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Abstract. We study a very simple model for nucleation-and-growth in infinite
volume in the low-temperature limit. Despite its simplicity, this model exhibits
a very rich metastable behavior. Depending on the speed of growth, the system
goes trough four different regimes: 1) both the “shape of the critical droplet” and
the typical relaxation time are the same as in finite volume. 2) the “shape of the
critical droplet” and its “formation rate” are the same as in finite volume but the
“relaxation time” is shorter 3) the “shape of the critical droplet” is the same as
in finite volume while the nucleation rate is smaller 4) the “shape of the critical
droplet” is different from what we have in finite volume and its formation rate is
smaller than the finite-volume formation rate of the finite-volume droplet.
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1. Introduction.


Phase transitions and metastability. Metastability is a phenomenon of great importance
for the description of phase transitions. The first rigorous approach traces back to
[LP], where metastability is characterized as a slow evolution of the averages over the
process towards the stable equilibrium value. In [CGOV] a new “pathwise approach”
to metastability has been introduced where the analysis of the behaviour of typical
trajectories has a crucial importance. However, the Curie-Wiess model studied in
[CGOV] revealed some peculiarities like the fact of being 1-dimensional and the
“smoothness” of the “basin of attraction of the metastable state”. A long time and
the development of new ideas were required to treat the full Ising model in a finite
volume and in the low-temperature limit in [NS].
The Friedlin-Wentzell regime. This work opened the way to the development of general
techniques (see [S], [OS]) to study metastability in Markov processes with exponen-
tially small transition rates in a finite space (see [KO], [CO], [NO]). Similar results
were obtained with a contemporary approach focused on simulated annealing (see
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[C], [T], [CC]). The main idea in these papers was to study the exit from a special
kind of “basin of attraction”, called cycle, a problem analogous to that analyzed in
[FW] by Friedlin and Wentzell, with the additional complication that the basin is
not necessarily smooth but can contain many other basins. Although this feature is
a source of technical difficulties, it turns out to influence neither the exit time nor
the exit state. Heuristically, this feature can be explained by observing that, starting
from any point of the cycle, the process typically visits many times the bottom of
the cycle before the exit. Thus, a renewal scheme can be used leading to a quasi-
exponential exit law. In this sense, only the bottom and the boundary of the cycle
play a role in the exit problem.
Different regimes. While the above mentioned regime is the easiest case to study, it
is also the least interesting from a physical point of view. Nevertheless, the methods
developed in this framework have been the starting point in the analysis of a large
variety of regimes like the low-temperature limit in infinite volume (see [DS2]), the
low temperature limit in the case of conservative dynamics (see [HOS]) and, perhaps
the most interesting regime, the case of finite temperature in the phase coexistence
limit (see [SS]). Recently, a new approach to the problem (carried out in [BEGK2]),
based on spectral analysis instead of on large deviation methods, allowed to improve
considerably the precision of the known results (see [BM]) and to deal with cases
where the energy landscape is not described in detail like disordered mean field
systems (see [BEGK1], [BBG1], [BBG2]).
Zero-temperature limit in infinite volume. In this short paper, we will focus our atten-
tion on the regime where the inverse temperature β goes to infinity and the volume
is infinite. This regime was treated in two series of works on the Ising model (see
[DS1], [DS2]) and on the Blume-Capel model (see [MO1], [MO2]). In particular,
the papers on the Blume-Capel model are part of a group of works on the compe-
tition among different transition mechanisms and show how there is not always a
correspondence between finite and infinite-volume transition mechanisms.
Both Ising and Blume-Capel models have a significant peculiarity: the speed of
growth of super-critical droplets is relatively low. Due to this characteristic the
inner structure of the metastable cycle is irrelevant (such as in a finite volume).
Dehghanpour and Schonmann noticed that this is not a general property (see [DS2]).
In [MO2] a condition is given to ensure that the details of the energy landscape do
not affect the nucleation pattern .
Before introducing the model and showing how the growth speed can influence nu-
cleation, it is useful to recall the heuristics of [DS1]: we consider a lattice model on
Z
d in which the critical nuclei originate independently of each other with rate e−βΓ


and grow with speed1 e−βν . Let us consider the “space-time cone” with vertex in
(o, t) and slope e−βν . By definition, if a critical droplet is generated in the cone, it


1In the Ising model e−βΓ is the inverse of the typical nucleation time at finite volume and the
growth speed is determined by a (d− 1)-dimensional metastability problem in infinite volume.
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reaches the origin within t. The value tc of the typical time required by the droplet
to reach the origin is given by


tc
(
e−βνtc


)d
e−βΓ ∼ 1, (1.1)


which gives


tc ∼ eβ
Γ+dν
d+1 . (1.2)


This value has to be compared with the typical nucleation time at finite volume,
that is eβΓ. However, in realistic models, the finite-volume exit law is not strictly
exponential and the typical exit configuration conditioned to a given exit time may be
different from the unconditioned exit configuration. This is due to the fact that, for
small times, the process typically does not reach the bottom of the cycle. Therefore
the renewal scheme cannot be applied and the results à la Friedlin and Wentzell are
not valid.2


Shape of the droplets. From the results in [MO2] it is clear that all the sub-cycles
with depth smaller than the logarithm divided by β of the given exit time do not
influence the exit and can be ignored safely. With the help of a very simple model,
we will show that metastability in the infinite volume and β →∞ regime cannot be
characterized only by the depth and the boundary of the critical cycle but a more
detailed description of the energy landscape is needed. We give a rather dramatic
example of the fact that the “formation rate” and the “shape” of the “critical droplet”
may depend on the parameter ν even with a fixed “finite-volume” Hamiltonian.
While we do not give a general recipe, we show that the results of Lemma 4.3 in
[MO2] are sufficient to analyze the problem in a model-dependent way.


2. Notation and results.


We denote by [x]+ := max {x, 0} the positive part of of the real number x.
The model. We consider a one-dimensional spin system on the lattice Z where the
spin variable σ(i) can take values in Ω := {−1, 0, 1, 2, 3}. The values 1 and 2 of
the spin variable should be thought of as “inner degrees of freedom” (sub-critical
droplets) of the system, while −1, 0, and 3 as observable states.


2This phenomenon could be observed in a model with the same finite-volume energy landscape
of the Ising model and a very small growth exponent ν. For instance, a similar system could be
obtained by adding to the Ising Hamiltonian a non-local term proportional to the squared number
of pluses or a many-body interaction.
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The single site Hamiltonian is


H(−1) =
40


36
H(0) = 0


H(1) =
33


36
(2.1)


H(2) =
3


36
H(3) = 1


and is shown in Fig. 1.


Figure 1. Single-site Hamiltonian.


The single site dynamics is given by the following transition rates:
For a 6∈ {−1, 3},


cβ(b, a) :=


{
e−β[H(b)−H(a)]+ if a = b± 1
0 otherwise.


(2.2)


If a = −1 or a = 3, then cβ(a, b) ≡ 0 and no transition is allowed. This dynamics
is Metropolis reversible in {0, 1, 2} with absorbing states in −1 and in 3. Therefore,
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we will be allowed to use the results in [OS] and [MO2] about reversible Markov
chains up to the hitting time to {−1, 3}.
The parameter β has the meaning of the inverse temperature.
We denote by σ∗t the single-site process on Ω distributed according with the above
defined dynamics and by


τ ∗Q := min {t;σ∗t ∈ Q}, (2.3)


τ ∗ := τ ∗−1,3. (2.4)


The infinite volume dynamics is defined as follows: at time t = 0 the initial config-
uration is 0 (all zeroes). Afterwards, the sites evolve according to their single-site
dynamics (namely, with the same law of σ∗) until they have one nearest neighbor
with spin −1 or 3. Then, they assume the value of the spin of their nearest neighbor
with spin −1 or 3 with rate


e−βν . (2.5)


If a site has both nearest neighbors with spin in {−1, 3}, it will assume one of the
two values with uniform probability and rate e−βν . ν is the only parameter in our
model and e−βν has the meaning of growth speed of super-critical configurations.
This model can be considered as the counterpart of the nucleation-and-growth model
introduced in [DS1]. While in that case Dehghanpour and Schonmann focused their
attention on the supercritical growth, here we are interested on how the speed of
growth influence the nucleation pattern.
Given a volume Φ ⊂ Z and a configuration ρ (boundary condition), we define the
restriction σρΦ;t of the process to Φ by freezing the spins outside Φ to ρ(i).
We focus our attention on the following hitting time


τ := min {t; σt(0) ∈ {−1, 3}}. (2.6)


For Φ ⊂ Z, we consider the auxiliary hitting time:


τ̂ ρ(Φ) := min
{
t; ∃ i ∈ Φ σρΦ;t(i) ∈ {−1, 3}


}
. (2.7)


We omit the volume from notation if Φ = Z and the boundary condition if ρ = 0.
Obviously, if Φ′ ⊆ Φ′′ and for all i, ρ′(i) ≤ ρ′′(i), then


τ̂ ρ
′
(Φ′) ≤ τ̂ ρ


′′
(Φ′′) (2.8)


We call the first appearance of a −1 or a 3 in a given volume nucleation, the site
where we see this −1 or 3 critical droplet and the value of this spin shape of the
critical droplet. If ν < 1/3, we say that the −1-droplets are of the right kind whereas
the 3-droplet are of the wrong kind; if ν > 1/3, it is vice versa.


Let us introduce some useful notation before stating our main result.
Given a set B ⊂ Ω, we define F (B) as the set of the minima of the Hamiltonian H
in B. We denote by ∂B its outer boundary and the energy of the points in this set
by H(F (B)).
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A cycle A ⊂ Ω is a connected set such that H(F (∂A)) > maxa∈AH(a) (in our
case, {0}, {2}, and {0, 1, 2} are cycles). Given a cycle A, we define its depth as
Γ(A) := H(F (∂A))−H(F (A)) and its largest inner resistance Θ(A) as the maximal
depth of a sub-cycle A′ ⊂ A that does not contain the whole F (A):


Θ(A) := max
F (A) 6⊂A′⊂A


Γ(A′) (2.9)


if such a sub-cycle does not exist, we set Θ(A) := 0. We will use results about the
exit from cycles from [OS] and [MO2].
Let us introduce some useful functions of ν:


ka(ν) :=
20


36
+
ν


2
(2.10)


kb(ν) :=
22


36
+
ν


3
(2.11)


kc(ν) :=
1


2
+
ν


2
(2.12)


kd(ν) := 1 (2.13)


The time of the first appearance of a stable phase in the origin is characterized by
the following exponent:


k(ν) := min
{
ka, kd,max


{
kb, kc


}}
(2.14)


In Fig. 2, k is plotted v.s. ν.


∂νk(ν) has three discontinuity points for the values ν = 1/3, 2/3, and 1. These points
correspond to “dynamical phase transitions”, namely to changes in the nucleation
patterns. We remark once more that the single-point energy landscape does not
depend on ν and thus these transitions have no finite-volume counterpart.
Notice that k(ν) is strictly monotonic for ν ≤ 1. We denote the inverse function of
k(ν) by


ν(κ) : [ 5
9
, 1]→ [0, 1] . (2.15)


A particular role will be played by the slab


Λ :=
{
−beβ(k(ν)−ν)c, ..., beβ(k(ν)−ν)c


}
(2.16)


that corresponds to the heuristic notion of base of the “critical space-time cone”
described in the introduction (see (1.1)).
Our main result is contained in the following Theorem:


Theorem 2.1. ∀ν > 0, ∀ ε > 0 in the limit β ↑ ∞,


P0


(
τ > eβ(k(ν)−ε)) → 1 (2.17)


P0


(
τ < eβ(k(ν)+ε)


)
→ 1. (2.18)
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Figure 2. k v.s. ν.


Moreover,


P (στ (0) = −1) → 1 if ν <
1


3
(2.19)


P (στ (0) = 3) → 1 if ν >
1


3
(2.20)


The Theorem above shows that both the exit time and the exit state may depend
on the inner structure of the critical cycle. This dependence shows up only at very
high speed of growth and it is hidden in the Ising and Blume-Capel model studied
in [DS1], [DS2], [MO1], and [MO2] where the speed of growth is not independent
of the energy of the critical droplet. Depending on the parameter, we detect in our
model four different nucleation behaviors:


i) for ν > 1 (where k(ν) = kd(ν)), the system behaves like in finite volume,
and both the exit time and state are “the same” as in finite volume;


ii) for 2/3 < ν < 1 (where k(ν) = kc(ν)), the system is in the Dehghanpour
and Schonmann regime: the typical exit time is exp


(
β
(


1+ν
2


))
and the exit


state is the same as in finite volume; both this case and case i were described
in [DS1] (see the introduction for the heuristic discussion of case ii).


iii) for 1/3 < ν < 2/3 (where k(ν) = kb(ν)), the inner structure of the cycle
{0, 1, 2} in Fig. 1 becomes relevant. Indeed, since it is very unlikely that the
process once reached 2 goes back to 0, both the exit from {0} and the exit
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from {2} are rare event to take into consideration. The exit rate is therefore
lower than the one we get from the heuristics in [DS1] while the exit state
is the same as in previous cases;


iv) for ν < 1/3 (where k(ν) = ka(ν)), like in case iii, the exit trough 3 entails
two rare events and its probability is so low that it is more likely to exit from
−1; the exit rate is consistently affected. In this case the system reaches the
“state” where value of the spin is a.s. −1 despite of the fact that the Gibbs
measure gives a.s. the value 3 and the fact that the energy barrier between
0 and −1 is higher than that between 0 and 3.3


3. Basic tools.


In this Section, we review the basic results about finite-volume metastability in the
context of [OS] and [MO2]. The setting is that of Markov chains with exponentially
small transition rates (e.g. Metropolis dynamics in the β → ∞ limit) with finite
state-space.
The extension to the continuous-time case is immediate (via large-deviation esti-
mates) as far as exponential times are concerned.
We will use these results to bound the probability of exit through a given state at a
given time from above and from below.
The following Lemma gives the desired upper bound:


Lemma 3.1 (Lemma 3.1 in [OS]). For all a, b such that H(b) > H(a), for all κ > 0
and ε > 0


Pa


(
τ ∗b ≤ eβκ


)
≤ e−β(H(b)−H(a)−ε) (3.1)


If κ < Γ(A), we immediately get the bound


Pa


(
τ ∗∂A = τ ∗b , τ


∗
b ≤ eβκ


)
≤ e−β(H(b)−H(a)−ε). (3.2)


In particular, when κ < Γ(A), the exit probability goes to zero. The counterpart of
this fact is the content of the following Lemma from [OS]:


Lemma 3.2 (Proposition 3.7 in [OS] i and iii). For all a ∈ A, for all ε > 0


Pa


(
τ ∗∂A < eβ(Γ(A)+ε)


)
≥ 1− e−βc (3.3)


for some positive constant c and sufficiently large β.
Moreover, for all a ∈ A, b ∈ ∂A, for all ε > 0,


Pa (τ ∗∂A = τ ∗b ) ≥ e−β(H(b)−H(F (∂A))−ε) (3.4)


While the two previous Lemmata give sharp bounds on the exit time at finite volume,
their results are not sufficient to deal with the infinite-volume case.


3In a reversible situation, the system would go to the intermediate state and then reach the
Gibbs state at a later time.
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The following Lemma from [MO2] shows that if the exit time is not too small, the
inner details of the cycle do not influence the exit state. In this case, the bound on
the exit probability is “exponentially equivalent” to the bound (3.2).


Lemma 3.3. (Lemma 4.3 in [MO2].) Given a non-trivial cycle A and a positive
number κ such that


Θ(A) < κ ≤ Γ(A),


we have ∀ a ∈ A, ∀ b ∈ ∂A, ∀ ε > 0 and β sufficiently large


Pa


(
τ ∗∂A < eβκ , τ ∗∂A = τ ∗b


)
≥ e−β(H(b)−H(F (A))−κ+ε). (3.5)


4. Proof of Theorem 2.1.


We now focus on the model described in §2. In the following key Lemma we estimate
the exit probability at a given time T , showing that the most likely exit state depends
on T .


Lemma 4.1. For all 0 < κ < 1, ∀ε > 0 and sufficiently large β,


e−β(κ−ν(κ)+ε) ≤ P0


(
τ ∗ ≤ eβκ


)
≤ e−β(κ−ν(κ)−ε). (4.1)


Moreover,


P0


(
τ ∗ = τ ∗3 | τ ∗ ≤ eβκ


)
(4.2)


tends to 0 if κ < 26/36 (i.e. ν(κ) < 1/3) and to 1 if κ > 26/36.


Proof. We split the proof into three parts:4


a) κ < 26/36 (i.e. ν(κ) < 1/3 ).
By applying Lemma 3.3 on the cycle {0}:


P0


({
τ ∗ = τ ∗−1


}
∩
{
τ ∗ ≤ eβκ


})
≥ e−β(40/36−κ+ε) (4.3)


while, from 3.2


P0


({
τ ∗ = τ ∗−1


}
∩
{
τ ∗ ≤ eβκ


})
≤ e−β(40/36−κ) (4.4)


On the other hand, the exit passing through 3 entails a transition from 0
to 1 and a transition from 2 to 3; therefore, by using Lemma 3.1 and the
Markov property, we get


P0


(
{τ ∗ = τ ∗3 } ∩


{
τ ∗ ≤ eβκ


})
≤ e−2β(33/36−κ) (4.5)


4In the general case, the analogue of this proof would be to pass to a “renormalized Markov
chain” (see [S]) where the state space is partitioned into the subsets of states that are “equivalent”
at time T (meaning that starting from any state in a subset all the other states in the same subset
are visited within T with large probability). The probability of a transition is “exponentially
equivalent” to the probability of the best path in this renormalized Markov chain (the product of
the transition probabilities in the path).
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Since 40/36− κ = κ− ν(κ) < 66/36− 2κ, by (4.3), (4.4) and (4.5), we get
(4.1) in case a). By (4.3) and (4.5) we get (4.2):


P0


(
{τ ∗ = τ ∗3 } |


{
τ ∗ ≤ eβκ


})
≤
P0


(
{τ ∗ = τ ∗3 } ∩


{
τ ∗ ≤ eβκ


})
P0 ({τ ∗ = τ ∗1 } ∩ {τ ∗ ≤ eβκ})


→ 0 (4.6)


b) if 26/36 ≤ κ < 30/36 (i.e. 1/3 ≤ ν(κ) < 2/3) then we still have the bounds
in (4.4) and (4.5) but now κ − ν(κ) = 66/36 − 2κ and the leading term is
(4.5). To get a lower bound on the probability to exit through 3, we observe
that


P0


(
{τ ∗ = τ ∗3 } ∩


{
τ ∗ ≤ eβκ


})
≥


P0


(
τ ∗1 ≤ 1


2
eβκ
)
P1 (τ ∗2 ≤ 1)P2


(
τ ∗3 ≤ 1


2
eβκ − 1


)
≥


e−2β(33/36−κ+ε), (4.7)


where, to get the last inequality, we used Lemma 3.3 on the cycles {0} and
{2}. By (4.3), (4.4) and (4.7), we get (4.1) in case b). By (4.4) and (4.7)
we get (4.2):


P0


(
{τ ∗ = τ ∗1 } |


{
τ ∗ ≤ eβκ


})
≤
P0


({
τ ∗ = τ ∗−1


}
∩
{
τ ∗ ≤ eβκ


})
P0 ({τ ∗ = τ ∗3 } ∩ {τ ∗ ≤ eβκ})


→ 0 (4.8)


c) 30/36 < κ < 1 (i.e. 2/3 < ν(κ)). In this case, we can deal directly with the
cycle {0, 1, 2}. By (3.2) and Lemma 3.3, respectively, we get the following
bounds on the probability to exit through 3:


P0


(
{τ ∗ = τ ∗3 } ∩


{
τ ∗ ≤ eβκ


})
≤ e−β(1−κ) (4.9)


and


P0


(
{τ ∗ = τ ∗3 } ∩


{
τ ∗ ≤ eβκ


})
≥ e−β(1−κ+ε). (4.10)


By (4.3), (4.4) and (4.10), we get (4.1) in case c). By the same procedure
leading to (4.8) we get (4.2).


�


The lower bound on τ (proof of (2.17) ).


We use Lemma 4.1 when κ = k(ν) − ε (notice that if ν > 1 this choice gives
κ− ν(κ) = ε).
Since the spins are independent from each other until time τ̂ (Λ),


P0 (τ̂ (Λ) < t) = 1− (1− P0 (τ ∗ < t))Λ (4.11)


by using the definition of Λ (see (2.16)), we get from (4.11)


P0


(
τ̂ (Λ) < eβ(k(ν)−ε)) ≤


beβ(k(ν)−ν)ce−β([k(ν)−ν]+)e−βε
′ → 0; (4.12)


namely, it is very unlikely that the nucleation occurs into Λ within time eβ(k(ν)+ε).
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Next, we prove that L is too large to be crossed within the allotted time:


P0


(
τ < eβ(k(ν)−ε) | τ̂ (Λ) > eβ(k(ν)−ε)) ≤ 2 P


beβ(k(ν)−ν)c∑
n=0


ζ(n) < eβ(k(ν)−ε)


 , (4.13)


where the ζ(n)’s are i.i.d. exponential variables with rate e−βν . Let Z be a Poisson
variable with mean eβ(k(ν)−ν−ε) r.h.s. of (4.13) is equal to


2P
(
Z ≥ beβ(k(ν)−ν)c


)
≤ eβ(k(ν)−ν−ε)


beβ(k(ν)−ν)c
→ 0, (4.14)


where in the last inequality we used Chebychev inequality.
This concludes the proof of the lower bound (2.17). �


Upper bound on τ (Proof of (2.18)). Let us start by considering the case ν < 1
(so that k(ν) + ε can be taken smaller than 1). By using Lemma 4.1 and (4.11),
we see that Λ is so large that (with large probability) nucleation in it occurs within
eβ(k(ν)+ε).
Now we show that Λ is small enough to be crossed in the allotted time: by the same
procedure of (4.13), we get


P0


(
τ > eβ(k(ν)+ε) | τ̂ (Λ) > eβ(k(ν)+ε)


)
≤ P0


beβ(k(ν)−ν)c∑
n=0


ζ(n) > eβ(k(ν)+ε)


 , (4.15)


where the ζ(n)’s are i.i.d. exponential variables with mean eβν . By using Chebychev
inequality, we bound r.h.s. of (4.15) by


beβ(k(ν)−ν)ceβν


eβ(k(ν)+ε)
→ 0 (4.16)


In the case ν ≥ 1, Lemma 3.2 applied on the cycle {0, 1, 2} gives


P0


(
τ ∗ = τ ∗3 , τ


∗ < eβ(1+ε)
)
≥ 1− e−βc. (4.17)


Since with large probability nucleation occurs in the origin within the allotted time
eβ(1+ε) and since, by (2.8), nucleation in other sites can only help, we conclude the
proof. �


The shape of the droplet (proof of (2.19) and (2.20)). By the same pro-
cedure leading to (4.12), we immediately show that with overwhelming probability
all the droplets of the “wrong” kind formed within eβ(k(ν)+ε) are very far away from
the origin (more than beβ(k(ν)−ν)ceβδ for some δ > 0). Since the presence of droplets
of the “right” kind does not increase the speed of growth of the the droplets of the
“wrong kind” (indeed, they prevent the growth), we can proceed as for (4.14) and
conclude the proof. �
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