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PLANE-LIKE MINIMIZERS IN PERIODIC MEDIA


LUIS A. CAFFARELLI AND RAFAEL DE LA LLAVE


Abstract. We show that given an elliptic integrand J in Rd which
is periodic under integer translations, given any plane in Rd, there is
at least one minimizer of J which remains at a bounded distance from
this plane. This distance can be bounded uniformly on the planes. We
also show that, when folded back to Rd/Zd the minimizers we construct
give rise to a lamination. One particular case of these results is minimal
surfaces for metrics invariant under integer translations.


The same results hold for other functionals that involve volume terms
(small and average zero). In such a case the minimizers satisfy the
prescribed mean curvature equation. A further generalization allows to
formulate and prove similar results in other manifolds than the torus
provided that their fundamental group and universal cover satify some
hypothesis.


1. Introduction


The main goal of this paper is to consider minimizers of periodic varia-
tional problems (elliptic integrals plus a small volume term) on sets of finite
perimeter in Rd (and other manifolds). These problems include as a particu-
lar case the problem of finding hypersurfaces of codimension one of minimal
area. (Indeed, for the case of minimal area, several of our lemmas simplify
considerably and can be found directly in the references we give.)


We show, under very general circumstances, that there are plane-like (i.e.
that stay at a finite distance of a plane, this distance is bounded a priori by
properties of the metric and independently of the plane) minimizers along
every direction. These minimizers also enjoy other geometric properties.


More precisely, a particular case of our results (see Theorem 4.1 formu-
lated later) is:


Theorem 1.1. Let g be a C2 strictly positive metric in Rd invariant under
integer translations. Then, we can find a number M depending only on the
oscillation properties of the metric such that, for every d − 1 dimensional
hyperplane Π we can find a minimal surface Σ such that d(Σ,Π) ≤M .


We will also establish certain other properties of the minimizer. Notably,
if we consider the problem as a problem in Td using the quotient under inte-
ger translations, the hypersurfaces Σ produced in Theorem 1.1 give rise to
a lamination by minimal surfaces. We also show that the surfaces produced
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are quasiperiodic (i.e. approximated in an appropriate sense, which we will
detail, by periodic surfaces.)


The method we present can accommodate functionals that contain volume
terms provided that they are small enough and of average zero over the unit
cell. This means that the mean curvature of the surface is prescribed as a
function of the point. (See Section 11.1.)


We also obtain similar results (see Section 11.2) in manifolds M in place
of Rd, when M is the universal cover of a manifold with a residually finite
fundamental group (this is a mild hypothesis and is satisfied automatically
by manifolds with metrics with negative curvature as well as many other
manifolds.) Laminations and, specially, foliations by minimal surfaces have
been studied for a long time. (Recent references referring to previous work
are [Gro91b] and [Gro91a].) Many results are known on the question on
when a foliation can be made a foliation by minimal leaves for an appropri-
ately chosen metric.


The problem of constructing quasiperiodic minimal surfaces for periodic
metrics was proposed in [Mos86] which proved similar results for minimizers
of a similar – but different – class of those that we consider. In that paper,
the problem of generalizing the results to manifolds which are universal
covers of manifolds with a non-abelian fundamental group was posed.


Even if we do not deal with currents, only with boundaries of sets, the re-
lated problem of minimizing currents has been studied. For d = 3 [Ban90a]
studied the minimizing currents on the torus. The characterization of min-
imizers of currents in Td was announced in [Ban96]. This reference also
poses the question of characterizing the minimizers in manifolds of negative
curvature. We also call attention to [Aue97] which studies the problem for
non-intersecting currents.


In [Mos86] it was also shown that its results on variational problems
could be considered as extensions of results in Aubry-Mather theory and
that, indeed, they implied the results of Aubry and Mather (see [Mat82]) on
existence of quasi-periodic orbits. (We refer to [MF94] for a recent survey
on developments in Aubry-Mather theory beyond the existence of quasi-
periodic orbits.)


The same class of functionals as in [Mos86] has been considered in [Ban89].
In [dlL00], one can find another proof of the results of [Mos86] and extensions
to ΨDE’s and to other manifolds.


We also note that, for metrics which are close to flat metric in an smooth
enough topology and for planes that satisfy Diophantine properties, in [Mos88],
extending results of [Koz83] it was shown that the laminations induced on
the torus are indeed foliations by smooth minimal surfaces and have smooth
holonomy maps. In [Ban87] one can find examples showing that these folia-
tions may have gaps. In [Gro91b] we find the result that in small deforma-
tions along a family of metrics of constant negative curvature, the foliations
persist.
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The results we prove here also have a close relation to the classical results
of [Mor24], [Hed32] on geodesic in manifolds of dimension 2. Note that
geodesics are surfaces of codimension 1 in manifolds of dimension 2. Hence,
our results, give an independent proof of the the results on existence on
asymptotically linear geodesics. For a modern survey relating the classical
theory of minimizing geodesics to Aubry-Mather theory, we refer to [Ban88]
and [Ban90b].


Methods of geometric measure theory have been used in [Ban99] to study
minimal one-dimensional currents in higher dimensions. One dimensional
currents can be considered a generalization of geodesics. It has been known
since the work of Hedlund that for Td d ≥ 3 there are no minimizing
geodesics in most of the homotopy classes. Similar phenomena happen for
objects of codimension greater that one. In this paper, we show that if we
consider objects of codimension 1, it is possible to obtain minimizers that
are asymptotic to a plane in every direction.


The method used in this paper is based on the direct methods of the
calculus of variations. We will work in the class of sets of finite perimeter
also known as Caccioppoli sets and consider functionals based on elliptic
integrals. (A summary of the results of the theory of Cacciopoli sets is
collected in Appendix 12.) An important case of elliptic integrands is the
area integral, hence we obtain minimal surfaces as a particular case of our
results. Later, we will also show how to incorporate volume terms.


First we show that the integrands reach their minimum when we consider
sets restricted to lie on bounded sets and to contain another one. (This
uses lower semicontinuity of the functional as well as some compactness and
coerciveness.) Moreover, due to some subadditivity properties, it is possible
to define an infimal minimizer which is contained in all the other minimizers.
These infimal minimizers satisfy several monotonicity properties which allow
us to construct them also in sets that are the limit of increasing compact
sets.


Another crucial result is that minimizers satisfy density estimates which
imply that in all balls centered in points in the boundary we can find other
balls of comparable size which are included in the set or in its complement.


In the case that the plane has a rational normal vector, by applying
the previous results to the set obtained identifying points under integer
translations that preserve the plane, we can construct infimal minimizer
sets which are periodic.


The periodic minimizers thus constructed satisfy a geometric property
(quite analogous to the property called Birkhoff in Aubry-Mather theory).
This property, roughly, says that the boundary of the infimal minimizer
can not cross its integer translates (this would contradict that the infimal
minimizer is contained in all the other minimizers).


Using the density estimates and the Birkhoff property, we can show that
the boundary of the infimal minimizer is contained in a band whose width
is independent of the direction of the plane.
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Using some mild regularity of the minimizers (e.g. that the BV norm of
the intersection with unit cubes is uniformly bounded) and the fact that
they are contained in bands of uniform width, we can pass to the limit of
a sequence of planes and, therefore, consider planes with a general normal
vector, establishing in this way the desired result, Theorem 4.1.


Some of these steps are somewhat easier for the case that the functional
considered is the area, but we hope that the slight complication is worth the
extra generality obtained.


We devote a short section to the most elementary results about the study
of the average value of the functional as a function of the direction of the
minimizer. This is analogous to quantities studied in Aubry-Mather theory
and in the theory of homogenization.


In a final section, we discuss some generalizations to other functionals
including terms with volume (so that the stationary points of the functional,
rather than than being minimal hypersurfaces satisfy the prescribed mean
curvature equations) as well as to manifolds other than Rd.


We have collected in an appendix some standard results in the theory of
Caccioppoli sets. This will serve to set our notation and a quick reference
for some of the results.


Another appendix collects the proof of some lemmas which we use and
which are, nevertheless, quite similar to results in the literature.


2. Elliptic integrands.


In this paper, we will be concerned with functionals defined on a certain
class A of closed Caccioppoli sets. We refer to Appendix 12 for the definition
of Caccioppoli sets, their boundary elements and other standard notations.


The functionals we will be considering are of the form:


J (E) =
∫
F (x, ν) d|ωE |(1)


where ν denotes the inner unit normal to the set E ( defined in (45)) dωE is
the boundary measure (defined in (44)) and where F : Rd×Rd → R


+ will be
a non-negative function that satisfies certain conditions H1-H5 formulated
below.


Given a closed set B, we will define:


JB =
∫
B
F (x, ν) d|ωE |


the restriction of the functional to a set.
Notice that to define the functional, it suffices to have F defined only


when ν ranges over the unit sphere. Nevertheless, it is more convenient
to consider F defined for all values of ν ∈ Rd so that it satisfies certain
convexity and homogeneity properties.


We will refer to functionals of the form (1) as boundary functionals. Later,
we will also called them elliptic integrals when they satisfy some extra prop-
erties.
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In this paper, we will be concerned with boundary functionals whose
defining function F satisfies the following properties:


H1 F is homogeneous of degree 1 in its second variable ν. That is F (x, aν) =
aF (x, ν) for all a ∈ R+, x ∈ Rd, ν ∈ Rd.


H2 F is convex in ν
H2’ For some c > 0, F − c|ν| is convex in ν
H3 F is continuous in x, ν.
H4 There are 0 < λ ≤ Λ such that


0 < λ ≤ F (x, ν) ≤ Λ ∀x ∈ Rd, |ν| = 1(2)


Later on, we will add another property that involves periodicity.


Remark 2.1. Functionals of the form (1) and satisfying hypothesis H1-H2
defined on currents (more general objects than boundaries of Caccioppoli
sets since they include objects of higher codimension and less regularity)
have been considered in geometric measure theory. See e.g. [Fed69] Ch. 5.


Indeed, many of the properties that we will use for Cacciopoli have ana-
logues for currents. In particular in [Fed69] Ch. 5 one can find compactness,
lower semicontinuity and existence of minimizers. A very useful dictionary
between properties of Cacciopoli sets and properties of currents can be found
in [Giu73].


We have found the theory of Caccioppoli sets well suited to our pur-
poses since the formulation of monotonicity under inclusion and compar-
isons, which play an important role in our argument are quite clear using
sets. They also allow us to avoid topological issues such as orientability, etc.


Remark 2.2. Clearly, property H2’ implies property H2. It is shown in
[Fed69] p. 517 that H2’ in the case we are considering is equivalent to the
property of ellipticity, which can be defined for currents of any dimension.


Most of this paper will use property H2, but the regularity theory requires
property H2’. We will refer to functionals satisfying H2 or H2’ as elliptic
integrands. In this paper, we will use mainly H2, so this will not lead
to confusion. In the literature, one finds the name semielliptic applied to
functionals that satisfy H2 and elliptic is reserved for H2’.


An important example of a functional of the form (1) and satisfying all
the assumptions is the perimeter (or area) itself which corresponds to taking
F (x, ν) = |ν|. This is valid even if we take any Riemannian metric in Rd


provided that in Definitions 12.1 and 12.9 we take as the divergence the one
corresponding to the metric we are considering.


The area with respect to an arbitrary metric can also be incorporated in
a functional of the form (1) satisfying hypotheses H1-H4 in two different
ways.
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One is to observe that if we define the divergence with respect to the
metric (and the volume form induced by the metric) and, therefore the ωE
perimeter, we can still consider F (x, ν) = |ν| to obtain the area formula.


Another, more elementary way is to observe that the area functional with
respect to a Riemannian metric can be written using the standard perimeter
and taking F (x, ν) = B(x)|G(x)ν| where B(x) is an scalar function and G(x)
is a positive definite linear function. Of course, in a general manifold, there
may not be a standard perimeter.


In the following, we will consider a formulation that encompasses both.
That is, we will assume that there is an underlying metric with respect to
which we define divergence – and therefore, perimeter – and also a functional
J of the form (1) with F satisfying H1-H4. This formulation is well suited
to the discussions of problems in a general manifold.


Remark 2.3. The functionals considered in [Mos86] and in [Ban89] do not
fall in the class of functionals considered here. They are integrals of the
form ∫


Rd−1


G(x, u(x), Du(x)) dx.


We can see that if we consider them as functionals on the surface (x, u(x)),
H2 and the lower bound in H4 are not satisfied, so that not all the results
of this paper apply directly – some do –. Nevertheless, we can treat them
with the methods of this paper.


With the same techniques (see also [CC95b]) we can construct minimizers
of periodic Landau-Ginzburg functionals


F (x,∇u) +W (x, u)


with plane-like level surfaces. (Here F (x,∇u) is uniformly elliptic and W is
a double –well potential.)


We plan to come back to these issues in future work.


The main goal of this paper is to consider situations in which functionals
of the form (1) satisfy some periodicity properties. So, we will assume:


H5 The functional is periodic: This amounts to
H5.1 The metric on R


d used to define the volume, divergence (and,
hence, perimeter, bounded variation etc.) is a C2 strictly positive
metric periodic under translations in Zd.


H5.2 F is periodic in Rd. That is:


F (x+ e, ν) = F (x, ν) ∀e ∈ Zd(3)


Of course, when considering problems in Rd, all the statements can be re-
ferred to the standard metric.
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3. Minimizers.


In this section we will precise different notions of minimizers that we
will be considering. The definitions are quite standard in the calculus of
variations, but we recall them since we need to use them more or less at the
same time.


Definition 3.1. Given closed sets S− ⊂ S+, we will denote by AS+,S− (but
omit the subindices S−, S+ if they are clear from the context) the class of
closed Caccioppoli sets E such that


AS+,S− = {E Caccioppoli |S− ⊂ E ⊂ S+}(4)


We will refer to the condition (4) as constraints.
We say that a Caccioppoli set E0 is an absolute minimizer of the func-


tional J in a class A when E0 ∈ A and


J (E0) = inf
E∈A
J (E).


We say that a Caccioppoli set E0 is a an unconstrained minimizer in the
class AS+,S− if it is a minimizer and we can find closed sets


R− ⊂ Int(S−) ⊂ S+ ⊂ Int(R+)


such that.


J (E0) = inf
E∈AS+,S−


J (E). = inf
E∈AR+,R−


J (E).


We say that a closed Caccioppoli set E ⊂ R
d is a Class A minimizer


when, for all compact sets B, we have that all L such that L ∪ (Rd − B) =
E − ∪(Rd −B) satisfy


JB(E) ≤ JB(L)


In our applications the sets R−, R+, S−, S+ will be half spaces of the
form {x ∈ Rd | x · γ ≤ λ}. Most of the time, the sets we will consider
will also satisfy some periodicity conditions. Hence, we will be dealing with
subsets of Td−1×R which contain Td−1× [∞, λ] and which are contained in
T
d−1 × [∞, λ′].
It will be useful to keep these examples in mind as a motivation for several


of our constructions, even if we mention them in greater generality.
We emphasize that in the definition above, there is no need to have S−, S+


compact. Nevertheless, we will sometimes require that S+−S− is compact.
Note also that we are not requiring that the sets are subsets of Rd, unless


specifically stated later. The examples above show it is quite useful to
consider these arguments in a manifold such as the torus.


Remark 3.2. The definition of unconstrained minimizer is what is needed
for the study of regularity. (If one makes sufficiently small local modifica-
tions, the functional cannot decrease.)


The definition of Class A requires that you cannot make compact (but
arbitrarily large) modifications that decrease the functional. This is a global
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property. It was introduced in the case of geodesics in [Mor24]. We have
taken the name from there, even if it appears under other names in other
places.


4. Statement of results


The main result of this paper is the following:


Theorem 4.1. Let J be a functional of the form (1) satisfying H1, H2,
H3, H4, H5. Assume J (E) <∞ for some E ∈ A.


Then, for every ω ∈ Rd we can find a class A minimizing set Eω in such
a way that:


A) For some M which is independent of ω and depends only on λ,Λ in
(2) and on d, we have:


∂Eω ⊂ {x ∈ Rd | |x · ω| ≤M |ω|}.
B) Eω is a class A minimizer for J .
C) ∂Eω is quasiperiodic.
D) ∂Eω/Zd is a lamination of Td ≡ Rd/Zd.
The meaning of quasiperiodic in C) above is that the sets can be approx-


imated in the local BV sense (See Definition 12.9.) by sets periodic under
integer translations.


A particular case of the result, using the functional F (x, ν) = |ν| as
explained above, is the existence of minimal surfaces for general periodic
Riemann metrics in Rd. In that case, the proofs of many of the technical
results can be simplified.


In case that J satisfies H2’, there is a rich regularity theory that allows
us to conclude that the minimizer is a more regular surface.


For this local part of the argument, we can use the regularity results of
standard geometric measure theory.


The regularity results for these problems consist in showing that: a) In a
neighborhood of any point of the reduced boundary, (see Definition 12.6,) the
map is a graph of an smooth function and that b) the Hausdorff dimension
of the singularities (the boundary minus the reduced boundary) is not too
big.


Once one proves that the functions mentioned in a) are Lipschitz, it is
possible to show that it satisfies the minimal surface equation and, then
use the recent developments on fully non-linear equations to obtain further
regularity.


Combining [SSA77], [SS82] which establish Lipschitz regularity (see also
[DS00]) and upper bounds on the dimension of the singular set [CW93b],
[CW93a], which develop a PDE theory starting from Lipschitz, one obtains:


Theorem 4.2. In the conditions of Theorem 4.1. If the functional, more-
over satisfies that H2’ and is C2, then, the d − 3 Hausdorff measure of the
singular set ∂E − ∂∗E is 0.
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If F is sufficiently C3 close to being a metric, then ∂E − ∂∗E has finite
d− 8 + δ Hausdorff measure.


If F is Cr r ≥ 3, then, in the neighborhood of any point of ∂∗E, ∂E is a
Cr−1 hypersurface.


A simplified version of the geometric measure theory arguments for min-
imal surfaces can be found in [Giu84], [CC93], [CC95a].


We refer to Section 11 for results that extend the Theorem 4.1 but are
proved by similar methods. We will show how one can incorporate volume
terms in the minimization problem and also prove results for other manifolds
which are not Rd. In Section 11.1, we will mention other regularity theories
for minimizers.


5. Existence of minimizers.


In this section, we will show that, under very general circumstances, func-
tionals of the type we are considering reach the minimum. In subsequent
sections, we will establish regularity and geometric properties of minimizers.


The key result to prove the existence of minimizers is a lower semi-
continuity of the functional in a topology that makes minimizing sequences
precompact. In the case that J is the area, this argument can be found in
[Giu84] p. 17.


Lemma 5.1. Let J be a functional of the form (1) and satisfying H1 H2
H3.


Let {Ej}j∈N be a sequence of Caccioppoli sets Ej
L1


−→ E. O an open
domain with Lipschitz boundary.


Then,


JO(E) ≤ lim inf JO(Ej)(5)


This result is an extension of the lower semi-continuity of the perimeter
for Caccioppoli sets.


It is quite similar to arguments in the literature. (See e.g. [Fed69] Theo-
rem 5.1.5 ) We present a proof in Section 13.1.


As an easy corollary of Lemma 5.1 we obtain


Lemma 5.2. Let A be a class of Caccioppoli sets such that it is closed under


L1 limits (i.e. Ej ∈ A, Ej
L1


−→ E ⇒ E ∈ A). Let J a functional as in (1)
satisfying H1,H2,H3,H4.


Then, there is a set E0 ∈ A such that J (E0) = infE∈A J (E).


An example of classes that are closed under L1 limits which play a role
in our applications is A = {E|S1 ⊂ E ⊂ S2} with S1, S2 closed sets of
non-empty interior, with S+ − S− compact.


Proof . The proof is quite standard of arguments in the calculus of variations.
Choose a sequence Ej such that limJ (Ej) = infE∈A J (E).
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We note that H4 implies that Per(E) ≤ (λ)−1J (E). Hence, the minimiz-
ing sequence, has uniformly bounded perimeter. By the compactness prop-


erties in Lemma 12.10 we can pass to a subsequence such that Ej
L1


−→ E0


for some E0.
By the closedness of A under L1 limits, we have E0 ∈ A and, by Lemma


5.1, we have that J (E0) ≤ infE∈A J (E).


We call attention to the fact that the previous proof does not use that
S−is compact. We use only that S+ − S− is compact.


One elementary property of minimizers is:


Proposition 5.3. If E is a minimizer in a class as above
If S−,S+ connected, then E is connected, S+ − Int(E) is connected.


Proof . One component E1 of E has to contain S−. This component will
be an admissible set. If there was another component of E, then, we would
have J (E1) < J (E) in contradiction with E being a minimizer.


The same argument works to show that S+ − Int(E) is connected.


6. The infimal minimizer.


The goal of this section is to show that among all the minimizers we
have constructed in the previous section there is a particularly interesting
one which is contained in all the others. As we will see later, this infimal
minimizer enjoys interesting geometric properties.


The main technical result of this section is:


Proposition 6.1. Let E,L be finite perimeter sets. Then


J (E) + J (L) ≥ J (E ∩ L) + J (E ∪ L)(6)


We postpone the proof of Proposition 6.1 till Subsection 13.2 but we
develop some consequences here.


As an easy corollary of Proposition 6.1, we have:


Proposition 6.2. Assume that, with the notations in (4)


• E is a minimizer in the class AS+,S−,
• L is a minimizer in the class AT+,T−,
• T− ⊂ S−, T+ ⊂ S+.


Then


• E ∪ L is a minimizer in the class AS+,S−
• E ∩ L is a minimizer in the class AT+,T−


In particular, if E and L are minimizers in a class AS+,S− then, we have
that E ∪ L,E ∩ L are minimizers in the same class.
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Proof . Note that E ∪ L ∈ AT+,T− , E ∩ L ∈ AS+,S− , Hence, since E,L are
minimizers J (E) ≤ J (E ∩ L), J (L) ≤ J (E ∪ L). Together with (6), we
obtain J (E) = J (E ∩ L), J (L) = J (E ∪ L).


We want to obtain two consequences of this result.


Lemma 6.3. Let A be a class of sets closed under countable intersection.
Then the sets


E∗,A =
⋂


E minimizer
E


E∗,A =
⋃


E minimizer
E


(7)


are minimizers in the class A.


We will refer to E∗ as the infimal minimizer and to E∗ as the maximal
minimizer. If the class A is of the form in (4), we will denote the sets as
E∗,S+,S− and, if there is no risk of confusion because the class can be inferred
from the context, we will omit it from the notation.


Note that E∗ (resp. E∗) can be characterized as a minimizer that is
contained (resp. contains) all the minimizers. They are clearly unique once
the class is specified.


Remark 6.4. One important consequence of the uniqueness of the infimal
minimizer is that it has all the symmetries of the functional and the class (i.e.
there is no symmetry breaking.) This can be seen because if the functional
and the class are invariant under a certain transformation T , T E∗,A is a
minimizer and should contain E∗,A.


Hence, when we consider a problems invariant under integer translations
in Rd, subject to periodicity conditions, the infimal minimizer will have the
period of the functional even if we consider it as defined in sets whose period
is a multiple of the original period.


This will be used in the proof of Theorem 4.1 ( See Proposition 8.9.) and
also have several other consequences (See Proposition 10.2.)


Proof . Since on the set of minimizers one can bound the perimeter uni-
formly, the set of minimizers is pre-compact in L1(Γ), (actually it is com-
pact since Lemma 5.1 shows it is L1 closed) which is separable and, there-
fore, it suffices to take a countable intersection. Note that if Ẽn =


⋂N
n En,


χẼn = ΠN
n χEn is a decreasing sequence and it converges in L1.


By (6), we have that J (E1 ∩ E2) ≤ J (E1) + J (E2) − J (E1 ∪ E2). If
J(E1) = J (E2) = J∗, noting that E1 ∪ E2 is an admissible set and that,
therefore, J (E1 ∪E2) ≥ J∗ ≡ infE∈A J (E), we have that J (E1 ∪E2) = J∗.
Therefore, any finite intersection of minimizers is also a minimizer.


Applying again Lemma 5.1, we obtain the the intersection is a minimizer.
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Another consequence is that the infimal and maximal minimizers in a
class have easy monotonicity properties with respect to the constraints.


Lemma 6.5. Let AS+,S−, AT+,T−, denote classes of Caccioppoli sets as in
(4).


If T− ⊂ S−, T+ ⊂ S+, then the infimal and maximal minimizers con-
structed in Lemma 6.3 satisfy:


E∗,S+,S− ⊃ E∗,T+,T−


E∗,S+,S− ⊃ E∗,T+,T−
(8)


Proof . Note that by Proposition 6.2, E∗,S+,S− ∩ E∗,T+,T− is a minimizer in
AT+,T− . Hence, it contains E∗,T+,T− . The other result is proved in the same
way.


7. Density properties of minimizers.


In this section we establish some properties of minimizers of elliptic inte-
grals We show that the minimizers have to be rather dense near points of
their boundary.


Heuristically, these estimates show that the minimizers do not have thin
needles, which is reasonable since needles are penalized by elliptic function-
als. Similar arguments are basic for the classical proofs of regularity of
minimizing currents (See e.g. [Fed69] p. 523.)


In our case, the main consequence that we will draw from density esti-
mates is that there are reasonably big sets both inside the set and in the
complement, which we will later use to establish other properties.


We denote by Br(x0) the ball centered in x with radius r.


Lemma 7.1. Let A be a class of Caccioppoli sets.
Let E0 be a minimizer of a functional J of the form (1) among the sets


in the class A. Assume that x ∈ ∂∗E0 and that
E0 −Bρ(x) ∈ A, 0 ≤ ρ ≤ r
(resp.E0 ∪Bρ(x) ∈ A, 0 ≤ ρ ≤ r)


(9)


Then there exists a constant C, depending only on λ,Λ defined in (2) and
in d such that:


|E0 ∩Br(x)| ≥ Crd


(resp.)|(Rd − E0) ∩ Br(x)| ≥ Crd)
(10)


Moreover,


|ωE0 |[(∂E0) ∩Br(x)] ≤ Crd−1.(11)


Remark 7.2. Condition (9) roughly says that the point x is away from the
conditions that define the class A. As an example that will be relevant later
if A = {E|S− ⊂ E ⊂ S+}, then all the points x ∈ (S+ − S−) such that
d(x, S−), d(x,Rd − S+) ≥ r satisfy assumption (9).
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Proof .
We will denote by C all constants that depend only on λ,Λ– defined in


(2) – and on d.
Since E0 is a minimizer in a class that satisfies (9), we have


J (E0) ≤ J (E0 −Br(x)).


That is,∫
(∂E0)∩Br(x)


F (x, ν)d|ωE | ≤
∫
E0∩∂(Br(x))


F (x, ν)d|ωBr(x)|(12)


By assumption H.4, (12) yields:


|ωE0 |[(∂E0) ∩Br(x)] ≤ (Λ/λ) · |ωBr(x)|(E0 ∩ ∂(Br(x)))


≤ (Λ/λ) · |ωBr(x)|(∂(Br(x)))


= Crd−1


(13)


The last bound establishes (11).
By the isoperimetric inequality, using the first inequality in (13), we have:


|E0 ∩Br(x)| ≤ Cd Per(E0 ∩Br(x))d/d−1


≤ Cd
[
|ωE0 |((∂E0) ∩Br(x)) + |ωBr(x)|(E0 ∩ ∂(Br(x))


]d/(d−1)


≤ Cd(1 + Λ/λ)d/(d−1) |ωBr(x)|(E0 ∩ ∂(Br(x)))d/(d−1)


(14)


We denote by V (r) = |E0 ∩ Br(x)|, We see that V is clearly a non-
decreasing function and, therefore differentiable almost everywhere. More-
over, by the coarea formula for Bounded Variation functions (see [EG92] p.
185), we have


V ′(r) = |ωBr(x)|(∂E0 ∩ ∂(Br(x))).(15)


We also note that V (r) is non-negative. Indeed, by Definition 12.6 we see
that V (r) > 0 for r > 0.


Hence for r > 0, (14) reads:


V ′(r)V −
d−1
d (r) ≥ C(16)


where C = Cd(1 + Λ/λ)d/(d−1).
Integrating (16) leads to (10).
The result for the complement is proved in the same way.


Now, we prove that given a ball centered at a point of the reduced bound-
ary and which is contained inside the constraints, the minimizer has to ex-
clude some balls inside it.


Lemma 7.3. There exists a 0 < δ depending only on λ,Λ, d such that the
following happens.


Let A be a class of sets, E0 be a minimizer of J as in (1).
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Let x0 ∈ ∂∗E0 and assume that the class A is such that, for some r > 0,
1/2 > δ0 > 0, we have:


E ∪Bρ(x) and E −Bρ(x) ∈ A whenever E ∈ A, x ∈ Br(x0), ρ ≤ δ0r
(17)


Then, we can find x1, x2 ∈ Br(x) such that


Bδr(x1) ⊂ E0 ∩Bδr(x0)(18)
Bδr(x2) ⊂ (Rd − E0) ∩Bδr(x0)(19)


The meaning of condition (17) is very similar to that of (9). See Re-
mark 7.2. Roughly, we want that the ball Br(x0) is away from the con-
straints.


Proof . Given the hypothesis (17), we can apply Lemma 7.1 for all points
x ∈ ∂∗E0.


For all x ∈ ∂∗E0 we have from the isoperimetric inequality (since both
E ∩Bρ and (Rd − E) ∩Bρ have positive density)


|ωE |[∂E ∩Bδr(x)] ≥ C(δr)d−1.(20)


Choose δ0 > δ > 0.
By Vitali’s theorem, we can extract a countable sequence {yk}k∈N ⊂ ∂∗E0


of centers in such a way that {B(1/5)δr(yk)}k∈N is a disjoint collection of balls
and that ∂∗E0 ⊂ ∪k∈NBδr(yk).


By Lemma 7.1, we have


|ωE0 |[∂∗E0 ∩B(1/5)δr(yk)] ≥ C(δr)d−1(21)


Since the perimeter of E0 is finite, we deduce that the collection of balls is
finite. Indeed, taking into account that by (11) we have that |ωE0 | ≤ Crd−1


we have that the number of the balls can be bounded by Cδ−(d−1).
Therefore, we have shown that Cδ−d−1 balls Bδr(yk) cover ∂E0 ∩Br(x).
On the other hand, we can cover Br(x) with a collection B of Cδ−d balls


of radius δr in such a way that a point does not belong to more than 2d of
them.


Since one of the balls Bδr(yk) cannot intersect more than 4d of these balls,
we obtain that out of the collection B only Cδ−(d−1) intersect ∂∗E0.


Since |E0 ∩ Br(x)| ≥ Crd, we obtain that at least one of the balls in B
has to be contained in E0 − ∂∗E0.


Since we can assume that ∂∗E0 is dense in ∂E0 (See Lemma :12.8), the
desired result (18) is established.


To prove (19) a similar argument works using Rd − E0 in place of E0.
This finishes the proof of Lemma 7.3.


8. Periodic minimizers.


So far, none of our results have involved the assumption on periodicity
for the functional and the underlying metric. In this section, we will start
using this assumption.
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The first goal will be to construct unconstrained minimizers when ω is
a rational vector. Nevertheless, we will prove enough uniform bounds that
will allow us to pass to the limit of irrational minimizes.


In this section, we will consider ω ∈ (1/N)Zd with N ∈ N fixed.
Given a number L we denote by Πω,L the plane


Πω,L ≡ {x ∈ Rd |x · ω = L}.


Given an interval M = [M−,M+], we denote by Γω,M the slab


Γω,M = Γω,[M−,M+] = {x ∈ Rd | x · ω ∈M}(22)


We will consider the class A defined by


AM+ = {E | Γω,[−∞,0] ⊂ E ⊂ Γω,[−∞,M
+], TkE = E ∀k ∈ NZd, ω·k = 0}


It will be quite important that, when ω is rational, we can recover com-
pactness by considering an identification of the space.


Since the sets in the class A are periodic under integer translations we
can identify them with sets in the manifold


Γω,[−∞,M
+]/ ≈(23)


where ≈ is the equivalence relation defined by


x ≈ y ⇐⇒ x = y + k for somek ∈ Zd, ω · k = 0.(24)


The manifold (23) clearly is [−∞,M ]× Td−1.
Pictorially, the identification ≈ has the effect of gluing vertical walls


(with some translation applied to parallel walls) except in the direction of
ω. When we supplement these periodic directions with constraints on the
other direction, we obtain compact sets and all the theory developed so far
applies.


The set (S+ − S−)/ ≈ is just Td−1 × [0.M+] and, hence compact.
Hence, we can apply the arguments developed before and produce an


infimal minimizer, which we will denote by Eω,M+
∗ .


It will turn out that the set Eω claimed in Theorem 4.1 will be Eω,M+
∗ for


sufficiently large M+. This will become apparent after we develop enough
properties of these sets.


In Lemmas 7.1 and 7.3 we have established local (or semilocal) properties
Now, we prove a geometric property that controls the global behavior of the
set. This property will also play an important role in the proof of the result
for irrational frequencies.


Proposition 8.1. Let k ∈ Zd.
If k · ω ≤ 0, we have TkEω,M+


∗ ⊂ Eω,M+
∗ .


If k · ω ≥ 0, we have TkEω,M+
∗ ⊂ Eω,M+


∗ .







16 L. A. Caffarelli, R. de la Llave


Remark 8.2. This property is a generalization of the so called Birkhoff
property in Aubry-Mather theory. (See [Mos86] for a more detailed compar-
ison of similar properties for graphs and the Birkhoff property in dynamical
systems.)


Proof .
Note that TkEω,M+


∗ should be the infimal minimizer in the class TkAM+ .
Consider first the case ω · k ≤ 0. Then, we have(


TkΓω,[−∞,l]/ ≈
)


=
(


Γω,[−∞,l+k·ω]/ ≈
)
⊂
(


Γω,[−∞,l]/ ≈
)


where ≈ was defined in (24).
Hence, applying the above with l = 0,M+ we see that we can verify the


hypothesis of Proposition 6.2 and, therefore that TkEω,M+ ⊂ Eω,M+ . Which
is what we wanted to show in this case.


The proof for the case ω · k ≥ 0 is identical.


Theorem 4.1 for rational ω follows easily from


Lemma 8.3. In the conditions of Theorem 4.1. Let ω be rational.
Let L = 3


√
d/δ + 1 where δ was introduced in Lemma 7.3. Then for all


a > 0.


E
ω,L|ω|+a
∗ ⊂ {x|x · (ω/|ω|) ≤ L}(25)


In particular,


E
ω,L|ω|+a
∗ = E


ω,L|ω|
∗ .(26)


That is, all the infimal minimizers are contained in a slab of width L which
is independent of ω and only depends on the properties of the minimizer.
In particular, when we take the upper constraint high enough it ceases to
have any effect.


Out of that, it will be easy to show that Eω,L|ω|∗ is unconstrained and that
it is a class A minimizer.


We will prove Lemma 8.3 and that the set is a class A minimizer in the
rest of this Section.


We start by noting that:


Proposition 8.4. When M+ >
√
d|ω| There is no slab Γω,[a,a+


√
d|ω|] for


a > 0 contained in E
ω,M+
∗ .


Proof . Otherwise, we could find an integer k such that 0 < ω · k <
√
d and


then consider the set


Ẽ ≡ T−k(Eω,m+
∗ ∩ Γω,[a,a+k·ω]) ∪ (Eω,M+


∗ ∩ Γω,[0,a])(27)
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(Pictorially, the set Ẽ can be described as eliminating the slab Γω,[a,a+k·ω],
hence dividing Ẽ into two pieces. Then, performing an integer translation
of one of the pieces so that it fits with the other one. We see that if there is
an slab of width


√
d it has to contain an integer and it can be cut out.)


Since ∂Ẽ −Πω
0 = ∂E


ω,M+
∗ −Πω


0 , we see that


J (Ẽ) = J (Eω∗ )


and that


dist(∂Ẽ,Πω
0 ) = dist(∂Eω∗ ,Π


ω
0 )− k · ω < dist(∂Eω∗ ,Π


ω
0 ).


These two properties are a contradiction with the fact that Eω∗ is a minimizer
that contains all the other minimizers.


An easy consequence of the Birkhoff property (introduced in Proposition
8.1) is:


Proposition 8.5. If Rd−Eω∗ contains a cube of side 2, then it contains an
slab of width 1 that intersects the cube.


Note that by the Birkhoff property, we have that if C ⊂ Rd − Eω∗ then⋃
k∈Zd,ω·k≤0


TkC ⊂ Rd − Eω∗


The set in the right always contains an slab of width 1.


Propositions 8.4, 8.5 together with Lemma 7.3 will allow us to conclude
very quickly the proof of Proposition 8.3.


By Proposition 8.4 we conclude that we have a point x0 ∈ ∂∗Eω,M+
∗ which


is at a distance smaller than
√
d from Πω


0 – the lower constraint.
Suppose that E intersects the plane x · ω/|ω| = 2


√
d/δ. Then, there are


points x0 ∈ ∂Eω∗ as close as we wish to that plane.
We can apply Lemma 7.3 for a ball of radius 2


√
d/δ centered in x0. It


would follow that a cube of size 2 is contained in Rd − Eω ∩ Γ−∞,3
√
d/|ω|


From Proposition 8.5 and the fact thatEω∗ is connected, we obtain Lemma 8.3.


Remark 8.6. There is an alternative to the last part of the argument in
the proof above which does not use the fact that Eω∗ is connected.


Even if the fact that Eω∗ is connected is interesting in its own right, ar-
guments for the proof of Lemma 8.3 which do not use that fact are useful.
Indeed, in Section 11.1 we will consider a situation where connectedness
does not work.


Once that we have that there is slab Γω,[a,b] of width
√
d contained in


the complement of Eω∗ , we can consider the two sets E1 = Eω∗ ∩ Γω,[−∞,b]


E2 = Eω∗ ∩ Γω,[b,∞]. Note that J (E) = J (E1) + J (E2).
We can choose k ∈ Zd in such a way that k · ω < 0 and TkE2 ⊂ Γω,(a,∞].
We have J (E2) = J (Tk(E2)) and, hence, E1 ∪ TkE2 is a minimizer.
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Then, E1 ∪ (E2 ∩ TkE2) will be a minimizer by Proposition 6.2.
Since infx∈TkE2 x ·ω < infx∈E2 x ·ω we reach a contradiction with the fact


that Eω∗ was contained in all the minimizers.


Remark 8.7. We call attention that this proof only requires the validity of
Lemma 7.3 for radii up to L, which is a number that depends only on the
variational problem and on the manifold.


Similarly, note that the meaning of the
√
d appearing in the expression


of the L is just the diameter of the fundamental domain of Rd/Td, Rd being
the manifold that we are considering and Td being the symmetry group of
the variational problem.


Both parts of this remark will play a role in Section 11.


Now, we turn our attention to proving the the set thus produced is a class
A minimizer.


Since we have already shown that the upper limit is irrelevant, we will
suppress it from the notation and denote the set we have produced as Eω∗ .


Proposition 8.8. The set Eω∗ is an unconstrained minimizer.


Proof .
Proposition 8.3 establishes that the constraint that the set has to be


contained in a semiplane Γω,(−∞,M+] irrelevant for large enough M+.
Hence, we only have to worry about showing that the constraint requiring


that the set is contained in Γω,(−∞,0] is irrelevant.
Given any positive a, we can arrange to find k ∈ Zd such that Γω,(−∞,a] ⊂


TkEω∗ .
Since the functional and the class are invariant under integer translations,


TkẼ is a minimizer. It is clearly unconstrained. This shows that E is
unconstrained.


Proposition 8.9. The set Eω∗ is a class A minimizer.


Proof . Given a compact perturbation, we can consider Eω∗ as periodic with
a period larger than the diameter of the perturbation and as a minimizer
among the class of sets contained in an slab larger than the size of the
perturbation.


By the uniqueness of the infimal minimizer, (see Remark 6.4) Eω∗ will still
be the infimal minimizer among the sets with this large period.


Hence, J will be smaller when restricted to the larger period.


If we put together Lemma 8.3 and Proposition 8.9, we have established
Theorem 4.1 for the case of ω ∈ Qd.


Note that, we have also established some geometric properties such as
Proposition 8.1.
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Remark 8.10. There is an alternative argument for the proof of proposi-
tion 8.8 which avoids the use of balls of size bigger than 3


√
d and which is


clearer in the geometric situations considered in Section 11.2.
We want to show that if M+ is large enough, then Eω,M+


∗ is unconstrained.
We assume without loss of generality than N is a multiple of 3.


By the density properties, we note that if there is a cube C of side 2 that
contains a point in the boundary of Eω,M+


∗ , then a cube C̃ of side 3 with the
same center will satisfy


JC̃(E
ω,M+
∗ ) ≥ α > 0(28)


We also note that, comparing the functional evaluated in the minimum
with that evaluated in a plane, we have:


JC̃(E
ω,M+
∗ ) ≤ JC̃(Γ


ω,(−∞,0]) ≤ ABω(29)


where A is a number that depends only on the metric and Bω is the number
of cubes of side 3 that intersect the plane k · ω = 0.


By comparing the inequalities, (28) and (29), we obtain that Eω,M+
∗ does


not intesect more than (A/α)Bω cubes of size 2 so that their dilations of
size 3 do not intersect.


On the other hand, we observe that the set Γω,[0,M+] contains M+Bω
disjoint cubes {C̃i} of size 3.


Hence, we obtain that there is at least one Ci ⊂ Γω,[0,M+] cube of side 2
(with the same center as one of the cubes C̃i above.)


Using the Birkhoff property, we can conclude that there is a slab that
avoids the boundary and the argument proceeds as before.


9. The limit of irrational frequencies.


The fact that the minimizers we have constructed are contained in strips
of uniform width independent of the frequency makes it possible to construct
minimizers along any plane.


Given a frequency ω ∈ Rd, we can construct a sequence {ωn}n∈N ⊂ Qd
and such that ωn → ω.


Let Eωn∗ denote the minimizers we have constructed in the previous sec-
tion.


Note that, by (11) and the bounds in (2), we have that for any ball B of
radius 1 we have an upper bound


Per(Eωn∗ ∩B) ≤ C


with a C which depends only on the functional and is independent on the
minimizer.


Hence, given any ball BR(0) using Lemma 12.10, we can extract a subse-
quence so that Eωn∗ ∩ BR(0) converges in L1 to a limit Eω∗ . By applying a


diagonal trick, we can obtain that Eωn∗
L1


loc−−→ Eω∗ .
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Note that, in particular, we have:


Eω∗ ⊂ {x ∈ Rd | 0 ≤ x · (ω/|ω|) ≤ L}


As in the rational case, we define the set Eω = Eω∗ ∪ Γω,(−∞,0]


Now, we want to argue that Eω is a class A minimizer. The following
argument is, indeed, quite standard in the theory of class A minimizers it
already appears in [Mor24].


Given any set L, and any ball Br(x) we have: JBr(x)(Eωn) ≤ JBr(x)(L).


Since Eωn ∩ Br(x) L1


−→ Eω ∩ Br(x), applying Lemma 5.1 we obtain that
JBr(x)(Eω) ≤ JBr(x)(L).


This shows that the resulting set is a Class A minimizer and, hence,
concludes the proof of Theorem 4.1.


10. The averaged functional


In analogy with the average action of Aubry-Mather theory (See [Mat90])
or with the stable norm of geodesics on surfaces or of geometric measure
theory, (See also [Sen95] for a similar concept for the functionals in [Mos86].)
we introduce:


J̄ (ω) = lim
L→∞


(2L)d−1J[−L,L]d(E
ω), |ω| = 1(30)


and extend by homogeneity of degree 1.


J̄ (ω) = |ω|J̄ (ω)


In this paper, we will consider just the most elementary properties.


Proposition 10.1. The limit in (30) exits.


Proof . It is a very standard subadditivity argument.
For large enough L ∈ N, we have


J[−2L,2L]d(E
ω) ≤ 2d−1J[−L,L]d(E


ω) + CLd−2


This is because if we take 2d−1 translates of Eω ∩ [−L,L]d (recall that these
sets are contained in slabs, which we assume have width much smaller than
L.), we can form a compact perturbation of Eω ∩ [−2L, 2L]d. The boundary
of this compact perturbation will consist on the boundaries of the translates
of Eω and, perhaps some components in the faces of the translated cubes
intersected with the slab where all the set is contained. Since we can bound
the area of the intersection of the faces with the slab by CLd−2 we see
that the desired inequality is a consequence of the fact that the set Eω is
Class A and, hence, the functional on it, is smaller than that of a compact
perturbation.


We also have


2d−1J[−L,L]d(E
ω) ≤ J[−2L,2L]d(E


ω) + CLd−2
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The reason is that, we can consider translations of Eω restricted to [−L,L]d


as compact perturbations of Eω, the functional again has to decrease.
Therefore, (2nL)−(d−1)J[−2nL,2nL]d converges.
Using that J[−L,L]d(Eω) is increasing with L, we obtain that the limit


exits along any sequence.


Of course, the limit is reached after a finite number of duplications for ra-
tional ω. Notice that the argument above shows that it is reached uniformly
for all ω of modulus 1.


Lemma 10.2. The function J̄ is convex.


Proof . It suffices to show that


J̄ ((ω1 + ω2)/2) ≤ (1/2)J̄ (ω1) + (1/2)J̄ (ω2) .


which, given the homogeneity is the same


J̄ (ω1 + ω2) ≤ J̄ (ω1) + J̄ (ω2)(31)


In case that ω1, ω2 are parallel, the proof is trivial, so we will assume they
are not.


We can assume without loss of generality and just for the sake of simplify-
ing the typography that performing a rotation we have: ω1 = (α1, β1, . . . , 0),
ω2 = (α2, β2, 0, . . . , 0) Denote by ω3 = (ω1 + ω2)/2. Denote by γ the small-
est angle between ω1, ω2, ω3. We can always assume that α1 + α2 = 0,
β1 + β2 > 0 so that ω3 is the y axis.


The idea of the proof is that we basically construct a triangle with the
planes that contain ωi (or a large enough multiple) and cut them with planes
in the perpendicular direction. The boundaries of the sets Eωi are within
a bounded distance (independent of the multiple.) of these planes. We can
construct a compact perturbation of E3 by joining the boundaries of E1


and E2. Given the fact that these sets are contained in a uniform slab,
we see that, up to an small error, the functional will be the sum of those
corresponding to E1 and E2.


We will give some more details in the case when α1 > 0, β1 < 0, β2 ≤ 0.
α1 < |β1|. Similar arguments will work for all the other cases,


Given ε > 0 we choose L0 so that the of |J̄ (ωi)−Ld−1J[−L,L]dE
(ωi)| ≤ ε/6


for all L > L0. We will also choose L0 so small that 3M(|β1|+ |β2|)/γL0 ≤
ε/2 where M is the constant appearing in Theorem 4.1.


We consider the set


E ≡ (Eω3 ∪ Eω1) ∩ TkEω2
where k is the vector with integer components closest to L(β1,−α1).


given the fact that the boundaries of the sets are contained in strips of
width not more than M and with slopes −βi/αi, we have:


For x < −M/γ, the set E agrees with Eω3 . For M/γ < x < L|β1| −M/γ
it agrees with Eω1 . For L|β1|+M/γ < x < L|β1|+ |β2| −M/γ we see that
E agrees with Eω2 . Finally, for L|β1|+ |β2|+M/γ < x, E agrees with Eω3 .
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Figure 1. Illustration of the argument to show that J̄ is convex


We note that E agrees with Eω3 outside a compact set. Hence, because
Eω3 is a Class A minimizer, we have:


J[0,(|β1|+|β2|)L]d(E) ≤ J[0,(|β1|+|β2|)L]d(E
ω3)


We also have that


J[0,(|β1|+|β2|)L]d(E) = J[0,|β1|L]d(E
ω1) + J[0,|β2|L]d(E


ω2) +R


where R ≤ 3ML(|β1|+ |β2|)/γ.
Using the way that we had to choose ε, we see that:


J̄ (ω1) + J̄ (ω2) + ε ≤ J̄ (ω1 + ω2)


Since ε was arbitrary, we obtain the desired result in this case.
The other cases are proved with the same idea. The only thing that


changes is the explicit description of the regions where the set agrees with
one of the elementary ones.


From this, it is not difficult to obtain:


Proposition 10.3. The function J̄ is Lipschitz.


Proof . By (31) we have


J̄ (ω + ∆) ≤ J̄ (ω) + J̄ (∆)


J̄ (ω) ≤ J̄ (ω + ∆) + J̄ (−∆)
(32)


So that the desired result follows from |J̄ (∆)| ≤ C|∆| or, equivalently
that when, |ω| = 1, we have: J̄ (ω) ≤ C.
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This follows from the fact that, if we take as a test set a semi-plane Πω
−


, the perimeter when restricted to a cube of size L is (2L)d−1. By hypoth-
esis H4, we have that J[−L,L]d(Πω


−) ≤ Λ Per(Πω
−). Since J[−L,L]d(Eω∗ ) ≤


J[−L,L]d(Πω
−) we obtain the desired result.


The papers [Mat90], [Sen95] give characterizations of the situations of the
points of differentiability of the average action defined in their context. In
analogy with these results, we conjecture:


Conjecture 10.4. The function J̄ (ω) is differentiable at a point ω0 if and
only if there is a foliation of minimizers in Td.


11. Some generalizations of the above results


11.1. Volume terms in the functional. The same methods we have used
can be used to study functionals of the form


V(E) = J (E)−H(E); H(E) =
∫
E
h(x) dx(33)


where h : Rd → R


The critical points of (33) satisfy that the mean curvature of the sur-
face passing through the point x is given by the function h(x). Hence the
equilibrium equation is often called the prescribed mean curvature problem.


The same strategy of proof we used for the proof of Theorem 4.1 works
to prove an analogous result for the functionals V, provided that:
H6) The volume term in the functional satisfies the following properties:


H6.1) h is continuous
H6.2) h(x+ k) = h(x)∀k ∈ Zd.
H6.3)


∫
Td
h(x) dx = 0


H6.4) ||h||C0 is sufficiently small depending on the properties of the met-
ric and of F .


Remark 11.1. We note that some version of hypothesis H6.4 is to be ex-
pected. If h had a region when it was large and positive – say constant –
there could be solutions to the mean curvature equations that are spheres.
This would make it impossible to have minimizers of the type that we have
discussed.


Note that, since the set is, in the large a plane, the effective curvature at
large scales is zero. It is quite remarkable that the surface arranges itself so
that it picks the zero average prescribed by H6.3.


We just discuss the easy modifications to the arguments presented so far,
which are needed to incorporate functionals of the form (33)


Note that the functionalH(E) satisfies that if Ej
L1


−→ E, then, limH(Ej) =
H(E). Since we also have thatH(E) bounded implies bounds on the perime-
ter, the argument for the existence of minimizers is identical (This remark
can also be found in [Giu84] p. 19)
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We also have that H(E) +H(L) = H(E ∪L) +H(E ∩L). Therefore, the
argument for the existence or infimal minimizers works also.


Using that
∫
h(x) dx = 0, we have that H(TkE) = H(E) for all sets E


and for all k ∈ Zd.
The only part of the argument that requires some modification is the


density estimates (Lemma 7.1). The version of this Lemma for functionals
of the form (33) that will will establish below shows that, provided that
||h||C0 is small enough, we can have Lemma 7.1 for all the radius up to an
arbitrarily large value.


Lemma 11.2. Let A be a class of Caccioppoli sets.
Let E0 be a minimizer of a functional V of the form (33) among the sets


in the class A. Assume that x ∈ ∂∗E0 and that


E0 ∩Bρ(x) ∈ A, 0 ≤ ρ ≤ r(34)


Then there exists a constant C, depending only on λ,Λ defined in (2) and
in d such that:


|E0 ∩Br(x)| ≥ Crd


|(Rd − E0) ∩Br(x)| ≥ Crd.
(35)


provided that r ≤ r0 where r0 depends on the metric and on ||h||C0.
We can take r0 ≥ C||h||−1/d


C0 .


Proof . Because E0 is a minimizer, comparing with E0 −Br(x0) we have:


∫
(∂E0)∩Br(x)


F (x, ν)d|ωE | ≤
∫
E0∩∂(Br(x))


F (x, ν)d|ωBr(x)| −
∫
Br(x0)


g(x)dx


(36)


Hence, proceeding as in the proof of Lemma 7.1 and using the obvious
bound −


∫
Br(x0) g(x)dx ≤ C||h||C0rd, we have that V (r) = |E ∪ Br(x0)|


satisfies:


V (r) ≤ CV ′(r)d/(d−1) + C||h||C0rd(37)


which leads to:


V (r) + C||h||C0rd ≥ Crd(38)


Once we have Lemma 11.2, we can prove in the same way Lemma 7.3
with the extra assumption that the original ball has r ≤ r0. As observed in
Remark 8.7, this is all that is needed for the proof of an analogue of Theorem
4.1 in this case. We also note that the Birkhoff property goes through
because it only depends on monotonicity properties of the infimal minimizers
with respect to the constraints and on the invariance under translations.


This allows us to prove that there is a plane at a distance from the lower
constraint that only depends on the properties of the functional.
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Using the alternative argument in Remark 8.6, we can conclude the proof
of an analogue of 8.3.


Regularity results for functionals including volume terms (or even more
general terms) have been obtained in [Alm76] which obtained in our case
that, outside of singularities the minimizers are C1+1/2. A simplification
of the proof – with slightly weaker regularity is in [Bom82]. Yet another
approach to obtaining Lipschitz regularity is in [DS96], [DS98] [DS00].


Again we remark that once one obtains the the boundary is Lipschitz one
can obtain further regularity using PDE theory. (e.g [CW93b] [CW93a].)


Also, we remark that the same estimates for the dimension of the singular
set hold. The singular set is studied by blow up arguments and the volume
terms disappear.


Note that if E is a minimizer for V, then, for all L,


J (E) ≤ J (L) +H(L)−H(E).


Therefore, we can bound


H(L)−H(E) ≤ C|E − L| ≤ C Per(E∆L)d/(d−1)


≤ CJ (E∆L)d/(d−1),
(39)


(where by E∆L we mean the difference of the two sets E∆L = (E − L) ∪
(L− E) ).


In particular, we have for a minimizer of V


J (E) ≤ J (L) + 1/2J (E∆L),


which is the hypothesis used by [DS98] or, we have that when E∆L ⊂ Br(x)


J (E) ≤ J (L)(1 + Crα)J (E∆L))


which is the form of the hypothesis used in [Alm76], [Bom82].


11.2. Generalization to other manifolds. In this section, we discuss
briefly how the same arguments that we presented here can be used to
obtain very similar results for other manifolds that Rd and Td. In particular
manifolds with a non-abelian fundamental group, which is a question asked
in [Mos86].


The main task is to find a generalization of periodicity to other manifolds
in such a way that the ingredients of the proof presented here go through.
Such a generalization was constructed in [CdlL98] and also used in [dlL00]
to obtain results for the variational problems considered in [Mos86] and
[Ban89] in manifolds with non-abelian group.


We recall that:


Definition 11.3. Given a (discrete, finitely generated) group G, a cocycle
is a function ϕ : G → R such that for any g, g′ ∈ G, we have ϕ(gg′) =
ϕ(g) + ϕ(g).


We say that a cocycle ϕ is rational when we can find a discrete index
subgroup H such that ϕ(H) ⊂ Z.
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We say that G is residually finite when given any g ∈ G , we can find a
finite index H such that g /∈ G.


In the example G = Z
d, which indeed is residually finite, the cocycles are


functions of the form ϕω(g) = ω · g.
The following easy result can be found in [CdlL98]


Proposition 11.4. If G is residually finite, rational cocycles are dense in
the set of all cocycles.


It is also well known that the fundamental group of many manifolds (e.g.
all manifolds which admit a metric of negative curvature are residually finite.
See [CZ93].)


Given a compact, boundaryless Riemannian manifold L, consider L̃ its
universal cover. On L̃ we can define an action of the fundamental group
Π1(L) by deck transformations (which we will denote by right multiplica-
tion). Obviously L = L̃/Π1(L).


Given a cocycle ϕ on Π1(L) we can find a harmonic function – which we
will denote by ϕ̃ – in such a way that


ϕ̃(xg) = ϕ̃(x) + ϕ(g)(40)


This can be achieved by minimizing the Dirichlet integral among the
functions satisfying (40) for a set of generators of Π1(L)


Note that if ϕn → ϕ on the generators of Π1(L), then, ϕ̃n → ϕ̃ uniformly
on compact sets.


We want to show that if we assume that if:
• Π1(L) is residually finite.
• The balls on the universal cover centered in any point and of diameter
Cd where d is the diameter of the fundamental domain and C is a fixed
number (which may depend on λ,Λ in (2)) are well defined and there
is an isoperimetric inequality for sets in it.


then, we can have a generalization of Theorem 4.1 in which the role of Rd


is taken by L̃, the role of integer translations is taken by the Π1(L) action
and the role of the planes is played by the level sets of a cocycle.


The above assumptions are satisfied by the universal cover of a manifold
of negative curvature.


We will present two arguments for the proof of this result. For the second
one (analogue to that in Remark 8.10), we just need to take C = 3.


First note that Lemma 7.3 is local. Even if it assumes that Br(x) ≈ Crd,
Per(Br(x)) ≈ Crd−1 – both of which could be false in a hyperbolic manifold
for large r – only needs it for an r of the order of the diameter of the manifold
Λ/λ (or of order 3).


If ϕ is a rational cocycle on Π1(L) and H is a subgroup of finite index of
Pi1(L) such that Π1(H) ⊂ Z, we denote by H̃ = {h ∈ H |ϕ(h) = 0}. Note
that H̃ is a normal subgroup and that:


L = (L̃/H̃)/(H/H̃)(41)
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Since L is compact, this means that if we define Γϕ,[0,M ] = {x ∈ L̃ |0 ≤
ϕ(x) ≤M} then Γϕ,[0,M ]/H̃ is compact.


Again we can define Eϕ,M∗ infimal minimizer in the class of sets


A = {E|hE = E ∀h ∈ H̃,Γϕ,[0,σ] ⊂ E ⊂ Γϕ,[0,M ]}(42)


Then, we can define the set Eϕ∗ = ∪MEϕ,M∗ This set is Birkhoff in the
sense that gEϕ∗ ⊂ Eϕ∗ or gEϕ∗ ⊃ Eϕ∗ depending on whether ϕ(g) ≥ 0 or
ϕ(g) ≤ 0.


The same argument that we used before can be used to show that Eϕ,M∗ =
Eϕ,M∗ for some M independent of the cocycle.


We argue that at a finite distance independent of ϕ, either we can find a
set that does not contain any point in the boundary of Eϕ,M∗ or, appealing
to Lemma 7.3 we can find a ball which covers the fundamental domain
contained in the complement of the minimizer. In the first case, we are
done. In the second, we can use the Birkhoff property to conclude that we
also have a finite slab contained on the infimal minimizer, which again can
be shown to be a contradiction with the fact that it is the infimal minimizer.


The argument given in Remark 8.10 also works in this context and is per-
haps clearer. One just needs to substitute cubes for fundamental domains.
Cubes of side 2 are substituted by the union of the fundamental domain
and the action of the generators of Π1 and cubes of side 3 is the union of
the fundamental domain, the action of the generators and the action of the
product of two generators.


If we still use the names cubes for the object above, the argument goes
word by word. Note that the density estimates show that if there is an
intersection of a cube of size 2 with the boundary of the minimizer, then,
the cube of size 3 with the same center gives a contribution to the functional
bounded from below.


On the other hand, taking into account that the set H̃ is a normal sub-
group, then the set Γϕ,[0,M ] contains M#H̃ cubes and MC#H̃ cubes of side
3, where C is a constant that depends only on the relations of length less
than three.


If we take the level set of the cocycle, we obtain as before an upper bound
that is also of the form B#H̃ where B depends only on the metric.


As before, by comparing the upper and the lower bound, we conclude
that there is a cube of side 2 that does not intersect the boundary of the
minimizer and, therefore, using the Birkhoff property that the minimizer is
unconstrained.


We note that the theory developed in [dlL00] for elliptic differential opera-
tors considers the minimization of functionals defined on functions u : M →
R. The graph of these functions should be considered similar to our surfaces.
If we want to compare the geometric assumptions of both results we note
that M × T1 = L. Hence, Π1(L) = Π1(M) × Z. So that the geometric as-
sumptions of [dlL00] are stronger than the assumptions here. On the other
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hand, if we consider the functionals in [dlL00] as functionals of the graph,
they fail to satisfy H4, H2’. Formulating the results of [dlL00] on pseudo-
differential operators or on subelliptic operators in terms of functionals on
Caccioppoli sets is not so clear.


Of course, the generalization of Theorem 4.1 to other manifolds that Rd


can be done at the same time as the generalization of adding a volume term.


12. Appendix: Summary of the theory of finite perimeter sets.


In this appendix, we collect some of the results that we will use from the
theory of sets of finite perimeter (also called Caccioppoli sets.


All of the notions and results stated in this section are in the literature.
Our main references are [Giu84], and [DGCP72]. We have also found useful
[EG92], [MM84], [HS86]. We refer to these places for the proofs and for
references to the original literature.


Definition 12.1. We say that a Borel set E ⊂ Rd is a Caccioppoli set (or
a set with finite perimeter) when


a) For every Ω ⊂ Rd open


Per(E ∩ Ω) ≡ sup{
∫
E∩Ω


div g dxd ∈ C1
0 (Rd), ||g||C0 ≤ 1} <∞.(43)


Equivalently:
b) There exist a vector valued Radon measure ωE with locally finite vari-


ation such that ∫
E


div g dxd =
∫
g · dωE(44)


By the Radon-Nikodim theorem we can write


ωE = νE |ωE |(45)


where νE is a function taking values on the unit ball in Rd and |ωE | is the
total variation of ωE .


Note that the equation (43) — which is obviously local – combined with
(44) show that ωE is depends only on the local properties of the set. That
is if E1 ∩ Br(x) = E2 ∩ Br(x) then, ωE1 = ωE2 restricted to any ball B′r(x)
r′ < r. (See [DGCP72] p. 16.)


Remark 12.2. For smooth enough sets – that is sets whose boundary is a
smooth manifold –, ωE = DχE , where χE is the characteristic function.


Also, for smooth enough sets, Per(E) is the perimeter of E. That is, the
(d− 1) measure of the boundary and ωE is the normal boundary element of
infinitesimal calculus and νE is the unit inner normal.


When E is irregular, the perimeter may not agree with the d− 1 measure
of the boundary. See [Giu84] p. 7 for an example.
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Remark 12.3. It is easy to show that supp(ωE) ⊂ ∂E. Where we denote
by ∂E the boundary of E.


Remark 12.4. The formula (44) for smooth enough sets reduces to the
Gauss-Green formula.


One could, therefore consider Definition 12.1 as a characterization of the
sets for which a generalized Gauss-Green formula holds.


The Definition 12.1 can be generalized without difficulty to any Riemann-
ian manifold with a volume form. Having a metric and a volume form allows
us to define the divergence of a vector field. Of course, since a metric in-
duces a a volume form in a canonical way, given any metric we can obtain
a notion of finite perimeter. Given any two equivalent C1 metrics, even if
the perimeter changes, the sets with finite perimeter in one metric remain
of finite perimeter in the other.


12.1. Some general properties of Finite perimeter sets. Caccioppoli
sets enjoy many properties that make them well suited for variational prob-
lems. On the one hand, their regularity properties are weak enough that it
is easy to establish existence of limits, compactness properties, etc. On the
other hand, they can be well approximated by smooth sets, define traces, etc.
so that it is possible to control them reasonably well and, in particular to
develop regularity theories for them when they satisfy extremal properties.


Some of the properties that we are going to use follow. Again, we refer
to [Giu84], [EG92] and [DGCP72] for proofs and more details.


The first property is the isoperimetric inequality. (See [Giu84] 1.2.9.)


Lemma 12.5. Let E ⊂ Rd be a bounded Caccioppoli set of finite perimeter.
Then, for some c1, c2 which depend only on d, we have, denoting by |E| the
Lebesgue measure of a set and by |ωE | the total variation of ωE and by B
any ball.


|E|(d−1)/d ≤ c1(d) Per(E)(46)


min{|E ∩B|, |(Rd − E) ∩B|}(d−1)/d ≤ c2


∫
B |ωE |(47)


Of fundamental importance in what follows is the De Giorgi reduced
boundary (See [Giu84] ch. 3.)


Definition 12.6. Given a Caccioppoli set E, we say that x ∈ ∂∗E (∂∗E is
termed the reduced boundary) if


i)
∫
Bρ(x) |ωE | > 0 for all r > 0.


ii) The limit ν(x) = limρ→0+


∫
Bρ(x) ωE/


∫
Bρ(x) |ωE | exists.


ii) |ν(x)| = 1.


In case that ∂E is a C1 hypersurface, ∂E = ∂∗E
In general: we have. (See [Giu84] p. 43 ff. and [DGCP72]. p. 11)
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Lemma 12.7. If E is a Caccioppoli set


|ωE |(∂E − ∂∗E) = 0(48)


Moreover if x ∈ ∂∗E we have:


lim
r→0


r−(d−1)


∫
Br(x)


d|ωE | = C(x, ν, d− 1)


lim
r→0


r−d|Br(x) ∩ E| = C(x, d)/2
(49)


In case that we are considering the standard metric in Rd, we have C(d) is
the volume of the unit ball in Rd. In particular the C(x, ν, d− 1) in the first
of (49) is independent of ν and is the volume of the d− 1 dimensional ball.


The fact that we can write ωE = ν|ωE | is just the Radon-Nykodim the-
orem. The fact that the limit in ii) in Lemma 12.6 exists is a consequence
of Besicovitch theorem on differentiation of Radon measures. Note that the
second part of the Lemma makes very precise the idea that in small scales,
we can compare the boundaries with hyperplanes.


Changing sets in sets of measure zero does not alter the perimeter nor
the value of the functionals that we are considering in this paper.


Nevertheless, changing sets in sets of measure zero allows to have sets
for which the topological properties are more closely related to the measure
theoretic ones. (See [DGCP72] p. 14 and [Giu84] p. 42)


Proposition 12.8. Given a Caccioppoli set E, it is possible to find another
set Ẽ differing from E in a set of zero Lebesgue measure and such that


∂Ẽ = ∂∗E = ∂∗Ẽ(50)


For every Borel set L we can find another Borel set L̃ differing from in
in a set of zero Lebesgue measure and such that for all x ∈ ∂L̃, we have


0 < |Ẽ ∩Br(x)| ≤ |Br(x)|(51)


In view of the above, it is customary to use equivalence classes of sets
differing in sets of measure zero and refer to them still as sets (In the same
way that we speak of functions in L1). Using this convention, we can assume
that all the sets that we are considering satisfy (50) and (51).


Closely related to sets of finite perimeter are functions of bounded varia-
tion.


Definition 12.9. Let Ω ⊂ Rd be an open set.
We say that a function f ∈ L1(Ω) is of bounded variation when


VarΩ(f) ≡ sup{
∫


Ω
f div g dxd|g ∈ C1


0 (Ω,Rd), ||g||C0 ≤ 1}(52)


If f ∈ C∞, we have Var(f) =
∫
∇(f).


The following results summarize properties of the space of bounded func-
tions. Note the compactness in L1 of functions whose total variation is
uniformly estimated.
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Lemma 12.10. With the definitions above we have;
a) The set BV(Ω) of functions of bounded variation is a separable Banach


space when endowed with the norm


||f ||BV(Ω) = ||f ||L1(Ω) + VarΩ(f)


b) If fj are functions of bounded variation fj
L1


−→ f ,


lim inf Var(fj) ≥ Var(f)


c) If f ∈ BV(Ω), then there exists {fj}j∈N ⊂ C∞0 such that fj
L1


−→ f ,
Var(fj)→ Var(f).


d) If Ω is bounded and with C1 boundary, then, given a set S of func-
tions in BV(Ω) such that supf∈Si Var(f) = M < ∞ we can extract a


sequence fj such that fj
L1


−→ f . Moreover Var(f) ≤M .


If a set is a Caccioppoli set, then, it is clear that its characteristic function
is a function of Bounded Variation. Conversely, if the characteristic function
of a set is a function of bounded variation, then, the set – or another set
which differs from it in a set of measure zero – is a Caccioppoli set.


In what follows, we will follow standard practice and identify Caccioppoli
sets that differ by sets of zero Lebesgue measure. Hence, we will say that a
sequence Ej of sets converges in L1 (resp. in BV) when their characteristic
functions converge in L1 (resp. in BV).


Of fundamental importance in the theory are the approximation proper-
ties of functions of bounded variation and the approximation properties of
Caccioppoli sets for polygonal ones. Indeed, the later appeared already in
[Cac52a, Cac52b].


Lemma 12.11. If E ⊂ Rd has finite perimeter, there exists a sequence of


polygonal domains {En} such that En
L1


−→ E and Per(En)→ Per(E).
Given a function f ∈ BV (Ω). Then, there exist a sequence {fn} ⊂ C∞0 (Ω)


||f − fj ||L1(Ω) → 0, Var(fj)→ Var(f).


Lemma 12.12. If Ej → E in L1, then Per(E) ≤ lim inf Per(Ej)


The proof is rather easy if we consider the definition (43) of perimeter as
the supremum of a functional on a set of functions. (See [Giu84] p. 7.) Note
also that Lemma 5.1 is a generalization of this fact.


Lemma 12.13. If E and L are Caccioppoli sets, then:


Per(E) + Per(L) ≥ Per(E ∪ L) + Per(E ∩ L)(53)


Note, of course, that the inequality could be strict even for smooth sets
if the sets have a common boundary.


Proof . This is Theorem 3.5 of [DGCP72] p.18.
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The proof makes use of the fact that the inequality is obvious for polygonal
approximations since polygonal sets satisfy that


∂E ∪ ∂L = ∂(E ∪ L) ∪ ∂(E ∩ L)(54)


the perimeter satisfies the desired inequality.
If we apply this to the polygonal approximations such as those constructed


in Lemma 12.11 and use Lemma 12.12, we obtain the desired result.


Lemma 6.1 is a version of this result for more general boundary function-
als, in a class of sets with more regularity. In such a class of sets, one can
still construct polygonal approximations to our functionals.


13. Appendix: Proof of some technical lemmas.


In this Appendix, we collect proofs of the technical lemmas that we have
used in the argument. Most of them are related to other arguments that
exist in the literature.


13.1. Proof of Lemma 5.1. We present two arguments. The first one is
shorter and more elementary. The second one gives a more detailed local
information.


Similar arguments happen in [Fed69] Chapter 5 in the context of currents.
(See the proof of Theorem 5.1.5 p. 519)


Since F (x, ν) is convex and homogeneous of degree 1 in ν
We can write F (x, ν) = supl∈Cx l · ν where Cx is the convex support of the


function F (x, ·).
We first discuss the case when the convex support is finite at every point.


(That is, the set {ν | F (x, ν) = 1} is a polyhedron wit a finite number of
faces. )


In such a case, Cx is finite and it depends continuously on the point.
Hence we can write F (x, ν) = supl(x)∈R l(x) · ν where R is a set of con-


tinuous functions.
Given a polygonal Caccioppoli set, we can write


J (E) =
∫


sup
l∈R


l(x) · νEd|ωE |


Since in this case, the νE are discrete, we can write


J (E) = sup
∫
l(x) · νEd|ωE | =


∫
l(x) · dωE(55)


Once one has (55), the desired result follows rather rapidly.
In [Giu84] p. 222, it is shown that if a sequence of sets of finite perime-


ter Ej converge in L1 to another set E, the corresponding measures dωEj
converge in the weak-* topology to dωE .


Hence if Ej
L1


−→ E and J (E) ≥
∫
l(x) · dωE − ε, for any subsequence of


Ej , we can find a further subsequence we can find jk such that J (Ejk) ≥∫
l(x) · dωEjk − 2ε.
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This shows that the lim inf has to be greater or equal than the value.
To prove the general case, the only thing that we need to do is to establish


the formula (55) for a general set. This follows from the fact given a function
F satisfying H1,H2,H3,H4 it can be approximated uniformly by a function
whose convex support is finite. Also, Caccioppoli sets can be approximated
by polygonal ones. (See Lemma 12.11. )


A second proof that also gives some local information can be obtained
by observing that, by Besicovitch theorem on differentiation of Radon mea-
sures, (see [EG92] p. 30), Lemma 5.1 follows from a local version near
differentiability points of |ωE |. Namely:


Proposition 13.1. In the conditions of Lemma 5.1, Let x0 be a differenti-
ation point for |ωE |. Given ε > 0, there exists r > 0 such that


JBr(x0)(E) ≤ rd−1ε+ lim inf JBr(x0)(Ej)(56)


Proof . To simplify the notation, choose coordinates in such a way that
ν(x0) = ed.


We write:∫
Br(x0)


F (x, νEj )d|ωEj | −
∫
Br(x0)


F (x, νE)d|ωE |


=
∫
Br(x0)


F (x0, νE)d|ωE | −
∫
Br(x0)


F (x, νE)d|ωE |


+
∫
Br(x0)


F (x0, ed)d|ωE | −
∫
Br(x0)


F (x0, νE)d|ωE |


+
∫
Br(x0)


F (x0, νEj )d|ωEj | −
∫
Br(x0)


F (x0, ed)d|ωEj |


+
∫
Br(x0)


F (x0, ed)d|ωEj | −
∫
Br(x0)


F (x0, ed)d|ωE |


(57)


The absolute value of first line in the R.H.S. of (57) can be estimated by
above by σ(r)rd−1, where σ(r) is a function that decreases to zero when r
decreases to zero, using the uniform continuity of F in the first variable and
the fact that, because x0 is a differentiation point, |ωE |Br(x0) ≤ Crd−1.


The absolute value of the second line can be estimated by above by
σ(r)rd−1 because x0 is a differentiation point.


Hence, to establish the desired result, it suffices to show that the lim inf of
the last two lines of (57) is greater or equal than zero plus a term σ(r)rd−1.


Note that, if we consider a subsequence where the lim inf is reached, we
can (see [Giu84] p. 222) pass to a further subsequence when dωEj converges
as a Radon measure to dωE and d|ωEj | converges, also as a Radon measure,
to a positive measure dµ. In general, µ(A) ≥ |ωE |(A) and the inequality can
be strict in some examples.
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Since F is convex in the second argument, we can bound


F (x0, νEj )d|ωEj | − F (x0, ed)d|ωEj | ≥ ∇−F (x0, ed)(νEj − ed)d|ωEj |(58)


where by ∇−F (x0, ed) we denote the subdifferential of the convex function
F (x0, ·).


Recalling that νEjd|ωEj | = dωEj and that we arranged that dωEj con-
verges to dωE , and that d|ωEj | converges to dµ, we have, using (58) that the
limit of the last two lines of (57) is greater or equal than:


∇−F (x0, ed)[ωE(Br(x0))− edµ(Br(x0))]


+ F (x0, ed)[µ(Br(x0))− |ωE |(Br(x0))]
(59)


Again we use that because x0 is a differentiation point,


| ωE(Br(x0))− ed|ωE |(Br(x0)) | ≤ σ(r)rd−1(60)


Hence, the desired result reduces to showing that


∇−F (x0, ed)ed[|ωE |(Br(x0))− µ(Br(x0))]


+ F (x0, ed)[µ(Br(x0))− |ωE |(Br(x0))]
(61)


is non-negative.
Using the homogeneity of the function F in the second argument, we can


rewrite (61) as:


F (x0, µ(Br(x0)) ed)− F (x0, |ωE |(Br(x0)) ed)


−∇−F (x0, ed)[µ(Br(x0))ed − |ωE |(Br(x0))ed]
(62)


The positivity of (61) is a property of the subdifferential of a convex
function.


This finishes the proof of Lemma 5.1.


13.2. Proof of Proposition 6.1. The proof will follow the same argument
as in Lemma 12.12. We need an improvement of Lemma 12.11. The proof of
this approximation lemma is more or less along the same lines that lead to
approximations of the set that also approximate the perimeter. (See [Giu84]
p. 22)


Proposition 13.2. Given a finite perimeter set E and a functional satis-
fying H1,H3 we can find a sequence of polygonal sets (resp. sets with C∞


boundary) Ej such that Ej
L1


−→ E, J (Ej)→ E.


Proof . Clearly, it suffices to produce C∞ approximations satisfying the
conclusions since C∞ sets can be approximated by polygonal ones.


The idea of the proof (similar to arguments used frequently in the theory
of Caccioppoli sets) is that, by Besicovitch differentiation theorem, we can
approximate the boundary in a neighborhood of a differentiation point by a
plane. The way of making sure that the planes thus defined indeed bound
a set which is close to the set we started with is to construct the planes
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as a the level sets of a function which is an smoothed out version of the
characteristic function.


An important device to approximate functions – in particular the char-
acteristic functions of sets – is symmetric molifiers (see [Giu84]. p. 10 ff.)


Definition 13.3. A function η : Rd → R
+ is a positive symmetric mollifier


when
1. η ∈ C∞0
2. Vanishes outside the unit ball
3.
∫
η(x)dx = 1


4. η(x) = η̃(|x|)
Given such a function, and a positive ε, we denote by ηε(x) = ε−dη(x/ε)


and for any function f ∈ L1
loc(R


d) we set fε = gε ∗ f .


Let x0 be a differentiation point for dωE . By Lemma 12.7, (See also
[Giu84] p. 50-51.) and the definition of differentiation point, given any
δ > 0 we can find a sufficiently small r in such a way that:


|ωE |(Br(x0) ∩ {x · ν < 0} ∩ E) ≤ δrn


|ωE |((Br(x0)− E) ∩ {x · ν > 0}) ≤ δrn


|Br(x0)|(1/2− δ) ≥ |E ∩Br(x0)| ≥ |Br(x0)|(1/2 + δ)∣∣∣∣∣(|ωE |(Br(x0))−1


∫
Br(x0)


dωE − νx0


∣∣∣∣∣ ≤ δ
(63)


From this, it follows that for ε small enough (roughly a fixed multiple of
r) and for any 0 < t < 1, the set Eεt = {fε ≥ t} satisfies


1. |(Eεt − E) ∪ (E − Eεt )| → 0 as ε→ 0.
2. |∇fε/|∇fε − ν| ≤ δ|Br(x0)|.
The level sets of the function f will gives us the desired approximation.
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[Aue97] F. Auer. Minimale hyperflächen in riemannsche n-torus. Albert-Ludwigs Univ.
thesis, 1997.


[Ban87] V. Bangert. The existence of gaps in minimal foliations. Aequationes Math.,
34(2-3):153–166, 1987.


[Ban88] V. Bangert. Mather sets for twist maps and geodesics on tori. In Dynamics
reported, Vol. 1, pages 1–56. Teubner, Stuttgart, 1988.


[Ban89] V. Bangert. On minimal laminations of the torus. Ann. Inst. H. Poincaré Anal.
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