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Abstract. A soluble model of weakly coupled “molecular” and “nuclear” Hamiltonians is
studied in order to exhibit explicitly the mechanism leading to the enhancement of fusion
probability in case of a narrow near-threshold nuclear resonance. We, further, consider
molecular cells of this type being arranged in lattice structures. It is shown that if the
real part of the narrow nuclear resonance lies within the molecular band generated by the
intercellular interaction, an enhancement, proportional to the inverse width of the nuclear
resonance, is to be expected.
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1. Introduction


Molecules are usually treated as purely Coulombic systems, while the strong interaction
between their nuclear constituents is assumed to play a negligible role. However, at least
in principle, any Coulombic molecular level lying above the lower threshold of the nuclear
subsystem, is embedded in the continuous spectrum of the nuclear sub-Hamiltonian. The
coupling between the molecular and nuclear channels, hence, turns this level into a reso-
nance (see, e. g., Refs. [1, 2, 3, 4, 5] and references cited therein). Of course, due to the
wide Coulombic barrier between the nuclei and the short-range character of the nuclear in-
teraction, this coupling, and thus the width of the resonance, which determines the fusion
probability of the nuclear constituents of the molecule, is in general extremely small.


However, as pointed out in [6, 7], the situation is rather different if the nuclear subsystem
of a molecule has a sufficiently narrow near-threshold resonance. Examples of such nuclear
systems may be read off from the data presented in [8]. Among them are even customary
systems like p p 16O and p 17O [9, 10], i. e., the nuclear constituents of the water molecule
H2O or the hydroxyl ion OH− with O being the isotope 17O. For LiD and H2O the influence
of near-threshold nuclear resonances on the molecular properties has been studied in [11, 12,
13] by estimating the overlap integrals between the corresponding molecular and nuclear
wave functions. The best known example of such phenomena is the muon catalyzed fusion
of deuteron and triton in the dtµ molecule, where the near-threshold nuclear resonance
5He(3/2+) plays a decisive role [14].


Being motivated by the above special cases, we deal in this paper with a rather general
model Hamiltonian related to the ones considered by Friedrichs in [15]. This Hamiltonian
consists of a “nuclear” part, a “molecular” part with eigenvalues embedded in the continuous
spectrum of the nuclear part, and a weak coupling term which turns these unperturbed eigen-
values into “molecular” resonances. Since the model is explicitly solvable, the mechanism of
formation of the resonances becomes clearly visible.
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The following property pointed out in [6, 7] appears, in particular, as a general feature: if
the “nuclear” channel itself has a narrow resonance with a position close to the “molecular”
energy, then the width (the imaginary part) of the resulting “molecular” resonance is found
to be inversely proportional to the “nuclear” width. In other words, a large increase of the
decay rate of the “molecular” state, i. e. of the fusion probability, is observed in this case.
Such a coincidence of nuclear and molecular energies is, of course, a rather rare phenomenon
in nature.


A further goal of the present work is to show that the decay rate may be considerably
enhanced when arranging molecular clusters of this type within a crystalline structure. The
reason is that in such a configuration the original discrete molecular energy turns into a
band, i. e., into a whole interval of the continuous spectrum. (Note that in the models
under consideration, the spectral band generated by the “molecular” level is shifted finally,
after switching on the coupling between the “nuclear” and “molecular” channels, into the
unphysical sheet.) That is, even if the position of the “nuclear” resonance differs from
the original “molecular” level, it can get into this band. This allows for a fine tuning by
exciting the crystalline structure to energies as close as possible to the energy of the “nuclear”
resonance. We show that the lattice states, which correspond to such an initial choice of
their quasimomentum distribution, decay exponentially with a rate which is again inversely
proportional to the width of the “nuclear” resonance.


Concluding this introduction, we would like to mention the papers [16] and [17] which
develop approaches of the direct spectral modelling resembling the one employed in the
present work. Paper [16] is devoted, in particular, to the study of a one-electron model of a
solid having a cubic cristalline lattice (see Sec. 3.2 in [16]). This model exibits a mechanism
of the formation of gaps in the absolutely continuous spectrum of the total Hamiltonian
due to the resonance coupling beetwen the electron and lattice sub-Hamiltonians, while
the absolutely continuous spectra of the sub-Hamiltonians do not have the corresponding
gaps. The recent e-print [17] discusses a similar effect of formation of gaps in the absolutely
continuous spectrum of a self-adjoint operator defined in a Hilbert space associated with a
periodically “decorated” periodic graph. The gaps are produced by the resonance interaction
between the basic graph and the attached (“decorating”) graphs.


Notice that the phenomena we discuss in the present paper also arise partly due to the
resonance coupling between the sub-Hamiltonians. In particular, some resonances and res-
onance bands are formed of an eigenvalue or spectral band of one of the sub-Hamiltonians
embedded into the absolutely continuous spectrum of another sub-Hamiltonian. We refer,
however, not to details of the structure of the resulting (real) spectrum of the total Hamilton-
ian like the spectral gaps of [16, 17], but study an interplay between the arising resonances
(or resonance bands) and the resonances which occurred before coupling.


The paper is organized as follows.
In Sec. 2 we introduce the explicitly soluble model designed to demonstrate the interplay


of the molecular and nuclear resonance widths. It is also shown that in a wide time inter-
val the decay of the “molecular” state is indeed of the standard exponential character [19].
This transition will take place primarily into the open nuclear channels and its rate is deter-
mined by the inverse width of the nuclear resonance. In Sec. 3 we consider the case where
molecular Hamiltonians of the type considered in Sec. 2 are arranged in form of an infinite
one-dimensional lattice. Sec. 4 is devoted to the generalization to multi-dimensional lattices.
In both these sections, the time evolution of originally pure molecular states, extended to a
spectral band within a lattice, is studied. It is shown that if the real part of the “nuclear”
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resonance lies within such a spectral band, then there exist molecular states which decay
exponentially, with a rate inversely proportional to the “nuclear” width.


2. Two-channel molecular resonance model


2.1. Description of the model Hamiltonian. Let us consider a two-channel Hilbert
space H = H1 ⊕ H2 consisting of a “nuclear” Hilbert space H1 (channel 1) and a one-
dimensional “molecular” space H2 = C (channel 2). The elements of H are represented


as vectors u =


(
u1


u2


)
where u1 ∈ H1 and u2 ∈ H2, with u2 being a complex number.


The inner product 〈u, v〉H = 〈u1, v1〉+ u2v2 in H is naturally defined via the inner products
〈u1, v1〉 in H1 and u2v2 in H2.


As a Hamiltonian in H we consider the 2× 2 operator matrix


A =


(
h1 b
〈 · , b〉 λ2


)
(2.1)


where h1 is the (selfadjoint) “nuclear Hamiltonian” in H1, and λ2 ∈ R a trial “molecular”
energy. A vector b ∈ H1 provides the coupling between the channels. It should be mentioned
that the Hamiltonian (2.1) resembles one of the well known Friedrichs models [15] (for a
discussion of the other Friedrichs-type models see, e. g., Ref. [18] and the references cited
therein).


If there is no coupling between the channels, i. e. for b = 0, the spectrum of A consists of
the spectrum of h1 and the additional discrete eigenvalue λ2. We assume that the continuous
spectrum σc(h1) of the Hamiltonian h1 is not empty and that the eigenvalue λ2 is embedded
in σc(h1). It is also assumed that λ2 is not a threshold point of σc(h1), and that this spectrum
is absolutely continuous in a sufficiently wide neighborhood of λ2.


A nontrivial coupling (b 6= 0) between the channels will, in general, shift the eigenvalue
λ2 into an unphysical sheet of the energy plane. The resulting perturbed energy appears as
a resonance, i. e., as a pole of the analytic (or, more precisely, meromorphic) continuation of
the resolvent r(z) = (A − z)−1 taken between suitable states (see, e. g., [5]). In the present
paper we assume that such a continuation through the absolutely continuous spectrum of
h1 in some neighborhood of λ2 is possible at least for the matrix element 〈r1(z)b, b〉 of the
resolvent r1(z) = (h1 − z)−1. Then one infers a meromorphic continuability at least for the
compressed resolvent P2(A− z)−1


∣∣
H2


where P2 denotes the orthogonal projection onto the


space H2. Indeed, the explicit representation for the resolvent r(z) is easily seen to be


r(z) =






r1(z) +
r1(z)b〈 · , b〉r1(z)


M2(z)
− r1(z)b


M2(z)


−〈 · , b〉r1(z)


M2(z)


1


M2(z)



 . (2.2)


where the transfer function M2(z) reads M2(z) = λ2−z−β(z) with β(z) = 〈r1(z)b, b〉. Thus,
if β(z) admits a meromorphic continuation through an interval of the absolutely continuous
spectrum of the “nuclear” Hamiltonian h1, then the function P2(A− z)−1


∣∣
H2


= M−1
2 (z)


admits such a continuation, too.
Evidently the poles of r(z) on the physical sheet are either due to zeros of the function


M2(z) or due to poles of the resolvent r1(z). The latter correspond to the discrete spectrum
of the operator h1 which may determine part of the point spectrum of A. This is true, in
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particular, for the multiple eigenvalues of h1. In any case it is obvious that the perturbation
of the eigenvalue λ2 only corresponds to solutions of the equation M2(z) = 0, i. e., of


z = λ2 − β(z). (2.3)


This equation has no roots z with Im z 6= 0 on the physical sheet. For, being eigenvalues
of the selfadjoint operator A, they have, of course, to be real. Thus, Eq. (2.3) may have
solutions only on the real axis and in the unphysical sheet(s) of the Riemann surface of the
resolvent r1(z).


We start with a brief discussion of the case where the “nuclear” channel Hamiltonian h1


generates no resonances close to λ2 in a domain D of the unphysical sheet which ajoins
the physical sheet from below the cut. This assumption implies that for a wide set of unit


vectors b̂ = b/‖b‖ the quadratic form β(z) = ‖b‖2〈r1(z)̂b, b̂〉 can be analytically continued in
D. Moreover, under certain smallness conditions for ‖b‖, Eq. (2.3) is uniquely solvable [22]
in D providing in first order perturbation theory (see, e. g., [20, 21])


z2 =
‖b‖→0


λ2 − 〈r1(λ2 + i0)b, b〉+ o(‖b‖2). (2.4)


The real and imaginary parts of the resonance z2 = E
(2)
R − i


Γ
(2)
R


2
, thus, are given by


E
(2)
R = λ2 − Re〈r1(λ2 + i0)b, b〉+ o(‖b‖2),


Γ
(2)
R = 2 Im〈r1(λ2 + i0)b, b〉+ o(‖b‖2). (2.5)


2.2. Perturbation of the “molecular” resonance by a nearby “nuclear” resonance.


Our main interest concerns the opposite case of a “nuclear” resonance z1 = E
(1)
R − i


Γ
(1)
R


2
,


Γ
(1)
R > 0, with a real part E


(1)
R close to λ2. For the sake of simplicity we assume the


corresponding pole of r1(z) to be of first order. Let the element b ∈ H1 be such that the
function β(z) admits an analytic continuation into a domain D which contains both points
λ2 and z1. This domain, moreover, is assumed to belong to the unphysical sheet which
adjoins the physical sheet along the upper rim of the cut. In D the function β(z), thus, can
be written as


β(z) =
a


z1 − z
+ βreg(z) (2.6)


with βreg(z) being a holomorphic function. For a fixed “structure function” b̂ = b/‖b‖ we
have |a| = Ca‖b‖2 with a constant Ca determined by the residue of r1(z) at z = z1. Note
that this residue is usually expressed in terms of resonance (Gamow) functions (see for
example [23]). In fact, we assume that the resonance corresponds to an “almost eigenstate”


of h1. That is, in principle a limiting procedure Γ
(1)
R → 0 is possible so that the resonance


turns into a usual eigenvalue with an eigenvector ψ1 ∈ H1. More precisely, we assume


Ca = C(0)
a + o(1) as Γ


(1)
R → 0 (2.7)


with C
(0)
a ≡ 〈̂b, ψ1〉〈ψ1, b̂〉 6= 0. This can be achieved, e. g., if the Hamiltonian h1 itself has a


matrix representation of the form (2.1) and the resonance z1 is generated by a separated one-


dimensional channel. In such a case, according to (2.2) and (2.4), we would have C
(0)
a = 1


(for details see Ref. [7], Sec. II).
Let


Re a > 0 and Im a ¿ Re a (2.8)
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and, for z ∈ D,


| Im βreg(z)| ≥ cD‖b‖2 and |βreg(z)| ≤ CD‖b‖2 .


with constants cD > 0 and CD > 0. Furthermore, the coupling between the channels in the
Hamiltonian (2.1) is assumed to be so weak that


|βreg(z)| ≤ CD‖b‖2 ¿ Γ
(1)
R while |a| = Ca‖b‖2 ¿


(
Γ


(1)
R


)2


. (2.9)


It can be expected that these conditions are fulfilled in specific molecular systems even under


the supposition that the “nuclear” width Γ
(1)
R itself is very small.


After inserting (2.6) for β(z), Eq. (2.3) turns into the “quadratic” equation


(λ2 − z)(z1 − z)− a + (z1 − z)βreg(z) = 0


which can be “solved”, i. e., can be rewritten in form of two equations


z =
λ2 + z1 − βreg(z)


2
±


√(
λ2 − z1 − βreg(z)


2


)2


+ a. (2.10)


Under conditions (2.9) the existence of solutions of (2.10), and thus of Eq. (2.3), is guar-
anteed, analogously to the proof in [22], by Banach’s Fixed Point Theorem. Each of the
equations (2.10) has only one solution in the domain D. In case of the sign “−” we denote
the root of (2.10) by znucl, in case of the sign “+” by zmol.


The inequalities (2.9) imply


|a|∣∣∣λ2 − z1 − βreg(z)
∣∣
z∈D


∣∣∣
2 ≈


|a|
∣∣∣λ2 − E


(1)
R


∣∣∣
2


+


(
Γ


(1)
R


2


)2 ≤
4Ca‖b‖2


(
Γ


(1)
R


)2 ¿ 1. (2.11)


For z ∈ D the value of


ε(z) =
4a


[λ2 − z1 − βreg(z)]2
(2.12)


is very small, |ε(z)| ¿ 1. Thus, to separate the main terms of the solutions of Eqs. (2.10),
one can apply the asymptotic relation


√
1 + ε = 1 + ε/2 + O(ε2). As a result we find


z =
λ2 + z1 − βreg(z)


2
± λ2 − z1 − βreg(z)


2


(
1 +


2a


(λ2 − z1 − βreg(z))2
+ O(ε2)


)
. (2.13)


In other words, the roots znucl and zmol of (2.10) are essentially given by


znucl
∼= z1 − a


λ2 − z1 − βreg(z1)
∼= z1 − a


λ2 − z1


, (2.14)


zmol
∼= λ2 − βreg(λ2 + i0) +


a


λ2 − z1 − βreg(λ2 + i0)
∼= λ2 +


a


λ2 − z1


. (2.15)


From the second condition (2.9) follows


∣∣∣∣
a


λ2 − z1


∣∣∣∣ ¿ Γ
(1)
R . Consequently, this term provides


in znucl a very small perturbation of the initial “nuclear” resonance z1. As compared to Γ
(1)
R


it represents also in zmol a very weak perturbation of the “molecular” energy λ2. However,
as compared to the result (2.4), valid in case of a missing nearby “nuclear” resonance, it can
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be rather large. In particular, if the “molecular” energy λ2 coincides with the real part E
(1)
R


of the “nuclear” resonance z1, then zmol = E
(m)
R − i


Γ
(m)
R


2
with


E
(m)
R


∼= λ2 − 2
Im a


Γ
(1)
R


and Γ
(m)
R


∼= 4
Re a


Γ
(1)
R


. (2.16)


The width of the “molecular” resonance zmol in the presence of a nearby “nuclear” resonance


z1, thus, turns out to be inversely proportional to the “nuclear” width Γ
(1)
R .


Let us contrast the results (2.4) and (2.16) in some more detail. Since such a comparison
is necessarily of a qualitative character, we simulate the situation of a missing nearby nu-
clear resonance simply by dropping the pole term in the representation (2.6) of β(z). After
this removal we get β(z) ≡ βreg(z) and for Im z ≤ 0 the eigenvalue λ2 generates the reso-


nance (2.4) having the width Γ
(2)
R ≈ 2 Im βreg(λ2 + i0). The latter satisfies the inequalities


cD‖b‖2 ≤ Γ
(2)
R /2 ≤ CD‖b‖2. Substituting |Re a| ∼ Ca‖b‖2 ∼ Ca


cD
Γ


(2)
R in (2.16) we find the


following approximate estimate of Γ
(m)
R relative to Γ


(2)
R :


Γ
(m)
R ∼ Γ


(2)
R · Ca/cD


Γ
(1)
R


. (2.17)


The second inequality (2.9), chosen as a condition for ‖b‖ reflects the fact that the “usual”


molecular width Γ
(2)
R is much smaller than the width of a usual “nuclear” resonance Γ


(1)
R ,


CaΓ
(2)
R ¿ cD


(
Γ


(1)
R


)2


. (2.18)


This can practically always be assumed for concrete molecules.
Under condition (2.7) the value of Ca = |a|/‖b‖2 differs from zero, Ca ≥ C > 0, as


Γ
(1)
R → 0. Therefore the estimates (2.16) and (2.17) imply that in the presence of a narrow


(Γ
(1)
R ¿ Ca/cD) “nuclear” resonance close to λ2 the “molecular” width Γ


(m)
R is much larger


than the “molecular” width Γ
(2)
R observed in absence of such a resonance. In fact, according


to (2.17) this ratio is determined by the large quotient
Ca/cD


Γ
(1)
R


.


Finally we note that if the conditions (2.9), and hence the condition (2.18) are not fulfilled,
i. e., if the coupling between the channels in the Hamiltonian (2.1) is not small compared


with the “nuclear” width, then it follows from (2.10) that the molecular width Γ
(m)
R achieves


itself an order of Γ
(1)
R . We do not discuss this case since such a situation can hardly be


assumed to exist.


2.3. Exponential decay of the “molecular” state. Let us suppose that an initial state
of the system described by the Hamiltonian A corresponds exactly to the pure “molecular”


wave function ϕ =


(
0
1


)
. Then, the time evolution of the system is described by the


solution ψ(t) of the Cauchy problem


i
dψ


dt
= Aψ, ψ


∣∣
t=0


= ϕ. (2.19)
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The probability of finding the system at the time t still in the molecular state ϕ is given by


Pmol(t) = |〈ψ(t), ϕ〉|2.
The remainder 1 − Pmol(t), hence, determines the probability for the state ϕ to decay into
open channels of the continuous spectrum of the “nuclear” sub-Hamiltonian h1.


To estimate the probability Pmol(t), we use the standard integral representation of a func-
tion of an operator via its resolvent. In the case considered this means


exp {−iAt} = − 1


2πi


∮


γ


dz e−izt(A− z)−1. (2.20)


The integration in (2.20) is performed in the physical sheet along a contour γ going counter-
clockwise around the spectrum of the matrix A. Recall that, due to the selfadjointness of the
operator A, this spectrum is real. Taking into account the representations (2.2) and (2.20)
one finds


〈ψ(t), ϕ〉 = − 1


2πi


∮


γ


dz
exp(−izt)


λ2 − z − β(z)
(2.21)


This leads to the following important result. Under the conditions of Subsection 2.2 the
behavior of the integral (2.21) for t > 0 is described by the formula


〈ψ(t), ϕ〉 = exp{−izmolt}



1− a(


λ2 − z1 − βreg(λ2 + i0)


)2 + O


(
ε4(λ2 + i0)


)

(2.22)


+ exp{−iznuclt}






a(
λ2 − z1 − βreg(z1)


)2 + O


(
ε4(z1)


)

 + ε̃(t)


where the value of ε(z) is given by Eq. (2.12). The background term ε̃(t) = O(‖b‖2) is small,


|ε̃(t)| ¿ 1, for all t > 0. In particular, if E
(1)
R = λ2 we have


〈ψ(t), ϕ〉 ≈ exp{−izmolt}



1 +


4a(
Γ


(1)
R


)2 + . . .



 + exp{−iznuclt}



−


4a(
Γ


(1)
R


)2 + . . .



 (2.23)


The proof of the asymptotic relation (2.22) is carried out by estimating the contribution
of the resonance poles zmol and znucl to the integral (2.21). This is done by deforming parts
of the contour γ situated in a neighborhood of the molecular energy λ2 (see Figure 1). A
part γ+ of γ, situated initially on the upper rim of the cut, is shifted into the neighboring
unphysical sheet. Having done such a deformation one finds explicitly the residues of the
integrand in (2.21) at z = zmol and z = znucl. An analogous deformation of a part γ− of
γ, situated initially on the lower rim, is performed in a domain Im z < 0 of the physical
sheet. It is assumed that, though the parts γ+ and γ− belong to different energy sheets,
their positions on these sheets coincide. It is also assumed that for any z ∈ γ± the estimate
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Figure 1. A scheme showing the deformation of the integration path γ. The
part γ+ of the resulting contour belongs to the unphysical sheet, part γ− to
the physical sheet. The crosses “×” denote the discrete eigenvalues of the
Hamiltonian A while the solid line corresponds to the continuous spectrum.


|β±(z)| ¿ |λ2− z| holds. Thus, the integration in (2.21) around the continuous spectrum of
A, except the residues at z = zmol and z = znucl, gives


− 1


2πi


∫


γ+


dz exp(−izt)


(
1


λ2 − z − β+(z)
− 1


λ2 − z − β−(z)


)


= − 1


2πi


∫


γ+


dz exp(−izt)
β+(z)− β−(z)


[λ2 − z − β+(z)] [λ2 − z − β−(z)]
. (2.24)


Here we have used the specific notation β+(z) for the values of the function β(z) at points
z belonging to the curve γ+ (i. e., lying in the unphysical sheet), and β−(z) for the values of
β(z) at the same points of the curve γ− (i. e., lying in the physical sheet). Both β−(z) and
β+(z) are of the order of O(‖b‖2), and |β±(z)| ¿ |λ2−z|, while the exponential exp(−izt) at
Im z < 0 is decreasing for t > 0. The value of the function (2.24), thus, is always small, having
an order of O(‖b‖2), and is even decreasing (in general nonexponentially) with increasing t.
We include the contribution of this function in the background term ε̃(t). The summand
ε̃(t) also includes a contribution to (2.21) from the residues at the discrete eigenvalues of
A. Apart from factors oscillating when t changes, the value of this contribution remains
practically the same for all t ≥ 0.


The formulae (2.22) and (2.23) show explicitly that in a large time interval 0 ≤ t < T ,


T ∼ 2


Γ
(m)
R


∣∣∣∣ln max |ε̃(t)|
∣∣∣∣, the decay of a “molecular” state ϕ in the presence of a narrow


“nuclear” resonance is indeed of exponential character. The rate of this decay is determined


mainly by the width Γ
(m)
R of the “molecular” resonance zmol, i. e., by the ratio |Re a|/Γ(1)


R ,


Pmol(t) ∼= exp{−Γ
(m)
R t} ∼= exp


{
−4|Re a|


Γ
(1)
R


t


}
. (2.25)


3. “Molecular” resonances in a one-dimensional lattice


Let us assume that the “molecules” described by the Hamiltonian (2.1) are arranged in
form of an infinite one-dimensional (linear) crystalline structure. To describe such a crystal
we introduce the lattice Hilbert space


G =
+∞⊕


i=−∞
H(i)
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representing an orthogonal sum of the Hilbert spaces associated with the individual cells


H(i) = H(i)
1 ⊕H(i)


2 . (3.1)


Here the subspaces H(i)
1 ≡ H1 and H(i)


2 ≡ H2 ≡ C are exactly the same ones as in Sec. 2 and,
thus, H(i) ≡ H. The elements of the total Hilbert space G are represented by the sequences


u = (. . . , u(−2), u(−1), u(0), u(1), u(2), . . .) with components u(i) =


(
u


(i)
1


u
(i)
2


)
where u


(i)
1 ∈ H1


and u
(i)
2 ∈ H2 = C. The inner product in H is defined by 〈u, v〉H =


+∞∑
i=−∞


〈u(i), v(i)〉H(i) . The


subspaces G1 =
+∞⊕


i=−∞
H(i)


1 and G2 =
+∞⊕


i=−∞
H(i)


2 , with G = G1⊕G2, are called pure nuclear and


pure molecular channels, respectively.
In the present section we deal with the Hamiltonian H acting in H according to


(Hu)(i) = Wu(i−1) + Au(i) + Wu(i+1) (3.2)


where only the interaction between neighboring cells is taken into account and the interaction
operator W is chosen in the simplest form


W =


(
0 0
0 w


)
(3.3)


with w being a positive number. Such a choice of the interaction corresponds to the natural
assumption that the cells interact between each other via the molecular states, while the
direct interaction between nuclear constituents belonging to different cells is negligible. We
assume that the closed interval [λ2 − 2w, λ2 + 2w] is totally embedded in the continuous
spectrum σc(h0) of h0 and, moreover, that no thresholds of σc(h0) belong to this interval. For
the sake of simplicity we also assume that the interval belongs to the domain D introduced
in Sec. 2 and that for any µ ∈ [λ2 − 2w, λ2 + 2w]


Im〈r0(µ± i0)̂b, b̂〉 6= 0. (3.4)


Obviously, the Hamiltonian (3.2) represents a special case of the infinite Jacobi operator
matrix (regarding the properties of some infinite scalar Jacobi matrices see, e. g., [24, 25]


and Refs. cited therein). It is a selfadjoint operator on the domain D(H) =
+∞⊕


i=−∞
D(i) with


D(i) = D(h1)⊕ C.
The resolvent R(z) = (H − z)−1 of H possesses a natural block structure, R(z) =


{R(j, k; z)}, j, k = 0,±1,±2, ...,±∞. The blocks R(j, k; z), providing the mapping H(k) →
H(j), satisfy the equations


WR(j − 1, k; z) + (A− z)R(j, k; z) + WR(j + 1, k; z) = δjkI (3.5)


where δjk stands for the Kronecker delta and I for the identity operator in the Hilbert space
H of cells. Hereafter we assume Im z 6= 0 so that the value of z automatically belongs to
the resolvent set of the operator H. The blocks R(j, k; z) themselves possess a 2 × 2 ma-
trix structure, R(j, k; z) = {Rmn(j, k; z)}, m,n = 1, 2, corresponding to the decomposition
H = H1 ⊕H2.
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The Fourier transform


(Fu)(p) =
1√
2π


+∞∑
j=−∞


u(j) exp(ipj) (3.6)


in G reduces Eq. (3.5) to


(A− z)R(p, p′; z) + 2 cos pWR(p, p′; z) = δ(p− p′) I (3.7)


where the quasi-momentum p runs through the interval [−π, π] and the function R(p, p′; z)
represents the kernel of the resolvent R(z) in this representation. From (3.7) follows imme-
diately


R(p, p′; z) = G(p; z)δ(p− p′) (3.8)


where


G(p; z) =






r1(z) +
r1(z)b〈 · , b〉r1(z)


M̃2(p; z)
− r1(z)b


M̃2(p; z)


−〈 · , b〉r1(z)


M̃2(p; z)


1


M̃2(p; z)



 . (3.9)


This corresponds to the representation (2.2) of the resolvent of the cell Hamiltonian A, the
only difference being that the transfer function M2(z) is replaced by the expression


M̃2(p; z) = λ2 − z + 2w cos p− β(z) . (3.10)


The factorization (3.8) implies


R(j, k; z) =
1


2π


∫ π


−π


dp e−ip(j−k) G(p; z)


and with the representation (3.9) we, thus, obtain


R(j, k; z) =


(
δjkr1(z) + r1(z)bR22(j, k; z) 〈 · , b〉r1(z) −r1(z)bR22(j, k; z)


−R22(j, k; z) 〈 · , b〉r1(z) R22(j, k; z)


)
(3.11)


where


R22(j, k; z) =
1


2π


∫ π


−π


dp
e−ip(j−k)


λ2 − z + 2w cos p− β(z)
. (3.12)


Introducing the new variable ζ = e−ip, this integral is reduced to


R22(j, k; z) =
1


2πi


∮


γ


dζ
ζj−k


wζ2 + M2(z)ζ + w
.


Here, γ stands for the unit circle centered at the origin, the integration over γ being performed
in the counterclockwise sense. Further, applying the Residue Theorem and taking into
account the sign of the difference j − k one finds


R22(j, k; z) =


{
1


2w


[√
[M2(z)− 2w][M2(z) + 2w]−M2(z)


]}|j−k|


√
[M2(z)− 2w][M2(z) + 2w]


. (3.13)
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It is assumed here that the branch
√


(ξ − 2w)(ξ + 2w) of the function


(
(ξ−2w)(ξ+2w)


)1/2


is defined in the plane of the complex parameter ξ, cut along the interval [−2w, 2w], and
that Im ξ > 0 implies


Im
√


(ξ − 2w)(ξ + 2w) > 0,


while Im ξ < 0 implies


Im
√


(ξ − 2w)(ξ + 2w) < 0.


From Eqs. (3.11) and (3.13) it follows that all the nontrivial singularities of the resolvent
R(z), differing from those of the cell “nuclear” channel resolvent r1(z), are determined by
the properties of the function


D(z) =
√


[M2(z)− 2w][M2(z) + 2w].


First, we note that if ‖b‖ = 0, and thus M2(z) = λ2− z, then the “molecular” and “nuclear”
channels in the Hamiltonian H decouple. In this case the eigenvalue λ2 generates for H
an additional branch of the absolutely continuous spectrum which occupies the interval
[λ2 − 2w, λ + 2w]. Second, even if ‖b‖ 6= 0 then the function D(z) cannot have roots z
with Im z 6= 0 in the physical sheet. Otherwise such roots would generate for H a complex
spectrum. But this is impossible because of the selfadjointness of H. Also, under the
condition (3.4) this function cannot have real roots within the interval [λ2 − 2w, λ2 + 2w]
since for λ2 − 2w ≤ µ ≤ λ2 + 2w the imaginary part


Im[M2(µ± i0)− 2w] = Im[M2(µ± i0) + 2w] = −‖b‖2 Im〈r1(µ± i0)̂b, b̂〉
is nonzero by the assumption (3.4). Thus, in a close neighborhood of the interval [λ2 −
2w, λ2 + 2w] the equation D(z) = 0 may only have roots in the unphysical sheet. In fact,
assuming the conditions (2.9) and repeating literally the considerations which led to (2.13),
one can rewrite this equation in form of the four equations,


z =
λ2 − 2w + z1 − βreg(z)


2
(3.14)


±λ2 − 2w − z1 − βreg(z)


2


[
1 +


2a


(λ2 − 2w − z1 − βreg(z))2
+ O(ε2


−)


]
,


z =
λ2 + 2w + z1 − βreg(z)


2
(3.15)


±λ2 + 2w − z1 − βreg(z)


2


[
1 +


2a


(λ2 + 2w − z1 − βreg(z))2
+ O(ε2


+)


]
,


where ε± = 4a/(λ2 ± 2w− z1 − βreg(z)). In that part of the domain D which belongs to the
unphysical sheet, equation D(z) = 0 has four solutions being given essentially by


z
(±)
nucl


∼= z1 − a


λ2 ± 2w − z1 − βreg(z1)
∼= z1 − a


λ2 ± 2w − z1


, (3.16)


z
(±)
mol


∼= λ2 ± 2w − βreg(λ2 ± 2w + i0) +
a


λ2 ± 2w − z1 − βreg(λ2 ± 2w + i0)
(3.17)


∼= λ2 ± 2w +
a


λ2 ± 2w − z1


.


Obviously, each of the roots z
(±)
nucl and z


(±)
mol represents an additional square-root branching


point of the Riemann surface of the functions R22(j, k; z). Consequently, these roots are
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Figure 2. A scheme showing the position of the resonance bands generated
in the unphysical sheet by the “molecular” eigenvalue λ2 and the “nuclear”
resonance z1. These bands are generated respectively by the points zmol(p)
and znucl(p) with the quasimomentum p running through the interval [−π, π].


also the branching points of the Riemann surface of the total resolvent R(z). Thus, one
has to introduce the “resonance” cuts in the unphysical sheet considered. The cuts can be


made, say, between z
(−)
nucl to z


(+)
nucl and between z


(−)
mol and z


(+)
mol. Evidently, these cuts are to be


interpreted as the resonance spectral bands generated by the initial “molecular” level λ2 and
the “nuclear” resonance z1 (see Figure 2).


Consider now the time evolution of the system described by the Hamiltonian H starting
from a pure molecular state ϕ = ϕ1 ⊕ ϕ2, ‖ϕn‖ ∈ Gn, n = 1, 2, with ϕ1 = 0 and ‖ϕ‖ =
‖ϕ2‖ = 1. The probability to find the system at a time t ≥ 0 in the molecular channel is
given by


Pmol(ϕ, t) = ‖P2e
−iHtϕ‖2 (3.18)


where P2 is the orthogonal projection in G on the pure molecular subspace G2.
As in (2.20) we represent the time evolution operator exp(−iHt) in terms of the resolvent


R(z) = (H − z)−1,


exp {−iHt} = − 1


2πi


∮


γ


dz e−izt(H − z)−1 (3.19)


where the integration is performed along a counterclockwise contour γ in the physical sheet
encircling the spectrum of the Hamiltonian H. Recall that this spectrum is real since H is
a selfadjoint operator.


According to Eqs. (3.8) and (3.10) the operator P2R(z)
∣∣
G2


acts in quasi-momentum rep-


resentation as the multiplication operator


G22(p, z) = [M̃2(p; z)]−1 (3.20)


and, thus, (
P2R(z)ϕ


)
(p) =


1


M̃2(p; z)
ϕ2(p) , p ∈ [−π, π] .


Here ϕ2(p) stands for the values of the Fourier transform (3.6) of the vector


ϕ2 = (. . . , ϕ
(−2)
2 , ϕ


(−1)
2 , ϕ


(0)
2 , ϕ


(1)
2 , ϕ


(2)
2 , . . .),


which means (
P2e


−iHtϕ


)
(p) = − 1


2πi
ϕ2(p) J(p, t) (3.21)
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with


J(p, t) =


∮


γ


dz
exp(−izt)


λ̃2(p)− z − β(z)
. (3.22)


This expression has exactly the same form as the integral (2.21). The only difference consists
in the replacement of λ2 by the sum


λ̃2(p) = λ2 + 2w cos p . (3.23)


Thus, to estimate the function J(p, t) one can immediately use the relation (2.22) in order
to find


J(p, t) = exp{−izmol(p)t}



1− a(


λ̃2(p)− z1 − βreg(λ̃2(p) + i0)


)2 + O


(
ε4(p, λ̃2(p) + i0)


)




+ exp{−iznucl(p)t}






a(
λ̃2(p)− z1 − βreg(z1)


)2 + O


(
ε4(p, z1)


)

 + ε̃(p, t) , (3.24)


where


ε(p, z) =
a


[λ̃2(p)− z1 − βreg(z)]2
. (3.25)


The function ε̃(p, t) = O(‖b‖2) is always small, |ε̃(p, t)| ¿ 1. In accordance with Eqs. (2.14)
and (2.15) we, hence, obtain for the positions of the poles


znucl(p) ∼= z1 − a


λ2 + 2w cos p− z1


, (3.26)


zmol(p) ∼= λ2 + 2w cos p +
a


λ2 + 2w cos p− z1


. (3.27)


The resonance bands representing the ranges of the functions znucl(p) and zmol(p), with p
running through the interval [−π, π], are schematically depicted in Figure 2.


The asymptotics (3.24) implies


Pmol(ϕ, t) =


∫ π


−π


dp |J(p, t)|2 |ϕ2(p)|2 =


∫ π


−π


dp exp{−Γ
(m)
R (p) t} |ϕ2(p)|2 + ε̃(t) (3.28)


where


Γ
(m)
R (p) = −2 Im zmol(p) ∼= −2 Im


a


λ2 + 2w cos p− z1


. (3.29)


The background term ε̃(t) in (3.28) is small for any t ≥ 0, ε̃(t) = O(‖b‖2) and |ε̃(t)| ¿ 1.


Further, let us assume that the real part E
(1)
R of the “nuclear” resonance z1 belongs to the


interval [λ2− 2w, λ2 + 2w], that is |E(1)
R − λ2| ≤ 2w. Then, one can always prepare an initial


“molecular” state ϕ which decays via the “nuclear” channel with a rate as close as possible
to the desired maximal value. Under the assumption (2.8), this maximum is given by


max
−π≤p≤π


Γ
(m)
R (p) ∼= 4


Re a


Γ
(1)
R
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(cf. formula (2.16)). The correspondingly prepared “molecular” state ϕ has an almost mono-
chromatic component ϕ2(p) being localized in a close neighborhood of the quasi-momenta


p = ± arccos
E


(1)
R − λ2


2w
.


For example, if the function ϕ2(p) is nonzero only for quasimomenta p restricted by∣∣∣∣∣cos p− E
(1)
R − λ2


2w


∣∣∣∣∣ ≤ δ
Γ


(1)
R


4w


with some small δ > 0, then the width Γ
(m)
R given by the relation (3.29) varies in an interval


lying approximately between
1


1 + δ2


4 Re a


Γ
(1)
R


and
4 Re a


Γ
(1)
R


.


4. “Molecular” resonances in a multi-dimensional lattice


In this section we consider the case where the “molecules” described by the Hamil-
tonians (2.1) form an infinite N -dimensional crystalline structure. To label the cells of
the respective lattice we use the multi-index i ∈ ZN , i. e., i = (i1, i2, ..., iN) with ik =
...,−2,−1, 0, 1, 2, ..., k = 1, 2, ..., N . The Hilbert space of the system considered is in this


case G = ⊕
i∈ZN


H(i), where the individual cell spaces are given by (3.1), with H(i)
1 ≡ H1 and


H(i)
2 ≡ H2 ≡ C being the spaces introduced in Sec. 2. For the components u(i) ∈ H(i)


of the elements u of the total Hilbert space G we again use the column representation


u(i) =


(
u


(i)
1


u
(i)
2


)
with u


(i)
1 ∈ H1 and u


(i)
2 ∈ H2 = C. The inner product in H is defined


as 〈u, v〉H =
∑


i∈ZN


〈u(i), v(i)〉H(i) . The subspaces G1 = ⊕
i∈ZN


H(i)
1 and G2 = ⊕


i∈ZN
H(i)


2 , with


G1 ⊕ G2 = G, represent pure nuclear and pure molecular channels, respectively.
The Hamiltonian is defined in G by the expression


(Hu)(i) = Au(i) +
∑


j∈Zn, j 6=i


W (i, j)u(j) (4.1)


where the interaction matrices


W (i, j) =


(
w11(i, j) w12(i, j)
w21(i, j) w22(i, j)


)


consist of the block components wmn(i, j) providing the mappings Hn → Hm, m,n = 1, 2.
These components describe the direct interaction between the m-th and n-th channels of
the different cells i and j, respectively. The matrices W (i, j) are assumed to be bounded
operators in H which depend only on the difference i− j = (i1− j1, i2− j2, . . . , iN − jN), i. e.
W (i, j) = W (i− j) and, thus, the same holds for the block components,


wmn(i, j) = wmn(i− j).


Moreover, the series of W (j) is assumed to be convergent with respect to the operator norm
topology, i. e. ∑


j∈ZN , j 6=0


‖W (j)‖ < +∞ (4.2)
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and the property
W (j − i) = [W (i− j)]∗ (4.3)


is assumed. With such W (i, j) the Hamiltonian (4.1) is a selfadjoint operator on the domain
D(H) = ⊕


i∈ZN
D(i) with D(i) = D(h1)⊕C. Note that, since H2 = C, the quantities w22(i− j)


are complex numbers. The w12(i− j) are vectors in H1, the w21(i− j) are continuous linear
forms on H1, and the w11(i− j) are bounded operators in H1.


Let us denote by TN the Cartesian product TN = T× T× . . .× T︸ ︷︷ ︸
N


of the N intervals


T = [−π, π] and by p the points of TN , p = (p1, p2, ..., pN), pk ∈ T. The assumption (4.2)
implies that the operator-valued function


Ω(p) =
∑


j∈Zn, j 6=0


W (j) exp(i〈p, j〉), Ω(p) : H → H, p ∈ TN , (4.4)


where 〈p, j〉 =
∑N


k=1 pkjk is continuous and bounded on TN . Due to Eq. (4.3), the values


Ω(p) =


(
ω11(p) ω12(p)
ω21(p) ω22(p)


)


of this function represent selfadjoint operators in H for any p ∈ TN , with


ωmn(p) : Hn → Hm ; [ω11(p)]∗ = ω11(p), ω22(p) ∈ R and [ω21(p)]∗ = ω12(p).


The quantity b̃(p) = ω12(p) can be considered as a vector of H1 while ω21(p) = 〈 ·, b̃(p)〉
(cf. definition (2.1) of the Hamiltonian A).


The blocks R(j, k; z), R(j, k; z) : H(k) → H(j), j, k ∈ ZN , of the resolvent R(z) = (H−z)−1


satisfy the equation


(A− z)R(j, k; z) +
∑


j′∈ZN , j′ 6=j


W (j − j′)R(j′, k; z) = δjkI. (4.5)


After Fourier transformation in G,


(Fu)(p) =
1


(2π)N/2


∑


j∈ZN


u(j) exp(i〈p, j〉), p ∈ TN ,


the system (4.5) takes the form


(A− z)R(p, p′; z) + Ω(p) R(p, p′; z) = δ(p− p′) I (4.6)


where the quasi-momenta p, p′ run through the set TN and R(p, p′; z) stands for the trans-
formed resolvent R(z). Thus, the factorization (3.8) holds with


G(p; z) = [A + Ω(p)− z]−1. (4.7)


First, let us consider the specific case where intercellular interactions W (i − j) in the
Hamiltonian (4.1) have the simple form


W (i− j) =


(
0 0
0 w22(i− j)


)
, (4.8)


i. e., where the cells interact with each other only via the molecular channels. Obviously, in
this case the factor G(p; z) is still given by (3.9). As compared to this expression the only
difference is that now p ∈ TN and


M̃2(p; z) = λ2 − z + ω22(p)− β(z) . (4.9)
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Let ωmin
22 = min


p∈TN
ω22(p) and ωmax


22 = max
p∈TN


ω22(p). Similarly to the analogous assumption in


Sec. 3 we assume that the closed interval [λ2 + ωmin
22 , λ2 + ωmax


22 ] is totally embedded in the
absolutely continuous spectrum σc(h1) of h1, and no thresholds of this spectrum belong to
[λ2 + ωmin


22 , λ2 + ωmax
22 ]. We also assume that this interval belongs to the holomorphy domain


D of the function β(z), and that for µ ∈ [λ2 + ωmin
22 , λ2 + ωmax


22 ] the inequality (3.4) holds.
Let us consider the time evolution of the system described by the Hamiltonian (4.1)


with the simple intercellular interactions (4.8) subject to the above conditions. We start
again from a pure molecular state ϕ = ϕ1 ⊕ ϕ2, ‖ϕn‖ ∈ Gn, n = 1, 2, with ϕ1 = 0 and
‖ϕ‖ = ‖ϕ2‖ = 1. The probability Pmol(ϕ, t) to find the system at a time t ≥ 0 in the
molecular channel is given by the analogue of (3.18). As in Sec. 3 one finds the quasi-
momentum representation


(
P2R(z)ϕ


)
(p) = G22(p; z)ϕ2(p) =


1


M̃2(p; z)
ϕ2(p) , p ∈ TN ,


and relations (3.21), (3.22) and (3.24) are still valid with the only difference that instead


of (3.23) λ̃2(p) is now of the form


λ̃2(p) = λ2 + ω22(p) , p ∈ TN .


According to Eqs. (2.14) and (2.15) the main terms of the roots znucl(p) and zmol(p) of the
function (4.9) in the unphysical sheet read


znucl(p) ∼= z1 − a


λ2 + ω22(p)− z1


, (4.10)


zmol(p) ∼= λ2 + ω22(p) +
a


λ2 + ω22(p)− z1


. (4.11)


The asymptotic equation (3.24) now implies


Pmol(ϕ, t) =


∫


TN


dp |J(p, t)|2 |ϕ2(p)|2 =


∫


TN


dp exp{−Γ
(m)
R (p) t} |ϕ2(p)|2 + ε̃(t) (4.12)


with


Γ
(m)
R (p) = −2 Im zmol(p) ∼= −2 Im


a


λ2 + ω22(p)− z1


.


As in Sec. 3 the background term ε̃(t) is small for any t ≥ 0, ε̃(t) = O(‖b‖2) and |ε̃(t)| ¿ 1.


Thus, if the real part E
(1)
R of the “nuclear” resonance z1 belongs to the interval [λ2 +


ωmin
22 , λ2 + ωmax


22 ] then there are “molecular” states ϕ which decay via the “nuclear” channel
with a rate as close as possible to the maximal value (2.16). In this case the components
ϕ2(p) are localized in a close neighborhood of the manifold


λ2 + ω22(p) = E
(1)
R (4.13)


in the quasi-momentum space TN . In particular, if the initial state ϕ is prepared such
that the component ϕ2(p) is nonzero only for the quasi-momenta p lying in the domain


|λ2 + ω22(p) − E
(1)
R | ≤ δ Γ


(1)
R /2 with some small δ > 0, then one should only integrate over


this domain in the integral (4.12). In such a case, under the condition (2.8), a lower estimate


for the decay rate Γ
(m)
R is given, as in Sec. 3, by


1


1 + δ2


4 Re a


Γ
(1)
R


. Thus, by varying δ one can


get a rate as close as possible to the maximum (2.16).
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Now, let us consider briefly the case of more general intercellular interactions W (i − j)
where all the components ωmn(p), m,n = 1, 2, of the matrix Ω(p), p ∈ TN , can be nontrivial.
In this case the component G22(p; z) of the factor (4.7) is given again by Eqs. (3.20) and (4.9).
However, the function β(z) in (4.9) is to be replaced by the modified function


β̃(p; z) = 〈[h1 + ω11(p)− z]−1[b + b̃(p)], [b + b̃(p)]〉
where b̃(p) = ω12(p). We make the natural assumption that the direct intercellular interac-
tions in nuclear channels w11(i − j) are so weak that the term ω11(p) produces only a very
small perturbation of the initial “nuclear” resonance z1 generated by the Hamiltonian h1.
More precisely, we assume that the resonance z̃1(p) generated by the perturbed Hamiltonian
h1 + ω11(p) has the property


|z̃1(p)− z1| ¿ Γ
(1)
R for any p ∈ TN (4.14)


and that no other resonances arise in the domain D. Another natural assumption is that
the strength of the interactions w12(i − j) and w21(i − j), i 6= j, between “nuclear” and
“molecular” channels of different cells is much weaker than the one of a single cell. This


is why we can assume ‖b̃(p)‖/‖b‖ . 1 and the following features. The elements b̃(p) ∈ H1


are such that for any p ∈ Tn the function β̃(p; z) admits an analytic continuation into the
domain D of the unphysical sheet and in D a representation of the type (2.6) holds for


β̃(p; z),


β̃(p; z) =
ã(p)


z̃1(p)− z
+ β̃reg(p; z), (4.15)


with an explicitly separated pole term ã(p)/(z̃1(p)−z) and a holomorphic remainder β̃reg(p; z).
As in Sec. 2.2 we assume that |ã(p)| = Ca(p)‖b‖2, and that for any p ∈ TN the limiting pro-


cedure (2.7) is possible for Ca(p) while Im ã(p) ¿ Re ã(p). For the remainder β̃reg(p; z),
p ∈ TN , z ∈ D, the same statements are assumed to be valid as for the function βreg(z). Un-
der these assumptions one can repeat almost literally the study of the probability Pmol(ϕ, t)
as performed above in case of the interactions (4.8). We find again that the asymptotics of
Pmol(ϕ, t) is given by (4.12) with


Γ
(m)
R (p) ∼= −2 Im


ã(p)


λ2 + ω22(p)− z̃1(p)
.


Let us denote by (Re ã)max the maximal value of the function Re ã(p) on the manifold
(4.13). It is obvious that if one prepares the initial pure“molecular” state ϕ such that its
component ϕ2(p) is localized in a close neighborhood of the subset of the manifold (4.13),
where Re ã(p) = (Re ã)max, then for the probability Pmol(ϕ, t) the main qualitative result
remains practically the same as in case of the interactions (4.8). Namely, varying the support
of the component ϕ2(p) in TN one can achieve a decay rate of the state ϕ as close as possible


to the maximal value of the width Γ
(m)
R (p) in (4.13). The main term 4(Re ã)max/Γ


(1)
R of this


value is again inversely proportional to the “nuclear” width Γ
(1)
R .
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