for all


(inertial) observers. Since that time, many experiments have been done to verify that


assumption. However, in 1965, Fox69 wrote a very important paper which reviewed the


evidence for constant c and against the emission theory of Ritz44. His conclusion was that


all previous experiments were flawed for a number of reasons. In many cases, analysis of


the experimental data failed to take into account the (now well-known) extinction theorem


of Ewald and Oseen (see Jackson2 ). The only data found that firmly supported the second


postulate came from experiments on the lifetime of fast mesons and the velocity of γ rays


and light from moving sources. In his conclusion Fox states that “ · · · Unless something has


been overlooked, these seem to be the only pieces of experimental evidence we have. This


is surprising in light of the long history and importance of the problem.” These “pieces of


experimental evidence” have another interpretation in the proper-time theory. As noted


in Section 1, the lifetime of fast mesons is the fixed value measured when they are at rest


while their velocity is now computed using the proper-time of the meson which is derived


from the experiment. The same interpretation applies to γ rays and light from moving


sources. Thus, the same experiments that support c as constant when we assume that the


observer proper-time should be used to formulate the theory also supports the result that


the speed of light depends on the motion of the source when we assume that the source


proper-time should be used to formulate the theory.


6.4 Photon Mass


Work on the question of photon mass has focused on the addition of a mass term to the
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Lagrangian density for Maxwell’s equations and generally leads to the Proca equation ( see


Bargmann and Wigner70). Early work in this direction can be traced back from the paper


of Schrödinger and Bass71. As in our approach, the speed of light is no longer constant in


all reference frames. In this case, the fields are distorted by the mass term and experiments


of Goldhaber and Nieto72 use geomagnetic data to set an upper bound of 3 × 10−24 GeV


for the mass term (see Jackiw73 ). This approach causes gauge problems, and has not


found favor at the classical level. The proper-time theory is fully gauge invariant and the


(photon) mass is dynamical, appearing only during acceleration of the source.


It should be recalled that Maxwell’s equations are (spin 1) relativistic wave equations


(see Akhiezer and Berestetskii74). On the other hand, the experiments of Pound and


Snider75 show directly that photons have an apparent weight (as one would expect of any


material object). These experiments do not depend on either the special or general theory


of relativity and are not directly dependent on frequency or wavelength measurements. The


existence of a small mass for the photon has important implications for QED. It is well-


known that a small photon mass can eliminate the infrared catastrophe (see Feynman76).
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Appendix


In this appendix, we outline the derivation of (3.54) from the angular distribution (3.52) by


taking the limit as r → ∞ after integrating over a sphere of radius r. The integrations over


the azimuthal angle φ are easily done. Then, for the integrations over the polar angle θ, it


is convenient to make the change of variable µ = cos θ and for a = 2, 3, . . . , b = 0, 1, 2 . . . ,


define the following sequence of integrals:


Ia,b ≡
1∫


−1


(1 − βµ)−a
µbdµ. (A1)


We then obtain from (3.52) that
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lim
r→∞


∫∫
−dU


dt
(Ω)dΩ =


bq2 |ā|2


b̄4


{(
1 − 1


2
sin2 α


)
I4,0


+
(


1
2


sin2 α − cos2 α


)
I4,2 − 2β


[
β cos2 α (I5,0 − I5,2)


+
(
− cos2 α +


1
2


sin2 α


)
(I5,1 − I5,3)


]


+ β2


[(
β2 cos2 α +


1
2


sin2 α


)
(I6,0 − I6,2)


+ 2β cos2 α (I6,3 − I6,1) +
(


cos2 α − 1
2


sin2 α


)
(I6,2 − I6,4)


]}
.


(A2)


Relations among the integrals (A1) for different integer values of a and b are easily obtained


by integration by parts:


Ia,b =
1


β (a − 1)


[
(1 − β)−(a−1) − (−1)b (1 + β)


]
− b


β (a − 1)
Ia−1,b−1, (A3)


for a ≥ 2, b ≥ 1; and for b = 0, only the first term contributes:


Ia,0 =
1


β (a − 1)


[
(1 − β)−(a−1) − (−1)b (1 + β)


]
, a ≥ 2. (A4)


We note that the differences of the integrals (A1) that occur in (A2) are of the type


Ia,b − Ia,b+2 for given values of a and b. For differences of this type, the term in brackets


in (A3) does not contribute and we have:


Ia,b − Ia,b+2 =
1


β (a − 1)
[−b (Ia−1,b−1 − Ia−1,b+1) + 2Ia−1,b+1] , (A5)


for integer values of a and b such that a ≥ 3, b ≥ 1. For b = 0 the difference term on the


right hand side of (A5) is missing and we have:


Ia,0 − Ia,2 =
2


β (a − 1)
Ia−1,1, a ≥ 3. (A6)
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To use the above results to evaluate (A2), we start with differences of the form (A5)


and (A6) with a = 6 and b = 1, 2. The terms which arise from the difference term on


the right-hand side of (A5) combine with the terms with a = 5 which are already present


in (A2). After combining the coefficients of similar terms, we can then apply the process


again to the integrals (A1) with a = 5. Now we have a difference from the situation with


the integrals involving a = 6 that , in addition to having differences of the form (A5) with


a = 5 and b = 1 and of (A6) with a = 5, we also have the integrals I5,1 and I5,0 which are


not differences. However, these are easily evaluated by use of (A3) (giving a term involving


I4,0) and (A4), respectively. We can continue this procedure to successively lower values


of a, terminating at the value a = 2. The substitution of the various values of Ia,b and


elimination of cos2 θ by use of the identity cos2 θ = 1 − sin2 θ leads to the result (3.54).
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