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1. Introduction


   Very few studies involve how to construct
the efficient RBFs by means of problem
features. Recently the present author presented
general solution RBF (GS-RBF) methodology
to create operator-dependent RBFs successfully
[1]. On the other hand, the normal radial basis
function (RBF) is defined via Euclidean space
distance function or the geodesic distance [2].
This purpose of this note is to redefine distance
function in conjunction with problem features,
which include problem-dependent and time-
space distance function.


2. Problems with varying parameter,
time-dependent or nonlinear terms


   The GS-RBF [1] is constructed based on the
canonical form of some operators such as the
known Laplace or Helmholtz operators. Many
important cases in engineering do not possess
such standard form of operators. This section
will show that some cares may be taken to
handle these problems.


2.1 Varying parameter problems


   The general second order partial differential
system with varying coefficient can be stated as


R
u


x
S


u


xy
T


u


y


∂
∂


∂
∂


∂
∂


2


2


2 2


2 0+ + = , (1)


where R, S and T are continuous functions of x
and y. We can translate it into the canonical
form by a suitable change of independent
variables [2]


ξ = ( )f x y1 , , η = ( )f x y2 , , (2)


The corresponding distance function of the
Euclidean norm is given by


r j j= −( ) + −( )ξ ξ η η
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Substituting Eq. (2) into Eq. (3), we define the
distance function on the original independent
variables of x and y as
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Obviously, the above definition of the distance
function in terms of variable x and y are
different from the direct use of the Euclidean
norm.
   In the following we illustrate two important
special cases. Let us consider [3]
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its general solution is


u r w r= ( )−
2


2 2β , (6)


where β=m/2(m+2), w is the hypergoemetric
functions,
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we have
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Substituting Eq. (8) into Eq. (3) also yields the
distance function Eq. (7b).
   For another example, let us consider
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where α is coefficients. Its solution is


u r w r= ( )− ′
2


2 2β , (11)


where w is also the hypergoemetric function,


′ = − = −β β α1 1 2 , (12a)
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By using the independent variable
transformation approach as in the previous case,
we can get the distance functions of the RBF as
shown in Eqs. (12a-d).
   This hints us to define the distance
functions simultaneously for the RBF ψ r r1 2,( )


ψ ϕ φr r r r r1 2 2 1 2,( ) = ( ) ( ) , (13)


The above examples show that for one certain


problem, we can use multiple distance variables
and RBFs simultaneously rather than one
distance function and one RBF.


2.2 Nonlinear problems


   The GS-RBF approach is applicable to the
nonlinear problems. It is usually not easy to get
the fundamental solution of general nonlinear
problems. In some cases, however, we can
transfer the nonlinear operator into the linear
one via a variable transformation [4]. For
example, consider the stationary heat transfer
through the nonlinear materials where the
conductivity K is often a function of
temperature u. The governing equation is given
by
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where u is the temperature, vx and vy are the
components of the velocity vector v, ρand c
are density and the specific heat of the materials,
respectively. The coefficient K is time-
dependent conductivity coefficient
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If we intend to solve this problem using the
domain-type RBF, one of the reasonable
choices of the RBF should be the TPS-type
RBF due to the presence of Laplace-like
operator. However, the brutal use of the TPS is
discouraged in this case. By using the Kirchhoff
transformation [4],
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we have
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The nonlinear Laplace operator is transformed







to the linear Laplace one
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where Vx, Vy, f(U) and g(U) are the functions of
U. The TPS RBF r2mln(r) is recommended to
solve Eq. (19). However, our purpose is to
directly solve Eq. (15). According to Eq. (18),
we have
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The corresponding TPS RBF for u is
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which should be used in the RBF collocation of
the original governing equation (15).
   From the above analysis, we conclude that
the use of RBF should fully use the features of
the problems.


2.3. Time-space RBFs


   The free symmetrical vibration of a very
large membrane are governed by the equation
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with z=f(r), ∂ ∂z t g r= ( ) when t=0. We have the
solution
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where upper-dashed f and g are the zero-order
Hankel transforms of f(r) and g(r), respectively.
According to the GS-RBF, we have
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The present author introduced concept of time-
space distance variable and corresponding
RBFs for time-dependent problems [1]. Here
we hope to further improve its definition.
Consider the equation governing wave
propagation
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where i means unit imaginary number, we have
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By analogy with the Euclidean definition of
distance variable, the time-space RBFs (TSR) is
defined
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However, such definition can lead to imaginary
number of distance variable. Thus, it is safe to
use


r x x c t tj j j= −( ) + −( )2 2 2
. (29)


The above definition of r differs from the
standard radial basis function in that the time
variable is included into the distance function
and is handled equally as the other space
variables. We can construct the RBF by means
of the GS-RBF in such a way that time-
dependence is naturally eliminated. In general,
hyperbolic and elliptic equations have solutions
whose arguments have the form x+at and x+ibt
respectively, where a and b are real. Namely,


u x t f p,( ) = ( ) (30)







where p is some unknown function of x and t.
For 3D case,


p lx my nz t= + + +µ (31)


This provides some theoretical support to use
time-space distance functions (28) and (29).
However, the above situations do not exist for
diffusion equation
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Its fundamental solution is given by
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where d is the space dimensionality, H() is the
Heaviside function. Therefore, we give the
corresponding RBF


φ r h r u r t t j( ) = ( ) *( , , ), (34)


where h(r) is chosen according to problem
feature. It is stressed that the response and
source nodes must be totally differentially
placed to avoid singularity in this case. This
strategy of node placement is called as response
source points staggering.
   On the other hand, Chen and Tanaka [5]
proposed time-space non-singular general
solution


u Ae r
k t t j* = ( )− −( )φ , (35)


for diffusion problem and


u C c t t D c t t rj j
* cos sin= −( )( ) + −( )( )[ ] ( )φ   (36)


for wave problems, where φ(r) is the zero
order Bessel function of the first kind for 2D
problems and sin(r)/r for 3D problems.
Substituting these non-singular general solution
into Eq. (34) produces the time-space RBF
without singularity.
   In addition, it is stressed that the time-space
distance function and corresponding RBFs are


applicable to transient data processing such as
motion picture and movie.
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