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Abstract9

This paper presents a generalization for Differential and Integral Cal-10

culus. Just as the derivative is the instantaneous angular coefficient of11

the tangent line to a function, the generalized derivative is the instan-12

taneous parameter value of a reference function (derivator function)13

tangent to the function. The generalized integral reverses the general-14

ized derivative, and its calculation is presented without antiderivatives.15

Generalized derivatives and integrals are presented for polynomial, expo-16

nential and trigonometric derivators and integrators functions. As an17

example of the application of Generalized Calculus, the concept of instan-18

taneous value provided by the derivative is used to precisely determine19

time and frequency (or position and momentum) in a function (signal20

or wave function), opposing the Heisenberg’s Uncertainty Principle.21
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1 Introduction24

Differential and Integral Calculus has become one of the main mathemati-25

cal tools that made possible discoveries and advances in several areas such26

as Physics, Chemistry, Economics, Computer Science, Engineering, and even27
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Biology and Medicine. Moreover, in Mathematics itself, Differential and Inte-28

gral Calculus is used in other areas, such as Linear Algebra, Analytical29

Geometry, Probability, and Optimization, among others.30

Differential and Integral Calculus was developed by Isaac Newton [1] (1643-31

1727) and Gottfried Wilhelm Leibniz [2] (1646-1716), independently of each32

other, in the 17th century and basically established three operations that are33

applicable to any function: calculus of limits, derivatives, and integrals.34

The derivative concerns the instantaneous rate of change of a function.35

On the other hand, the integral concerns the area under the curve described36

by a function. Both the derivative and the integral are based on the calculus37

of infinitesimals through the concept of limit, and the Fundamental Theorem38

of Calculus formalizes the inverse operations relationship between Differential39

and Integral Calculus.40

The derivative is an operation that is performed on any function f(x)1,41

resulting in another function f ′(x) that represents the slope of the tangent42

line to f(x) for each x. Differential Calculus uses the line as the “reference43

function” and its slope as the result of the derivative.44

Remark Why use only the line as the reference function and its slope as45

the result of the derivative?46

This paper presents the derivative performed for other reference functions47

different from the line and other parameters different from the slope of the48

line, thus generalizing the Differential Calculus.49

Since the derivative and the integral are inverse operations, the same gen-50

eralization concept employed for Differential Calculus is applied to Integral51

Calculus.52

1.1 The Derivative, its Generalization and the53

Antiderivative54

The derivative of a function can be understood as a linear interpolation process.55

Let I a non-empty open interval, f : I → R a function, y = f(x), I ⊆ R, x0 ∈ I56

and ∆ ∈ R, as illustrated in figure 1.57

Two points determine a line: from the points (x0, f(x0)) and (x0+∆, f(x0+58

∆)) it is possible to calculate the angular (a1) and linear (a0) coefficient of the59

linear equation y = a1x + a0 secant to the graph of the function f(x). This60

calculation is obtained by solving the following linear system:61

S :

{
f(x0) = a1x0 + a0
f(x0 +∆) = a1(x0 +∆) + a0

(1)

1f(x) is formally defined in the remaining sections.
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The resolution of 1 is:

a1 =
f(x0 +∆)− f(x0)

∆
(2)

a0 =
f(x0)(x0 +∆)− f(x0 +∆)x0

∆
(3)

Fig. 1 Secant line (red) passing through the points (x0, f(x0)) and (x0 + ∆, f(x0 + ∆))
(left figure) and the tangent line at point (x0, f(x0)) (right figure) to the function (black).

In differential calculus, the angular coefficient (a1) in (2) is known as62

Newton’s Difference Quotient.63

For small ∆ values, the linear equation y = a1x + a0 will be practically64

tangential to the graph of the function f(x) near the point x0, and in the limit65

∆ → 0, this line will be tangential to the graph of f(x) at point x0. Applying66

limit of ∆ → 0 in (1) is:67

S :

{
f(x0) = a1x0 + a0
f(x0 +∆ → 0) = a1(x0 +∆ → 0) + a0

(4)

And, its resolution is:

a1 |x0
= lim

∆→0

f(x0 +∆)− f(x0)

∆
(5)

a0 |x0
= lim

∆→0

f(x0)(x0 +∆)− f(x0 +∆)x0
∆

(6)

In (5), the value of a1 |x0 is the value of the derivative of f(x) at the68

point x0. The value of a0 |x0 in (6) is not used in traditional differential and69

integral calculus. Generalizing for any point x in the domain, ains1 : I → R the70

function a1 instantaneous, the derivative of f(x) is:71
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df(x)

dx
= ains1 (x) = lim

∆→0

f(x+∆)− f(x)

∆
(7)

Remark Therefore, the derivative of a function is the application of the limit of72

∆ → 0 to Newton’s Difference Quotient.73

This process uses a linear procedure to determine the slope (angular coef-74

ficient) of the linear equation of the tangent line to any function at a given75

point. This linear procedure is simply a linear interpolation or a regression to76

the linear equation for two infinitesimally close points belonging to f(x). How-77

ever, similarly to (7), from (6), ains0 : I → R the function a0 instantaneous,78

one can write:79

D{} = a1x+ a0

D{a0}
df(x)

dx
= ains0 (x) = lim

∆→0

f(x)(x+∆)− f(x+∆)x

∆

(8)

where,80

D{} is the tangent function to f(x) in which the derivative is defined (the81

line equation in this case, as in the “classical derivative”, but it could be any82

other function);83

D{a0}df(x)dx indicates under which parameter of theD{} the derivative df(x)
dx84

is defined.85

In this context, as (8), the generalized notation for the “classical derivative”
(7) is:

D{} = a1x+ a0

D{a1}
df(x)

dx
= ains1 (x) = lim

∆→0

f(x+∆)− f(x)

∆

(9)

The reasoning used in (1) to (9) can be generalized to other functions (and
not just the linear equation) and their respective parameters. This concept can
also be applied to the integral of a function. For example, the notation for the
inverse operation of (9) is:

I{} = a1x+ a0

F (x) = I{a1}
∫
f(x)dx

(10)

where,86

I{} is the tangent function to F : I → R which the integral is defined;87

I{a1}
∫
f(x)dx indicates under which parameter of the I{} the integral of88

f(x) is defined.89

As a result, the following concepts can be defined:90

• Derivator Function is the function D{} that is used in the interpola-91

tion process (the classic derivative uses the linear equation as Derivator92

Function).93
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• Derivator Parameter is the parameter of interest pk of the D{}, repre-94

sented by D{pk}, where pk ∈ P, P = {p0, p1, p2, ..., pN−1} is the set of95

N ∈ N parameters of the D{}, k ∈ N and k < N . (the classic derivative96

uses the angular coefficient a1 as Derivator Parameter).97

• Integrator Function is the function I{} that is used in the process of98

obtaining the primitive function (the classic integral uses the linear equation99

as Integrator Function).100

• Integrator Parameter is the parameter of interest pk of the I{}, rep-101

resented by I{pk}, where pk ∈ Q, Q = {p0, p1, p2, ..., pN−1} is the set of102

N ∈ N parameters of the I{}, k ∈ N and k < N . (the classic integral uses103

the angular coefficient a1 as Integrator Parameter).104

Figure 2 illustrates the names of the functions and operations involved in105

Generalized Differential and Integral Calculus.

Integrator 
Function

 and 
Integrator 
Parameter

Integration

Primitive Integrand

Integrator
Function

Integrator
parameters

Infinitesimal 
variation

Derivator
Function

Derivator
parameters

DifferentialDerivative Derivand

f(x) Derivation f´(x)
derivative

F(x)
primitive

Derivator 
Function

 and 
Derivator 

Parameter

Integrator
parameter

Derivator
parameter

Fig. 2 Functions and operations involved in Differential and Integral Calculus.

106

2 Background107

Different forms of the derivative have already been established. These forms use108

concepts different from the foundation employed for generalizing Differential109

and Integral Calculus presented in this article.110

• Symmetric Derivative [3]111
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A simple variant form of the “classical derivative” is the Symmetric Deriva-112

tive, which uses Newton’s Difference Quotient in a symmetrical form. The113

Symmetric Derivative f ′S is defined as:114

f ′S = lim
∆→0

f(x+∆)− f(x−∆)

2∆
(11)

Although the Symmetric Derivative uses a different form for Newton’s Dif-115

ference Quotient, the derivative function can still be understood as the slope116

of the tangent line to the function f(x),∀x. In this form, the Symmetric117

Derivative is a different manner of defining the “classical derivative”.118

• Fréchet Derivative [4]119

Given V and U normed vectorial spaces, W ⊆ V, f : W → U a function Fréchet120

differentiable at x ∈ V. If there is a bounded and linear operator A : V → U121

such that:122

lim
∆→0

∥ f(x+∆)− f(x)−A∆ ∥U
∥ ∆ ∥V

= 0 (12)

Then, A is the derivative of f at x. The Fréchet Derivative is used on a123

vector-valued function of multiple real variables and to define the Functional124

Derivative, generalizing the derivative of a real-valued function of a single real125

variable.126

• Functional Derivative [4]127

Another form of a derivative is the Functional Derivative. Given V a vec-128

torial (function) space, K a field and F a functional, F : V → K, f ∈ V, ζ an129

arbitrary function, the Functional Derivative of F at f , d(F )
d(f) is:130 ∫

d(F )

d(f)
(x)ζ(x)dx = lim

∆→0

F (f +∆ζ)− F (f)

∆
(13)

In this case, the concept of the derivative is applied to a functional and131

not to a function. In this paper, the concept of the derivative is generalized to132

functions.133

• Fractional Derivative [5]134

The derivative can be repeated n times over a function, resulting in the deriva-135

tive’s order. Thus, the order of the derivative is clearly a natural number136

(n ∈ N). The fractional derivative generalizes the concept of derivative order137

so that the α order of the fractional derivative is α ∈ R or even α ∈ C. It is138

then possible, under this generalization, to calculate the derivative of f(x) of139

order alpha = 2.5 or alpha = −1 (integral of f(x)), for example. In this paper,140

the derivative is generalized to functions and not to the order of the derivative.141

• q-Derivative [6]142
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The q-Derivative of a function f(x) is a q-analog of the “classic derivative”.
Let q ∈ R, it is given by:(

d

dx

)
q

f(x) =
f(qx)− f(x)

qx− x
(14)

For q → 1, the q-Derivative is the “classic derivative”.143

• Arithmetic Derivative [7]144

Let a.b ∈ N and p a prime number, the arithmetic derivative D(a.b) is such
that:

D(0) = D(1) = 0
D(p) = 1,∀ prime p
D(a.b) = D(a)b+ a.D(b)

(15)

The Arithmetic Derivative is a ”number derivative”, which is based on prime145

factorization. The arithmetic derivative can be extended to rational numbers.146

Other forms of derivatives include:147

• Carlitz derivative [8]148

• Covariant derivative [9]149

• Dini derivative [10]150

• Exterior derivative [11]151

• Gateaux derivative [12]152

• H derivative [13]153

• Hasse derivative [14]154

• Lie derivative [15]155

• Pincherle derivative [16]156

• Quaternionic derivative [17]157

• Radon Nikodym derivative [18]158

• Semi differentiability [19]159

• Subderivative [20]160

• Weak derivative [21]161

All of these forms use concepts different from the foundation employed for162

the generalization of Differential and Integral Calculus presented in this article.163

3 Polynomials Derivators Functions164

Let n ∈ N, ai ∈ R, ∀i ∈ N, P : R → R is a Polynomial Function if:165

P (x) = anx
n + an−1x

(n−1) + ....+ a1x
1 + a0x

0 =

n∑
i=0

aix
i (16)

In (16), the value of n defines the degree of the polynomial. For n = 1,166

the polynomial is a linear equation, and two points are needed to define its167

parameters (as in (1)). For n = 2 and n = 3, the polynomial is a quadratic168

(parabola) and cubic function, and 3 and 4 points are needed to define their169
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parameters, respectively. For other degrees of the polynomial, the reasoning is170

analogous; therefore, n+ 1 points are necessary to define the parameters of a171

polynomial of degree n. Using a polynomial of degree 2 (n = 2) as derivator172

function, the derivative becomes an interpolation process to the quadratic173

function for three infinitesimally close points belonging to f(x), resulting in174

the Parabolic Derivative, as shown in figure 3.175

Fig. 3 Secant parabola (red) passing through the points x0, x0 + ∆ and x0 + 2∆. (left
figure) and tangent parabola at point x0 (right figure) to the function (black).

The system is:176

S :

 f(x0) = a2x
2
0 + a1x0 + a0

f(x0 +∆) = a2(x0 +∆)2 + a1(x0 +∆) + a0
f(x0 + 2∆) = a2(x0 + 2∆)2 + a1(x0 + 2∆) + a0

(17)

Generalizing for any point x in the domain, ains0 : I → R the function a0177

instantaneous, ains1 : I → R the function a1 instantaneous, ains2 : I → R the178

function a2 instantaneous, and applying limit to ∆ → 0, the resolution of (17)179

is:180

D{} = a2x
2 + a1x+ a0 (18)

D{a2}
df(x)

dx
= ains2 (x) = lim

∆→0

1

2

f(x)− 2f(x+∆) + f(x+ 2∆)

∆2
(19)

D{a1}
df(x)

dx
= ains1 (x) = lim

∆→0
−1

2

K0f(x)−K1f(x+∆) +K2f(x+ 2∆)

∆2

(20)
where,

K0 = 2x+ 3∆
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K1 = 4x+ 4∆

K2 = 2x+∆

D{a0}
df(x)

dx
= ains0 (x) = lim

∆→0

1

2

K0f(x) +K1f(x+∆) +K2f(x+ 2∆)

∆2
(21)

where,

K0 = 2∆2 + x2 + 3x∆

K1 = −2x2 − 4x∆

K2 = x2 + x∆

In this form, (19), (20) and (21) define the Parabolic Derivative to the181

a2, a1 and a0 parameters, respectively. For polynomials of other degrees, the182

procedure is similar to that performed in (17). For example, the generalized183

polynomial derivative (polynomial derivator function) of f(x) = cxm, c,m ∈ R184

for the highest degree parameter n ∈ N∗ of the polynomial derivator function185

is:186

D{} = anx
n + an−1x

(n−1) + ...+ a1x
1 + a0x

0 (22)

D{an}
d(cxm)

dx
= c

(
n−1∏
i=0

m− i

i+ 1

)
x(m−n) =

c

n!

(
n−1∏
i=0

(m− i)

)
x(m−n) (23)

The Antiderivative of (23) is:187

I{} = D{} = anx
n + an−1x

(n−1) + ...+ a1x
1 + a0x

0 (24)

I{an}
∫
cxmdx =

(
cx(m+n)

(m+n)
∏n−1

i=1
m+i
i+1

)
,∀(m+ n) ̸= 0 ∧ n ≥ 2

I{a1}
∫
cxmdx =

(
cx(m+1)

(m+1)

)
,m ̸= −1

(25)

For the other functions f(x) and/or other derivator parameters, the188

reasoning is analogous to (17), (23) and (25).189

3.1 Vanishing Terms and Primitives190

The “classic derivative” uses the linear equation as the derivator function and
the angular coefficient as the derivator parameter (as in (9)). However the
derivative in this form does not model the linear coefficient of the derivator
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function, and therefore this term, if it exists in the derivand f(x), “vanishes”
for the differential operator, not influencing the derivative. Using the linear
equation as the derivator function and the linear coefficient as the derivator
parameter as in (8), the derivative in this form does not model the first-degree
term (angular coefficient) of the derivator function. Therefore, this term ”van-
ishes” for the differential operator, not influencing the derivative. The following
example is suitable for showing this case. Considering:

f(x) = x2 + 2x+ 3 (26)

for D{} = a1x+ a0, their derivatives are:191

D{a1}
df(x)

dx
= 2x+ 2 (27)

and192

D{a0}
df(x)

dx
= −x2 + 3 (28)

The term +3 and 2x in (26) vanishes in (27) and (28), respectively. For193

I{} = a1x+ a0, the antiderivatives, respectively, for (27) and (28) are:194

I{a1}
∫

(2x+ 2)dx = x2 + 2x (29)

and

I{a0}
∫

(−x2 + 3)dx = x2 + 3 (30)

Since (27) and (28) do not model the terms a0 and a1x, respectively, the195

antiderivatives (29) and (30) do not return in (26) and must be added by the196

following terms (k0 and k1x, with k0 and k1 constants):197

I{a1}
∫

(2x+ 2)dx = x2 + 2x+ k0 (31)

and

I{a0}
∫

(−x2 + 3)dx = x2 + k1x+ 3 (32)

The addition of the terms k0 and k1x in (31) and (32) is necessary because,198

independently of k0 and k1x, their derivatives are the same:199

D{a1}
d(x2 + 2x+ k0)

dx
= 2x+ 2 (33)

and200

D{a0}
d(x2 + k1x+ 3)

dx
= −x2 + 3 (34)
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3.2 Integrals without Antiderivatives201

The Fundamental Theorem of Calculus (FTC) [22] establishes the relationship202

between differential calculus and integral calculus, as inverse operations203

(with reservations). The FTC is divided into two parts. Part 1 shows that204

the derivative of the integral of f(x) is equal to f(x): this is perfect! Part 2205

reverses the order, that is, the integral of the derivative of f(x) is equal to206

f(x), however, plus a constant k, that is, f(x) + k: this is perfect too, but the207

exact return to function f(x) does not occur when the derivative is performed208

first and then the integral. Thus, in formal terms, the FTC states that the209

operations of derivation and integration are inverse, apart from a constant210

value.211

d
∫
f(x)dx

dx
= f(x) ̸=

∫
df(x)

dx
dx = f(x) + k (35)

This problem occurs simply because the “classic derivative” only gives the212

instantaneous rate of change of a function for its domain. This rate, as seen213

in (5), is the angular coefficient for the linear equation when used as deriva-214

tor function. Obviously, the linear equation cannot be defined by its angular215

coefficient a1 alone. The linear coefficient a0 also needs to be defined for the216

linear equation to be complete.217

The derivation process is carried out by applying the concept of limit to218

Newton’s quotient. On the other hand, the integration process does not have219

a specific form, and this is obtained, in practice, through the calculation of220

antiderivatives. Nonetheless, a function can be defined by applying the inte-221

grator function I{} to the generalized derivatives for a given derivator function222

D{} for all their respective parameters, with I{} = D{}.223

For the integrator function I{} : a1x+a0 (linear equation) and I{} = D{},224

the primitive f(x) is:225

f(x) = D{a1}
df(x)

dx
x+D{a0}

df(x)

dx
(36)

It is important to emphasize that f(x) was obtained from its generalized226

derivatives without the conventionally used integration process (antiderivative)227

in “classical integral calculus”.228

For example, from the functions (27) and (28) (derivatives of f(x) = x2 +
2x+ 3), the primitive f(x) is:

f(x) = (2x+ 2)x− x2 + 3 = x2 + 2x+ 3 (37)

The exact return to f(x) is obtained ((37) equals (26)). The concept229

involved in obtaining the function f(x) is:230

Theorem Let I a non-empty open interval, I ⊆ C, h : I → C a function, y =
h(x; p0, p1, p2, ..., pN−1) and P = {p0, p1, p2, ..., pN−1} the set of N ∈ N parameters.
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If S is a system that has a unique solution for N points (xk, yk), k ∈ N, k ≤ N − 1,
such as:

S :


y0 = h(x0; p0, p1, p2, ..., pN−1)
y1 = h(x1; p0, p1, p2, ..., pN−1)
y2 = h(x2; p0, p1, p2, ..., pN−1)
...
yN−1 = h(xN−1; p0, p1, p2, ..., pN−1)

(38)

I{} = D{} = h(x; p0, p1, p2, ..., pN−1), f(x) differentiable on D{}, ∀x ∈ I, then f(x)231

can be described by I{} whose parameters are given by their generalized derivatives in232

their respective N parameters, i.e. f(x) = h(x; D{p0},D{p1},D{p2}, ...,D{pN−1}).233

4 Exponential Derivators Functions234

Let A, a, b, x ∈ R, ains : R → C, bins : R → C and f : R → R an exponential235

function as:236

f(x) = Aeax, A ≥ 0 (39)

Making A = eb, (39) is:

f(x) = ebeax = eax+b (40)

The following system can be written:237

S :

{
f(x) = eax+b

f(x+∆) = ea(x+∆)+b (41)

Solving the system and applying the limit of ∆ → 0 in (41), the Exponential238

Derivative (derivator function is exponential) of a function f(x) becomes:239

D{} = eax+b (42)

D{a}df(x)
dx

= ains(x) = lim
∆→0

ln(f(x+∆))− ln(f(x))

∆
(43)

D{b}df(x)
dx

= bins(x) = lim
∆→0

ln(f(x))(x+∆)− ln(f(x+∆))x

∆
(44)

f(x) can be reconstructed from its exponential derivatives as:

f(x) = eD{a} df(x)
dx x+D{b} df(x)

dx (45)

The function e−iωx (kernel of the Fourier Transform) is discussed in the240

section 6.2.241
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5 Trigonometric Derivators Functions242

Let ω, ϕ ∈ R, the frequency and phase, respectively, and ωins : R → C, ϕins :243

R → C the instantaneous frequency and phase, respectively, the following244

system can be written:245

S :

{
f(x) = sin(ωx+ ϕ)
f(x+∆) = sin(ω(x+∆) + ϕ)

(46)

Solving the system and applying the limit of ∆ → 0 in (46), the sinusoidal246

derivative (derivator function is sinusoidal) of a function f(x) becomes:247

D{} = sin(ωx+ ϕ) (47)

D{ω}df(x)
dx

= ωins(x) = lim
∆→0

arcsin(f(x+∆))− arcsin(f(x))

∆
=

= lim
∆→0

arcsin(f(x+∆)
√

1− f(x)2 − f(x)
√

1− f(x+∆)2)

∆

(48)

D{ϕ}df(x)
dx

= ϕins(x) = lim
∆→0

arcsin(f(x))(x+∆)− arcsin(f(x+∆))x

∆
(49)

The same can be written to cosine and tangent functions:248

D{} = cos(ωx+ ϕ) (50)

D{ω}df(x)
dx

= ωins(x) = lim
∆→0

arccos(f(x+∆))− arccos(f(x))

∆
=

= lim
∆→0

arccos(f(x+∆)f(x) +
√

(1− f(x+∆)2)(1− f(x)2))

∆

(51)

D{ϕ}df(x)
dx

= ϕins(x) = lim
∆→0

arccos(f(x))(x+∆)− arccos(f(x+∆))x

∆
(52)

D{} = tan(ωx+ ϕ) (53)

D{ω}df(x)
dx

= ωins(x) = lim
∆→0

arctan(f(x+∆))− arctan(f(x))

∆
=

=
arctan( f(x+∆)−f(x)

1+f(x+∆)f(x) )

∆

(54)
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D{ϕ}df(x)
dx

= ϕins(x) = lim
∆→0

arctan(f(x))(x+∆)− arctan(f(x+∆))x

∆
(55)

If f(x) ∈ [−1, 1], (48) to (52) ∈ R, otherwise (48) to (52) ∈ C.249

f(x) can be reconstructed from its sinusoidal, cosinusoidal and tangential
derivatives, respectively, as:

f(x) = sin

(
D{ω}df(x)

dx
x+D{ϕ}df(x)

dx

)
(56)

f(x) = cos

(
D{ω}df(x)

dx
x+D{ϕ}df(x)

dx

)
(57)

f(x) = tan

(
D{ω}df(x)

dx
x+D{ϕ}df(x)

dx

)
(58)

6 Instantaneous Frequency and Heisenberg’s250

Uncertainty Principle251

Let a phase function [23] Ω(x) : R → R, and a waveform (signal, Wave Function
[24]) φ(x, ω) given by:

φ(x, ω) = sin(Ω(x)) (59)

If Ω(x) is known, the determination of the instantaneous frequency ω(x)252

presents no difficulty and is determined by:253

ω(x) =
dΩ(x)

dx
(60)

However, in many real applications, Ω(x) is not known, but only the wave-254

form φ(x, ω) and then, determining ω(x) or x(ω) precisely, from φ(x, ω) is not255

a possible task, according to Heisenberg’s Uncertainty Principle [25], [26].256

Heisenberg’s Uncertainty Principle was first proposed for Quantum257

Mechanics [27]. However, it is used to demonstrate that there is a limit to258

the accuracy with which the pair of canonically conjugate variables [28] in259

phase space, (x, ω) or (x, p), where p is the momentum, e.g., can be measured260

simultaneously.261

262

“...Thus, the more precisely the position is determined, the less precisely263

the momentum is known, and conversely...”264

Heisenberg, 1927265

De Broglie’s [29] relation establishes the undulatory nature of the particle266

(matter) by:267

k =
p

ℏ
, (61)
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where, k is the wavenumber (spatial frequency), p is the momentum and ℏ is268

the reduced Planck’s constant.269

Thus, one can understand that determining the momentum p as a function270

of position x is equivalent to determining the wavenumber k as a function of271

position x or even the (temporal) frequency ω as a function of time x (x, in272

this case, is the “position” in time) - Instantaneous Frequency.273

The classical mathematical operation that changes the domain of a function274

from time to frequency (and vice versa) is the Fourier Transform, but a non-275

zero function f(x) : R → R and its Fourier Transform F (ω) : R → C cannot276

both be sharply localized [26].277

The figure 4 shows a function f(x) : R → R (a sinusoidal wave with278

frequency equal 2 Hz) and |F (ω)| : R → R in x (time) and ω (frequency)279

domain. F (ω) has no information about x and f(x) has no information about280

ω.281

0 2 4 6 8 10
-1

-0.5

0

0.5

1

0 2 4 6 8 10
0

0.5

1

|F
(

)|

Fig. 4 Function in time and frequency domain

A Window Function g(x) : R → R that is “well localized” in the time282

is used to localize the frequency in time. Figure 5 shows the wide (above)283

and narrow (below) window function and its respective Fourier Transform284

Magnitude |G(ω)| : R → R (narrow (above) and wide (below)).285
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Fig. 5 Window Functions in time and frequency domain.

The function f(x) is multiplied by the Window Function g(x). Figure 6286

shows the wide (above) and narrow (below) Windowed Function and its respec-287

tive Fourier Transform Magnitude |F (ω) ∗ G(ω)| (narrow (above) and wide288

(below)).289
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Fig. 6 Windowed Functions in time and frequency domain.

The Windowed Function in the frequency domain should have only one290

component (at 2 Hz), but it has components at several frequencies with non-291

zero amplitudes. This fact is due to the Windowed Function in the frequency292
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domain being the result of the convolution of the function by the Window293

Function in the frequency domain (in an analogous form, one can use the294

concept of wave packets in order to locate a wave in space [30]). So it is295

impossible to identify whether a particular frequency component is due to the296

function or the Window Function.297

To measure the frequency as a function of the time, it was necessary to298

“locate” the wave in time using the Window function. However, this fact goes299

beyond the classical concept in physics of the observer effect [31], [32], in which300

to make a measurement, it is necessary to interfere with the measurement301

(which causes uncertainty). As everything that exists is a wave (wave nature302

of matter), Heisenberg’s Uncertainty Principle states that uncertainty occurs303

not only due to the measurement of an experiment (observer effect) but due304

to the impossibility of locating a wave sharply in the time and frequency305

(wavenumber, momentum, among others) domain simultaneously.306

Analytically, Heisenberg’s Uncertainty Principle can be demonstrated con-307

sidering ψ(x) and Ψ(p) wave functions and Fourier Transform 2 of each other308

for position x and momentum p , respectively.309

Born’s rule [33] states that |ψ(x)|2 and |Ψ(p)|2 are probability density310

functions and then the variances of position σ2
x and momentum σ2

p are:311

σ2
x =

∫ ∞

−∞
x2|ψ(x)|2 dx =

∫ ∞

−∞
(xψ(x))∗xψ(x) dx (62)

σ2
p =

∫ ∞

−∞
p2|Ψ(p)|2 dp =

∫ ∞

−∞
(pΨ(p))∗pΨ(p) dp (63)

Let f(x) = xψ(x):

σ2
x =

∫ ∞

−∞
f∗(x)f(x) dx =

∫ ∞

−∞
|f(x)|2 dx = ⟨f |f⟩ (64)

Let F {.} the Fourier transform, −iℏdψ(x)dx the momentum operator in posi-
tion space, G(p) = pΨ(p), g(x) = F {G(p)} and applying the Parseval’s
theorem [34]:

σ2
p =

∫ ∞

−∞
G∗(p)G(p) dp =

∫ ∞

−∞
|G(p)|2 dp =

∫ ∞

−∞
|g(x)|2 dx = ⟨g|g⟩ (65)

Using the Cauchy–Schwarz inequality [35]:

⟨f |f⟩⟨g|g⟩ ≥ |⟨f |g⟩|2 (66)

|⟨f |g⟩|2 ≥ Im(|⟨f |g⟩|2) =
(
⟨f |g⟩ − ⟨g|f⟩

2i

)2

(67)

2ψ(x) and Ψ(p) are functions in two corresponding orthonormal bases in Hilbert space and,
therefore, are Fourier Transform of each other and x and p are conjugate variables.
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⟨f |g⟩ − ⟨g|f⟩ =

=

∫ ∞

−∞
xψ∗(x)

(
−iℏdψ(x)

dx

)
dx −

∫ ∞

−∞

(
−iℏdψ

∗(x)

dx

)
xψ(x) dx = iℏ

(68)

Applying 68 in 67:312

|⟨f |g⟩|2 =

(
iℏ
2i

)2

=
ℏ2

4
(69)

Applying 64, 65 and 69 in 66:313

σ2
xσ

2
p ≥ ℏ2

4
= σxσp ≥

ℏ
2

(70)

The demonstration of the uncertainty principle is strictly mathemati-314

cal. Any pair of variables conjugated will produce the same results as this315

demonstration.316

Following Kennard’s consideration [36], ∆x = σx the uncertainty in posi-317

tion x (proportional to the width of the Window Function in time or space318

domain), ∆p = σp the uncertainty in momentum, h the Plank’s constant,319

Heisenberg’s Uncertainty Principle is normally presented as:320

∆x∆p ≥ h

4π
(71)

In the frequency domain, let ∆k be the uncertainty in wavenumber (spa-
tial frequency) or ∆ω the uncertainty in (temporal) frequency (∆k or ∆ω
are proportional to the width of the Window Function in frequency domain).
Through de Broglie´s relation 61, 71 can be written as:

∆x∆k ≥ 1

2π
or ∆x∆ω ≥ 1

2π
(72)

Another way to understand Heisenberg’s Uncertainty Principle (and per-321

haps the simplest) is through the Fourier Transform of the Gaussian function.322

Let f(x) be a Gaussian function in the space (time) domain x, F (ω) is its323

Fourier transform in the frequency domain ω and is also a Gaussian function.324

Then, the standard deviation σ can be understood as a measure of precision,325

and this occurs inversely in f(x) and F (ω). Thus, if the uncertainty is small326

in one domain, it is large in the other domain.327

f(x) = e−σx
2

⇔ F (ω) =
1√
2σ
e−

ω2

4σ (73)

A time-frequency representation3 is used when it is necessary to “localize”328

ω in x (instantaneous frequency) and vice-versa. This representation is also329

3Time-frequency is a representation with a two-dimensional domain (x, ω), and is used to repre-
sent any pair of canonically conjugate coordinates, such as time-frequency, position-wavenumber,
position-momentum, among others.
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known as a spectrogram, generally obtained through the Short Time Fourier330

Transform [37] (or other transforms, such as Wavelet Transform [38], Wigner-331

Ville distribution function [39], etc).332

A classic example of a signal whose frequency varies with time (non-333

stationary signal) is the Chirp Signal [40].334

6.1 Chirp Derivative335

A Chirp Signal can be defined with the following waveform (signal):

f(x) = sin(2π

∫
ω(x)dx+ ϕ), (74)

where, ω(x) is the instantaneous frequency function and Ω(x) =336

2π
∫
ω(x)dx+ ϕ is the phase function.337

338

The following example is suitable for showing the determination of the339

instantaneous frequency. Considering a Chirp Signal with instantaneous340

frequency function given by:341

ω(x) = x2 + 2x+ 1 (75)

For ϕ = 0, the waveform is;342

f(x) = sin

(
2π

(∫
(x2 + 2x+ 1) dx

)
+ 0

)
= sin

(
2π

(
x3

3
+ x2 + x

))
(76)
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Fig. 7 Quadratic Chirp Signal - ω(x) = x2 + 2x+ 1; f(x) = sin

(
2π

(
x3

3
+ x2 + x

))

Figure 8 shows the spectrogram for the signal sampled at 100 samples/u-343

nit of x (100Hz if x is given in seconds) obtained through Short Time Fourier344

Transform with Gaussian window function (Gabor Transform [37]) and stan-345

dard deviation equal to 1. The |F (x, ω)| values (z-axis) are proportional to346

the energy in the signal at (x, ω). For each x (or ω) value there is a range of347

ω (or x) values whose function |F (x, ω)| is non-zero. These intervals at (x, ω)348

domain represent the uncertainty in determining the instantaneous frequency349

in this signal representation.350
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With:
ω(x) = ω1x+ ω0 (77)

(78) is a Linear Chirp (or Quadratic Phase Signal), with initial frequency ω0

(at x = 0) and rate chirp ω1:

f(x) = sin

(
2π

(∫
(ω1x+ ω0) dx

)
+ϕ

)
= sin

(
2π

(
1

2
ω1x

2+ω0x

)
+ϕ

)
(78)

The resolution of the system,351

S :



f(x) = sin

(
2π

(
1
2ω1x

2 + ω0x

)
+ ϕ

)
f(x+∆) = sin

(
2π

(
1
2ω1(x+∆)2 + ω0(x+∆)

)
+ ϕ

)
f(x+ 2∆) = sin

(
2π

(
1
2ω1(x+ 2∆)2 + ω0(x+ 2∆)

)
+ ϕ

) (79)

applying limit to ∆ → 0, is:352

D{ω1}
df(x)

dx
= ωins1 (x) = lim

∆→0

K0 −K1 +K2

2π∆2
(80)

where,

K0 = arcsin(f(x))

K1 = arcsin(2f(x+∆))

K2 = arcsin(f(x+ 2∆))

D{ω0}
df(x)

dx
= ωins0 (x) = lim

∆→0
−1

2

K0 −K1 +K2

2π∆2
(81)



22 Calculus ++

where,

K0 = (2x+ 3∆) arcsin(f(x))

K1 = (4x+ 4∆) arcsin(f(x+∆))

K2 = (2x+∆) arcsin(f(x+ 2∆))

D{ϕ}df(x)
dx

= ϕ(x) = lim
∆→0

1

2

K0 +K1 +K2

∆2
(82)

where,

K0 = (2∆2 + x2 + 3x∆) arcsin(f(x))

K1 = (−2x2 − 4x∆) arcsin(f(x+∆))

K2 = (x2 + x∆) arcsin(f(x+ 2∆))

According to (77), the instantaneous frequency function is obtained as:

ω(x) = D{ω1}df(x)
dx

x+D{ω0}
df(x)

dx
(83)

D{ω1}, D{ω0} (D{ϕ} is not needed in this example) are:

D{ω1}
df(x)

dx
=

2 cos

(
2π x (x2+3 x+3)

3

)3

(x+ 1)(
cos
(

2π x (x2+3 x+3)
3

)2) 3
2

(84)

D{ω0}
df(x)

dx
= −

cos

(
2π x (x2+3 x+3)

3

)3 (
x2 − 1

)
(
cos
(

2π x (x2+3 x+3)
3

)2) 3
2

(85)

The (84) and (85) have positive and negative values, which are therefore353

associated with positive and negative frequency values. In absolute values, (84)354

and (85) are, respectively:355 ∣∣∣∣D{ω1}
df(x)

dx

∣∣∣∣ = |2x+ 2| (86)∣∣∣∣D{ω0}
df(x)

dx

∣∣∣∣ = |−x2 + 1| (87)

However, negative frequency values can be neglected, and therefore the
modulus functions at (86) and (87) can be removed without loss of generality.
According to (83), the frequency function ωqr(x) can be reconstructed by:

ωqr(x) = (2x+ 2)x− x2 + 1 = x2 + 2x+ 1 (88)
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Fig. 9 ωqr(x) = x2 + 2x+ 1, obtained from f(x) = sin

(
2π

(
x3
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)
+ ϕ

)

It is important to note that (88) is obtained from (76) and not from the356

(60), i.e., the exact instantaneous frequency is obtained from waveform (wave357

function or signal) (f(x)) and not from phase function (Ω(x)) and there is358

no uncertainty.359

Remark Heisenberg’s Uncertainty Principle was not respected.360

From the instantaneous frequency function ω(x), the amplitude spectrum
F (ω) can be calculated as:

F (ω) =
1

ω

∫ ∞

−∞
ω(x)h(x)dx, (89)

with,

h(x) =

{
1; if ω(x) = ω;

0; otherwise
(90)

6.2 Fourier Derivative361

An important exponential function is e−iωx, with i =
√
−1 and x, ω,∈ R,362

which is the kernel of the Fourier Transforms [34]. Adding a scaling factor363

(as in (39)) to this kernel, and proceeding analogously to (41), the Fourier364

Derivative of function f(x) is:365



24 Calculus ++

D{} = e−iωx+b (91)

D{ω}df(x)
dx

= ω(x) = lim
∆→0

ln(f(x+∆))− ln(f(x))

−i∆
(92)

D{b}df(x)
dx

= b(x) = lim
∆→0

ln(f(x))(x+∆)− ln(f(x+∆))x

∆
(93)

f(x) can be reconstructed from its Fourier derivatives as:

f(x) = e−iD{ω} df(x)
dx x+D{b} df(x)

dx (94)

The parameter ω is the frequency in the kernel of the Fourier Transform,366

and therefore (92) is the instantaneous frequency (w(x) ∈ C).367

Let A ∈ R, a wave function of the type ψ(x, ω) = Ae−iωx. Considering, as368

example, A = 2, ω(x) = x3 +2x (the frequency ω varies with x, i.e. ω(x)) and369

Ω(x) the phase function (as in Chirp Signal (74)), the wave function ψ(x, ω)370

becomes:371

ψ(x) = 2e−iΩ(x) = 2e
−i

(
x4

4 +x2
)

(95)

where,

Ω(x) =

∫
(x3 + 2x)dx =

(
x4

4
+ x2

)
(96)

Applying 92 and 93 in 95:372

D{ω}dψ(x)
dx

= ω(x) = x3 + 2x (97)

D{b}dψ(x)
dx

= b(x) = i

(
3x4

4
+ x2

)
+ ln 2 (98)

Applying 94 in 97 and 98, the wave function ψ(x) (95), can be reconstructed373

as:374

ψ(x) = e
−i(x3+2x)x+i

(
3x4

4 +x2
)
+ln 2

= 2e
−i

(
x4

4 +x2
)

(99)

There is no uncertainty.375

Remark Heisenberg’s Uncertainty Principle was not respected.376

7 Conclusion377

In a simplified and summarized manner, Differential Calculus is based on378

applying a limit tending to zero for Newton’s Difference Quotient applied under379

any function f(x).380
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This operation determines another function (the derivative) whose values381

represent the instantaneous angular coefficients of the tangent lines to the382

function f(x).383

This paper showed that the Differential and Integral Calculus could be384

applied to other parameters of other functions called derivator and integrator385

functions.386

All the theories presented can be applied to two or more dimensions (partial387

derivatives and multiple integrals), in addition to well-established operations388

in classical differential and integral calculus such as the chain rule, product389

and division derivatives and integrals, differential and integral equations, and390

others, and this is suggested as future work.391

Some examples were presented, with emphasis on the determination of392

the instantaneous frequency. Although Heisenberg’s Uncertainty Principle is393

formalized as a property of waves, this paper has shown that uncertainty occurs394

due to the methodology employed for determining the instantaneous frequency395

in a function (wave function or signal).396

Heisenberg’s Uncertainty Principle is based on the use of integral trans-397

forms (such as Fourier Transform and similar wave packets), for a function398

in the time (or space) domain to obtain its representation in the frequency399

domain and vice versa.400

An integral transform is obviously based on the calculation of integrals.401

Hence, the integral is suitable for measuring general quantities associated with402

the whole function domain, such as an area, expected value, norm, autocorrela-403

tion, and even frequency distribution (spectral density), but not instantaneous404

quantities.405

Integral transforms (or wave packets) will produce uncertainty in the phase406

space of canonically conjugate variables.407

Nevertheless, why use a mathematical operation based on integral to try408

to determine instantaneous quantities?409

In turn, the derivative is suitable for measuring instantaneous quantities in410

a function. This paper presented a form to obtain the instantaneous frequency411

of a function given in the time (or space) domain using derivatives (and not412

integrals).413

The Fourier, Trigonometric, and Chirp Derivatives are examples of different414

forms to obtain the instantaneous frequency sharply.415
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