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Abstract. In this article, we analyze the stability of the parallel surface problem for semilinear

equations driven by the fractional Laplacian. We prove a quantitative stability result that goes

beyond that previously obtained in [Cir+23].

Moreover, we discuss in detail several techniques and challenges in obtaining the optimal exponent

in this stability result. In particular, this includes an upper bound on the exponent via an explicit

computation involving a family of ellipsoids. We also sharply investigate a technique that was proposed

in [Cir+18] to obtain the optimal stability exponent in the quantitative estimate for the nonlocal

Alexandrov’s soap bubble theorem, obtaining accurate estimates to be compared with a new, explicit

example.

1. Introduction and main results

1.1. The long-standing tradition of overdetermined problems. Overdetermined problems are

a broad class of partial differential equations (PDEs) where ‘too many conditions’ are imposed on the

solution. Since not every region will admit a solution which satisfies all the conditions, the objective

in the study of overdetermined problems is to classify those regions which do admit solutions.

Often, overdetermined problems arise naturally in applications as a combination of a well-posed

partial differential equation (PDE) which describes the dynamics of a given physical system, as well

as an extra condition, often referred to as the overdetermined condition, which describes a property

or an optimal quality you would like the solution to possess. As such, overdetermined problems have

a close relationship with optimization, free boundary problems and calculus of variations, particularly

shape optimization, as well as many other applications including fluid mechanics, solid mechanics,

thermodynamics, electrostatics, see [Ser71; FG08; HP18; DPV21].

The study of overdetermined problems began in the early 1970’s with the celebrated paper of

Serrin [Ser71]. In this influential paper, Serrin proved that, given a bounded domain Ω ⊂ Rn

with C2 boundary and f ∈ C0,1
loc (R), if there exists a positive solution u ∈ C2(Ω) that satisfies the

Dirichlet boundary value problem {
−∆u = f(u) in Ω,

u = 0 on ∂Ω,
(1.1)

as well as the overdetermined condition

∂νu = c on ∂Ω(1.2)
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for some constant c ∈ R \ {0}, then Ω must be a ball. Here ν is the unit outward pointing normal

to ∂Ω and ∂νu = ∇u · ν. The proof relies on a powerful technique, now known as the method of

moving planes, a refinement of a reflection principle conceived by Alexandrov in [Ale62] to prove the

so-called soap bubble theorem, which states that the only connected closed hypersurfaces embedded

in a space form with everywhere constant mean curvature are spheres.

Since the work of Alexandrov and Serrin, the analysis of overdetermined problems and the method

of moving planes has seen intense research activity. Some of the literature on the method of moving

planes, overdetermined problems, and symmetry in PDE include:

• Alternate/incomplete overdetermined conditions: One can consider elliptic equations such (1.1)

or otherwise with an alternate overdetermined condition to (1.2), see [HP98; FG08; BHS14;

DPV21]. The parallel surface problem fits into this category, see below for references.

• Integral identities: Integral identities such as the Pohozaev identity are often employed in

the analysis of overdetermined problems, providing an alternative approach to the method

of moving planes. Such an alternative approach was pioneered in [Wei71] and then further

developed in, e.g., [PS89; GL89; Bra+08; CS09; QX17; CV19; MP20a; MP20b].

• Nonlinear elliptic equations: The original paper of Serrin [Ser71] dealt with uniformly elliptic

quasilinear equations including equations of mean curvature type. Other (possibly degen-

erate) quasilinear and fully nonlinear equations have been analyzed [GL89; DS07; FK08;

Bra+08; BK11; BD13; SS15].

• Symmetry: The method of moving planes was famously used to prove symmetry results for

solutions to semilinear PDE in domains with symmetry in [GNN79; GNN81]. For this type

of results, an alternative approach which combines Pohozaev identity and isoperimetric-type

inequalities was pioneered in [Lio81] and then further developed in [KP94; Ser13; DPV22].

• Nonlocal operators: For overdetermined problems and symmetry for nonlocal equations, see

[FJ15; Cab+18; Cir+18; SV19; Dip+22; Cir+23].

1.2. The nonlocal parallel surface problem and the main results of this paper. In this

paper, we are concerned with the nonlocal parallel surface problem. The context of this problem is

as follows: Let n be a positive integer and s ∈ (0, 1). Suppose that G is an open bounded subset

of Rn and let Ω = G+BR for some R > 0, where A+B is the Minkowski sum of sets defined by

A+B = {a+ b s.t. a ∈ A, b ∈ B}.

Moreover, let (−∆)s denote the fractional Laplacian defined by

(−∆)su(x) = cn,sP.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy

where cn,s is a positive normalization constant and P.V. denotes the Cauchy principle value. Also,

assume that f : R → R is locally Lipschitz and satisfies f(0) ⩾ 0. Then, the nonlocal parallel surface

problem asks: if there exists a function u that satisfies (in an appropriate sense) the equation
(−∆)su = f(u) in Ω,

u = 0 in Rn \ Ω,
u ⩾ 0 in Rn,

(1.3)



QUANTITATIVE STABILITY FOR THE NONLOCAL PARALLEL SURFACE PROBLEM 3

as well as the overdetermined condition

u = constant on ∂G,(1.4)

then is Ω necessarily a ball?

This question is referred to as the rigidity problem for the parallel surface problem. Furthermore,

one can ask about the stability of this problem, that is, heuristically, if u satisfies (1.3) and ‘almost’

satisfies (1.4) then is Ω ‘almost’ a ball? This is the subject of the current article. Of course, one must

be precise by what one means by ‘almost’—this will be made clear in the proceeding paragraphs as

we describe the literature and our main results.

The local analogue of the parallel surface problem (i.e. the case s = 1) was introduced in [Sha12]

as a discrete analogue of the original Serrin’s problem. Moreover, it also appears in [MS10; CMS15]

in the context of invariant isothermic surfaces of a nonlinear non-degenerate fast diffusion equation.

To see why the parallel surface problem can be viewed as a discrete analogue of Serrin’s problem,

consider that u ∈ C2(Ω) satisfies (1.1) as well as u = ck > 0 on an countably infinite family of

parallel surfaces Γk that are a distance 1/k from the boundary of Ω. Then kck necessarily converges

to some c by regularity assumptions on u and u satisfies (1.2). Consequently, Ω must be a ball.

To reiterate, in the parallel surface problem there is only a single parallel surface (not a family as

just described); regardless, this was enough to prove in [Sha12; CMS15] the rigidity result: if there

exists a solution to (1.1) satisfying (1.4) then Ω must be a ball.

Subsequently, in [CMS16], the stability of (1.3) for the local problem was addressed. In that

article, the authors used the shape functional

ρ(Ω) = inf
{
R− r s.t. Br(x) ⊂ Ω ⊂ BR(x) for some x ∈ Ω

}
to quantify how close Ω is to being a ball and the semi-norm

[u]∂G = sup
x,y∈∂G
x ̸=y

{
|u(x)− u(y)|

|x− y|

}
to quantify how close u is to being constant on ∂Ω. They showed, under reasonable assumptions

on Ω, that

ρ(Ω) ⩽ C[u]∂G.(1.5)

Moreover, for the nonlocal parallel surface problem, the rigidity problem was answered affirmatively

in [Cir+23] for the case f = 1 and [Dip+22] for general f . Moreover, [Cir+23] also addressed the

stability problem (still for the case f = 1) and showed that

ρ(Ω) ⩽ C[u]
1

s+2

∂G .(1.6)

It is interesting to observe that (1.6) is sub-optimal in the sense that it does not recover the es-

timate (1.5) when s = 1. This is due to the nonlocality of the fractional Laplacian which caused

contributions from mass ‘far away’ to have a significant effect on the analysis.

This leads us to our main result.
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Theorem 1.1. Let G be an open bounded subset of Rn and Ω = G + BR for some R > 0. Further-

more, let Ω and G have C1 boundary, and let f ∈ C0,1
loc (R) be such that f(0) ⩾ 0. Suppose that u

satisfies (1.3) in the weak sense.

Then,

ρ(Ω) ⩽ C[u]
1

s+2

∂G(1.7)

with

C := C(n, s)

[
(max{1, diamΩ})n+2s

(
1 + (diamΩ)2s[f ]C0,1([0,∥u∥L∞(Ω)])

)
Rs
(
f(0) + ∥u∥Ls(Rn)

) + (diamΩ)n−1 +
|Ω|
R

]

× (diamΩ)n+2s+3

R2s|Ω|

(
1 +R2s[f ]C0,1([0,∥u∥L∞(Ω)])

)
.

For the precise definition of a solution satisfying (1.3) in the weak sense, see Section 2.

Theorem 1.1 is a direct extension of [Cir+23] to the case f ̸= 1. Moreover, Theorem 1.1 relaxes

some of the regularity assumptions on Ω appearing in [Cir+23]. It is clear that the dependence on

the volume |Ω| in the constant of Theorem 1.1 can be removed by means of the following bounds

|B1|Rn ⩽ |Ω| ⩽ |B1|(diamΩ)n, where |B1| is the volume of the unit ball in Rn,

which hold true in light of the monotonicity of the volume with respect to inclusion.

Currently, an important open problem for the nonlocal parallel surface problem is to understand

the optimality of Theorem 1.1. Indeed, let β(s) be the optimal exponent in (1.7) defined as the

supremum over β ∈ R such that if u = uf is a weak solution of (1.3) for some f satisfying the

assumptions of Theorem 1.1 then ρ(Ω) ⩽ C[u]β∂G. In this framework, an explicit expression for β as

a function of s is still unknown. Theorem 1.1 implies that β(s) ⩾ 1
s+2

and [Sha12; CMS15] establish

that β(1) = 1, therefore we believe it is an interesting problem to detect optimal stability exponents

in the nonlocal setting, also to recover, whenever possible, the classical exponent of the local cases

in the limit.

In Section 7, we explicitly construct a family of domains Gε that are small perturbations of a ball

and corresponding solutions uε to (1.3) when f = 1 which satisfy [uε]∂Gε ≃ Cρ(Ωε) as ε→ 0+. This

entails the following result:

Theorem 1.2. Let G be an open bounded subset of Rn and Ω = G+BR for some R > 0. Furthermore,

let Ω and G have C1 boundary.

Then, we have that β(s) ⩽ 1.

As far as the authors are aware, these are the only known estimates for β(s). Furthermore, by

considering the case in which Ω = Ωε is a small perturbation of a ball and exploting interior regularity

for the fractional Laplacian, one would expect that ρ(Ωε) ≃ [uε]∂Gε ≃ ε (up to constant) as ε → 0+

which suggests that β(s) = 1 for all s ∈ (0, 1]. In Section 5, we give a broad discussion on some of

the challenges that the nonlocality of the fractional Laplacian presents in obtaining this result. In

particular, by way of an example via the Poisson representation formula, we show that estimates for

a singular integral involving the reciprocal of the distance to the boundary function play a key role

in obtaining the anticipated optimal result. This suggests, surprisingly, that fine geometric estimates

for the distance function close to the boundary are required to obtain the optimal exponent.
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1.3. Scrutiny of the stability exponent. In the recent literature, some inventive methods have

been introduced to improve the stability results obtained via the moving plane method. A remark-

able one was put forth in [Cir+18]. Roughly speaking, the setting considered in [Cir+18, Proposi-

tion 3.1(b)] focused on the critical hyperplane πλ = {xn = λ} for the moving plane technique for a

set Ω which contains the ball Br and is contained in the ball BR, looked at the symmetric difference

between Ω and its reflection Ω′ and obtained a bound on the measure of the set

(1.8)
{
x ∈ Ω△Ω′ s.t. dist(x, πλ) ⩽ γ

}
which was linear in both γ and R− r.

This constituted a fundamental ingredient in [Cir+18] to achieve an optimal stability exponent.

Unfortunately, we believe that, in the very broad generality in which the result is stated in [Cir+18],

this statement may not be true, and we present an explicit counter-example.

Nevertheless, in our opinion, a weaker version of [Cir+18, Proposition 3.1(b)] does hold true. We

state and prove this new result and check its optimality against the counter-example mentioned

above. This construction plays a decisive role in improving the stability exponent.

Though we refer the reader to Section 6 for full details of this strategy, let us anticipate here some

important details.

More specifically, in the forthcoming Theorem 6.3, under the additional assumption that the set Ω

is of class Cα, with α > 1, we will bound the measure of the set in (1.8), up to constants, by

(1.9) γ(R− r)1−
1
α .

We stress that this bound formally recovers exactly the one stated in [Cir+18, Proposition 3.1(b)]

when α = +∞.

However, we believe that the bound in (1.9) is optimal and cannot be improved (in particular,

while the dependence in γ of the estimate above is linear, the dependence in R − r, surprisingly,

is not!). This will be shown by an explicit counter-example put forth in Theorem 6.6—while the

analytical details of this counter-example are very delicate, the foundational idea behind it is sketched

in Figure 2 (roughly speaking, the example is obtained by a very small and localized modification of

a ball to induce a critical situation at the maximal location allowed by the regularity of the set; the

construction is technically demanding since the constraint for the set of “being between two balls”

induces two different scales, in the horizontal and in the vertical directions, which in principle could

provide different contributions).

As a consequence of the bound (1.9) for the measure of the set in (1.8), as given in Theorem 6.3,

the stability exponent 1/(s+2) of Theorem 1.1 can be improved to α/(1+α(s+1)) provided that Ω

is of class Cα for α > 1: we refer to Section 6.2 and Theorem 6.9 for details.

1.4. Organization of paper. The paper is organized as follows. In Section 2, we summarize the

notation and basic definitions used throughout the article. In Section 3, we give several quantita-

tive maximum principles—in both the non-antisymmetric and antisymmetric situations—that are

required in the proof of Theorem 1.1 and, in Section 4, we give the proof of Theorem 1.1.

The remaining sections are broadly focused on the techniques and challenges in obtaining the

optimal stability exponent. In Section 5, we discuss the surprising role that fine geometric estimates

for the distance function close to the boundary play in the attainment of the optimal exponent.
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In Section 6, we accurately discuss the possibility of obtaining the optimal exponent and comment

about some criticalities in the existing literature, and, in Section 7, we construct an explicit family

of solutions which implies Theorem 1.2.
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2. Preliminaries and notation

In this section we fix the notation that we will use throughout the article and give some relevant

definitions. Let n ⩾ 1 and s ∈ (0, 1). The fractional Sobolev space Hs(Rn) is defined as

Hs(Rn) =
{
u ∈ L2(Rn) such that [u]Hs(Rn) < +∞

}
where [·]Hs(Rn) is the Gagliardo semi-norm given by

[u]Hs(Rn) = cn,s

∫
Rn

∫
Rn

|u(x)− u(y)|2

|x− y|n+2s
dy dx

where cn,s is the same constant appearing in the definition of the fractional Laplacian. Functions

in Hs(Rn) that are equal almost everywhere are identified. Moreover, the bilinear form associated

with [·]Hs(Rn) is denoted by E : Hs(Rn)×Hs(Rn) → R and is given by

E(u, v) = cn,s
2

∫
Rn

∫
Rn

(u(x)− u(y))(v(x)− y(y)

|x− y|n+2s
dy dx.

We also define the following weighted L1 norm via

∥u∥Ls(Rn) =

∫
Rn

|u(x)|
1 + |x|n+2s

dx

and the space Ls(Rn) as

Ls(Rn) =
{
L1
loc(Rn) such that ∥u∥Ls(Rn) < +∞

}
.

Now, suppose that Ω is an open, bounded subset of Rn and define the space Hs
0(Ω) by

Hs
0(Ω) =

{
u ∈ Hs(Rn) such that u = 0 in Rn \ Ω

}
.

Let c : Ω → R be a measurable function such that c ∈ L∞(Ω) and g ∈ L2(Ω). We say that a

function u ∈ Hs(Rn) ∩ Ls(Rn) satisfies (−∆)su+ cu ⩾ g (respectively, ⩽) in the weak sense if

E(u, v) +
∫
Ω

cuv dx ⩾
∫
Ω

gv dx (respectively, ⩽)

for all v ∈ Hs
0(Ω) with v ⩾ 0. In this case, we also say that u is a supersolution (respectively,

subsolution) of (−∆)su+cu = g in the weak sense. Moreover, we say a function u ∈ Hs(Rn)∩Ls(Rn)
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satisfies (−∆)su+ cu = g in the weak sense if

E(u, v) +
∫
Ω

cuv dx =

∫
Ω

gv dx

for all v ∈ Hs
0(Ω). This is equivalent to u being both a weak supersolution and a weak subsolution.

Note that we are assuming a priori that weak solutions are in Ls(Rn).

Next, we describe some notation regarding antisymmetric functions. This is closely related to the

notation of the method of moving planes; however, we will defer our explanation of the method of

moving planes until Section 4 in the interests of simplicity.

A function v : Rn → R is said to be antisymmetric with respect to a plane T if

v(QT (x)) = −v(x) for all x ∈ Rn

where QT : Rn → Rn is the function that reflects x across T . Often it will suffice to consider the

case T = {x1 = 0}, in which case QT (x) = x− 2x1e1.

For simplicity, we will refer to v as antisymmetric if it is antisymmetric with respect to the

plane {x1 = 0}. Moreover, we sometimes write x′ to denote QT (x) when it is clear from context

what T is.

Finally, some other notation we will employ through the article is: given a set A ⊂ Rn, the

function χA : Rn → R denotes the characteristic function of A, given by

χA(x) =

1, if x ∈ A,

0, if x ̸∈ A,

and δA : Rn → [0,+∞] denotes the distance function to A, given by

δA(x) = inf
y∈A

|x− y|.

We will denote by Rn
+ := {x = (x1, . . . , xn) ∈ Rn s.t. x1 > 0} and, given A ⊆ Rn, we will denote

by A+ := A ∩ Rn
+.

Moreover, if A is open and bounded with sufficiently regular boundary (we only use the case in

which A has smooth boundary), we will denote by ψA the (unique) function in C∞(A)∩Cs(Rn) such

that ψA satisfies {
(−∆)sψA = 1 in A,

ψA = 0 in Rn \ A.
(2.1)

Also, we will use λ1(A) to denote the first Dirichlet eigenvalue of the fractional Laplacian.

3. Quantitative maximum principles up to the boundary

The basic idea of the proof of Theorem 1.1 is to apply the method of moving planes, as in the

proof of the analogous rigidity result [Dip+22, Theorem 1.4], but replace ‘qualitative’ maximum

principles, such as the strong maximum principles, with ‘quantitative’ maximum principles, such as

the Harnack inequality.

The purpose of this section is to prove several such quantitative maximum principles both in the

non-antisymmetric and the antisymmetric setting. In particular, we require that these maximum
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principles hold up to the boundary of regions with very little boundary regularity. Moreover, we are

careful to keep track of precisely how constants depend on relevant quantities since we believe that

this may be useful in future analyses of the nonlocal parallel surface problem.

The section is split into two parts: maximum principles for equations without any antisymmetry

assumptions and maximum principles for equations with antisymmetry assumptions.

3.1. Equations without antisymmetry. In this subsection, we will give several maximum princi-

ples for linear equations with zero-th order terms without any antisymmetry assumptions. This will

culminate in a quantitative analogue of the Hopf lemma for non-negative supersolutions of general

semilinear equations (see Corollary 3.4 below).

Our first result is as follows:

Proposition 3.1. Let Ω be an bounded open subset of Rn, c ∈ L∞(Ω), and g ∈ L2(Ω) with g ⩾ 0.

Suppose that u satisfies {
(−∆)su+ cu ⩾ g in Ω,

u ⩾ 0 in Rn

in the weak sense.

Then,

u(x) ⩾ C
(
ess inf

Ω
g + ∥u∥Ls(Rn)

)
δ2s∂Ω(x) for a.e. x ∈ Ω

with C := C(n, s)(max{1, diamΩ})−n−2s
(
1 + (diamΩ)2s∥c+∥L∞(Ω)

)−1
.

The proof of Proposition 3.1 essentially follows by, at each point x ∈ Ω, ‘touching’ the solution u

from below by ψB (recall the notation in (2.1)) where B is the largest ball contained in Ω and

centred at x. This is similar to the proof of [RS19, Theorem 2.2] where a nonlinear interior analogue

of Proposition 3.1 was proven. To prove Proposition 3.1, however, some care must be taken since the

touching point may occur on the boundary of Ω (unlike in the interior result of [RS19, Theorem 2.2])

where the PDE does not necessarily hold. Moreover, Proposition 3.1 is stated in the context of weak

solutions where pointwise techniques no longer make sense, so a simple mollification argument needs

to be made. We require the following lemma.

Lemma 3.2. Let ρ > 0, c ∈ L∞(Bρ), and g ∈ C∞
0 (Rn) be such that g ⩾ 0 in Bρ. Suppose

that u ∈ C∞
0 (Rn) satisfies {

(−∆)su+ cu ⩾ g in Bρ,

u ⩾ 0 in Rn.

Then,

u(x) ⩾ C
(
inf
Bρ

g + ∥u∥Ls(Rn)

)
ψBρ(x) for all x ∈ Bρ

with C := C(n, s)(max{1, ρ})−n−2s
(
1 + ρ2s∥c+∥L∞(Bρ)

)−1
.

We observe that Lemma 3.2 can be seen as a quantitative version of a strong maximum principle

(which can be proved directly): in particular, it entails that if u(x0) = 0 for some x0 ∈ Ω, then u

vanishes identically.
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Proof of Lemma 3.2. We will begin by proving the case ρ = 1. Fix ε > 0 small and let τ ⩾ 0 be the

largest value such that u ⩾ τψB1−ε in Rn. Now, by the definition of τ , there exists x0 ∈ B1−ε such

that u(x0) = τψB1−ε(x0). On one hand,

(−∆)s(u− τψB1−ε)(x0) + c(x0)(u− τψB1−ε)(x0) ⩾ inf
B1

g − τ
(
1 + c(x0)ψB1−ε(x0)

)
⩾ inf

B1

g − C(n, s)
(
1 + ∥c+∥L∞(B1)

)
τ.

On the other hand, since |x0 − y|−n−2s ⩾ C(n, s)(1 + |y|n+2s)−1, we have that

(−∆)s(u− τψB1−ε)(x0) + c(x0)(u− τψB1−ε)(x0) = −
∫
Rn

(u− τψB1−ε)(y)

|x0 − y|n+2s
dy

⩽ −C(n, s)
∫
Rn

(u− τψB1−ε)(y)

1 + |y|n+2s
dy

⩽ −C(n, s)
(
∥u∥Ls(Rn) − τ

)
.

Rearranging gives τ ⩾ C(n, s)
(
1 + ∥c+∥L∞(B1)

)−1(
infB1 g + ∥u∥Ls(Rn)

)
, which implies that

u(x) ⩾ C(n, s)
(
1 + ∥c+∥L∞(B1)

)−1
(
inf
B1

g + ∥u∥Ls(Rn)

)
ψB1−ε .

Sending ε→ 0+ gives the result when ρ = 1.

Now, for the case that ρ is not necessarily 1, let uρ(x) := u(ρx). Then

(−∆)suρ + ρ2scρ ⩾ ρ2sgρ in B1

where cρ(x) := c(ρx) and gρ(x) := g(ρx), so, for all x ∈ Bρ, we have that

u(x) = uρ(x/ρ)

⩾ C(n, s)
(
1 + ρ2s∥c+ρ ∥L∞(B1)

)−1
(
ρ2s inf

B1

gρ + ∥uρ∥Ls(Rn)

)
ψB1(x/ρ)

= C(n, s)ρ−2s
(
1 + ρ2s∥c+∥L∞(Bρ)

)−1
(
ρ2s inf

Bρ

g + ∥uρ∥Ls(Rn)

)
ψBρ(x).

Finally,

∥uρ∥Ls(Rn) =

∫
Rn

|u(ρx)|
1 + |x|n+2s

dx = ρ2s
∫
Rn

|u(x)|
ρn+2s + |x|n+2s

dx ⩾ ρ2s(max{1, ρ})−n−2s∥u∥Ls(Rn)

which completes the proof. □

We can now give the proof of Proposition 3.1.

Proof of Proposition 3.1. If u, g ∈ C∞
0 (Rn) then the proof follows immediately from Lemma 3.2.

Indeed, let x ∈ Ω be arbitrary. Then, applying Lemma 3.2 in the ball Bρ(x) with ρ := δ∂Ω(x), we

obtain that

u(y) ⩾ C
(
ess inf

Ω
g + ∥u∥Ls(Rn)

)
ψBρ(y) for all y ∈ Bρ(x)

with C = C(n, s)(max{1, diamΩ})−n−2s
(
1 + (diamΩ)2s∥c+∥L∞(Ω)

)−1
. Substituting y = x completes

the proof.

In the general case that u ∈ Hs(Rn), if uε and gε are mollifications of u and g respectively then

(−∆)suε+∥c+∥L∞(Ω)uε ⩾ gε in Ωε := Ω∩{δ∂Ω > ε}. Then, applying the result for smooth compactly

supported functions, we have that uε ⩾ Cδ2s∂Ωε
with C as in the statement of Proposition 3.1 (and,
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in particular, uniformly bounded in ε). Moreover, given x ∈ Ωε, if y ∈ ∂Ωε is the closest point to x

on ∂Ωε and z ∈ ∂Ω is the closest point to y on ∂Ω then

δ∂Ω(x) ⩽ |x− z| ⩽ |x− y|+ |y − z| ⩽ δ∂Ωε(x) + ε,

so uε ⩾ C(δ∂Ω − ε)2s in Ωε. Then uε → u a.e., so sending ε→ 0+ gives the result. □

Next, we obtain a refined version of Proposition 3.1 when Ω satisfies the uniform interior ball

condition. As customary, we say that a bounded domain Ω ⊂ Rn satisfies the uniform interior ball

condition with radius rΩ > 0 if for every point x0 ∈ ∂Ω there exists a ball B ⊂ Ω of radius rΩ such

that its closure intersects ∂Ω only at x0.

Proposition 3.3. Let Ω be an open bounded subset of Rn with C1 boundary and satisfying the

uniform interior ball condition with radius rΩ > 0, c ∈ L∞(Ω), and g ∈ L2(Ω) with g ⩾ 0. Suppose

that u satisfies {
(−∆)su+ cu ⩾ g in Ω,

u ⩾ 0 in Rn

in the weak sense.

Then,

u(x) ⩾ C
(
ess inf

Ω
g + ∥u∥Ls(Rn)

)
δs∂Ω(x) for a.e. x ∈ Ω

with C := C(n, s)rsΩ(max{1, diamΩ})−n−2s
(
1 + (diamΩ)2s∥c+∥L∞(Ω)

)−1
.

Proof. By an analogous argument to the one in the proof of Proposition 3.1, we may assume

that u, g ∈ C∞
0 (Rn). Let x ∈ Ω be arbitrary. If δ∂Ω(x) ⩾ rΩ then we are done by Propo-

sition 3.1, so let δ∂Ω(x) < rΩ. If x̄ denotes the closest point to x on ∂Ω then there exists a

ball B = BrΩ(x0) such that x ∈ B, B ⊂ Ω, and B touches ∂Ω at x̄. Then, applying Lemma 3.2 in B,

we have that u(y) ⩾ C
(
ess infΩ g + ∥u∥Ls(Rn)

)
ψBrΩ

(y) with C = C(n, s)(max{1, diamΩ})−n−2s
(
1 +

(diamΩ)2s∥c+∥L∞(Ω)

)−1
. Substituting y = x, we obtain

u(x) ⩾ C
(
ess inf

Ω
g + ∥u∥Ls(Rn)

)
(r2Ω − |x− x0|2)s

= C
(
ess inf

Ω
g + ∥u∥Ls(Rn)

)
(rΩ + |x− x0|)s(rΩ − |x− x0|)s

⩾ CrsΩ

(
ess inf

Ω
g + ∥u∥Ls(Rn)

)
(rΩ − |x− x0|)s.

Observing that rΩ − |x− x0| = δ∂Ω(x) completes the proof. □

From Proposition 3.3, we immediately obtain the following corollary.

Corollary 3.4. Let Ω be an open bounded subset of Rn with C1 boundary and satisfying the uniform

interior ball condition with radius rΩ > 0. Let f ∈ C0,1
loc (Ω × R) satisfy f0 := infx∈Ω f(x, 0) ⩾ 0.

Suppose that u satisfies {
(−∆)su ⩾ f(x, u) in Ω,

u ⩾ 0 in Rn

in the weak sense.
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Then,

u(x) ⩾ C∗
(
f0 + ∥u∥Ls(Rn)

)
δs∂Ω(x) for a.e. x ∈ Ω

with C∗ := C(n, s)rsΩ(max{1, diamΩ})−n−2s
(
1 + (diamΩ)2s[f ]C0,1(Ω×[0,∥u∥L∞(Ω)])

)−1
.

Proof. Since f = f(x, z) is locally lipschitz, ∂zf exists a.e., so we may define

c(x) := −
∫ 1

0

∂zf(x, tu(x)) dt.

Observe that ∥c∥L∞(Ω) ⩽ [f ]C0,1(Ω×[0,∥u∥L∞(Ω)])
. Then, (−∆)su + cu ⩾ f(·, 0) in Ω in the weak sense,

so the result follows by Proposition 3.3. □

Remark 3.5. One could also obtain an analogous result to Corollary 3.4 without assuming that Ω

has C1 boundary and satisfies the uniform interior ball condition; this can be achieved by applying

Proposition 3.1 instead of Proposition 3.3. □

3.2. Equations with antisymmetry. The purpose of this subsection is to prove the following

proposition.

Proposition 3.6. Let H ⊂ Rn be a halfspace, U be an open subset of H, and a ∈ H and ρ > 0 such

that Bρ(a) ∩H ⊂ U . Moreover, let c ∈ L∞(U) be such that

(3.1) ∥c+∥L∞(U) < λ1(Bρ(a) ∩H).

Suppose that v is antisymmetric with respect to ∂H and satisfies{
(−∆)sv + cv ⩾ 0 in U,

v ⩾ 0 in H

in the weak sense.

If K ⊂ H is a non-empty open set that is disjoint from Bρ(a) and

inf
x∈K

y∈Bρ(a)∩H

|Q∂H(x)− y|−1 ⩾M ⩾ 0

then

v(x) ⩾ C∥δ∂Hv∥L1(K)δ∂H(x) for a.e. x ∈ Bρ/2(a) ∩H(3.2)

with

C := C(n, s)ρ2sMn+2s+2
(
1 + ρ2s∥c+∥L∞(U)

)−1

.

Proposition 3.6 can be viewed as a quantitative version of Proposition 3.3 in [FJ15]. A similar

result was also obtain in [Cir+23] in the case c = 0. One advantage that Proposition 3.6 has over

both of the results of [FJ15] and [Cir+23] is that it allows the ball Bρ(a) to go right up to and,

indeed, overlap the plane of symmetry ∂H. To allow for this possibility required the construction of

an antisymmetric barrier given in Lemma 3.8 below.

However, a disadvantage of Proposition 3.6 is that it is not a boundary estimate, in the sense

that (3.2) holds in Bρ/2(a)∩H and not Bρ(a)∩H, so it does not give any information up to ∂U \∂H.

This is also a by-product of the barrier given in Lemma 3.8. In theory, one should be able to fix
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this issue by adjusting the barrier to behave like distance to the power s close to the boundary of its

support, but this was unnecessary for the purposes of our results.

To prove Proposition 3.6, we require two lemmata.

Lemma 3.7. Let v ∈ C∞
0 (Rn) be antisymmetric with respect to {x1 = 0}.

Then, (−∆)sv is a smooth function in Rn that is antisymmetric with respect to {x1 = 0}. Fur-

thermore, if w(x) := v(x)/x1 then

|(−∆)sv(x)| ⩽ C
(
∥w∥L∞(Rn) + ∥x−1

1 ∂1w∥L∞(Rn) + ∥D2w∥L∞(Rn)

)
x1(3.3)

for all x ∈ Rn
+. The constant C depends only on n and s.

Proof. The proof that (−∆)sv is a smooth function and antisymmetric follows from standard prop-

erties of the fractional Laplacian, so we will omit it and focus on the proof of (3.3). For all x̃ ∈ Rn+2,

define w̃(x̃) := w
(√

x̃21 + x̃22 + x̃23, x̃4, . . . , x̃n+2

)
. By Bochner’s relation, we have that

(−∆)sv(x) = x1(−∆)sRn+2w̃(x1, 0, 0, x2, . . . , xn)(3.4)

where (−∆)sRn+2 is the fractional Laplacian in Rn+2 (and (−∆)s still refers to the fractional Laplacian

in Rn). For more details regarding Bochner’s relation and a proof of (3.4), we refer the interested

reader to the upcoming note [Dip+23].

Thus, applying standard estimates for the fractional Laplacian, we have that,

|(−∆)sv(x)| ⩽ C
(
∥D2w̃∥L∞(Rn+2) + ∥w̃∥L∞(Rn+2)

)
x1

for all x ∈ Rn
+ and C > 0 depending on n and s. Clearly, ∥w̃∥L∞(Rn+2) ⩽ ∥w∥L∞(Rn). Moreover, by a

direct computation, one can check that

∂ijw̃(x̃) = ∂11w
(√

x̃21 + x̃22 + x̃23, x̃4, . . . , x̃n+2

) x̃ix̃j
x̃21 + x̃22 + x̃23

+∂1w
(√

x̃21 + x̃22 + x̃23, x̃4, . . . , x̃n+2

)[ δij√
x̃21 + x̃22 + x̃23

− x̃ix̃j
(x̃21 + x̃22 + x̃23)

3/2

]
if i, j ∈ {1, 2, 3},

∂ijw̃(x̃) = ∂1j−2w
(√

x̃21 + x̃22 + x̃23, x̃4, . . . , x̃n+2

) x̃i√
x̃21 + x̃22 + x̃23

if i ∈ {1, 2, 3} and j ∈ {4, . . . , n+ 2},

∂ijw̃(x̃) = ∂i−2j−2w
(√

x̃21 + x̃22 + x̃23, x̃4, . . . , x̃n+2

)
if i, j ∈ {4, . . . , n+ 2},

and therefore

∥D2w̃∥L∞(Rn+2) ⩽ C
(
∥x−1

1 ∂1w∥L∞(Rn) + ∥D2w∥L∞(Rn)

)
for some universal constant C > 0, which implies the desired result. □

We now construct the barrier that will be essential to allow Bρ(a) in Proposition 3.6 to come up

to ∂H.
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Lemma 3.8. Let a ∈ Rn
+ and ρ > 0. There exists a function φ ∈ C∞

0 (Bρ(a)∪Bρ(a
′)) such that φ is

antisymmetric with respect to ∂Rn
+, ρ

2sχBρ/2(a)(x)x1 ⩽ φ(x) ⩽ Cρ2sx1 in Rn
+, and

(3.5) |(−∆)sφ(x)| ⩽ Cx1 in B+
ρ (a).

The constant C depends only on n and s.

Recall that B+
ρ (a) = Bρ(a) ∩ Rn

+, and notice that B+
ρ (a) in Lemma 3.8 coincides with Bρ(a)

if ρ ∈ (0, a1) with a = (a1, . . . , an).

Proof of Lemma 3.8. Let η ∈ C∞
0 (B1) be a radial function such that η = 1 in B1/2 and 0 ⩽ η ⩽ 1

in Rn. Define

φ(x) := ρ2sx1

(
η

(
x− a

ρ

)
+ η

(
x− a′

ρ

))
.

Then φ ∈ C∞
0 (Bρ(a)∪Bρ(a

′)), it is antisymmetric, and satisfies ρ2sχBρ/2(a)(x)x1 ⩽ φ ⩽ 2ρ2sx1 in Rn
+.

Moreover, let

φ̄(x) := x1

(
η

(
x− a

ρ

)
+ η

(
x− a′

ρ

))
so that φ(x) = ρ2s+1φ̄(x/ρ). From Lemma 3.7, it follows that |(−∆)sφ̄| ⩽ Cx1 for some C > 0

depending on n and s, which implies that

|(−∆)sφ(x)| = ρ|(−∆)sφ̄(x/ρ)| ⩽ Cx1. □

Now, we will give the proof of Proposition 3.6.

Proof of Proposition 3.6. Without loss of generality, we may assume that H = Rn
+. We also denote

by B = Bρ(a). Recall that, given A ⊂ Rn, we use the notation A+ = A∩Rn
+. Let τ ⩾ 0 be a constant

to be chosen later and w := τφ + (χK + χK′)v where φ is as in Lemma 3.8 and K ′ := Q∂Rn
+
(K).

Furthermore, let ξ ∈ Hs
0(B

+) with ξ ⩾ 0. By formula (3.5) in Lemma 3.8, we have that

E(w, ξ) = τE(φ, ξ) + E(χKv, ξ) + E(χK′v, ξ)

⩽ Cτ

∫
B+

x1ξ(x) dx− cn,s

∫
B+

∫
K

ξ(x)v(y)

|x− y|n+2s
dy dx− cn,s

∫
B+

∫
K′

ξ(x)v(y)

|x− y|n+2s
dy dx

=

∫
B+

[
Cτx1 − cn,s

∫
K

(
1

|x− y|n+2s
− 1

|x′ − y|n+2s

)
v(y) dy

]
ξ(x) dx

where x′ := Q∂H(x).

Since, for all x ∈ B+ and y ∈ K, we have that

1

|x− y|n+2s
− 1

|x′ − y|n+2s
=
n+ 2s

2

∫ |x′−y|2

|x−y|2
t−

n+2s+2
2 dt

⩾
n+ 2s

2

|x′ − y|2 − |x− y|2

|x′ − y|n+2s+2

= 2(n+ 2s)
x1y1

|x′ − y|n+2s+2

⩾ 2(n+ 2s)Mn+2s+2x1y1,
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it follows that

E(w, ξ) ⩽ C
(
τ − C̃Mn+2s+2∥y1v∥L1(K)

)∫
B+

x1ξ(x) dx

with C and C̃ depending only on n and s.

Hence, using that w = τφ ⩽ Cρ2sτx1 in B+ by Lemma 3.8, we have that

E(w, ξ) +
∫
B+

c(x)w(x)ξ(x) dx ⩽ C
[
τ
(
1 + ρ2s∥c+∥L∞(U)

)
− C̃Mn+2s+2∥y1v∥L1(K)

] ∫
B+

x1ξ(x) dx

(after possibly relabeling C and C̃, but still depending only on n and s). Choosing

τ :=
1

2
C̃Mn+2s+2∥y1v∥L1(K)

(
1 + ρ2s∥c+∥L∞(U)

)−1

we obtain that

(−∆)sw + cw ⩽ 0 in B+.

Moreover, in Rn
+ \ B+, we have that w = vχK ⩽ v, so, recalling also (3.1), [FJ15, Proposition 3.1]

implies that, in B+,

v(x) ⩾ w(x) =
1

2
C̃Mn+2s+2

(
1 + ρ2s∥c+∥L∞(U)

)−1∥y1v∥L1(K)φ(x).

Recalling that φ ⩾ ρ2sx1χB+
ρ/2

(a) (by Lemma 3.8), we obtain the final result. □

4. The stability estimate and proof of Theorem 1.1

The proof of Theorem 1.1 makes use of the method of moving planes. Before we begin our discussion

of this technique and give the proof of Theorem 1.1, we must fix some notation. Let µ ∈ R, e ∈ Sn−1,

and A ⊂ Rn. Then we have the following standard definitions:

πµ = {x ∈ Rn s.t. x · e = µ} a hyperplane orthogonal to e

Hµ = {x ∈ Rn s.t. x · e > µ} the right-hand half space with respect to πµ

H ′
µ = {x ∈ Rn s.t. x · e < µ} the left-hand half space with respect to πµ

Aµ = A ∩Hµ the portion of A on the right-hand side of πµ

x′µ = x− 2(x · e− µ)e the reflection of x across πµ

A′
µ = {x ∈ Rn s.t. x′µ ∈ Aµ} the reflection of Aµ across πµ

Note that in some articles such as [Cir+18] A′
µ is used to denote the reflection of A (instead of Aµ)

across πµ.

The method of moving planes works as follows. Fix a direction e ∈ Sn−1 and suppose that Ω is

a bounded open subset of Rn with C1 boundary. Since Ω is bounded, for µ sufficiently large the

hyperplane πµ does not intersect Ω. Furthermore, by decreasing the value of µ, at some point πµ will

intersect Ω. We denote the value of µ at this point by

Λ = Λe := sup{x · e s.t. x ∈ Ω}.

From here, we continue to decrease the value of µ. Initially, since ∂Ω is C1, the reflection of Ωµ

across πµ will be contained within Ω, that is Ω′
µ ⊂ Ω for µ < Λ but with µ sufficiently close to Λ.

Eventually, as we continue to make µ smaller, there will come a point when this is no longer the
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case. More precisely, there exists λ = λe ∈ R such that for all µ ∈ [λ,Λ), it occurs that Ω′
µ ⊂ Ω,

but Ω′
µ ̸⊂ Ω for µ < λ. We may write λ more explicitly as

λ := inf
{
µ̃ ∈ R s.t. Ω′

µ ⊂ Ω for all µ ∈ (µ̃,Λ)
}
.(4.1)

When µ = λ, geometrically speaking, there are two possibilities that can occur:

Case 1: The boundary of Ω′
λ is internally tangent to ∂Ω at some point not on πλ, that is, there

exists p ∈ (∂Ω ∩ ∂Ω′
λ) \ πλ; or

Case 2: The critical hyperplane πλ is orthogonal to the ∂Ω at some point, that is, there exists p ∈
∂Ω ∩ πµ such that the normal of ∂Ω at p is contained in the plane πµ.

At this stage, let us introduce the function

vµ(x) := u(x)− u(x′µ), for all µ ∈ R and x ∈ Rn.(4.2)

It follows that, in Ω′
µ,

(−∆)svµ(x) = f(u(x))− f(u(x′µ)) = −cµ(x)vµ(x)

where

cµ(x) =

∫ 1

0

f ′((1− t)u(x) + tu(x′µ)) dt.

Note that

∥cµ∥L∞(Ω′
µ) ⩽ [f ]C0,1([0,∥u∥L∞(Ω)]).

Hence, vµ is an antisymmetric function that satisfies
(−∆)svµ + cµvµ = 0 in Ω′

µ,

vµ = u in (Ω ∩H ′
µ) \ Ω′

µ,

vµ = 0 in H ′
µ \ Ω,

with cµ ∈ L∞(Ω′
µ).

In the situations where one expects that Ω should be a ball, the goal of the method of moving planes

is to prove that vλ ≡ 0 i.e. u is even with respect to reflections across the critical hyperplane πλ.

Since the direction e was arbitrary, one can then deduce that u must be radial with respect to some

point. The proof that vλ ≡ 0 is achieved through repeated applications of the maximum principle.

Remark 4.1. From the preceding exposition, it is clear that in several instances we will need to

evaluate u and vµ at a single point. This is technically an issue since, in Theorem 1.1, u is only

assumed to be in Hs(Rn) ∩ L∞(Rn). However, by standard regularity theory, we have that1 u ∈
C2s+1−ε(Ω) for all ε > 0 such that 2s+1−ε is not an integer. In particular, this implies that u ∈ C1(Ω)

which will be essential for the proof of the theorem. Indeed, using that f is locally Lipschitz, we

have that (−∆)su = −cu + f(0) with c(x) = −
∫ 1

0
f ′(tu(x)) dt, so (−∆)su ∈ L∞(Ω). Hence, it

follows that u ∈ C2s−ε(Ω) for all ε ∈ (0, 2s), 2s − ε ̸∈ Z, see [RS14, Proposition 2.3]. Then, it

follows that (−∆)su = f(u) ∈ Cmin{1−ε,2s−ε}(Ω), so by [RS14, Proposition 2.2] and a bootstrapping

argument (if necessary), we obtain that u ∈ C2s+1−ε(Ω). □

1Here we are using the notation that for α > 0 with α not an integer, Cα(Ω) := Ck,β(Ω) where k is the integer part
of α and β = α− k ∈ (0, 1).
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4.1. Uniform stability in each direction. In this subsection, we will use the maximum principle

of Section 3 to prove uniform stability for each direction e ∈ Sn−1, that is, we will show, for each e ∈
Sn−1, that Ω is almost symmetric with respect to e. This is stated precisely in Proposition 4.4.

We will repeatedly use that fact that vλ is C1 which follows from Remark 4.1. Before proving

Proposition 4.4, we have two lemmata.

Lemma 4.2. Let Ω be a bounded open set with C1 boundary, e ∈ Sn−1, and vµ as in (4.2).

Then, for all µ ∈ [λ,Λ], we have that vµ ⩾ 0 in Ω′
µ.

The proof of Lemma 4.2 is given as part of the proof of Theorem 1.4 in [Dip+22], so we will not

include it again here. However, we would like to emphasise that, even though [Dip+22, Theorem 1.4]

assumes the solution u of (1.3) is constant on ∂G (i.e. [u]∂G = 0), this assumption was unnecessary

to obtain the much weaker result of Lemma 4.2.

We now give the second lemma.

Lemma 4.3. Let Ω and G be open bounded sets with C1 boundary such that Ω = G + BR for

some R > 0. Let f ∈ C0,1
loc (R) be such that f(0) ⩾ 0 and u ∈ Hs(Rn) be a solution of (1.3).

Then, for each e ∈ Sn−1, we have that∫
(Ω∩H′

λ)\Ω
′
λ

δπλ
(x)u(x) dx ⩽ C[u]∂G,(4.3)

where

C := C(n, s)R−2s(diamΩ)n+2s+2
(
1 +R2s[f ]C0,1([0,∥u∥L∞(Ω)])

)
.(4.4)

Proof. Without loss of generality, take e = −e1 and λ = 0. We now apply the method of moving

planes to G. First, suppose that we are in the first case, namely, the boundary of G′
λ is internally

tangent to ∂G at some point not on {x1 = 0}, and let p ∈ (∂G ∩ ∂G′
λ) \ {x1 = 0}.

By Proposition 3.6 with U := Ω′
λ, K := (Ω ∩ H ′

λ) \ Ω′
λ and Bρ(a) := BR/2(p) (notice that

condition (3.1) is satisfied, possibly taking a smaller ball centered at p), we have that

vλ(p)

p1
⩾ C

∫
(Ω∩H′

λ)\Ω
′
λ

y1vλ(y) dy = C

∫
(Ω∩H′

λ)\Ω
′
λ

y1u(y) dy.(4.5)

Note that, since x′λ belongs to the reflection of Ω across {x1 = 0} for each x ∈ (Ω ∩ H ′
λ) \ Ω′

λ, we

have that

inf
x∈(Ω∩H′

λ
)\Ω′

λ

y∈B+
R/2

(p)

|x′λ − y|−1 ⩾ (diamΩ)−1,

so Proposition 3.6 implies that the constant in (4.5) is given by

C = C(n, s)R2s(diamΩ)−n−2s−2
(
1 +R2s∥c+∥L∞(Ω′

λ)

)−1
.

Moreover, we have that

vλ(p)

p1
=
u(p)− u(p′λ)

p1
=

2(u(p)− u(p′λ))

|p1 − (p′λ)1|
⩽ 2[u]∂G,

which, along with (4.5), gives (4.3).
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Now, let us suppose that we are in the second case and let p ∈ ∂G ∩ {x1 = 0} be such that the

normal of ∂G at p is contained in {x1 = 0}. Proceeding in a similar fashion as the first case, we

apply Proposition 3.6 with U := Ω′
λ, K := (Ω ∩ H ′

λ) \ Ω′
λ and Bρ(a) := BR/2(p + he1) with h > 0

very small, to obtain that ∫
(Ω∩H′

λ)\Ω
′
λ

x1u(x) dx ⩽ C
vλ(p+ he1)

h

with C in the same form as in (4.4) and, in particular, independent of h. Sending h→ 0+, we obtain

that ∫
(Ω∩H′

λ)\Ω
′
λ

x1u(x) dx ⩽ C∂1vλ(p) ⩽ C[u]∂G

which gives (4.3) in this case as well. □

We are now able to obtain uniform stability for each direction in Proposition 4.4 below.

Proposition 4.4. Let Ω be an open bounded set with C1 boundary and satisfying the uniform interior

ball condition with radius rΩ > 0 and G be an open bounded set with C1 boundary such that Ω =

G + BR for some R > 0. Let f ∈ C0,1
loc (R) be such that f(0) ⩾ 0 and u ∈ Hs(Rn) be a solution

of (1.3).

For e ∈ Sn−1, let Ω′ denote the reflection of Ω with respect to the critical hyperplane πλ.

Then,

|Ω△Ω′| ⩽ C⋆[u]
1

s+2

∂G ,(4.6)

where

C⋆ := C(n, s)
(
C−1

∗
(
f(0) + ∥u∥Ls(Rn)

)−1
+ (diamΩ)n−1 + r−1

Ω |Ω|
)

×R−2s(diamΩ)n+2s+2
(
1 +R2s[f ]C0,1([0,∥u∥L∞(Ω)])

)
and C∗ is as in Corollary 3.4.

Proof. Without loss of generality, take e = −e1 and λ = 0. By Corollary 3.4, we have that∫
(Ω∩H′

λ)\Ω
′
λ

x1u(x) dx ⩾ C∗
(
f(0) + ∥u∥Ls(Rn)

) ∫
(Ω∩H′

λ)\Ω
′
λ

x1δ
s
∂Ω(x) dx.(4.7)

Fix γ > 0. By Chebyshev’s inequality, (4.7) and Lemma 4.3, we have that∣∣∣{x ∈ (Ω ∩H ′
λ) \ Ω′

λ s.t. x1δ
s
∂Ω(x) > γ

}∣∣∣ ⩽ 1

γ

∫
(Ω∩H′

λ)\Ω
′
λ

x1δ
s
∂Ω(x) dx

⩽
CC−1

∗
(
f(0) + ∥u∥Ls(Rn)

)−1

γ
[u]∂G.

(4.8)
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Moreover, ∣∣∣{x ∈ (Ω ∩H ′
λ) \ Ω′

λ s.t. x1δ
s
∂Ω(x) ⩽ γ

}∣∣∣
=

∣∣∣{x ∈ (Ω ∩H ′
λ) \ Ω′

λ s.t. x1δ
s
∂Ω(x) ⩽ γ, x1 < γ

1
s+1

}∣∣∣
+
∣∣∣{x ∈ (Ω ∩H ′

λ) \ Ω′
λ s.t. x1δ

s
∂Ω(x) ⩽ γ, x1 ⩾ γ

1
s+1

}∣∣∣
⩽

∣∣∣{x ∈ Ω+ s.t. x1 < γ
1

s+1

}∣∣∣+ ∣∣∣{x ∈ Ω s.t. δ∂Ω(x) ⩽ γ
1

s+1

}∣∣∣.
Furthermore, we have the estimate∣∣∣{x ∈ Ω+ s.t. x1 < γ

1
s+1

}∣∣∣ ⩽ (diamΩ)n−1γ
1

s+1

and, by [Cir+23, Lemma 5.2] in the case that ∂Ω is C2 and more generally in [Tam76], we have that∣∣∣{x ∈ Ω s.t. δ∂Ω(x) ⩽ γ
1

s+1

}∣∣∣ ⩽ 2n|Ω|
rΩ

γ
1

s+1 .

Thus, ∣∣∣{x ∈ (Ω ∩H ′
λ) \ Ω′

λ s.t. x1δ
s
∂Ω(x) ⩽ γ

}∣∣∣ ⩽ [(diamΩ)n−1 +
2n|Ω|
rΩ

]
γ

1
s+1 .(4.9)

From this and (4.8), we deduce that

|(Ω ∩H ′
λ) \ Ω′

λ| ⩽
CC−1

∗
(
f(0) + ∥u∥Ls(Rn)

)−1

γ
[u]∂G +

[
(diamΩ)n−1 +

2n|Ω|
rΩ

]
γ

1
s+1 .

Hence,

|Ω△Ω′| = 2|(Ω ∩H ′
λ) \ Ω′

λ| ⩽
2CC−1

∗
(
f(0) + ∥u∥Ls(Rn)

)−1

γ
[u]∂G + 2

[
(diamΩ)n−1 +

2n|Ω|
rΩ

]
γ

1
s+1

for all γ > 0. Choosing γ = [u]
s+1
s+2

∂G , we obtain that

|Ω△Ω′| ⩽
[
2CC−1

∗
(
f(0) + ∥u∥Ls(Rn)

)−1
+ 2

(
(diamΩ)n−1 +

2n|Ω|
rΩ

)]
[u]

1
s+2

∂G ,

which gives (4.6). □

Note, setting [u]∂G = 0 in Proposition 4.4 implies that Ω (and, therefore, G) must be symmetric

with respect to the critical hyperplane for every direction. This implies that they are both balls,

thereby recovering the main result of [Dip+22].

4.2. Proof of Theorem 1.1. We will now use the results of the previous subsection to prove Theo-

rem 1.1. In fact, Theorem 1.1 follows almost immediately from the following result, Proposition 4.5.

The idea of Proposition 4.5 is to choose a centre for Ω by looking at the intersection of n orthogonal

critical hyperplanes, then to prove that every other critical hyperplane is quantifiably close to this

centre in terms of the semi-norm [u]∂G. The precise statement is as follows.

Proposition 4.5. Let Ω be an open bounded set with C1 boundary and satisfying the uniform interior

ball condition with radius rΩ > 0 and suppose that the critical planes πei with respect to the coordinate

directions ei coincide with {xi = 0} for every i = 1, . . . , n. Also, given e ∈ Sn−1, denote by λe the

critical value associated with e as in (4.1).
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Assume that

[u]
1

s+2

∂G ⩽
|Ω|
nC⋆

(4.10)

where C⋆ is the constant in Proposition 4.4.

Then,

|λe| ⩽ C[u]
1

s+2

∂G(4.11)

for all e ∈ Sn−1 with

C := C(n, s)
(
C−1

∗
(
f(0) + ∥u∥Ls(Rn)

)−1
+ (diamΩ)n−1 + r−1

Ω |Ω|
)

×R−2s|Ω|−1(diamΩ)n+2s+3
(
1 +R2s[f ]C0,1([0,∥u∥L∞(Ω)])

)
and C∗ is as in Corollary 3.4.

Proof. Define Ω0 := {−x s.t. x ∈ Ω}. Moreover, let Qi := Qπei
be the reflections across each critical

plane πei and define Ω0 recursively via Ω0
i+1 := Qi+1(Ω

0
i ) for i = 1, . . . n− 1 with Ω0

1 := Ω. Observe

that Ω0 = Ω0
n. Via the triangle inequality for symmetric difference, it follows that

|Ω△Ω0| ⩽ |Ω△Qn(Ω)|+ |Qn(Ω)△Qn(Ω
0
n−1)|

Since |Qn(Ω)△Qn(Ω
0
n−1)| = |Qn(Ω△Ω0

n−1)| = |Ω△Ω0
n−1|, we have that

|Ω△Ω0| ⩽ |Ω△Qn(Ω)|+ |Ω△Ω0
n−1|.

Iterating, we obtain

|Ω△Ω0| ⩽
n∑

i=1

|Ω△Qi(Ω)| ⩽ nC⋆[u]
1

s+2

∂G(4.12)

by Proposition 4.4.

Next, let us assume that λe > 0 (the case λe < 0 is analogous). If Λe > diamΩ then x · e ⩾ Λe −
diamΩ ⩾ 0 for all x ∈ Ω, so |Ω△Ω0| = 2|Ω|. However, this is in contradiction with (4.10) and (4.12),

so we must have that Λe ⩽ diamΩ. Arguing as in Lemma 4.1 in [Cir+18] using Proposition 4.4

instead of [Cir+18, Proposition 3.1 (a)] , we find that

|Ωλe|λe ⩽ (n+ 3)C⋆(diamΩ)[u]
1

s+2

∂G .

Now, recalling the notation of Section 4, we have that

|Ω△Ω0| = 2|(Ω ∩H ′
λe
) \ Ω′

λe
| = 2

(
|Ω| − 2|Ωλe|

)
,

and therefore

|Ωλe | =
|Ω|
2

− 1

4
|Ω△Ω0| ⩾ |Ω|

2
− 1

4
C⋆[u]

1
s+2

∂G ⩾
|Ω|
4

by Proposition 4.4 and (4.10). Thus, we conclude that

|λe| ⩽
C(n)C⋆(diamΩ)

|Ω|
[u]

1
s+2

∂G ,

as desired. □
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Now the proof of Theorem 1.1 follows almost immediately from Proposition 4.5.

Proof of Theorem 1.1. The result follows by reasoning as in the proof of [Cir+18, Theorem 1.2], but

using Proposition 4.5 instead of [Cir+18, Lemma 4.1]. Notice that the dependence on rΩ appearing

in Proposition 4.5 can be removed (and, in fact, does not appear in Theorem 1.1). In fact, by the

definition of Ω := G + BR(0), we have that Ω automatically satisfies the uniform interior sphere

condition and we can take, e.g., rΩ := R/2. □

5. The role of boundary estimates in the attainment of the optimal exponent

In this section, we give a broad discussion on some of the challenges the nonlocality of the fractional

Laplacian presents in obtaining the optimal exponent. By way of an example, via the Poisson

representation formula, we show that estimates for a singular integral involving the reciprocal of the

distance to the boundary function play a key role in obtaining the anticipated optimal result. This

suggests, surprisingly, that fine geometric estimates for the distance function close to the boundary

are required to obtain the optimal exponent.

Recall the notation at the beginning of Section 4 and also

Rn
+ := {x = (x1, . . . , xn) ∈ Rn s.t. x1 > 0},

Rn
− := {x = (x1, . . . , xn) ∈ Rn s.t. x1 < 0},

B+
1 := B1 ∩ Rn

+, B−
1 := B1 ∩ Rn

−,

Ω+ := Ω ∩ Rn
+ and Ω− := Ω ∩ Rn

−.

Let Ω and G be bounded and smooth sets. For the purposes of this discussion, let us assume

that Ω = G + B1/2 where G is such that Rn
− ∩ G = B−

1/2, B
+
1/2 ⊂ Rn

+ ∩ Ω, and the critical plane πλ

corresponding to running the method of moving planes with e = −e1 is equal to {x1 = 0}, see
Figure 1.

Suppose that u ∈ C2(Ω) ∩ L∞(Rn) satisfies the torsion problem{
(−∆)su = 1 in Ω,

u = 0 in Rn \ Ω.

In this case, if v(x) := u(x) − u(−x1, x2, . . . , xn), then v is antisymmetric in Rn with respect

to {x1 = 0} and s-harmonic in B1. Hence, by the Poisson kernel representation, (up to normal-

ization constants)

v(x) =

∫
Rn\B1

(
1− |x|2

|y|2 − 1

)s
v(y)

|x− y|n
dy.

Using the antisymmetry of v, we may rewrite this as

v(x) =

∫
Rn
+\B+

1

(
1− |x|2

|y|2 − 1

)s(
1

|x− y|n
− 1

|x′ − y|n

)
v(y) dy

=

∫
Ω+\B+

1

(
1− |x|2

|y|2 − 1

)s(
1

|x− y|n
− 1

|x′ − y|n

)
u(y) dy,

where x′ denotes the reflection of the point x with respect to {x1 = 0}.
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Figure 1. Geometry of Ω as described in Section 5.

Now, by Theorem 1.1, when [u]∂G is sufficiently small, then Ω is uniformly close to B1, so we can

suppose that G′
λ ⊂ B3/4. Therefore, for all x ∈ ∂G and y ∈ Rn

+ \ Ω,

(1− |x|2)s
(

1

|x− y|n
− 1

|x′ − y|n

)
⩾ Cx1y1.

Also, by Corollary 3.4, we have that u ⩾ Cδs∂Ω (with C > 0 not depending on u), and thus

v(x) ⩾ Cx1

∫
Ω+\B+

1

y1u(y)

(|y|2 − 1)s
dy ⩾ Cx1

∫
Ω+\B+

1

y1δ
s
∂Ω(y)

δs∂B1
(y)

dy.

Recall the discussion on the moving plane method on page 15 and, for simplicity, assume that we are

in the first case (the second case can be treated similarly), so there exists p ∈ (∂G∩∂G′
λ)\{x1 = 0}.

Hence, ∫
Ω+\B+

1

y1

(
δ∂Ω(y)

δ∂B1(y)

)s

dy ⩽ C
v(p)

p1
⩽ C[u]∂G.(5.1)

Now the point of obtaining (5.1) is that the left hand side is geometric (does not depend on u),

and (5.1) is sharp in the sense that the only terms that have been ‘thrown away’ are bounded away

from zero as [u]∂G → 0. This suggests that if [u]∂G is of order ε then the behaviour of∫
Ω+\B+

1

y1

(
δ∂Ω(y)

δ∂B1(y)

)s

dy

as a function of ε will entirely determine the optimal exponent β(s) (recall that the definition of β(s)

is given after the statement of Theorem 1.1 in Section 1). This is surprising, since in the local case,



22 S. DIPIERRO, G. POGGESI, J. THOMPSON, AND E. VALDINOCI

the problem is entirely an interior one in that the proof relies only on interior estimates such as the

Harnack inequality while, it appears that in the nonlocal case, the geometry of the boundary may

have a significant effect on the value of β(s). If one hopes to obtain that β(s) = 1 from (5.1) then it

would be necessary to show that∫
Ω+\B+

1

y1

(
δ∂Ω(y)

δ∂B1(y)

)s

dy ⩾ C|Ω \B+
1 |.

If it were true that y1δ
s
∂Ω ⩾ Cδs∂B1

then this would follow immediately; however, this is not the case

as seen by sending y → ∂Rn
+ ∩B1/2.

Moreover, even though we made several major assumptions on the geometry of Ω to obtain (5.1),

we believe that the inequality is indicative of the more general situation. Indeed, one would expect

that, under reasonable assumptions on ∂Ω, similar estimates to the ones employed above would hold

for Poisson kernels in general domains, so one may suspect that an inequality of the form∫
Ω△Ω′

δπλ
(y)

(
δ∂Ω(y)

δ∂Ω′(y)

)s

dy ⩽ C[u]∂G

should hold. It would be interesting in future articles to further explore this methodology to try

obtain improvements on the exponent in Theorem 1.1.

6. Sharp investigation of a technique to improve the stability exponent

In the papers [Cab+18; Cir+18], it was proven that the only open bounded sets2 whose boundary

has constant nonlocal mean curvature are balls. Moreover, in [Cir+18], the method of moving planes

was employed to obtain a stability estimate for sets whose boundary has almost constant nonlocal

mean curvature. The stability estimate that the authors proved also seems to achieve the optimal

exponent of 1 which is however obtained using the following technical result, see [Cir+18, Proposition

3.1(b)]:

Lemma 6.1. Let Ω ⊂ Rn be an open bounded set with C2,α boundary for α > 2s and s ∈ (0, 1/2).

Let πλ be the critical hyperplane. Suppose that dist(0, πλ) ⩽ 1/8 and Br ⊂ Ω ⊂ BR with 1/2 ⩽ r ⩽

R ⩽ 2.

Then, ∣∣∣{x ∈ Ω△Ω′ s.t. dist(x, πλ) ⩽ γ
}∣∣∣ ⩽ C(n)γ(R− r)(6.1)

for all 0 < γ ⩽ 1/4.

Without this result, the exponent in the stability estimate in [Cir+18] would have been 1/2, so

Lemma 6.1 seems to play a major role in [Cir+18] in the attempt of “doubling the exponent” that they

obtained in previous estimates. This feature is extremely relevant to our main result, Theorem 1.1,

since we hoped that a similar argument to Lemma 6.1 would lead to an exponent that was twice

the one that we obtained. Unfortunately, we believe that, in the very broad generality in which the

result is stated in [Cir+18], Lemma 6.1 may not be true, and we present a counter-example (which

may also impact some of the statements in [Cir+18]) as well as a corrected statement of Lemma 6.1.

2For the precise statements and the regularity assumptions on the boundary of the set, see [Cir+18; Cab+18].
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6.1. A geometric lemma and a counter-example to Lemma 6.1. The main result of this

section is a geometric lemma which may be viewed as a corrected version of Lemma 6.1. Moreover,

we will give an explicit family of domains which demonstrate that our geometric lemma is sharp.

This family will also serve as a counter-example to Lemma 6.1.

An essential component to the geometric lemma that is not present in the assumptions of Lemma 6.1

is a uniform bound on the boundary regularity of ∂Ω. To our knowledge, there is no ‘standard’ def-

inition of such a bound, so we will begin by concretely specifying what is meant by this.

Let Ω be an open subset of Rn with C1 boundary. For each x ∈ ∂Ω, let

Πx(y) := (y − x)− ((y − x) · ν(x))ν(x),

which is the projection of Rn onto Tx∂Ω, that is, the tangent plane of ∂Ω at x. We have made a

translation in the definition of Πx, so that Πx(x) = 0. For simplicity, we will often identify Tx∂Ω

with Rn−1.

Definition 6.2. Let Ω be an open subset of Rn with Cα boundary, with α > 1, and let ρ, M > 0.

We say that ∂Ω ∈ Cα
M,ρ if, for all x ∈ ∂Ω, there exists ψ(x) : Bn−1

ρ → R such that ψ(x) ∈ Cα(Bn−1
ρ ),

∥ψ(x)∥Cα(Bn−1
ρ ) ⩽M , and

Bρ(x) ∩ Ω =
{
y ∈ Bρ(x) s.t. y · ν(x) < ψ(x)(Πx(y))

}
.

We remark that, if α ∈ Z in Definition 6.2, the notation Cα
M,ρ means Cα−1,1

M,ρ .

We now give the geometric lemma, the main result of this section.

Theorem 6.3. Let Ω ⊂ Rn be an open bounded set with ∂Ω ∈ Cα
M,ρ, with α > 1, for some M > 0

and ρ ∈ (0, 1/4). Moreover, suppose that Br ⊂ Ω ⊂ BR with 1/2 ⩽ r ⩽ R ⩽ 2. Let e ∈ Sn−1, denote

by πλ the critical hyperplane with respect to e, and suppose that dist(0, πλ) ⩽ 1/8.

Then, ∣∣∣{x ∈ Ω△Ω′ s.t. dist(x, πλ) ⩽ γ
}∣∣∣ ⩽ Cγ(R− r)1−

1
α(6.2)

for all 0 < γ ⩽ 1/4. The constant C depends only on n, M , ρ, and α.

In order to prove Theorem 6.3, we require two preliminary lemmata. The first lemma gives an ele-

mentary estimate of the left hand side of (6.2) in terms of R−r and an error term involving dist(0, πλ).

Lemma 6.4. Let Ω ⊂ Rn be an open bounded set with C1 boundary, and Br ⊂ Ω ⊂ BR with 1/2 ⩽

r ⩽ R ⩽ 2. Let e ∈ Sn−1, denote by πλ the critical hyperplane with respect to e, and suppose

that dist(0, πλ) ⩽ 1/8.

Then, ∣∣∣{x ∈ Ω△Ω′ s.t. |x1 − λ| ⩽ γ
}∣∣∣ ⩽ Cγ

(
R− r + γ|λ|

)
for all 0 < γ ⩽ 1/4. The constant C depends only on n.

Proof. First, observe that

Ω△Ω′ ⊂ (BR ∪B′
R) \ (Br ∩B′

r)(6.3)
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where B′
ρ is the reflection of Bρ across the critical hyperplane. Indeed, if x ∈ Ω∪Ω′ then x ∈ Ω ⊂ BR

or x ∈ Ω′ ⊂ B′
R, so x ∈ BR ∪ B′

R. Moreover, if x ∈ Br ∩ B′
r then x ∈ Br ⊂ Ω and x ∈ B′

r ⊂ Ω′,

so Br ∩B′
r ⊂ Ω ∩ Ω′. Then (6.3) follows from the the fact that Ω△Ω′ = (Ω ∪ Ω′) \ (Ω ∩ Ω′).

From (6.3), it immediately follows that∣∣∣{x ∈ Ω△Ω′ s.t. |x1 − λ| ⩽ γ
}∣∣∣ ⩽ ∣∣∣{x ∈ (BR ∪B′

R) \ (Br ∩B′
r) s.t. |x1 − λ| ⩽ γ

}∣∣∣.
Without loss of generality, we may assume that λ > 0. Then∣∣∣{x ∈ (BR ∪B′

R) \ (Br ∩B′
r) s.t. |x1 − λ| ⩽ γ

}∣∣∣
= 2
∣∣∣{x ∈ BR \B′

r s.t. λ− γ < x1 < λ
}∣∣∣

= 2
(∣∣∣BR ∩ {λ− γ < x1 < λ

}∣∣∣− ∣∣∣B′
r ∩
{
λ− γ < x1 < λ

}∣∣∣).
Hence, via the co-area formula, we obtain that∣∣∣{x ∈ (BR ∪B′

R) \ (Br ∩B′
r) s.t. |x1 − λ| ⩽ γ

}∣∣∣
= 2

∫ λ

λ−γ

[
Hn−1

(
Bn−1√

R2−t2

)
−Hn−1

(
Bn−1√

r2−(2λ−t)2

)]
dt

= 2ωn−1

∫ λ

λ−γ

[(
R2 − t2

)n−1
2 −

(
r2 − (2λ− t)2

)n−1
2

]
dt.

Next, if 0 < a < τ < b then∣∣∣∣ ddτ τ n−1
2

∣∣∣∣ = n− 1

2
τ

n−3
2 ⩽

n− 1

2

a−1/2, if n = 2

b
n−3
2 , if n ⩾ 3.

Since λ > 0 and 2λ− t ∈ (λ, λ+ γ) ⊂ (0, 3/8), we have that

C−1 ⩽ r2 − (2λ− t)2 ⩽ R2 − t2 ⩽ C for all t ∈ (λ− γ, λ)

with C > 0 a universal constant. Hence,∣∣∣(R2 − t2
)n−1

2 −
(
r2 − (2λ− t)2

)n−1
2

∣∣∣ ⩽ C
∣∣(R2 − t2

)
−
(
r2 − (2λ− t)2

)∣∣
⩽ C

(
R− r + λ(λ− t)

)
.

Gathering these pieces of information, we conclude that∣∣∣{x ∈ Ω△Ω′ s.t. |x1 − λ| ⩽ γ
}∣∣∣ ⩽ C

∫ λ

λ−γ

(
R− r + λ(λ− t)

)
dt ⩽ Cγ

(
R− r + γλ

)
,

as required. □

The purpose of the second lemma will be to reduce the proof of Theorem 6.3 to the case of graphs

of functions.

Lemma 6.5. Let Ω ⊂ Rn be an open bounded set with ∂Ω ∈ Cα
M,ρ, with α > 1, for some M > 0

and ρ ∈ (0, 1/4).
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Then, there exists ε0 ∈ (0, 1) such that, for all ε ∈ (0, ε0], it holds that if B1−ε/2 ⊂ Ω ⊂ B1+ε/2

then there exists ψε := ψ : Bn−1
3/4 → (0,+∞) such that ψ ∈ Cα(Bn−1

3/4 ),∥∥ψ −
√
1− |x′|2

∥∥
C1(Bn−1

3/4
)
⩽ Cε1−

1
α ,(6.4)

and

Ω ∩
(
Bn−1

3/4 × (0,+∞)
)
= {x ∈ Rn s.t. 0 < xn < ψ(x′)}.(6.5)

The constant C depends only on n, α, ρ, and M .

Proof. Let x⋆ ∈ ∂Ω∩
(
Bn−1

3/4 ×(0,+∞)
)
and ψ(x⋆) be the function given in Definition 6.2 corresponding

to the point x⋆. Next, let A be a rigid motion such that Ax⋆ = 0, Tx⋆∂Ω is mapped t Rn−1 × {0},
and ν(x⋆) is mapped to en. To avoid any confusion, we will always use the variable x to denote

points in the original (unrotated) coordinates and y to denote points in the new rotated coordinates,

i.e. y = Ax. By Definition 6.2, in the y coordinates,

y = (y′, ψ(x⋆)(y′)) for all y ∈ Bρ ∩ ∂Ω

where y′ = (y1, . . . , yn−1).

Next, if ∂Ω is contained in the closure of B1+ε/2 \B1−ε/2, we have that(
1− ε

2

)2

− |y′|2 ⩽
(
ψ(x⋆)(y′)

)2
⩽

(
1 +

ε

2

)2

− |y′|2

for all y′ ∈ Bn−1
ρ .

Additionally, by Bernoulli’s inequality, we have that

0 ⩽

√(
1 +

ε

2

)2

− |y′|2 −
√

1− |y′|2 ⩽ 1

2
√

1− |y′|2

(
ε+

ε2

4

)
⩽ Cε

with C = C(ρ) > 0. Similarly, we also have that

−Cε ⩽

√(
1− ε

2

)2

− |y′|2 −
√
1− |y′|2 ⩽ 0.

Hence, it follows that ∣∣|ψ(x⋆)(y′)| −
√

1− |y′|2
∣∣ ⩽ Cε for all y′ ∈ Bn−1

ρ .

Thus, by interpolation, we have that∥∥|ψ(x⋆)(y′)| −
√

1− |y′|2
∥∥
C1(Bn−1

ρ )

⩽ C
∥∥|ψ(x⋆)(y′)| −

√
1− |y′|2

∥∥
Cα(Bn−1

ρ )

∥∥|ψ(x⋆)(y′)| −
√
1− |y′|2

∥∥1− 1
α

L∞(Bn−1
ρ )

⩽ Cε1−
1
α

using also that ∂Ω ∈ Cα
M,ρ.

Note that we have left the y variable in the equations above to emphasise that we are still using

the rotated y coordinates. Now, returning to the original x coordinates, we observe that, by the
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above computation, we have that ∂Ω is uniformly close to ∂B1 in the C1 sense, so

ν(x) · en ⩾ C > 0 for all x ∈ ∂Ω ∩
(
Bn−1

3/4 × (0,+∞)
)

provided that ε is sufficiently small. Thus, it follows that ∂Ω is given by a graph with respect

to the en direction, that is, the claim in (6.5) holds for some ψ : Bn−1
3/4 → (0,+∞). We can see

that ψ ∈ Cα(Bn−1
3/4 ) since ∂Ω is Cα and we obtain the claim in (6.4) by an identical interpolation

argument to the one above. □

We may now give the proof of Theorem 6.3.

Proof of Theorem 6.3. Without loss of generality, we may assume that e = e1 and λ > 0. By Lemma 6.4,

it is enough to prove that

λ ⩽ C(n,M, ρ, α)(R− r)1−
1
α .(6.6)

Since λ ⩽ 2, if there exists C = C(n,M, ρ, α) > 0 such that R − r ⩾ C then we are done, so we

may assume that R− r = ε with ε arbitrarily small. Moreover, by rescaling, we may further assume

that r = 1− ε/2 and R = 1 + ε/2. Furthermore, let ψ : Bn−1
3/4 be the function given by Lemma 6.5.

First, let us consider Case 1 of the method of moving planes. In this case, we obtain a point p =

(p1, . . . , pn) ∈ (∂Ω∩∂Ω′
λ)\πλ (recall that, in this notation, Ω′

λ = Ω′∩Hλ, so p1 < λ). Hence, we have

that r2 ⩽ |p|2 ⩽ (r + ε)2 and r2 ⩽ |Qπλ
(p)|2 ⩽ (r + ε)2 (recall that Qπλ

reflects a point across πλ),

from which it follows that

λ(λ− p1) ⩽ ε(2r + ε) ⩽ Cε.

If λ− p1 ⩾ 1/4 then we are done, so we may assume that λ− p1 < 1/4.

Moreover, by rotating with respect to (x2, . . . , xn), we may assume without loss of generality

that p2 = · · · = pn−1 = 0 and pn > 0. In particular, this implies that p′ = (p1, . . . , pn−1) ∈ Bn−1
3/4 .

Now, on one hand, if ψλ(x
′) := ψ(x′)−ψ(2λ−x1, x2, . . . , xn−1) then ψλ ⩾ 0 for x′ ∈ Bn−1

3/4 ∩{x1 < λ}
and ψλ(p

′) = 0, so ∂1ψλ(p
′) = 0. On the other hand, by Lemma 6.5, if x′′ = (x2, . . . , xn−1),

∂1ψλ(p
′) = ∂1

(
ψλ −

√
1− |x′|2 +

√
1− (2λ− x1)2 − |x′′|2

)
(p′)

+ ∂1
(√

1− |x′|2 −
√
1− (2λ− x1)2 − |x′′|2

)
(p′)

⩽ Cε1−
1
α −

(
p1√
1− p21

+
2λ− p1√

1− (2λ− p1)2

)
.

Hence, we have that

(6.7)
p1√
1− p21

+
2λ− p1√

1− (2λ− p1)2
⩽ Cε1−

1
α .

Moreover, we claim that

(6.8)
p1√
1− p21

+
2λ− p1√

1− (2λ− p1)2
⩾

2λ√
1− λ2

.

To prove this, we consider the function

f(t) :=
λ− t√

1− (λ− t)2
+

λ+ t√
1− (λ+ t)2
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for t ∈
(
−1

2
, 1
2

)
. Notice that f is even, and therefore we restrict our analysis to the interval

[
0, 1

2

)
.

By a direct calculation,

f ′(t) = − (λ− t)2

(1− (λ− t)2)3/2
− 1√

1− (λ− t)2
+

1√
1− (λ+ t)2

+
(λ+ t)2

(1− (λ+ t)2)3/2

= − 1

(1− (λ− t)2)3/2
+

1

(1− (λ+ t)2)3/2
.

Now we define ϕ(τ) := (1− τ)−3/2. Since (λ− t)2 ⩽ (λ+ t)2 ⩽ 17/32 < 1, we can write

f ′(t) =

∫ (λ+t)2

(λ−t)2
ϕ′(τ) dτ =

3

2

∫ (λ+t)2

(λ−t)2
(1− τ)−5/2 dτ ⩾ 0.

Therefore, for all t ∈
(
0, 1

2

)
(and thus for all t ∈

(
−1

2
, 1
2

)
), we have that

f(t) ⩾ f(0) =
2λ√
1− λ2

.

Hence, setting t = λ− p1 ∈
(
−1

2
, 1
2

)
, we obtain the desired inequality in (6.8).

In particular, from (6.8) we have that

p1√
1− p21

+
2λ− p1√

1− (2λ− p1)2
⩾ Cλ,

for some C > 0. Putting together this and (6.7), we deduce that the claim in (6.6) holds.

For Case 2 of the method of moving planes, we obtain a point p ∈ ∂Ω∩πλ at which ∂Ω is orthogonal

to πλ. In this case, we have that ∂1ψλ(p
′) ⩾ 0. From here the proof is identical to Case 1. □

We will now give an explicit family of domains which demonstrate that the result obtained in

Theorem 6.3 is sharp. This also serves as a counter-example to Lemma 6.1.

Theorem 6.6. There exists a smooth 1-parameter family {Ωε} of open bounded subsets of R2 such

that

• ∂Ωε ∈ Cα
M,1/8, with α > 1, for some M > 0 independent of ε;

• B1−C1ε ⊂ Ωε ⊂ B1+C1ε for a universal constant C1 > 0;

• if πλ is the critical hyperplane with respect to e1 and γ ∈ (0, 1/4), then∣∣∣{x ∈ Ωε△Ω′
ε s.t. dist(x, πλ) ⩽ γ

}∣∣∣ ⩾ C2ε
1− 1

α(6.9)

as ε→ 0+. The constant C2 > 0 depends on n and γ.

Proof. We will define Ωε by specifying its boundary, see Figure 2. More precisely, in the region R2 \(
(0, 1/2) × (−3/2,−1/2)

)
, let ∂Ωε = ∂B1. For the definition of ∂Ωε in (0, 1/2) × (−3/2,−1/2),

let η ∈ C∞
0 (R) be such that 

η(τ) = 2τ in (−1/4, 1/4),

η = 0 in R \ (−1, 1),

η(−τ) = −η(τ) in R,

|η| ⩽ 1 in R.
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Figure 2. Diagram of Ωε in Theorem 6.6.

Let also

ηε(τ) := εη

(
τ − ε1−

1
α

ε1/α

)
and ψε(τ) := −

√
1− τ 2 − ηε(τ)

and define the remaining portion of ∂Ωε by

∂Ωε ∩
(
(0, 1/2)× (−3/2,−1/2)

)
=
{
(x, ψε(x)) s.t. x ∈ (0, 1/2)

}
.

We observe that ∂Ωε is smooth and that

τ 2 + (ψε(τ))
2 = 1 + 2ηε(τ)

√
1− τ 2 + (ηε(τ))

2 ⩽ 1 + Cε.

Hence, by Bernoulli’s inequality, √
τ 2 + ψε(τ)2 − 1 ⩽ Cε,

and similarly, we can show that
√
τ 2 + ψε(τ)2 − 1 ⩾ −Cε, so B1−Cε ⊂ Ωε ⊂ B1+Cε. Moreover, we

have that ∥ψε∥Cα((0,1/2)) ⩽M for someM > 0 sufficiently large and independent of ε, so ∂Ωε ∈ Cα
M,1/8.

Now all that is left to be shown is (6.9). First, we claim that the critical parameter λε satisfies

λε ⩾ ε1−
1
α .(6.10)

To prove this, for all µ ∈ R, we define ψε,µ(τ) := ψε(τ)− ψε(2µ− τ). Furthermore, we consider

τε := ε1−
1
α − 1

4
ε

1
α and µε := ε1−

1
α .
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We have that

ψε,µε(τε) = −
(√

1− τ 2ε −
√

1− (2µε − τε)2
)
− ε

(
η

(
τε − ε1−

1
α

ε1/α

)
− η

(
2µε − τε − ε1−

1
α

ε1/α

))

= −
(√

1− τ 2ε −
√

1− (2µε − τε)2
)
− 2ε

(
τε − ε1−

1
α

ε1/α
− 2µε − τε − ε1−

1
α

ε1/α

)
= − 4µε(µε − τε)√

1− τ 2ε +
√

1− (2µε − τε)2
+ 4ε1−

1
α

(
µε − τε

)
= −4µε(µε − τε)

(
1

2
+ o(1)

)
+ 4ε1−

1
α

(
µε − τε

)
= 2ε1−

1
α

(
µε − τε

)
+ o
(
ε1−

1
α

(
µε − τε

))
=

1

2
ε+ o(ε)

⩾
1

4
ε,

as soon as ε is sufficiently small.

Hence, we have that ψε,µε(τε) > 0, which implies that the reflected region of Ωε,µ must have

left the region Ωε by the time we have reached µ = µε, so we conclude that the critical time λε

satisfies λε > µε, which gives (6.10).

In fact, since η is zero outside of (−1, 1), it follows that

λε ⩽ Cε1−
1
α ,

so, in particular, λε → 0 as ε→ 0+.

Finally, to complete the proof of (6.9), we will show that

(6.11)
∣∣∣{x ∈ Ωε△Ω′

ε s.t. dist(x, πλ) ⩽ γ
}∣∣∣ ⩾ Cλε.

Indeed, let Uε :=
((
Ωε ∩ {λ− γ < x1 < λ}

)
\ Ω′

ε,λ

)
∩ {x2 > 0}, see Figure 2. Observe that∣∣∣(Ωε ∩ {λ− γ < x1 < λ}
)
\ Ω′

ε,λ

∣∣∣ ⩾ |Uε|.

Moreover, using that λε → 0, we have that

|Uε| =

∫ λε

λε−γ

(√
1− τ 2 −

√
1− (2λε − τ)2

)
dτ

=

∫ λε

λε−γ

4λε(λε − γ)√
1− τ 2 +

√
1− (2λε − τ)2

dτ

⩾ 4λε

∫ λε− γ
2

λε−γ

λε − γ

2
dτ

⩾
γ2

2
λε,

which establishes (6.11), and thus completes the proof of Theorem 6.6. □

6.2. An application of Theorem 6.3: improvement of the exponent in Theorem 1.1. We

will now show how to use Theorem 6.3 to improve the stability exponent in Theorem 6.3. The key

step is to use Theorem 6.3 to achieve the following modified version of Proposition 4.4.
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Proposition 6.7. Let Ω be an open bounded set with C1 boundary and satisfying the uniform interior

ball condition with radius rΩ > 0 and G be an open bounded set with C1 boundary such that Ω =

G + BR for some R > 0. Let f ∈ C0,1
loc (R) be such that f(0) ⩾ 0 and u satisfies (1.3) in the weak

sense.

For e ∈ Sn−1, let Ω′ denote the reflection of Ω with respect to the critical hyperplane πλ.

In addition, suppose that ∂Ω ∈ Cα
M,ρ, with α > 1, for some M > 0 and ρ ∈ (0, 1/4), and that

(6.12) Bρi ⊂ Ω ⊂ Bρe with
1

2
⩽ ρi ⩽ ρe ⩽ 2

and

(6.13) ρe − ρi ⩾ 4
α(s+2)

(α−1)(s+1) [u]
α

(α−1)(s+1)

∂G .

Then,

|Ω△Ω′| ⩽ C̃⋆(ρe − ρi)
α−1

α(s+2) [u]
1

s+2

∂G ,

where C̃⋆ is some explicit constant depending on n, s, α, M , ρ, diamΩ, R, [f ]C0,1([0,∥u∥L∞(Ω)]),

and ∥u∥Ls(Rn).

Proof. The proof of Proposition 6.7 is a suitable modification of the one of Proposition 4.4. More

precisely, we recall (4.8) and we use that f(0) ⩾ 0 to obtain that∣∣∣{x ∈ (Ω ∩H ′
λ) \ Ω′

λ s.t. x1δ
s
∂Ω(x) > γ

}∣∣∣ ⩽ CC−1
∗
(
f(0) + ∥u∥Ls(Rn)

)−1

γ
[u]∂G

⩽
CC−1

∗ ∥u∥−1
Ls(Rn)

γ
[u]∂G,

(6.14)

where C∗ is as in Corollary 3.4.

Furthermore, given γ, β ∈
(
0, 1

4

]
, we see that∣∣∣{x ∈ (Ω ∩H ′

λ) \ Ω′
λ s.t. x1δ

s
∂Ω(x) ⩽ γ

}∣∣∣
=

∣∣∣{x ∈ (Ω ∩H ′
λ) \ Ω′

λ s.t. x1δ
s
∂Ω(x) ⩽ γ, x1 < β

}∣∣∣
+
∣∣∣{x ∈ (Ω ∩H ′

λ) \ Ω′
λ s.t. x1δ

s
∂Ω(x) ⩽ γ, x1 ⩾ β

}∣∣∣
⩽

∣∣∣{x ∈ Ω+ s.t. x1 < β
}∣∣∣+ ∣∣∣∣∣

{
x ∈ Ω s.t. δ∂Ω(x) ⩽

(
γ

β

) 1
s

}∣∣∣∣∣ .
Now, using Theorem 6.3 we have that∣∣∣{x ∈ Ω+ s.t. x1 < β

}∣∣∣ ⩽ C (ρe − ρi)
1− 1

αβ,

for some C > 0 depending only on n, M , ρ and α.

Also, using [Cir+23, Lemma 5.2] and [Tam76], we obtain that∣∣∣∣∣
{
x ∈ Ω s.t. δ∂Ω(x) ⩽

(
γ

β

) 1
s

}∣∣∣∣∣ ⩽ 2n|Ω|
rΩ

(
γ

β

) 1
s

.
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Gathering these pieces of information, we obtain that∣∣∣{x ∈ (Ω ∩H ′
λ) \ Ω′

λ s.t. x1δ
s
∂Ω(x) ⩽ γ

}∣∣∣ ⩽ C(ρe − ρi)
1− 1

αβ +
2n|Ω|
rΩ

(
γ

β

) 1
s

.

From this and (6.14), we now deduce that

|Ω△Ω′| = 2|(Ω ∩H ′
λ) \ Ω′

λ|

⩽ CC−1
∗ ∥u∥−1

Ls(Rn)

[u]∂G
γ

+ C(ρe − ρi)
1− 1

αβ +
2n|Ω|
rΩ

(
γ

β

) 1
s

⩽ C

[
[u]∂G
γ

+ (ρe − ρi)
1− 1

αβ +

(
γ

β

) 1
s

]
.

Minimizing the expression in the last line in the variables (β, γ) gives

γβ =
[u]∂G

(ρe − ρi)
1− 1

α

and β =
[u]

1
s+2

∂G

(ρe − ρi)
(α−1)(s+1)

α(s+2)

,

that is,

γ =
[u]

s+1
s+2

∂G

(ρe − ρi)
α−1

α(s+2)

and β =
[u]

1
s+2

∂G

(ρe − ρi)
(α−1)(s+1)

α(s+2)

.

Notice that the assumption in (6.13) guarantees that, with these choices, γ, β ∈
(
0, 1

4

]
.

Thus, we conclude that

|Ω△Ω′| ⩽ C (ρe − ρi)
α−1

α(s+2) [u]
1

s+2

∂G .

This completes the proof of Proposition 6.7. □

Proposition 6.7 leads to the following statement, which is the counterpart of Proposition 4.5.

Proposition 6.8. Let Ω be an open bounded set with C1 boundary and satisfying the uniform interior

ball condition with radius rΩ > 0 and suppose that the critical planes πei with respect to the coordinate

directions ei coincide with {xi = 0} for every i = 1, . . . , n. Also, given e ∈ Sn−1, denote by λe the

critical value associated with e as in (4.1).

In addition, suppose that ∂Ω ∈ Cα
M,ρ, with α > 1, for some M > 0 and ρ ∈ (0, 1/4), and that the

assumptions in (6.12) and (6.13) are satisfied.

Assume that

[u]
1

s+2

∂G ⩽
|Ω|
nC̃⋆

where C̃⋆ is the constant in Proposition 6.7.

Then,

|λe| ⩽ C (ρe − ρi)
α−1

α(s+2) [u]
1

s+2

∂G

for all e ∈ Sn−1, where C is some explicit constant depending on n, s, α, M , ρ, diamΩ, R,

[f ]C0,1([0,∥u∥L∞(Ω)]), and ∥u∥Ls(Rn).

We omit the proof of Proposition 6.8, since it follows the same line as that of Proposition 4.5.
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Now, up to a translation, we can suppose that the critical planes πei with respect to the coordinate

directions ei coincide with {xi = 0} for every i = 1, . . . , n. Hence, following [Cir+18, Proof of

Theorem 1.2], we can define

(6.15) ρe := max
∂Ω

|x| and ρi := min
∂Ω

|x|,

and work with ρe − ρi (which clearly gives an upper bound for ρ(Ω)) to achieve the desired stability

estimates.

In the following result, we also assume that

(6.16) ρe = 1.

Notice that such an assumption is always satisfied, up to a dilation.

Theorem 6.9. Let G be an open bounded subset of Rn and Ω = G + BR for some R > 0. Further-

more, let Ω and G have C1 boundary, and let f ∈ C0,1
loc (R) be such that f(0) ⩾ 0. Suppose that u

satisfies (1.3) in the weak sense.

In addition, let ∂Ω ∈ Cα
M,ρ, with α > 1, for some M > 0 and ρ ∈ (0, 1/4).

Let ρe and ρi be as in (6.15) and (6.16).

Then,

ρ(Ω) ⩽ ρe − ρi ⩽ C̃[u]
α

1+α(s+1)

∂G ,

where C̃ is some explicit constant depending on n, s, α, M , ρ, diamΩ, R, [f ]C0,1([0,∥u∥L∞(Ω)]),

and ∥u∥Ls(Rn).

Proof. Without loss of generality, we can assume that (6.13) is satisfied, as otherwise Theorem 6.9

trivially holds.

An inspection of the proof of Theorem 1.1 shows that ρe and ρi defined in (6.15) satisfy

ρe − ρi ⩽ C[u]
1

s+2

∂G .

Thus, if [u]∂G ⩽ (2C)−(s+2), we obtain that ρe − ρi ⩽ 1/2, and therefore, in light of the assumption

in (6.16), we have that 1/2 ⩽ ρi ⩽ ρe ⩽ 2, namely (6.12) is satisfied.

Hence, we can employ Proposition 6.8 and obtain that

(6.17) |λe| ⩽ C (ρe − ρi)
α−1

α(s+2) [u]
1

s+2

∂G .

The desired result follows by reasoning as in the proof of Theorem 1.1, but using (6.17) instead

of (4.11). □

7. The exponent for a family of ellipsoids

Throughout this section, we will denote a point x = (x1, . . . , xn) ∈ Rn by x = (x1, x
′) where3

x′ = (x2, . . . , xn) ∈ Rn−1.

3Not to be confused with the notation of the method of moving planes where an apostrophe referred to a reflection
across a hyperplane.
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Proposition 7.1. Suppose that n ⩾ 2 is an integer, s ∈ (0, 1), and ε > 0. Define

Ωε :=

{
(x1, x

′) ∈ Rn s.t.
x21

(1 + ε)2
+ |x′|2 < 1

}
.(7.1)

Then, for 0 < ε < 1/4, there exists a 1-parameter family Gε ⊂ Ωε with smooth boundary such that

Gε +B1/2 = Ωε.

Moreover, let uε ∈ C2(Ωε) ∩ Cs(Rn) be the unique solution to{
(−∆)suε = 1 in Ωε,

uε = 0 in Rn \ Ωε.
(7.2)

Then,

lim
ε→0+

[uε]∂Gε

ρ(Ωε)
= sγn,s

(
3

4

)s−1

,(7.3)

where

γn,s :=
2−2sΓ

(
n
2

)
Γ
(
n+2s
2

)
Γ(1 + s)

.(7.4)

The existence of the 1-parameter familyGε as in Proposition 7.1 is an easy corollary of the following

geometric lemma.

Lemma 7.2. Let n ⩾ 2 be an integer and suppose that Ω is an open bounded subset of Rn that

satisfies the uniform interior ball condition with radius rΩ > 0. If δ : Ω → R is the distance to the

boundary of Ω and Ωρ := {x ∈ Ω s.t. δ(x) > ρ} then for all ρ ∈ (0, rΩ),

Ωρ +Bρ = Ω.

Moreover, if the boundary of Ω is Ck for some integer k ⩾ 2 then, for all ρ ∈ (0, rΩ), the boundary

of Ωρ is also Ck.

Proof. We will begin by showing that Ωρ + Bρ ⊂ Ω. If z ∈ Ωρ + Bρ then z = x+ y for some x ∈ Ωρ

and y ∈ Bρ. Let R > 0 be the largest value possible such that BR(x) ⊂ Ω. Then R = δ(x), so R > ρ.

Hence,

|z − x| = |y| < ρ < R,

so z ∈ BR(x) ⊂ Ω.

Now, let us show that Ω ⊂ Ωρ + Bρ. Let z ∈ Ω. If z ∈ Ωρ then z = z + 0 ∈ Ωρ + Bρ and we

are done, so we may assume that z ∈ Ω \ Ωρ. Now, let R > 0 be the largest value possible such

that BR(z) ⊂ Ω and let p ∈ ∂Ω be a point at which BR(z) touches ∂Ω. Define the unit vector

ν(p) :=
p− z

|p− z|
.

Next, since BR(z) is an interior touching ball, there exists some z̄ ∈ Ω such that BrΩ(z̄) also

touches ∂Ω at p and p, z, and z̄ are collinear. Now, let µ ∈ (0,min{rΩ − ρ,R}) and define

x := z − (ρ−R + µ)ν(p).
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Since z = z̄ + (rΩ −R)ν(p), it follows that |x− z̄| = |rΩ − ρ− µ| < rΩ, so x ∈ BrΩ(z̄). Hence, x ∈ Ω.

Moreover, |x− p| = ρ+ µ > ρ, so x ∈ Ωρ and |z− x| = ρ−R+ µ < ρ, so z− x ∈ Bρ. Thus, we have

that z = x+ (z − x) ∈ Ωρ +Bρ as required. This completes the first part of the proof.

The fact that the boundary of Ωρ is Ck for any ρ ∈ (0, rΩ) is a simple consequence of [GT01,

Lemma 14.16]. Indeed, following the proof of [GT01, Lemma 14.16], we see that δ ∈ Ck(ΓrΩ) where

ΓrΩ := {x ∈ Ω s.t. δ(x) < rΩ}.

Then the boundary of Ωρ is simply the level set Ω ∩ {δ = ρ} which is contained in ΓrΩ , so ∂Ωρ

is Ck. □

From Lemma 7.2, we immediately obtain the proof of the first part of Proposition 7.1:

Corollary 7.3. Suppose that n ⩾ 2 is an integer, s ∈ (0, 1), ε > 0, and Ωε be as in (7.1).

Then, for 0 < ε < 1/4, there exists a 1-parameter family Gε ⊂ Ωε with smooth boundary such that

Gε +B1/2 = Ωε.

Proof. It is easy to check that Ωε satisfies the uniform interior ball condition with uniform radius

given by rΩε = (1 + ε)−1. Hence, since ε < 1/4, we have that rΩε > 1/2, so if Gε := Ωρ
ε with ρ = 1/2

(i.e. Gε := {x ∈ Ωε s.t. dist(x, ∂Ωε) > 1/2}) then Lemma 7.2 implies that Gε satisfies all the

required properties. □

The remainder of this section will be spent proving the second part of Proposition 7.1. In theory,

this is relatively simple: since Ωε is an ellipsoid, the solution to the torsion problem (7.2) is known

explicitly, see [AJS21], and is given by

uε(x) := γn,s,ε

(
1− x21

(1 + ε)2
− |x′|2

)s

+

where

γn,s,ε :=
γn,s

(1 + ε)2F1

(
n+2s
2
, 1
2
; n
2
; 1− (1 + ε)2

)
and γn,s is given by (7.4).

Here above 2F1 is the Hypergeometric function, see [AS92] for more details. Note that 2F1(a, b; c; 0) =

1, so γn,s,0 = γn,s, and γn,s is precisely the constant for which u0(x) := γn,s(1 − |x|2)s+ satis-

fies (−∆)su0 = 1 in B1.

Now, it is easy to check that ρ(Ωε) = ε, so to prove the second part of Proposition 7.1, one simply

has to find the first order expansion of [uε]∂Gε in ε. However, in practice, this is not trivial for a few

reasons: one, parametrizations of Gε are algebraically complicated; two, [uε]∂Gε is defined in terms

of a supremum, which, in general, does not commute well with limits; and three, the supremum is

over a quotient whose numerator and denominator both depend on ε and whose denominator is not

bounded away from zero.

We will now state a technical result that will allow us to postpone addressing these difficulties and

to proceed directly to the proof of Proposition 7.1.
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Lemma 7.4. Let ε ∈ [0, 1) and define aε, bε : [0,+∞) → R and ϕε : B
n−1
1 → Rn as follows

aε(τ) := 1 + ε− 1

2
√

1 +
(
(1 + ε)2 − 1

)
τ 2
,

bε(τ) := 1− 1 + ε

2
√

1 +
(
(1 + ε)2 − 1

)
τ 2
,

and ϕε(r) :=
(
aε(|r|)

√
1− |r|2, bε(|r|)r

)
.

(7.5)

Then, ∣∣∣∣ |(uε ◦ ϕε)(r)− (uε ◦ ϕε)(r̃)|
ε|ϕε(r)− ϕε(r̃)|

− 1

2
sγn,s

(
3

4

)s−1
∣∣|r|2 − |r̃|2

∣∣
|ϕ0(r)− ϕ0(r̃)|

∣∣∣∣ ⩽ Cε.

The constant C > 0 depends only on n and s.

In the statement of Lemma 7.4 and in what follows, we use the notation Bn−1
1 for the unit ball

in Rn−1.

We will withhold the proof of Lemma 7.4 until the end of the section. Given Lemma 7.4, we can

now complete the proof of Proposition 7.1.

Proof Proposition 7.1. The proof of the first statement regarding the existence of Gε is the subject

of Corollary 7.3, so we will focus on proving (7.3). Since the ellipsoid is symmetric with respect to

reflections across the plane {x1 = 0}, it follows that Gε is too. Hence, we have that

[uε]∂Gε = sup
x,y∈∂G+

ε
x̸=y

{
|uε(x)− uε(y)|

|x− y|

}
.

Here, we are using the notation that, given A ⊂ Rn, A+ := A ∩ {x1 > 0}.
Next, the upper half ellipsoid Ω+

ε can be parametrized by ϕ̄ε : Bn−1
1 → Ω+

ε defined by ϕ̄ε(r) :=

((1 + ε)
√

1− |r|2, r). Moreover, the outward pointing normal to B1 is given by

νε(x) :=
1√

x2
1

(1+ε)4
+ |x′|2

(
x1

(1 + ε)2
, x′
)
,

so a parametrization of ∂G+
ε is ϕε : B

n−1
1 → Rn defined by ϕε := ϕ̄ε − 1

2
(νε ◦ ϕ̄ε), that is,

ϕε(r) =
(
(1 + ε)

√
1− |r|2, r

)
− 1 + ε

2
√
1 + ((1 + ε)2 − 1)|r|2

(√
1− |r|2
1 + ε

, r

)
=
(
aε(|r|)

√
1− |r|2, bε(|r|)r

)
in the notation of Lemma 7.4.

Hence,

[uε]∂Gε = sup
r,r̃∈Bn−1

1
r ̸=r̃

{
|(uε ◦ ϕε)(r)− (uε ◦ ϕε)(r̃)|

|ϕε(r)− ϕε(r̃)|

}
.
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Next, using Lemma 7.4 and the second triangle inequality in the sup norm (over r, r̃ ∈ Bn−1
1 ), we

obtain that∣∣∣∣ [uε]∂Gε

ε
−1

2
sγn,s

(
3

4

)s−1

sup
r,r̃∈Bn−1

1
r ̸=r̃

{ ∣∣|r|2 − |r̃|2
∣∣

|ϕ0(r)− ϕ0(r̃)|

}∣∣∣∣
⩽ sup

r,r̃∈Bn−1
1

r ̸=r̃

∣∣∣∣ |(uε ◦ ϕε)(r)− (uε ◦ ϕε)(r̃)|
ε|ϕε(r)− ϕε(r̃)|

− 1

2
sγn,s

(
3

4

)s−1
∣∣|r|2 − |r̃|2

∣∣
|ϕ0(r)− ϕ0(r̃)|

∣∣∣∣
⩽ Cε,

so, by sending ε→ 0+, we find that

lim
ε→0+

[uε]∂Gε

ε
=

1

2
sγn,s

(
3

4

)s−1

sup
r,r̃∈Bn−1

1
r ̸=r̃

{ ∣∣|r|2 − |r̃|2
∣∣

|ϕ0(r)− ϕ0(r̃)|

}
.(7.6)

Finally, we claim that

sup
r,r̃∈Bn−1

1
r ̸=r̃

{ ∣∣|r|2 − |r̃|2
∣∣

|ϕ0(r)− ϕ0(r̃)|

}
= 2.(7.7)

Indeed, if

Q :=

(
|r|2 − |r̃|2

)2
|ϕ0(r)− ϕ0(r̃)|2

then

Q =
4
(
|r|2 − |r̃|2

)2(√
1− |r|2 −

√
1− |r̃|2

)2
+ |r − r̃|2

⩽
4
(
|r|2 − |r̃|2

)2
(
√

1− |r|2 −
√
1− |r̃|2)2 +

(
|r| − |r̃|

)2 .
Next, let t, t̃ ∈ (0, π/2) be such that |r| = cos t and |r̃| = cos t̃. Then

Q ⩽
4(cos2 t− cos2 t̃)2

(sin t− sin t̃)2 + (cos t− cos t̃)2
.

Then, via elementary trigonometric identities,

(cos2 t− cos2 t̃)2 = 4 sin2(t+ t̃) sin2

(
t− t̃

2

)
cos2

(
t− t̃

2

)
and (sin t− sin t̃)2 + (cos t− cos t̃)2 = 4 sin2

(
t− t̃

2

)
,

so

Q ⩽ 4 sin2(t+ t̃) cos2
(
t− t̃

2

)
⩽ 4,

which shows that the left-hand side of (7.7) is less than or equal to the right-hand side of (7.7). To

show that the reverse inequality is also true, consider r := e1/
√
2 and r̃ := (1/

√
2 + h)e1. Then∣∣|r|2 − |r̃|2

∣∣
|ϕ0(r)− ϕ0(r̃)|

=
2|h|

(
h+

√
2
)√

1− h
√
2−

√
1− 2

√
2h− 2h2

→ 2
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as h→ 0 which completes the proof of (7.7). Thus, recalling that ρ(Ωε) = ε, (7.3) follows from (7.6)

and (7.7). □

We will now give the proof of Lemma 7.4. We will do this over two lemmata.

Lemma 7.5. Let ε ∈ [0, 1) and aε, bε, and ϕε be as in Lemma 7.4.

Then, for all r, r̃ ∈ Bn−1
1 with r ̸= r̃,∣∣∣∣ |ϕ0(r)− ϕ0(r̃)|

|ϕε(r)− ϕε(r̃)|
− 1

∣∣∣∣ ⩽ Cε.(7.8)

The constant C > 0 depends only on n.

Proof. Observe that ∣∣∣∣ |ϕ0(r)− ϕ0(r̃)|
|ϕε(r)− ϕε(r̃)|

− 1

∣∣∣∣ = ∣∣∣∣ |ϕ0(r)− ϕ0(r̃)| − |ϕε(r)− ϕε(r̃)|
|ϕε(r)− ϕε(r̃)|

∣∣∣∣
⩽

|(ϕ0 − ϕε)(r)− (ϕ0 − ϕε)(r̃)|
|ϕε(r)− ϕε(r̃)|

.

(7.9)

Next, observe that

ϕ0(r) = Aε(|r|)ϕε(r)

where, for each τ ∈ R, Aε(τ) is the n× n matrix given by

Aε(τ) :=

(
1

2aε(τ)
0

0 1
2bε(τ)

In−1

)
.

Here Ik denotes the k × k identity matrix and we are thinking of ϕε and ϕ0 as column vectors.

It will be useful in the future to note that aε and bε are strictly increasing for τ ⩾ 0 (see (7.15)

below for aε, the computation for bε is analogous), so, for all τ ∈ [0, 1),

1

2
+ ε ⩽ aε(τ) ⩽ 1 + ε− 1

2(1 + ε)
⩽

1

2
+ Cε

and
1

2
(1− ε) ⩽ bε(τ) ⩽

1

2
.

(7.10)

In particular, when ε is small, Aε(τ) is well-defined since aε, bε > 0. Hence, it follow from (7.9) that∣∣∣∣ |ϕ0(r)− ϕ0(r̃)|
|ϕε(r)− ϕε(r̃)|

− 1

∣∣∣∣
⩽

|(In − Aε(|r|))ϕε(r)− (In − Aε(|r̃|))ϕε(r̃)|
|ϕε(r)− ϕε(r̃)|

⩽
|(In − Aε(|r|))ϕε(r)− (In − Aε(|r|))ϕε(r̃)|

|ϕε(r)− ϕε(r̃)|
+

|(Aε(|r̃|)− Aε(|r|))ϕε(r̃)|
|ϕε(r)− ϕε(r̃)|

⩽ ∥In − Aε(|r|)∥OP +
∥Aε(|r̃|)− Aε(|r|)∥OP

|ϕε(r)− ϕε(r̃)|
|ϕε(r̃)|,

(7.11)

where ∥ · ∥OP denotes the matrix operator norm.

It follows from (7.10) that

∥In − Aε(τ)∥OP = max

{∣∣∣∣1− 1

2aε(τ)

∣∣∣∣, ∣∣∣∣1− 1

2bε(τ)

∣∣∣∣} ⩽ Cε.(7.12)
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Moreover, if ∥ · ∥F denotes the Frobenius norm, then

∥Aε(|r̃|)− Aε(|r|)∥2OP ⩽ C∥Aε(|r̃|)− Aε(|r|)∥2F

= C

[(
1

aε(|r|)
− 1

aε(|r̃|)

)2

+

(
1

bε(|r|)
− 1

bε(|r̃|)

)2
]

= C

((
aε(|r|)− aε(|r̃|)

)2
aε(|r|)2aε(|r̃|)2

+

(
bε(|r|)− bε(|r̃|)

)2
bε(|r|)2bε(|r̃|)2

)
⩽ C

((
aε(|r|)− aε(|r̃|)

)2
+
(
bε(|r|)− bε(|r̃|)

)2)
,

where we used (7.10) to obtain the final inequality.

We also have that

|ϕε(r)− ϕε(r̃)|2 =
(
aε(|r|)

√
1− |r|2 − aε(|r̃|)

√
1− |r̃|2

)2
+ |bε(|r|)r − bε(|r̃|)r̃|2

⩾
(
aε(|r|)

√
1− |r|2 − aε(|r̃|)

√
1− |r̃|2

)2
+
(
bε(|r|)|r| − bε(|r̃|)|r̃|

)2
.

We claim that ∣∣aε(|r|)− aε(|r̃|)
∣∣ ⩽ Cε

∣∣aε(|r|)√1− |r|2 − aε(|r̃|)
√
1− |r̃|2

∣∣
and

∣∣bε(|r|)− bε(|r̃|)
∣∣ ⩽ Cε

∣∣bε(|r|)|r| − bε(|r̃|)|r̃|
∣∣.(7.13)

We will prove the inequality in (7.13) involving aε, the proof of the inequality involving bε is entirely

analogous. Let āε(τ) := aε(τ)
√
1− τ 2. Then, by Cauchy’s Mean Value Theorem,∣∣∣∣aε(|r|)− aε(|r̃|)
āε(|r|)− āε(|r̃|)

∣∣∣∣ ⩽ ∥∥∥∥a′εā′ε
∥∥∥∥
L∞((0,1))

.(7.14)

On one hand,

a′ε(τ) =
1

2
ε(ε+ 2)τ

(
1 +

(
(1 + ε)2 − 1

)
τ 2
)−3/2

,

so, for all τ ∈ [0, 1),

C−1ετ ⩽ a′ε(τ) ⩽ Cετ.(7.15)

On the other hand, using (7.10) and (7.15), we have that

ā′ε(τ) = a′ε(τ)
√
1− τ 2 − τaε(τ)√

1− τ 2
⩽ C(ε− 1)τ < 0.

Hence, |ā′ε(τ)| = −a′ε(τ) ⩾ Cτ , so∣∣∣∣a′ε(τ)ā′ε(τ)

∣∣∣∣ = a′ε(τ)

|ā′ε(τ)|
⩽ Cε, for all τ ∈ (0, 1),

which, along with (7.14), implies the inequality for aε in (7.13).

Gathering these pieces of information, we obtain that

∥Aε(|r̃|)− Aε(|r|)∥OP

|ϕε(r)− ϕε(r̃)|
⩽

C
√(

(aε(|r|)− aε(|r̃|)
)2

+
(
bε(|r|)− bε(|r̃|)

)2√(
aε(|r|)

√
1− |r|2 − aε(|r̃|)

√
1− |r̃|2

)2
+
(
bε(|r|)|r| − bε(|r̃|)|r̃|

)2
⩽ Cε.

(7.16)
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Finally, since Gε ⊂ Ωε ⊂ B1+ε, we have that

|ϕε(r̃)| ⩽ 1 + ε ⩽ C.(7.17)

Thus, (7.8) follows from (7.11), (7.12), (7.16), and (7.17). □

Lemma 7.6. Let ε ∈ [0, 1) and aε, bε, and ϕε be as in Lemma 7.4.

Then, for all r, r̃ ∈ Bn−1
1 with r ̸= r̃,∣∣∣∣ |(uε ◦ ϕε)(r)− (uε ◦ ϕε)(r̃)|
ε|ϕ0(r)− ϕ0(r̃)|

− 1

2
sγn,s

(
3

4

)s−1
∣∣|r|2 − |r̃|2

∣∣
|ϕ0(r)− ϕ0(r̃)|

∣∣∣∣ ⩽ Cε.

The constant C > 0 depends only on n and s.

Proof. Let

vε(x) :=
1

γn,s,ε
uε(x) =

(
1− x21

(1 + ε)2
− |x′|2

)s

and define

ψε(τ) :=

(
1− (aε(τ))

2(1− τ 2)

(1 + ε)2
− (bε(τ))

2τ 2
)s

−
(
3

4

)s

ε
+

1

2
s

(
3

4

)s−1

(1− τ 2).

Exploiting the expressions of aε and bε in (7.5), we compute the derivative of ψε with respect to τ as

d

dτ
ψε(τ) = s

−
τ 3(1 + ε) (2ε+ ε2)

(
1− 1+ε

2
√

1+τ2(2ε+ε2)

)
(1 + τ 2 (2ε+ ε2))3/2

+

2τ

(
1 + ε− 1

2
√

1+τ2(2ε+ε2)

)2

(1 + ε)2

−2τ

(
1− 1 + ε

2
√

1 + τ 2 (2ε+ ε2)

)2

−
(1− τ 2) τ (2ε+ ε2)

(
1 + ε− 1

2
√

1+τ2(2ε+ε2)

)
(1 + ε)2 (1 + τ 2 (2ε+ ε2))3/2



×

1−
(1− τ 2)

(
1 + ε− 1

2
√

1+τ2(2ε+ε2)

)2

(1 + ε)2
− τ 2

(
1− 1 + ε

2
√

1 + τ 2 (2ε+ ε2)

)2


s−1

.

We claim that, for ε sufficiently small,

(7.18)

∥∥∥∥ ddτ ψε

∥∥∥∥
L∞((0,1))

⩽ Cε,

for some C > 0 depending only on s. Not to interrupt the flow of the argument, we defer the proof

of (7.18) to Appendix A.

Now, we notice that

(vε ◦ ϕε)(r)−
(
3
4

)s
ε

+
1

2
s

(
3

4

)s−1

(1− |r|2) = ψε(|r|).
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Therefore,∣∣∣∣ |(vε ◦ ϕε)(r)− (vε ◦ ϕε)(r̃)|
ε|ϕ0(r)− ϕ0(r̃)|

− 1

2
s

(
3

4

)s−1
∣∣|r|2 − |r̃|2

∣∣
|ϕ0(r)− ϕ0(r̃)|

∣∣∣∣
⩽

∣∣∣∣ε−1
[
(vε ◦ ϕε)(r)−

(
3
4

)s]− 1
2
s
(
3
4

)s−1 |r|2

|ϕ0(r)− ϕ0(r̃)|
−
ε−1
[
(vε ◦ ϕε)(r̃)−

(
3
4

)s]− 1
2
s
(
3
4

)s−1 |r̃|2

|ϕ0(r)− ϕ0(r̃)|

∣∣∣∣
=

∣∣∣∣ε−1
[
(vε ◦ ϕε)(r)−

(
3
4

)s]
+ 1

2
s
(
3
4

)s−1
(1− |r|2)

|ϕ0(r)− ϕ0(r̃)|
−
ε−1
[
(vε ◦ ϕε)(r̃)−

(
3
4

)s]
+ 1

2
s
(
3
4

)s−1
(1− |r̃|2)

|ϕ0(r)− ϕ0(r̃)|
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=

|ψε(|r|)− ψε(|r̃|)|
|ϕ0(r)− ϕ0(r̃)|

.

Moreover,

|ϕ0(r)− ϕ0(r̃)|2 =
1

4

((√
1− |r|2 −

√
1− |r̃|2

)2
+ |r − r̃|2

)
⩾ C

∣∣|r| − |r̃|
∣∣2,

so, recalling (7.18), we conclude that∣∣∣∣ |(vε ◦ ϕε)(r)− (vε ◦ ϕε)(r̃)|
ε|ϕ0(r)− ϕ0(r̃)|

− 1

2
s

(
3

4

)s−1
∣∣|r|2 − |r̃|2

∣∣
|ϕ0(r)− ϕ0(r̃)|

∣∣∣∣ ⩽ C
|ψε(|r|)− ψε(|r̃|)|∣∣|r| − |r̃|

∣∣
⩽ C

∥∥∥∥ ddτ ψε

∥∥∥∥
L∞((0,1))

⩽ Cε.

(7.19)

Finally, note that γn,s,ε depends smoothly on ε for ε small and γn,s,ε → γn,s as ε → 0+, which

implies that

|γn,s,ε − γn,s| ⩽ Cε.(7.20)

Combing (7.20) with (7.19) gives the final result. □

We can now prove Lemma 7.4.

Proof of Lemma 7.4. By Lemmata 7.5 and 7.6, for all r, r̃ ∈ Bn−1
1 with r ̸= r̃,∣∣∣∣ |(uε ◦ ϕε)(r)− (uε ◦ ϕε)(r̃)|

ε|ϕε(r)− ϕε(r̃)|
− 1

2
sγn,s

(
3

4

)s−1
∣∣|r|2 − |r̃|2

∣∣
|ϕ0(r)− ϕ0(r̃)|

∣∣∣∣
⩽

∣∣∣∣ |(uε ◦ ϕε)(r)− (uε ◦ ϕε)(r̃)|
ε|ϕ0(r)− ϕ0(r̃)|

∣∣∣∣ · ∣∣∣∣ |ϕ0(r)− ϕ0(r̃)|
|ϕε(r)− ϕε(r̃)|

− 1

∣∣∣∣
+

∣∣∣∣ |(uε ◦ ϕε)(r)− (uε ◦ ϕε)(r̃)|
ε|ϕ0(r)− ϕ0(r̃)|

− 1

2
sγn,s

(
3

4

)s−1
∣∣|r|2 − |r̃|2

∣∣
|ϕ0(r)− ϕ0(r̃)|

∣∣∣∣
⩽ Cε

(∣∣∣∣ |(uε ◦ ϕε)(r)− (uε ◦ ϕε)(r̃)|
ε|ϕ0(r)− ϕ0(r̃)|

∣∣∣∣+ 1

)
.

Moreover, by Lemma 7.6, for ε small,∣∣∣∣ |(uε ◦ ϕε)(r)− (uε ◦ ϕε)(r̃)|
ε|ϕ0(r)− ϕ0(r̃)|

∣∣∣∣ ⩽ C

( ∣∣|r|2 − |r̃|2
∣∣

|ϕ0(r)− ϕ0(r̃)|
+ 1

)
⩽ C

using (7.7). This completes the proof. □
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Appendix A. Proof of the claim in (7.18)

We write

(A.1)
d

dτ
ψε(τ) = sgε(τ)(hε(τ))

s−1,

where

gε(τ) := −
τ 3(1 + ε) (2ε+ ε2)

(
1− 1+ε

2
√

1+τ2(2ε+ε2)

)
(1 + τ 2 (2ε+ ε2))3/2

+

2τ

(
1 + ε− 1

2
√

1+τ2(2ε+ε2)

)2

(1 + ε)2

−2τ

(
1− 1 + ε

2
√

1 + τ 2 (2ε+ ε2)

)2

−
(1− τ 2) τ (2ε+ ε2)

(
1 + ε− 1

2
√

1+τ2(2ε+ε2)

)
(1 + ε)2 (1 + τ 2 (2ε+ ε2))3/2

and hε(τ) := 1−
(1− τ 2)

(
1 + ε− 1

2
√

1+τ2(2ε+ε2)

)2

(1 + ε)2
− τ 2

(
1− 1 + ε

2
√
1 + τ 2 (2ε+ ε2)

)2

.

We first prove that

(A.2) |gε(τ)| ⩽ Cε,

for all τ ∈ (0, 1), for some constant C > 0.

For this, we observe that∣∣∣∣∣∣∣∣−
τ 3(1 + ε) (2ε+ ε2)

(
1− 1+ε

2
√

1+τ2(2ε+ε2)
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⩽
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∣∣∣∣∣1− 1 + ε

2
√
1 + τ 2 (2ε+ ε2)

∣∣∣∣∣ ⩽ 12ε.

(A.3)

Similarly, ∣∣∣∣∣∣∣∣−
(1− τ 2) τ (2ε+ ε2)

(
1 + ε− 1

2
√

1+τ2(2ε+ε2)
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(1 + ε)2 (1 + τ 2 (2ε+ ε2))3/2
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⩽

∣∣∣∣∣(1− τ 2
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⩽ 3ε

∣∣∣∣∣1 + ε− 1

2
√

1 + τ 2 (2ε+ ε2)

∣∣∣∣∣ ⩽ 9ε.

(A.4)
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Additionally,

2τ


(
1 + ε− 1

2
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1+τ2(2ε+ε2)

)2

(1 + ε)2
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We observe that(
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Gathering these pieces of information, we obtain that∣∣∣∣∣∣∣∣∣2τ
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(
1 + ε− 1
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From this, (A.3) and (A.4) we obtain the claim in (A.2).

We now show that, for ε sufficiently small,

(A.5) hε(τ) ⩾ c,

for all τ ∈ (0, 1), for some c > 0.

For this, we observe that
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,

for ε sufficiently small. This establishes (A.5).

From (A.1), (A.2) and (A.5), we obtain the desired claim in (7.18).
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