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1. Introduction

The present article deals with the studies of the existehtteestationary solutions
of the following nonlocal integro-differential equation

ou s 5
5 = Pl=A)T + (=8 ut | K(x —y)g(uly,t))dy + flz)  (1.1)
R4
. 3 d .
withd = 4,5, 0 < 51 < s9 < land-= — 1 < 89 < 1. The problems of this kind
are relevant to the cell population dynamics. The resulteetirticle are derived in
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these particular ranges of the values of the parametensds, in the powers of the
negative Laplace operators, which is based on the soltyabilithe linear Poisson
type equation (4.1) and the applicability of the Sobolewyiradity for the fractional
Laplacian (1.4). The solvability of the equation analogtmél.1) involving a sin-
gle fractional Laplacian in the diffusion term was discukse [29]. The space
variablez here corresponds to the cell genotypés;, t) denotes the cell density as
a function of their genotype and time. The right side of owratapn describes the
evolution of the cell density by virtue of the cell proliféi@, mutations and cell
influx. The double scale anomalous diffusion term in suchtextris correspond-
ing to the change of genotype due to the small random mutgtannd the integral
production term describes large mutations. The functi@rn stands for the rate
of the cell birth depending on (density dependent proliferation), and the kernel
K(x — y) designates the proportion of the newly born cells, whichngeatheir
genotype fromy to x. It is assumed here that it depends on the distance between
the genotypes. The last term in the right side of (1.1) desibte influx or efflux of
cells for different genotypes.

The fractional Laplacian describes a particular case oétteanalous diffusion ac-
tively considered in the context of different applicationplasma physics and tur-
bulence [8], [24], surface diffusion [19], [22], semicormdors [23] and so on. The
anomalous diffusion can be described as a random procekg gftticle motion
characterized by the probability density distribution loé jump length. The mo-
ments of this density distribution are finite in the case eflormal diffusion, but
this is not the case for the anomalous diffusion. The asytgpbehavior at the
infinity of the probability density function determines theue of the power of the
negative Laplace operator (see [20]). In the present worlileonsider the case

3 . - .
of 0 < 51 <9 <1, 371 < 89 < 1 with d = 4, 5. The solvability of the integro-

differential equation in the case of the standard Laplaaraipr in the diffusion
term was discussed in [31]. The necessary conditions of tbgepvation of the
nonnegativity of the solutions of a system of parabolic ¢éigua in the case of the
double scale anomalous diffusion were derived in [14]. Titela [16] deals with
the simultaneous inversion for the fractional exponenth@space-time fractional
diffusion equation.

Let us setD = 1 and establish the existence of solutions of the problem

—[(=A)" + (=A)2Jlu+ | K(x—y)g(u(y))dy+ f(z) =0  (1.2)

Rd

. 3 d . .
With 0 < sy <sy <1, - ——-—<sy<1andd = 4,5. We address the situation

when the linear part of such operator fails to satisfy thelrodm property. As a
consequence, the conventional methods of the nonlinetysasmianay not be appli-
cable. We use the solvability conditions for the non-Fréathaperators along with
the method of contraction mappings.



Consider the equation
—Au+V(z)u —au=f (1.3)

withu € £ = H?(RY) andf € F = L*(R?), d € N, a is a constant and the
scalar potential functiol'(x) is either zero identically or tends €oat infinity. For

a > 0, the essential spectrum of the operator £ — F' corresponding to the
left side of problem (1.3) contains the origin. As a consegeethis operator fails
to satisfy the Fredholm property. Its image is not closedfo- 1 the dimension
of its kernel and the codimension of its image are not finitae Ppresent work is
devoted to the studies of the certain properties of the eperaf this kind. Note
that the elliptic problems with non-Fredholm operatorseveeated actively in re-
cent years. Approaches in weighted Sobolev and Holderespaere developed in
[3], [4], [5], [6], [7]. The non-Fredholm Schrodinger typgerators were studied
with the methods of the spectral and the scattering theor24j, [30]. The non-
linear non-Fredholm elliptic problems were considered 13][ [14], [29], [31],
[32]. The important applications to the theory of the reacidiffusion equations
were developed in [10], [11]. Fredholm structures, topaabinvariants and ap-
plications were covered in [12]. The articles [15] and [28& arucial for the
understanding of the Fredholm and properness propertigge afuasilinear elliptic
systems of the second order and of the operators of this kifRl*o The operators
without the Fredholm property arise also when studying theeasystems with an
infinite number of localized traveling waves (see [1]). Thansling lattice solitons
in the discrete NLS equation with saturation were consitl@re[2]. Particularly,
whena = 0 the operatord is Fredholm in certain properly chosen weighted spaces
(see [3], [4], [5], [6], [7]). However, the case af # 0 is considerably different
and the approach developed in these works cannot be usedrohth@ropagation
problems with the anomalous diffusion were studied acfiwelrecent years (see
e.g. [26], [27]).

We setK (z) = K(z), wheree > 0 and suppose that the conditions below are
fulfilled.

. . d :
Assumption 1.1. Consider0) < s; < s9 < 1 andg 1 < sy < 1withd = 4,5.
Let f(z) : R? — R be nontrivial, so thatf(z) € L'(R?) and (—A):—f(z) €
L*(RY). We assume also thit(r) : RY — R andK(z) € L'(R%). Additionally,
(—A)2=2K(z) € L2(R?), so that

Q= [|(~A)2 2K (x > 0.

M 2 gy

Let us choose the space dimensia@ns- 4,5. This is relevant to the solvability
conditions for the linear Poisson type equation (4.1) fdatad in Lemma 4.1 be-
low. From the perspective of the applications, the spacedgions are not limited
tod = 4,5 since the space variable corresponds to the cell genotyp®obto the
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usual physical space. We use the Sobolev inequality forrdmional Laplacian
(see Lemma 2.2 of [17], also [18])

3 d
— =<5 <1, (14)

1@ i S ol (A2 (@) 2wy, 5 =

L d—6+4s9 (]Rd)

whered = 4,5 along with Assumption 1.1 above and the standard interjpolat
argument. This yields
f(z) € L2(RY) (1.5)

as well. For the technical purposes, we use the Sobolev space

H**(R?) := {u(z) : R" - R | u(z) € L*(RY), (—A)?u € L*(R)}
with g — % < sy < 1 andd = 4, 5. Itis equipped with the norm

ED) 2
uallr2es ey = Nl g2geay + [[(=2) 0| 2 g (1.6)
By means of the standard Sobolev embedding in dimensgiend, 5, we have
||| oo ray < cellw]| g3 (ray, (1.7)
wherec, > 0 is the constant of the embedding. Here
3 2
||u||§{3(Rd) = ||u||i2(Rd) + H(_A)QUHL2(Rd)' (1.8)

When the nonnegative parametet 0, we obtain the linear Poisson type equation
(4.1). By virtue of Lemma 4.1 below along with Assumption,Jfoblem (4.1) has
a unique solution

3 d
§_Z<S2<1’ d=4,5

so that no orthogonality conditions are required. By medmsssumption 1.1,

up(z) € H*2(RY), 0< s, <89 <1,

[(—A)F7s2ts 4 (“A)3Jug(w) = (—A)F ™ f(z) € LX(RY).  (L.9)

It can be easily deduced from (1.9) using the standard Fowaesform (2.1) that
(=A)3uy(z) € L*(RY). By virtue of the definition of the norm (1.8) we obtain for
the unique solution of linear equation (4.1) thatr) € H3(R?).

We look for the resulting solution of nonlinear problem (1a3

u(z) = up(z) + up(x). (1.10)

Clearly, we arrive at the perturbative equation

[(=A)" + (=4)*up(z) = 6/ K(x —y)g(uo(y) + up(y))dy (1.11)

R4
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. 3 d . .
With 0 < s1 < 59 < 1, 371 < 89 <1, d=4,5. Letus introduce a closed ball in

the Sobolev space as
B, = {u(x) € H¥RY) | |ullpsay < p}. 0<p<l.  (1.12)

We seek the solution of equation (1.11) as the fixed point@ftixiliary nonlinear
problem

[(=A)" + (=A)"Ju(z) =« /d Kz —y)g(uo(y) + v(y))dy, d=4,5, (1.13)
R
3 d . :
where) < sy < sy <1, — —— < sy <1, d=4,5inball (1.12). For a given func-
tion v(y) this is an equation with respect tdz). The left side of (1.13) contains
the operator without the Fredholm property
L= (—A)* + (=A)*” : H**(R?) — L*(R7), (1.14)

which is defined via the spectral calculus. This is the psaiitferential operator
with symbol|p|?** + |p|**2, namely
1

lu(z) = y
0= G

/ d(|p|251 +[pl*)u(p)e™ dp, u(r) € H**(RY),
R

where the standard Fourier transform is defined in (2.1).€8sential spectrum of (
1.14) fills the nonnegative semi-axis +o0c). Thus, such operator has no bounded
inverse. The similar situation appeared in articles [31] dB2]. But as distinct
from the present case, the problems discussed there rdghegerthogonality re-
lations. The fixed point technique was used in [28] to estaibe perturbation
to the standing solitary wave of the Nonlinear Schrodin@drS) equation when
either the external potential or the nonlinear term in the&SNere perturbed but the
Schrodinger operator contained in the nonlinear probleenet had the Fredholm
property (see Assumption 1 of [28], also [9]).

We introduce the interval on the real line

I:= [— Celltol| rraray — e, Celltol| maraey + Ce]a d=4,5 (1.15)
along with the closed ball in the space@®f(I) functions, namely
Dy :={g(z) € Co(I) [ lgllcoery < M}, M > 0. (1.16)
The norm involved in (1.16)
lgllcsy = llgllew + 19" lew + 19" llow, (1.17)

where||g||c(r) := max.cr|g(2)].



Let us impose the following technical conditions on the nogdr part of problem
(2.2). It will vanish at the origin along with its first deritrae. From the point of
view of the biological applicationg,(z) can be, for instance the quadratic function
describing the cell-cell interaction.

Assumption 1.2. Letg(z) : R — R, so thatg(0) = 0 and¢’(0) = 0. We also
assume thag(z) € D,, and it does not vanish identically on the interval

We introduce the operatdf,, such that: = T,v, whereu is a solution of problem
(1.13). Our first main proposition is as follows.

Theorem 1.3.Let Assumptions 1.1 and 1.2 hold. Then for eyeey(0, 1] equation
(1.13) defines the maf, : B, — B,, which is a strict contraction for all

O<e<
= IKI2 o P“ 1) 2 - ;419
Uol| g3 (gayt1) 4 gd|\ d 272
20 (ol e+ 1)7 [t (82) ™ + 4]
The unique fixed point,(z) of this mapl}, is the only solution of problem (1.11) in

B,.
Here and belows? denotes the unit sphere in the spaceiof 4,5 dimensions
centered at the origin arjd?| stands for its Lebesgue measure.

Obviuosly, the resulting solution of equation (1.2) givgn(b.10) will be nontrivial
since the source terrf(z) is nontrivial andg(z) vanishes at the origin as assumed.
We have the following elementary statement.

Lemma 1.4.For R € (0, +00) andd = 4, 5 consider the function

! 3 d< <1 >0
- — — S 8] .
R4327 2 4 2 b

p(R) = aRT2 +

=

4
It achieves the minimal value ag* .= | — 2 , Which is given by
a(d —4s,)

4s9
d
o d
RY)y=|—] —%
80( ) <452> (d _ 482)d7;182

Our second main result is devoted to the continuity of thelltes solution of
equation (1.2) given by (1.10) with respect to the nonlirfeactiong.

Theorem 1.5.Letj = 1,2, the assumptions of Theorem 1.3 hold, so tha{(x) is
the unique fixed point of the mdj, : B, — B,, which is a strict contraction for
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all the values o, which satisfy (1.18) and the resulting solution of equaiib.2)
with g(z) = g;(2) is given by

uj(x) = up(x) + up (). (1.19)

Then for all the values of satisfying inequality (1.18), the estimate

lrix = s s ey < = (ol sy + 1)

852 4s9

1

HICHil(Rd)(HuOHHS ay +1)7d —2|54|% d RE
. (1.20
(1652)7(27r)432 d—4sy, 4 191 = g2llcn(ry- (1.20)

is valid.

Note thato is defined in formula (3.1) below. We proceed to the proof af fist
main statement.

2. The existence of the perturbed solution

Proof of Theorem 1.3.We choose an arbitrary(z) € B, and denote the term
contained in the integral expression in the right side ofatign (1.13) as

G(x) = gluo(r) + v(x)).

Let us use the standard Fourier transform

g/ o(x)e P dz, d=4,5. (2.1)

Clearly, the upper bound
1
(2m)
holds. Let us apply (2.1) to both sides of equation (1.13)s Vtelds

16| e <

19(2)]| L1 ey (2.2)

ol

~

« K(p)G(p)

u(p) = (2m) PP £ ple

. 3 d
with 0 < 51 < 89 < 1, 3 1 < 89 < 1, d = 4,5. Thus, for the norm we have

K()*1G(p)
u22d:2wd52/‘ dp. 2.3
|| ||L (R4) ( ) R Hp|231 + |p‘232]2 p ( )
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As distinct from the earlier articles [31] and [32] with thtaisdard Laplace operator
in the diffusion term, here we do not try to control the norm

Kp)
[pl?*1 + |p[*=2

Lo (RY)

Instead, let us estimate the right side of (2.3) by virtuehef analog of inequality
(2.2) applied to function& andG with R > 0 as

K(p)2|G(p)|?
2m d€2/ | dp <
Cm) e o TP + [P
> 21 A 2 > 21 A 2
< (amyic? / K (p)| lG(p” dp+ (2122 / K (p)| LG@' dp <
Ip|<R |p|4s2 lp|>R |p|1s2

1 R ]
< e?Hicuil(Rd){Wuemnrilwsﬂd . HG(sc)uiz(Rd)}. (2.4)

Sincev(z) € B,, the inequality
[uo + vl L2mey < [Juol| s ray + 1
holds. Sobolev embedding (1.7) gives us
|uo + v| < ce([uoll 3 way + 1)

Obviously,

such that
|G(z)| < supglg'(2)[uo + v| < Mlug 4 o],

where the interval defined in (1.15). Thus,

1G (@) || z2ray < Ml[ug + vl| 2ay < M(||uol| s ray + 1)

Evidently,
uo+v Y
G(x) :/ dy[/ g"(z)dz].
0 0
This yields
1 " 2 M 2
|G(2)] < 5suRerlg”(2)l[uo + o] < —-|uo + v,
so that
M M
1G(@)[| 21 mey < 7”“0 + |72y < ?(”UOHHS(Rd) +1)% (2.5)

8



Hence, we arrive at the upper bound for the right side of (@vBn by

(||u0||H3(Rd) + 1)2|Sd|Rd—482 1
4(2m)4(d — 4s2) Ris2 (7

&I KN gy M (Il | sy + 1)2{

whereR € (0,4o00). Let us recall Lemma 1.4 to obtain the minimal value of the
expression above. Thuy||? 2Ry S

4s9

d
2011112 2 ais [ 1S d
< MKz ey M (N[l 3 ey +1)7 (1652 Gr)(d—dsy 20

Clearly, by virtue of (1.13) we have

3 3
2

Ju(z) = e(=A)>7 | K(z —y)G(y)dy.

R4

[(—A)z7s21 4 (—A)

Let us use the standard Fourier transform (2.1), the andlagequality (2.2) ap-
plied to functionGG and (2.5). Hence,

2

M
I(=8)2ullf2ga) < NG 0@ < & 7 (ol + 1'Q% (2.7)

By means of the definition of the norm (1.8) along with estiesgR.6) and (2.7) we
derive that
|| g3y < e(||uol| msmay + 1)2M><

112, gy (ol ey + 1) % %d (|59 o Q2
(2m)4s2(d — 4s2) 1655

<p (28)

for all the values of the parametey satisfying (1.18). Thereforey(z) € B, as
well.

Let us suppose that for a certaifw) € B, there exist two solutions, »(z) € B,
of equation (1.13). Obviously, the difference functioz) := u;(z) — us(x) €
H3(RY) solves the homogeneous problem

(~A)" + (=)w =0.

Since the operatar: H?2(R?) — L*(R?) introduced in (1.14) does not possess
any nontrivial zero modesy, () will vanish inR¢. Thus, equation (1.13) defines a
map7, : B, — B, for all the values ot, which satisfy inequality (1.18).

Let us establish that under the stated assumptions thisswegiiict contraction. We
choose arbitrarily, »(z) € B,. The argument above implies that, := T,v, 5 €

B, as well fore satisfying (1.18). By means of equation (1.13), we have

(~A) 4 (—~A)2uy () = € / K(x — 9)gluy) + n)dy,  (2.9)

R4
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[(=A)" + (=A)*uz(z) = € /Rd K(x —y)g(uo(y) + va(y))dy, (2.10)

3 d .
wherel < s; < sy < 1, 371 < 8y <1, d=4,5. Let us introduce

Gi(z) == g(uo(z) +vi(2)), Ga(x) = g(uo(x) + va(w)).

We apply the standard Fourier transform (2.1) to both sidgsablems (2.9) and
(2.10). This yields

« K(p)Gi(p)

s K(p)Gs(p)
[Pl + [p[**2

u(p) = e(2) W,

@>(p) = e(27)
such that

o [ IK®)RIGi(p) — Ga(p)?
ke PP+ [pPe]?

The right side of (2.11) can be easily bounded from above byeviof inequality
(2.2) as

dp. (2.11)

1 — 2|2 (gay = €%(2m)

> 217 A 2
eyt [ IEOHGD) -G,
lp|<R |p[*s2
> 217 A 2
eyt [ ROFG0)-GlOIE
>R p|*s>
5] Ri-1s2 ||Gi(2) — Ga(2)[|72 g
s52||/C||%1<Rd){—(%)d||G1<x>—Gz<x>||il(Rd) e IR |

whereR € (0, +o0). Clearly,

Hence,
Gi(z) — Ga(2)] < sup¢lg'(2)[|vi(z) — va(z)| < Mlvs(2) — va(2)],
so that
1G1(z) = G2(@) || 2ray < MlJv1 — va| L2 ray < Mo — va|| sy

Let us use the identity

i (2) — Galz) = / o | /0 ’ '(2)dz].

0+v2
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Obviously,G; () — G5(z) can be easily estimated from above in the absolute value
by

1 M
§SUEEI|Q'/(2)||(U1 = v2)(2up + o1 +v2)| < o[ = v2) (2up + v +v)].
Using the Schwarz inequality, we obtain the upper boundfemorm
M
|G1(z) — Ga(2)|| L1 (ray < 7””1 — Val|p2mayl|2u0 + V1 + V2| L2(rey <

< M||v1 — va|| s (ray (|uol| 3 gay + 1) (2.12)

Thus, we arrive at the estimate from abovelfaf(z) — uq(2) given by

HL2 Rd

|Sd| Rd7432 1
el + 17 7+ 7|

d— 452 R452
By means of Lemma 1.4 we minimize the expression above Aver (0, +o0).
Hence,

2 I gy M2y = vl s

lur (@) — ua(2) |72 (gay <
4sg 8sg.
1S (luollgseay + )T d
(27)452 (4s,) f d — 45,
Let us use formulas (2.9) and (2.10) to obtain that

KN ey Mo = vallfs ey (2.13)

[(—A)2752 51 (—A) 3] (ug —up) (2) = £(~A)27 | K(2—y)[G1(y)—Galy)]dy.

R4

By virtue of the standard Fourier transform (2.1) along vadlunds (2.2) and (2.12),
we derive

3
1(=2)2 (ur = ua) [ Foray < E°Q%|G1 — G| 71 gay <
S €2Q2M2”U1 — UZI‘?'—[?:(Rd)(HuO”HS(Rd) -+ 1)2 (214)

By means of (2.13) and (2.14), the noffn; — u,|| ;3re, can be estimated from
above by the expression

M (||uol| g3 may + 1) x

1117 Rd)|5d| 2 (luoll gsay + D2 g 7
452 d 4 +Q X
(2m)4s2(4sy) @ — 352
X|lor = va| s (ay- (2.15)

It follows easily from (1.18) that the constant in the rigltdesof (2.15) is less than
one. Thus, the map, : B, — B, defined by equation (1.13) is a strict contraction
for all the values ot satisfying inequality (1.18). Its unique fixed poim(z) is

11



the only solution of problem (1.11) in the ball,. By virtue of (2.8), we have
|up(x)|| 3 way — 0 @ase — 0. The resultingu(z) € H*(R?) given by formula
(1.10) solves equation (1.2). [ |

Let us turn our attention to establishing the validity of Heeond main statement of
the article.

3. The continuity of the resulting solution

Proof of Theorem 1.5 vidently, for all the values of the parametewhich satisfy
(1.18), we have

Up1 =Ty upr, Up2 = Tyups.

Hence,
Up1 — Upo = Tgup1 — Ty upos+ Ty upo — Ty,upo.

Clearly,
[upy = up s ey < | Ty upy — Ty up ol msmay + [[Tg tp2 — Toytp 2|l s ey
By means of upper bound (2.15), we have
[T upy — Toytpoll s ey < e0llupy — up sl paga).

Note thatso < 1 because the mdfj,, : B, — B, is a strict contraction under the
given conditions. Here the positive constant

g = M(HUOHHS(]Rd) + 1))(

4s9 8s9 1

IC 21 Sd d Up 3 (Td —|—1 &2 d 2
y 171 gy (l HH$ y+1) 4, orh a.1)
(27‘{')482 (482) Td — 452
Therefore,
(1 —eo)[lupy — upollmsmay < | Tg up2 — Tootip 2| s rey.- (3.2)

Note that for our fixed poinf,,u, = u,2. We introduce(z) := T, ,u, 2. Evi-
dently,

[(=A) + (=A)Z[§(x) =€ /Rd Kz —y)g1(uo(y) + up2(y))dy, (3.3)

[(=A)" + (=A)*]up () = 6/ K(z —y)ga(uo(y) + upa(y))dy,  (3.4)

R4
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3 d
wherel < s1 < sy < 1, 371 < sy < 1,d=4,5. Letus denote

Gr2(x) = gi(uo(z) + up2()),  Gaa(x) = ga(uo(z) + up2(z)).
We apply the standard Fourier transform (2.1) to both sidegjoations (3.3) and
(3.4). This yields

1 K(p)Ga2(p)

dI/C\ é-\ 75
s K(p)G12(p) up,Q(p)ze(2W)2W'

Ap =e(2m)2 ,
)= e o
Obviously,

K(p)*|Gra(p) — Gaa ()
Rd [Ip[>>r =+ [pl=]?
Let us estimate the right side of (3.5) using inequality Y2t2ence,

> 217 A 2
62(27T)d/ IK(p)]?|G12(p) — Ga2(p)] dpt
|p|<R

|p‘432

1€(x) = up2(@)l|Z2(may = £*(2m)" dp.  (3.5)

> 21 e 2
+52(27r)d/ IK(p)|*|G12(p) — Go2(p)] dp <
[p|>R

‘p|432

|59
ng”chil(Rd){( )HG12 Gaall71 ey

Rd7432 N HGLQ — G2,2H%2(Rd)
d— 482 R482

with R € (0, +00). Clearly, the equality

uo (z)+up,2(z) ) )
Grale) — Gaalo) = [ 64(2) - gh(2)ldz
0
holds, such that
|G12(7) — Gap(r)] < supelgi(2) — go(2)]|uo(z) + upa(z)] <

< lg1 — g2lleanuo(@) + up2(2)]-
Thus,
1G12 — Gapll 2y < llg1 — g2lleam lluo + up2ll 2@y <

< llg1 = g2llen @) (luol| a3 ey + 1)
Let us use another identity

o)~ Ga) = [ ] [t - atea]

13



Evidently,

1 " "
[G2(x) = Gap ()] < 5SUR191(2) = g5 (2)l[uo () + up ()] <

1
< 5llg1 = gllcan luo() + upa() P,

(\V]

so that .
1G12 = Goolliy < 5llg1 = g2llcan lluo + Upall72(may <

1
< §||91 — galleo ) ([[uol| s ray + 1) (3.6)

This gives us the upper bound for the noféiz) — u,,»(z)||? as

||L2(Rd)
XKL gy (ol 273 ey + 1)l 91 = g2ll ) %
‘Sd‘(HUOHHS(Rd) + 1)2 Rd—4s2 . 1
4(27T)d d— 432 R452 :

Expression (3.7) can be trivially minimized ovBre (0, +00) using Lemma 1.4,
such that|¢ (z) — up2() || Zagre) <

3.7)

Eilka d
)(1682)%72(277')432 d— 482 .

8sg
< 82”IcHil(]Rd)(”uOHHs(Rd) + 1) gy - 92’\202(1

By means of formulas (3.3) and (3.4), we obtain

[(—A)F7521 4 (—A)2]e(x) = e(—=A)2 72 [ K(z — y)Gia(y)dy,

R4

() (=8 Huale) = (-1 [ Kla = )Gaalw)iy
such that

3
2

[(—A)2752F5 4 (—A)2)(E(2) — upa(a)) =

= 8(—A)§*32 ]C(x — )[G1,2<y) - G272<y)]dy

R4
Let us use the standard Fourier transform (2.1) along wigguialities (2.2) and
(3.6) to establish that

(=22 (@) — upa(@)] 2o ey <

2@2
< &?|Gra = Gapllts Rd)Q < ——(lluoll g3 ray + g — g2||202(1)-
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Hence,

1€(2) = up(@)|| maey < €llgr — g2lleun) (Juol| mrogray + 1)* %

4s9

8s
N o (ol + D284 a2
(1655) ¢ (2742 d—4sy 4

By virtue of bound (3.2), we have

1
2

X

[up,1 = up ol s ey < 1 (lluol| s ray + 1)?x

— &0
8527 4s9 %
| Wl (lolleen + D ST 0 @2
(1655) 7 (2) d—ds, 4 | "t e
We complete the proof of the theorem by using formula (1.19). [ |

4. Auxiliary results

Let us derive the solvability conditions for the linear Rais type equation with a
square integrable right side in the case of the double scamalous diffusion

[(=A) + (=A)*2|lu= f(x), z€RY d=45 0<s <s;<1. (41)

The auxiliary statement below is easily established byyapglthe standard Fourier
transform (2.1) to both sides of problem (4.1).

Lemma 4.1. Let0 < s, < sp < 1, f(z) : R* - R, d = 4,5 and f(x) €
LYRY)NL2(RY). Then problem (4.1) possesses a unique solutiain € H22(R%).

Proof. It can be easily verified that if(z) € L*(R?) is a solution of equation (4.1)
with a square integrable right side, it will belong ?2(R¢) as well. For that
purpose, we apply the standard Fourier transform (2.1) tb ides of (4.1). This
yields

~

(I + [p**)i(p) = f(p) € L*(RY),
so that
[ g+ bt P < .
R

Let us use the simple identity
=y e, = [ o) < oo,

15



Hence, we have obtain that A)*2u € L?(RY). By virtue of the definition of the
norm (1.6), we have(z) € H*2(R?) as well.

To demonstrate the uniqueness of solutions for our equatiersuppose that prob-
lem (4.1) admits two solutions, »(x) € H?2(R?). Then their differencev(z) :=
ui(z) — up(z) € H*2(RY) solves the homogeneous equation

(~A)" + (=4)w =0.

Because the operator. H%2(R%) — L?(R?) defined in (1.14) does not have any
nontrivial zero modesy () will vanish in R?.

We apply the standard Fourier transform (2.1) to both sidegoation (4.1). This
gives us

- f(p) )
S P g e : 4.2
(p) |p|251 + |p|?s2 X{lp|<1} P2 + [p|22 X{lp|>1} (4.2)

Here and belowy 4 will stand for the characteristic function of a sét C R<.
Obviously, the second term in the right side of (4.2) can hended from above in

the absolute value (2p)| € L*(R%) via the one of our assumptions.

Clearly, the first term in the right side of (4.2) can be estaddgrom above in the
absolute value by
1 ()] 1.y

(2m)2[p|*2
by means of inequality (2.2). It can be trivially checkedtttiee term (4.3) with
d = 4,5and0 < s, < 1 belongs tal.?(RY). |

X{lpl<1} (4.3)

Let us note that by proving the lemma above we demonstratsdhability of
problem (4.1) inf/ %2 (R%), d = 4, 5 for all the values of the powers of the fractional
Laplaciang) < s; < s3 < 1, so that no orthogonality relations are required for the
right side f(x). This is similar to the situation when the Poisson type dqnas
considered with a single fractional Laplacian in the spafeéke same dimensions
(see Theorem 1.1 of [33], also [29]). The solvability of thelgem similar to (4.1)
involving a scalar potential was discussed in [13].

We write down the correspoding sequence of the approxintptatens related to
problem (4.1) withn € N as

(=AY + (=A)2u, = folz), z€RY d=4,5, 0<s <sy<1. (4.4)

The right sides of (4.4) converge to the right side of (4.1pas oo. Let us estab-
lish that under the certain technical conditions each egu#4.4) admits a unique
solutionu, () € H?*2(R%), limiting problem (4.1) possesses a unique solution
u(r) € H*2(R?) andu,(x) — u(x) in H*2(R?) asn — oo. This is the so called

16



solvability in the sense of sequendesequation (4.1). The final proposition of the
article is as follows.

Lemmad.2.letn €N, 0 <s; <sy <1, fo(z) : R =R, d=4,5andf,(x) €
LYRY) N L*(RY), such thatf,, (z) — f(z)in LY(R?) and f,,(z) — f(z)in L*(RY)
asn — oo. Then problems (4.1) and (4.4) have unique solutiopng € H%%2(R?)
andu,(r) € H?2(R?) respectively, so that, (r) — u(z) in H*2(R%) asn — oo.

Proof. By means of the result of Lemma 4.1 above, equations (4.1j4addadmit
unique solutionsi(r) € H*2(RY) andu,,(r) € H*2(R%), n € N respectively.
Let us suppose that,(z) — u(x) in L*(R%) asn — co. It can be trivially checked
thatu, (z) — u(x) in H*2(R%) asn — oo as well. Indeed, by virtue of (4.4) and
(4.1)

[(=4)" + (=8)*(un(2) = u(2)) = fulz) = f(2).

Let us use the standard Fourier transform (2.1) to derivie tha

1(=4)% (un () = u(@))l| 2wey < [l fn@) = f(@)]|L2@e) = 0, n — 00

as we assume. Norm definition (1.6) yieldgz) — u(x) in H?2(R?) asn — .
We apply (2.1) to both sides of equations (4.1) and (4.4) andesat

o ) = T fu(p) = F
T) — lp) = LTy + P L

Evidently, the secondAterm inAthe right side of (4.5) can hieneded from above in

W(p) — f(p)
9

X{p>13-  (4.5)

the absolute value

fu(p) = f(p)
[pl?*r + [p] =

. Thus,

1
X{lp|>1} < Slfal@) = f(@)llr2@ay = 0, 7= o0
L2(R%)
due to the one of our assumptions.
Clearly, the first term in the right side of (4.5) can be bouhffem above in the

absolute value using (2.2) by

[fn () = f(@) L1 Ry

a X{|pl<1}-
(27)% [p|2=>
Hence,
/; — F (@) — f(2)|| S
o) =f0) N W) @ 1S
[pl?*r + [p[*2 L2 (27)3 d— 4s

as assumed. Therefore,
Un(r) = u(x) in L*R?) as n— oo

for 0 < s; < sy < 1 andd = 4, 5, which completes the proof of the lemma. ®
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