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Abstract. We study the solvability of certain linear nonhomogeneous
elliptic problems and demonstrate that under the given technical as-
sumptions the convergence in L

2 of their right-hand sides implies the
existence and the convergence in H

6 of the solutions. The equations
contain the sixth order differential operators with or without the Fred-
holm property, particularly the sixth derivative operator, on the whole
real line or on a finite interval with periodic boundary conditions. We
establish that the drift term involved in these problems provides the
regularization of the solutions.

1. Introduction

Consider the problem

(1.1) (−∆+ V (x))u− au = f,

where u ∈ E = H2(Rd) and f ∈ F = L2(Rd), d ∈ N, a is a constant,
and the function V (x) tends to 0 at the infinity. If a ≥ 0, then the essen-
tial spectrum of the operator A : E → F , which corresponds to the left
side of equation (1.1) contains the origin. As a consequence, such oper-
ator does not satisfy the Fredholm property. Its image is not closed, for
d > 1 the dimension of its kernel and the codimension of its image are not
finite. The present article deals with the studies of the certain properties
of the operators of this kind. Note that the elliptic equations involving
the non-Fredholm operators were treated extensively in the recent years
(see [10], [11], [12], [17], [18], [20], [21], [22], [23], [24], [25], [26], [27], also [3])
along with their potential applications to the theory of reaction-diffusion
problems (see [7], [8]). Fredholm structures, topological invariants and their
applications were discussed in [9]. The articles [13] and [16] are devoted to
the understanding of the Fredholm and properness properties of the quasi-
linear elliptic systems of the second order and of the operators of this kind
on R

N . The exponential decay and Fredholm properties in the second-order
quasilinear elliptic systems of equations were considered in [14]. In partic-
ular, if the constant a = 0, our operator A satisfies the Fredholm property
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2 V. VOUGALTER

in the certain properly chosen weighted spaces (see [1], [2], [3], [5], [6]).
However, the case when a does not vanish is significantly different and the
method developed in these works cannot be used.
One of the significant questions about the problems involving the non-
Fredholm operators is their solvability. We address it in the following setting.
Let fn be a sequence of functions in the image of the operator A, so that
fn → f in L2(Rd) as n → ∞. Denote by un a sequence of functions from
H2(Rd) such that

Aun = fn, n ∈ N.

Because the operator A does not satisfy the Fredholm property, the sequence
un may not be convergent. We call a sequence un, such that Aun → f in
L2(Rd) a solution in the sense of sequences of the equation Au = f (see [17]).
If such sequence converges to a function u0 in the norm of the space E, then
u0 is a solution of this problem. The solution in the sense of sequences is
equivalent in this sense to the usual solution. However, in the case of non-
Fredholm operators this convergence may not hold or it can occur in some
weaker sense. In this case, the solution in the sense of sequences may not
imply the existence of the usual solution. In the present work we will find
the sufficient conditions of equivalence of solutions in the sense of sequences
and the usual solutions. In the other words, we will determine the conditions
on sequences fn under which the corresponding sequences un are strongly
convergent.
In the first part of the work we treat the problem with the transport term

(1.2) −d6u

dx6
− b

du

dx
− au = f(x), x ∈ R,

where a ≥ 0 and b ∈ R, b 6= 0 are the constants and the right side is square
integrable. The equation with the drift in the context of the Darcy’s law
describing the fluid motion in the porous medium was studied in [23]. The
transport term is important when studying the emergence and propagation
of patterns arising in the theory of speciation (see [19]). Nonlinear propa-
gation phenomena for the reaction-diffusion type problems containing the
drift term were covered in [4]. Solvability conditions for a linearized Cahn-
Hilliard equation of sixth order were determined in [24]. Solvability in the
sense of sequences for some non Fredholm operators with drift and superdif-
fusion was covered in [27]. Evidently, the operator involved in the left side
of (1.2)

(1.3) La, b := − d6

dx6
− b

d

dx
− a : H6(R) → L2(R)

is non-selfadjoint. By virtue of the standard Fourier transform

(1.4) f̂(p) :=
1√
2π

∫ ∞

−∞
f(x)e−ipxdx, p ∈ R
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it can be trivially obtained that the essential spectrum of the operator La, b

is given by
λa, b(p) := p6 − a− ibp, p ∈ R.

Obviously, for a > 0 our operator La, b is Fredholm, since the origin does not
belong to its essential spectrum. But when a = 0, the operator L0, b fails
to satisfy the Fredholm property because its essential spectrum contains the
origin.
Note that in the absence of the drift term we are dealing with the self-adjoint
operator

− d6

dx6
− a : H6(R) → L2(R), a ≥ 0,

which is non-Fredholm.
We write down the corresponding sequence of the approximate equations
with m ∈ N, namely

(1.5) −d6um

dx6
− b

dum

dx
− aum = fm(x), x ∈ R,

where a ≥ 0 and b ∈ R, b 6= 0 are the constants. The right sides of (1.5)
converge to the right side of (1.2) in L2(R) as m → ∞.
Let us define the inner product of two functions

(1.6) (f(x), g(x))L2(R) :=

∫ ∞

−∞
f(x)ḡ(x)dx,

with a slight abuse of notations when these functions are not square inte-
grable. Evidently, if f(x) ∈ L1(R) and g(x) is bounded, then the integral
considered above is well defined, like for instance in the case of the functions
involved in the orthogonality conditions (1.8) and (1.9) of Theorems 1.1 and
1.2 below.
For our problem (1.2) on the finite interval I := [0, 2π] with periodic bound-
ary conditions (see (1.14)), we will use the inner product analogous to (1.6),
replacing the real line with I. In the first part of the present work we will
consider the space H6(R) equipped with the norm

(1.7) ‖u‖2H6(R) := ‖u‖2L2(R) +

∥∥∥∥∥
d6u

dx6

∥∥∥∥∥

2

L2(R)

.

When dealing with the norm H6(I) later on, we will replace R with I in
formula (1.7). Our first main proposition is as follows.

Theorem 1.1. Let the constants a ≥ 0, b ∈ R, b 6= 0 and f(x) ∈ L2(R).

a) If a > 0, then problem (1.2) possesses a unique solution u(x) ∈ H6(R).

b) If a = 0 and xf(x) ∈ L1(R), then equation (1.2) has a unique solution
u(x) ∈ H6(R) if and only if the orthogonality relation

(1.8) (f(x), 1)L2(R) = 0

holds.
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Obviously, the expression in the left side of (1.8) is well defined by means of
the trivial reasoning analogous to the proof of Fact 1 of [21].
Note that the argument in the case a) of the theorem above is not based
on the orthogonality relations. But when the transport term is absent and
we are dealing with the non-Fredholm operator, we need the orthogonality
conditions to establish the solvability of the problem in the lower dimensions
(see e.g. Lemmas 5 and 6 of [25] for the case of the standard Laplacian).
Therefore, the introduction of the drift term into our equation provides the
regularization of the solutions.
Our next result is about the solvability in the sense of sequences for our
problem on whole the real line.

Theorem 1.2. Let the constants a ≥ 0, b ∈ R, b 6= 0 and m ∈ N, fm(x) ∈
L2(R), such that fm(x) → f(x) in L2(R) as m → ∞.

a) If a > 0, then problems (1.2) and (1.5) admit unique solutions u(x) ∈
H6(R) and um(x) ∈ H6(R) respectively, so that um(x) → u(x) in H6(R) as
m → ∞.

b) If a = 0, let xfm(x) ∈ L1(R), such that xfm(x) → xf(x) in L1(R) as
m → ∞. Moreover,

(1.9) (fm(x), 1)L2(R) = 0, m ∈ N

holds. Then equations (1.2) and (1.5) possess unique solutions u(x) ∈
H6(R) and um(x) ∈ H6(R) respectively, so that um(x) → u(x) in H6(R)
as m → ∞.

The second part of the article deals with the studies of our problem on
the finite interval with the periodic boundary conditions (see (1.14)), i.e.
I := [0, 2π], namely

(1.10) −d6u

dx6
− b

du

dx
− au = f(x), x ∈ I,

where a ≥ 0 and b ∈ R, b 6= 0 are the constants and the right side of (1.10)
is continuous and periodic. Evidently,

(1.11) ‖f‖L1(I) ≤ 2π‖f‖C(I) < ∞, ‖f‖L2(I) ≤
√
2π‖f‖C(I) < ∞.

Hence, f(x) ∈ L2(I) as well. Let us use the Fourier transform

(1.12) fn :=
1√
2π

∫ 2π

0
f(x)e−inxdx, n ∈ Z,

such that

f(x) =
∞∑

n=−∞

fn
einx√
2π

.

Clearly, the non-selfadjoint operator contained in the left side of (1.10)

(1.13) la, b := − d6

dx6
− b

d

dx
− a : H6(I) → L2(I)
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is Fredholm. By virtue of (1.12), it can be easily verified that the spectrum
of la, b is given by

λa, b(n) := n6 − a− ibn, n ∈ Z

and the corresponding eigenfunctions are the Fourier harmonics

einx√
2π

, n ∈ Z.

The eigenvalues of the operator la, b are simple, as distinct from the case
without the drift term, when the eigenvalues corresponding to n 6= 0 are
twofold degenerate. The appropriate function space here H6(I) is given by

{u(x) : I → C | u(x), u(V I)(x) ∈ L2(I), u(0) = u(2π), u′(0) = u′(2π),

u′′(0) = u′′(2π), u′′′(0) = u′′′(2π), u(IV )(0) = u(IV )(2π),

(1.14) u(V )(0) = u(V )(2π)}.
For the technical purposes, we introduce the following auxiliary constrained
subspace

(1.15) H6
0 (I) = {u(x) ∈ H6(I) | (u(x), 1)L2(I) = 0}.

Note that (1.15) is a Hilbert spaces as well (see e.g. Chapter 2.1 of [15]).
Evidently, if a > 0, the kernel of the operator la, b is trivial. If a = 0, we
consider

l0, b : H6
0 (I) → L2(I).

Obviously, this operator has a trivial kernel as well.
Let us write down the corresponding sequence of the approximate equations
with m ∈ N, namely

(1.16) −d6um

dx6
− b

dum

dx
− aum = fm(x), x ∈ I,

where a ≥ 0, b ∈ R, b 6= 0 are the constants. The right sides of (1.16)
are continuous, periodic and tend to the right side of (1.10) in C(I) as
m → ∞. The goal of Theorems 1.3 and 1.4 below is to demonstrate the
formal similarity of the results on the finite interval with periodic boundary
conditions to the ones derived for the whole real line situation in Theorems
1.1 and 1.2 above.

Theorem 1.3. Let the constants a ≥ 0, b ∈ R, b 6= 0 and f(0) =
f(2π), f(x) ∈ C(I).

a) If a > 0, then problem (1.10) has a unique solution u(x) ∈ H6(I).

b) If a = 0, then equation (1.10) admits a unique solution u(x) ∈ H6
0 (I) if

and only if the orthogonality relation

(1.17) (f(x), 1)L2(I) = 0

is valid.
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The final main statement of the article deals with the solvability in the sense
of sequences for our equation on the finite interval I.

Theorem 1.4. Let the constants a ≥ 0, b ∈ R, b 6= 0 and m ∈ N, such
that fm(0) = fm(2π). Moreover, fm(x) ∈ C(I) and fm(x) → f(x) in C(I)
as m → ∞.

a) If a > 0, then problems (1.10) and (1.16) possess unique solutions u(x) ∈
H6(I) and um(x) ∈ H6(I) respectively, such that um(x) → u(x) in H6(I)
as m → ∞.

b) If a = 0, let

(1.18) (fm(x), 1)L2(I) = 0, m ∈ N.

Then equations (1.10) and (1.16) admit unique solutions u(x) ∈ H6
0 (I) and

um(x) ∈ H6
0 (I) respectively, such that um(x) → u(x) in H6

0 (I) as m → ∞.

Note that in the cases a) of Theorems 1.3 and 1.4 above the reasoning does
not rely on the orthogonality conditions. When there are no drift terms in
our equations, the situation is more singular (see formulas (3.1) and (3.7)
below with a = n6

0, n0 ∈ N).

Remark 1.5. It is strongly believed that the approach developed in the
present work to study the solvability of the sixth order equation can be used
to treat the problem containing a shallow, short-range potential if we use the
generalized Fourier transform with the functions of the continuous spectrum
of the corresponding Schrödinger type operator. This issue will be considered
in the consecutive work.

2. The whole real line case

Proof of Theorem 1.1. First we establish that it would be sufficient to solve
our problem in L2(R). Indeed, if u(x) is a square integrable solution of
(1.2) on the whole real line, directly from this equation under the stated
assumptions we obtain that

−d6u

dx6
− b

du

dx
∈ L2(R)

as well. Using the standard Fourier transform (1.4), we derive

(p6 − ibp)û(p) ∈ L2(R).

Hence

∫ ∞

−∞
p12|û(p)|2dp < ∞, such that

d6u

dx6
∈ L2(R). By means of the def-

inition of the norm (1.7), we derive that u(x) ∈ H6(R) as well.
Let us demonstrate that the uniqueness of solutions for equation (1.2) holds.
Suppose that

u1(x), u2(x) ∈ H6(R)
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solve (1.2). Then their difference w(x) := u1(x)− u2(x) ∈ H6(R) satisfies

−d6w

dx6
− b

dw

dx
− aw = 0.

Because the operator La, b defined in (1.3) does not have any nontrivial zero
modes in H6(R), the function w(x) vanished identically on the real line.
We apply the standard Fourier transform (1.4) to both sides of problem
(1.2). This gives us

(2.1) û(p) =
f̂(p)

p6 − a− ibp
,

so that

(2.2) ‖u‖2L2(R) =

∫ ∞

−∞

|f̂(p)|2
(p6 − a)2 + b2p2

dp.

Let us first consider the case a) of the theorem. Formula (2.2) yields

‖u‖2L2(R) ≤
1

C
‖f‖2L2(R) < ∞

as assumed. Here and below C will stand for a finite, positive constant.
Then we turn our attention to the situation when the parameter a is trivial.
By means of (2.1), we easily write

(2.3) û(p) =
f̂(p)

p6 − ibp
χ{|p|≤1} +

f̂(p)

p6 − ibp
χ{|p|>1}.

Here and further down χA will designate the characteristic function of a set
A ⊆ R.
Clearly, the second term in the right side of (2.3) can be bounded from above

in the absolute value by
|f̂(p)|
|b| ∈ L2(R) since f(x) is square integrable on

the whole real line due to our assumption.
We express

f̂(p) = f̂(0) +

∫ p

0

df̂(s)

ds
ds.

Thus, the first term in the right side of (2.3) is given by

(2.4)
f̂(0)

p6 − ibp
χ{|p|≤1} +

∫ p

0
df̂(s)
ds

ds

p6 − ibp
χ{|p|≤1}.

By virtue of definition (1.4) of the standard Fourier transform, we have
∣∣∣∣∣
df̂(p)

dp

∣∣∣∣∣ ≤
1√
2π

‖xf(x)‖L1(R).

Hence, the second term in (2.4) can be estimated from above in the absolute
value by

1√
2π

‖xf(x)‖L1(R)

|b| χ{|p|≤1} ∈ L2(R).
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Obviously, the first term in (2.4) belongs to L2(R) if and only if f̂(0) = 0.
This is equivalent to orthogonality condition (1.8). �

We proceed to establishing the solvability in the sense of sequences for our
equation on whole the real line.

Proof of Theorem 1.2. Let us first suppose that problems (1.2) and (1.5) have
unique solutions u(x) ∈ H6(R) and um(x) ∈ H6(R), m ∈ N respectively,
such that um(x) → u(x) in L2(R) as m → ∞. This will yield that um(x)
also tends to u(x) in H6(R) as m → ∞. Evidently, from (1.2) and (1.5) we
easily derive

(2.5)

∥∥∥∥∥−
d6

dx6
(um−u)−b

d(um − u)

dx

∥∥∥∥∥
L2(R)

≤ ‖fm−f‖L2(R)+a‖um−u‖L2(R).

The right side of (2.5) converges to zero as m → ∞ via our assumptions.
By virtue of the standard Fourier transform (1.4), we obtain that

∫ ∞

−∞
p12|ûm(p)− û(p)|2dp → 0, m → ∞.

Hence,
d6um

dx6
→ d6u

dx6
in L2(R) as m → ∞. Let us use the definion of the

norm (1.7) to deduce that um(x) → u(x) in H6(R) as m → ∞ as well.
We apply the standard Fourier transform (1.4) to both sides of (1.5). This
yields

(2.6) ûm(p) =
f̂m(p)

p6 − a− ibp
, m ∈ N.

Let us first treat the case a) of the theorem. By means of the result of
the part a) of Theorem 1.1, problems (1.2) and (1.5) have unique solutions
u(x) ∈ H6(R) and um(x) ∈ H6(R), m ∈ N respectively. By virtue of (2.6)
along with (2.1), we arrive at

‖um − u‖2L2(R) =

∫ ∞

−∞

|f̂m(p)− f̂(p)|2
(p6 − a)2 + b2p2

dp.

Thus,

‖um − u‖L2(R) ≤
1

C
‖fm − f‖L2(R) → 0, m → ∞

as we assume. This means that in the situation when a > 0 we have um(x) →
u(x) in H6(R) as m → ∞ due to the reasoning above.
We conclude the proof of our theorem by dealing with the case when the
parameter a vanishes. By virtue of the result of the part a) of Lemma 3.3
of [20], under the given conditions

(2.7) (f(x), 1)L2(R) = 0
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holds. Then by means of the part b) of Theorem 1.1, equations (1.2) and
(1.5) admit unique solutions u(x) ∈ H6(R) and um(x) ∈ H6(R), m ∈ N

respectively when a = 0. Let us use (2.6) and (2.1) to express

(2.8) ûm(p)− û(p) =
f̂m(p)− f̂(p)

p6 − ibp
χ{|p|≤1} +

f̂m(p)− f̂(p)

p6 − ibp
χ{|p|>1}.

Evidently, the second term in the right side of (2.8) can be estimated from

above in the absolute value by
|f̂m(p)− f̂(p)|

|b| , such that

∥∥∥∥∥
f̂m(p)− f̂(p)

p6 − ibp
χ{|p|>1}

∥∥∥∥∥
L2(R)

≤ 1

|b| ‖fm − f‖L2(R) → 0, m → ∞

as we assume. Orthogonality relations (2.7) and (1.9) imply that

f̂(0) = 0, f̂m(0) = 0, m ∈ N.

Then we can write

(2.9) f̂(p) =

∫ p

0

df̂(s)

ds
ds, f̂m(p) =

∫ p

0

df̂m(s)

ds
ds, m ∈ N,

such that it remains to obtain the bound on the norm of the expression

∫ p

0 [
df̂m(s)

ds
− df̂(s)

ds
]ds

p6 − ibp
χ{|p|≤1}.

By virtue of the definition of the standard Fourier transform (1.4), we easily
derive that

∣∣∣df̂m(p)

dp
− df̂(p)

dp

∣∣∣ ≤ 1√
2π

‖xfm(x)− xf(x)‖L1(R).

Thus,
∣∣∣∣∣

∫ p

0 [
df̂m(s)

ds
− df̂(s)

ds
]ds

p6 − ibp
χ{|p|≤1}

∣∣∣∣∣ ≤
‖xfm(x)− xf(x)‖L1(R)√

2π|b|
χ{|p|≤1},

so that
∥∥∥∥∥

∫ p

0 [
df̂m(s)

ds
− df̂(s)

ds
]ds

p6 − ibp
χ{|p|≤1}

∥∥∥∥∥
L2(R)

≤
‖xfm(x)− xf(x)‖L1(R)√

π|b| → 0

as m → ∞ via the one of our assumptions.
This implies that um(x) → u(x) in L2(R) as m → ∞. By means of the argu-
ment above, um(x) → u(x) inH6(R) asm → ∞ in the case b) of the theorem
as well. �



10 V. VOUGALTER

3. The problem on the finite interval

Proof of Theorem 1.3. First we demonstrate that it would be sufficient to
solve our equation in L2(I). Indeed, if u(x) is a square integrable solution
of (1.10), periodic on I along with its derivatives up to the fifth order inclu-
sively, directly from our problem under the stated assumptions we obtain
that

−d6u

dx6
− b

du

dx
∈ L2(I).

By virtue of (1.12), we have (n6 − ibn)un ∈ l2. This means that
∞∑

n=−∞

n12|un|2 < ∞,

so that
d6u

dx6
∈ L2(I). Hence, u(x) ∈ H6(I) as well.

To establish the uniqueness of solutions of (1.10), we consider the situation
when a > 0. If a = 0, we are able to apply the similar reasoning in the
constrained subspace H6

0 (I). Let us suppose that u1(x), u2(x) ∈ H6(I)
satisfy (1.10). Then their difference w(x) := u1(x) − u2(x) ∈ H6(I) is a
solution of the homogeneous problem

−d6w

dx6
− b

dw

dx
− aw = 0.

Because the operator la, b given by (1.13) does not possess any nontrivial
H6(I) zero modes, the function w(x) ≡ 0 in I.
Let us apply the Fourier transform (1.12) to both sides of equation (1.10).
This gives us

(3.1) un =
fn

n6 − a− ibn
, n ∈ Z,

such that

(3.2) ‖u‖2L2(I) =

∞∑

n=−∞

|fn|2
(n6 − a)2 + b2n2

.

First we consider the case a) of the theorem. By means of (3.2), we have

‖u‖2L2(I) ≤
1

C
‖f‖2L2(I) < ∞

as we assume (see (1.11)). By virtue of the reasoning above, u(x) ∈ H6(I)
as well.
We conclude the proof of our theorem by discussing the situation when a

vanishes. From (3.1) we easily derive that

(3.3) un =
fn

n6 − ibn
, n ∈ Z.

Evidently, the right side of (3.3) belongs to l2 if and only if

(3.4) f0 = 0,
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such that

‖u‖2L2(I) =
∑

n∈Z, n 6=0

|fn|2
n12 + b2n2

≤ 1

b2
‖f‖2L2(I) < ∞,

via the one of our assumptions along with (1.11). The reasoning above
yields that u(x) ∈ H6

0 (I) as well. Clearly, (3.4) is equivalent to orthogonality
relation (1.17). �

Let us discuss the solvability in the sense of sequences for our equation on
the interval I with periodic boundary conditions.

Proof of Theorem 1.4. Using the given conditions, we have

|f(0)− f(2π)| ≤ |f(0)− fm(0)| + |fm(2π)− f(2π)| ≤ 2‖fm − f‖C(I) → 0

as m → ∞. Thus, f(0) = f(2π).
Since fm(x), f(x) ∈ C(I), m ∈ N, they belong to L1(I) ∩ L2(I) by virtue
of (1.11). Formula (1.11) also implies that

(3.5) ‖fm(x)− f(x)‖L1(I) ≤ 2π‖fm(x)− f(x)‖C(I) → 0, m → ∞.

Hence, fm(x) → f(x) in L1(I) as m → ∞. Similarly, (1.11) yields

(3.6) ‖fm(x)− f(x)‖L2(I) ≤
√
2π‖fm(x)− f(x)‖C(I) → 0, m → ∞.

Thus, fm(x) → f(x) in L2(I) as m → ∞ as well.
Let us apply the Fourier transform (1.12) to both sides of (1.16). We arrive
at

(3.7) um,n =
fm,n

n6 − a− ibn
, m ∈ N, n ∈ Z.

First we treat the case a) of the theorem. By means of the part a) of Theorem
1.3, equations (1.10) and (1.16) admit unique solutions u(x) ∈ H6(I) and
um(x) ∈ H6(I), m ∈ N respectively. By virtue of formulas (3.1), (3.6) and
(3.7),

‖um − u‖2L2(I) =

∞∑

n=−∞

|fm,n − fn|2
(n6 − a)2 + b2n2

≤ 1

C
‖fm − f‖2L2(I) → 0, m → ∞.

Hence, um(x) → u(x) in L2(I) as m → ∞.
Let us demonstrate that um(x) tends to u(x) in H6(I) as m → ∞. Indeed,
by means of (1.10) and (1.16), we obtain
∥∥∥∥∥− d6

dx6
(um − u)− b

d(um − u)

dx

∥∥∥∥∥
L2(I)

≤ ‖fm − f‖L2(I) + a‖um − u‖L2(I).

The right side of this bound converges to zero as m → ∞ via (3.6). Using
the Fourier transform (1.12), we derive that

∞∑

n=−∞

n12|um,n − un|2 → 0, m → ∞.
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Thus,
d6um

dx6
→ d6u

dx6
in L2(I) as m → ∞. This means that um(x) → u(x) in

H6(I) as m → ∞ in the situation when a > 0.
We conclude the article with discussing the case when the parameter a is
trivial. By virtue of (1.18) along with (3.5), we have

|(f(x), 1)L2(I)| = |(f(x)− fm(x), 1)L2(I)| ≤ ‖fm − f‖L1(I) → 0, m → ∞,

such that the limiting orthogonality relation

(3.8) (f(x), 1)L2(I) = 0

holds. By means of the part b) of Theorem 1.3 above problems (1.10) and
(1.16) possess unique solutions u(x) ∈ H6

0 (I) and um(x) ∈ H6
0 (I), m ∈ N

respectively if a = 0. By virtue of formulas (3.1) and (3.7), we obtain that

(3.9) um,n − un =
fm,n − fn

n6 − ibn
, m ∈ N, n ∈ Z.

Orthogonality conditions (3.8) and (1.18) imply

f0 = 0, fm,0 = 0, m ∈ N.

Let us derive the estimate from above for the norm as

‖um − u‖L2(I) =

√√√√
∞∑

n=−∞, n 6=0

|fm,n − fn|2
n12 + b2n2

≤
‖fm − f‖L2(I)

|b| → 0, m → ∞

due to (3.6). Thus, um(x) → u(x) in L2(I) as m → ∞. Therefore, um(x) →
u(x) in H6

0 (I) as m → ∞ as well by virtue of the reasoning analogous to the
one above in the proof of the case a) of our theorem. �
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