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1. Introduction

The present article deals with the studies of the existence of the stationary solutions
of the following nonlocal integro-differential equation

∂u

∂t
= −D[(−∆)s1 + (−∆)s2 ]u+

∫

Rd

K(x− y)g(u(y, t))dy+ f(x) (1.1)

with d = 4, 5, 0 < s1 < s2 < 1 and
3

2
−

d

4
< s2 < 1. The problems of this kind

are relevant to the cell population dynamics. The results ofthe article are derived in
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these particular ranges of the values of the parameterss1 ands2 in the powers of the
negative Laplace operators, which is based on the solvability of the linear Poisson
type equation (4.1) and the applicability of the Sobolev inequality for the fractional
Laplacian (1.4). The solvability of the equation analogousto (1.1) involving a sin-
gle fractional Laplacian in the diffusion term was discussed in [29]. The space
variablex here corresponds to the cell genotype,u(x, t) denotes the cell density as
a function of their genotype and time. The right side of our equation describes the
evolution of the cell density by virtue of the cell proliferation, mutations and cell
influx. The double scale anomalous diffusion term in such context is correspond-
ing to the change of genotype due to the small random mutations, and the integral
production term describes large mutations. The functiong(u) stands for the rate
of the cell birth depending onu (density dependent proliferation), and the kernel
K(x − y) designates the proportion of the newly born cells, which change their
genotype fromy to x. It is assumed here that it depends on the distance between
the genotypes. The last term in the right side of (1.1) denotes the influx or efflux of
cells for different genotypes.
The fractional Laplacian describes a particular case of theanomalous diffusion ac-
tively considered in the context of different applicationsin plasma physics and tur-
bulence [8], [24], surface diffusion [19], [22], semiconductors [23] and so on. The
anomalous diffusion can be described as a random process of the particle motion
characterized by the probability density distribution of the jump length. The mo-
ments of this density distribution are finite in the case of the normal diffusion, but
this is not the case for the anomalous diffusion. The asymptotic behavior at the
infinity of the probability density function determines thevalue of the power of the
negative Laplace operator (see [20]). In the present work wewill consider the case

of 0 < s1 < s2 < 1,
3

2
−

d

4
< s2 < 1 with d = 4, 5. The solvability of the integro-

differential equation in the case of the standard Laplace operator in the diffusion
term was discussed in [31]. The necessary conditions of the preservation of the
nonnegativity of the solutions of a system of parabolic equations in the case of the
double scale anomalous diffusion were derived in [14]. The article [16] deals with
the simultaneous inversion for the fractional exponents inthe space-time fractional
diffusion equation.
Let us setD = 1 and establish the existence of solutions of the problem

−[(−∆)s1 + (−∆)s2 ]u+

∫

Rd

K(x− y)g(u(y))dy+ f(x) = 0 (1.2)

with 0 < s1 < s2 < 1,
3

2
−

d

4
< s2 < 1 and d = 4, 5. We address the situation

when the linear part of such operator fails to satisfy the Fredholm property. As a
consequence, the conventional methods of the nonlinear analysis may not be appli-
cable. We use the solvability conditions for the non-Fredholm operators along with
the method of contraction mappings.
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Consider the equation
−∆u + V (x)u− au = f (1.3)

with u ∈ E = H2(Rd) andf ∈ F = L2(Rd), d ∈ N, a is a constant and the
scalar potential functionV (x) is either zero identically or tends to0 at infinity. For
a ≥ 0, the essential spectrum of the operatorA : E → F corresponding to the
left side of problem (1.3) contains the origin. As a consequence, this operator fails
to satisfy the Fredholm property. Its image is not closed, for d > 1 the dimension
of its kernel and the codimension of its image are not finite. The present work is
devoted to the studies of the certain properties of the operators of this kind. Note
that the elliptic problems with non-Fredholm operators were treated actively in re-
cent years. Approaches in weighted Sobolev and Hölder spaces were developed in
[3], [4], [5], [6], [7]. The non-Fredholm Schrödinger typeoperators were studied
with the methods of the spectral and the scattering theory in[25], [30]. The non-
linear non-Fredholm elliptic problems were considered in [13], [14], [29], [31],
[32]. The important applications to the theory of the reaction-diffusion equations
were developed in [10], [11]. Fredholm structures, topological invariants and ap-
plications were covered in [12]. The articles [15] and [21] are crucial for the
understanding of the Fredholm and properness properties ofthe quasilinear elliptic
systems of the second order and of the operators of this kind on R

N . The operators
without the Fredholm property arise also when studying the wave systems with an
infinite number of localized traveling waves (see [1]). The standing lattice solitons
in the discrete NLS equation with saturation were considered in [2]. Particularly,
whena = 0 the operatorA is Fredholm in certain properly chosen weighted spaces
(see [3], [4], [5], [6], [7]). However, the case ofa 6= 0 is considerably different
and the approach developed in these works cannot be used. Thefront propagation
problems with the anomalous diffusion were studied actively in recent years (see
e.g. [26], [27]).

We setK(x) = εK(x), whereε ≥ 0 and suppose that the conditions below are
fulfilled.

Assumption 1.1. Consider0 < s1 < s2 < 1 and
3

2
−

d

4
< s2 < 1 with d = 4, 5.

Let f(x) : Rd → R be nontrivial, so thatf(x) ∈ L1(Rd) and (−∆)
3
2
−s2f(x) ∈

L2(Rd). We assume also thatK(x) : Rd → R andK(x) ∈ L1(Rd). Additionally,
(−∆)

3
2
−s2K(x) ∈ L2(Rd), so that

Q :=
∥∥(−∆)

3
2
−s2K(x)

∥∥
L2(Rd)

> 0.

Let us choose the space dimensionsd = 4, 5. This is relevant to the solvability
conditions for the linear Poisson type equation (4.1) formulated in Lemma 4.1 be-
low. From the perspective of the applications, the space dimensions are not limited
to d = 4, 5 since the space variable corresponds to the cell genotype but not to the
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usual physical space. We use the Sobolev inequality for the fractional Laplacian
(see Lemma 2.2 of [17], also [18])

‖f(x)‖
L

2d
d−6+4s2 (Rd)

≤ cs2,d‖(−∆)
3
2
−s2f(x)‖L2(Rd),

3

2
−

d

4
< s2 < 1, (1.4)

whered = 4, 5 along with Assumption 1.1 above and the standard interpolation
argument. This yields

f(x) ∈ L2(Rd) (1.5)

as well. For the technical purposes, we use the Sobolev space

H2s2(Rd) :=
{
u(x) : Rd → R | u(x) ∈ L2(Rd), (−∆)s2u ∈ L2(Rd)

}

with
3

2
−

4

4
< s2 < 1 andd = 4, 5. It is equipped with the norm

‖u‖2H2s2 (Rd) := ‖u‖2L2(Rd) +
∥∥(−∆)s2u

∥∥2
L2(Rd)

. (1.6)

By means of the standard Sobolev embedding in dimensionsd = 4, 5, we have

‖u‖L∞(Rd) ≤ ce‖u‖H3(Rd), (1.7)

wherece > 0 is the constant of the embedding. Here

‖u‖2H3(Rd) := ‖u‖2L2(Rd) +
∥∥(−∆)

3
2u
∥∥2
L2(Rd)

. (1.8)

When the nonnegative parameterε = 0, we obtain the linear Poisson type equation
(4.1). By virtue of Lemma 4.1 below along with Assumption 1.1, problem (4.1) has
a unique solution

u0(x) ∈ H2s2(Rd), 0 < s1 < s2 < 1,
3

2
−

d

4
< s2 < 1, d = 4, 5

so that no orthogonality conditions are required. By means of Assumption 1.1,

[(−∆)
3
2
−s2+s1 + (−∆)

3
2 ]u0(x) = (−∆)

3
2
−s2f(x) ∈ L2(Rd). (1.9)

It can be easily deduced from (1.9) using the standard Fourier transform (2.1) that
(−∆)

3
2u0(x) ∈ L2(Rd). By virtue of the definition of the norm (1.8) we obtain for

the unique solution of linear equation (4.1) thatu0(x) ∈ H3(Rd).
We look for the resulting solution of nonlinear problem (1.2) as

u(x) = u0(x) + up(x). (1.10)

Clearly, we arrive at the perturbative equation

[(−∆)s1 + (−∆)s2 ]up(x) = ε

∫

Rd

K(x− y)g(u0(y) + up(y))dy (1.11)
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with 0 < s1 < s2 < 1,
3

2
−

d

4
< s2 < 1, d = 4, 5. Let us introduce a closed ball in

the Sobolev space as

Bρ := {u(x) ∈ H3(Rd) | ‖u‖H3(Rd) ≤ ρ}, 0 < ρ ≤ 1. (1.12)

We seek the solution of equation (1.11) as the fixed point of the auxiliary nonlinear
problem

[(−∆)s1 + (−∆)s2 ]u(x) = ε

∫

Rd

K(x− y)g(u0(y) + v(y))dy, d = 4, 5, (1.13)

where0 < s1 < s2 < 1,
3

2
−

d

4
< s2 < 1, d = 4, 5 in ball (1.12). For a given func-

tion v(y) this is an equation with respect tou(x). The left side of (1.13) contains
the operator without the Fredholm property

l := (−∆)s1 + (−∆)s2 : H2s2(Rd) → L2(Rd), (1.14)

which is defined via the spectral calculus. This is the pseudo-differential operator
with symbol|p|2s1 + |p|2s2, namely

lu(x) =
1

(2π)
d
2

∫

Rd

(|p|2s1 + |p|2s2)û(p)eipxdp, u(x) ∈ H2s2(Rd),

where the standard Fourier transform is defined in (2.1). Theessential spectrum of (
1.14) fills the nonnegative semi-axis[0,+∞). Thus, such operator has no bounded
inverse. The similar situation appeared in articles [31] and [32]. But as distinct
from the present case, the problems discussed there required the orthogonality re-
lations. The fixed point technique was used in [28] to estimate the perturbation
to the standing solitary wave of the Nonlinear Schrödinger(NLS) equation when
either the external potential or the nonlinear term in the NLS were perturbed but the
Schrödinger operator contained in the nonlinear problem there had the Fredholm
property (see Assumption 1 of [28], also [9]).
We introduce the interval on the real line

I :=
[
− ce‖u0‖H3(Rd) − ce, ce‖u0‖H3(Rd) + ce

]
, d = 4, 5 (1.15)

along with the closed ball in the space ofC2(I) functions, namely

DM := {g(z) ∈ C2(I) | ‖g‖C2(I) ≤ M}, M > 0. (1.16)

The norm involved in (1.16)

‖g‖C2(I) := ‖g‖C(I) + ‖g′‖C(I) + ‖g′′‖C(I), (1.17)

where‖g‖C(I) := maxz∈I |g(z)|.
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Let us impose the following technical conditions on the nonlinear part of problem
(1.2). It will vanish at the origin along with its first derivative. From the point of
view of the biological applications,g(z) can be, for instance the quadratic function
describing the cell-cell interaction.

Assumption 1.2. Let g(z) : R → R, so thatg(0) = 0 and g′(0) = 0. We also
assume thatg(z) ∈ DM and it does not vanish identically on the intervalI.

We introduce the operatorTg, such thatu = Tgv, whereu is a solution of problem
(1.13). Our first main proposition is as follows.

Theorem 1.3.Let Assumptions 1.1 and 1.2 hold. Then for everyρ ∈ (0, 1] equation
(1.13) defines the mapTg : Bρ → Bρ, which is a strict contraction for all

0 < ε ≤

≤
ρ

2M(‖u0‖H3(Rd) + 1)2
[‖K‖2

L1(Rd)
(‖u0‖H3(Rd)

+1)
8s2
d

−2
d

(2π)4s2 (d−4s2)

(
|Sd|
16s2

) 4s2
d

+ Q2

4

] 1
2

. (1.18)

The unique fixed pointup(x) of this mapTg is the only solution of problem (1.11) in
Bρ.

Here and belowSd denotes the unit sphere in the space ofd = 4, 5 dimensions
centered at the origin and|Sd| stands for its Lebesgue measure.
Obviuosly, the resulting solution of equation (1.2) given by (1.10) will be nontrivial
since the source termf(x) is nontrivial andg(z) vanishes at the origin as assumed.
We have the following elementary statement.

Lemma 1.4.For R ∈ (0,+∞) andd = 4, 5 consider the function

ϕ(R) := αRd−4s2 +
1

R4s2
,

3

2
−

d

4
< s2 < 1, α > 0.

It achieves the minimal value atR∗ :=

(
4s2

α(d− 4s2)

) 1
d

, which is given by

ϕ(R∗) =

(
α

4s2

) 4s2
d

d

(d− 4s2)
d−4s2

d

.

Our second main result is devoted to the continuity of the resulting solution of
equation (1.2) given by (1.10) with respect to the nonlinearfunctiong.

Theorem 1.5.Let j = 1, 2, the assumptions of Theorem 1.3 hold, so thatup,j(x) is
the unique fixed point of the mapTgj : Bρ → Bρ, which is a strict contraction for
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all the values ofε, which satisfy (1.18) and the resulting solution of equation (1.2)
with g(z) = gj(z) is given by

uj(x) = u0(x) + up,j(x). (1.19)

Then for all the values ofε satisfying inequality (1.18), the estimate

‖u1 − u2‖H3(Rd) ≤
ε

1− εσ
(‖u0‖H3(Rd) + 1)2×

×

[
‖K‖2

L1(Rd)
(‖u0‖H3(Rd) + 1)

8s2
d

−2|Sd|
4s2
d

(16s2)
4s2
d (2π)4s2

d

d− 4s2
+
Q2

4

] 1
2

‖g1−g2‖C2(I). (1.20)

is valid.

Note thatσ is defined in formula (3.1) below. We proceed to the proof of our first
main statement.

2. The existence of the perturbed solution

Proof of Theorem 1.3.We choose an arbitraryv(x) ∈ Bρ and denote the term
contained in the integral expression in the right side of equation (1.13) as

G(x) := g(u0(x) + v(x)).

Let us use the standard Fourier transform

φ̂(p) :=
1

(2π)
d
2

∫

Rd

φ(x)e−ipxdx, d = 4, 5. (2.1)

Clearly, the upper bound

‖φ̂(p)‖L∞(Rd) ≤
1

(2π)
d
2

‖φ(x)‖L1(Rd). (2.2)

holds. Let us apply (2.1) to both sides of equation (1.13). This yields

û(p) = ε(2π)
d
2

K̂(p)Ĝ(p)

|p|2s1 + |p|2s2

with 0 < s1 < s2 < 1,
3

2
−

d

4
< s2 < 1, d = 4, 5. Thus, for the norm we have

‖u‖2L2(Rd) = (2π)dε2
∫

Rd

|K̂(p)|2|Ĝ(p)|2

[|p|2s1 + |p|2s2]2
dp. (2.3)
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As distinct from the earlier articles [31] and [32] with the standard Laplace operator
in the diffusion term, here we do not try to control the norm

∥∥∥∥∥
K̂(p)

|p|2s1 + |p|2s2

∥∥∥∥∥
L∞(Rd)

.

Instead, let us estimate the right side of (2.3) by virtue of the analog of inequality
(2.2) applied to functionsK andG with R > 0 as

(2π)dε2
∫

Rd

|K̂(p)|2|Ĝ(p)|2

[|p|2s1 + |p|2s2]2
dp ≤

≤ (2π)dε2
∫

|p|≤R

|K̂(p)|2|Ĝ(p)|2

|p|4s2
dp+ (2π)dε2

∫

|p|>R

|K̂(p)|2|Ĝ(p)|2

|p|4s2
dp ≤

≤ ε2‖K‖2L1(Rd)

{
1

(2π)d
‖G(x)‖2L1(Rd)|S

d|
Rd−4s2

d− 4s2
+

1

R4s2
‖G(x)‖2L2(Rd)

}
. (2.4)

Sincev(x) ∈ Bρ, the inequality

‖u0 + v‖L2(Rd) ≤ ‖u0‖H3(Rd) + 1

holds. Sobolev embedding (1.7) gives us

|u0 + v| ≤ ce(‖u0‖H3(Rd) + 1).

Obviously,

G(x) =

∫ u0+v

0

g′(z)dz,

such that
|G(x)| ≤ supz∈I |g

′(z)||u0 + v| ≤ M |u0 + v|,

where the intervalI defined in (1.15). Thus,

‖G(x)‖L2(Rd) ≤ M‖u0 + v‖L2(Rd) ≤ M(‖u0‖H3(Rd) + 1).

Evidently,

G(x) =

∫ u0+v

0

dy
[∫ y

0

g′′(z)dz
]
.

This yields

|G(x)| ≤
1

2
supz∈I |g

′′(z)||u0 + v|2 ≤
M

2
|u0 + v|2,

so that

‖G(x)‖L1(Rd) ≤
M

2
‖u0 + v‖2L2(Rd) ≤

M

2
(‖u0‖H3(Rd) + 1)2. (2.5)
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Hence, we arrive at the upper bound for the right side of (2.4)given by

ε2‖K‖2L1(Rd)M
2(‖u0‖H3(Rd) + 1)2

{
(‖u0‖H3(Rd) + 1)2|Sd|Rd−4s2

4(2π)d(d− 4s2)
+

1

R4s2

}
,

whereR ∈ (0,+∞). Let us recall Lemma 1.4 to obtain the minimal value of the
expression above. Thus,‖u‖2

L2(Rd) ≤

≤ ε2‖K‖2L1(Rd)M
2(‖u0‖H3(Rd) + 1)2+

8s2
d

(
|Sd|

16s2

) 4s2
d

d

(2π)4s2(d− 4s2)
. (2.6)

Clearly, by virtue of (1.13) we have

[(−∆)
3
2
−s2+s1 + (−∆)

3
2 ]u(x) = ε(−∆)

3
2
−s2

∫

Rd

K(x− y)G(y)dy.

Let us use the standard Fourier transform (2.1), the analog of inequality (2.2) ap-
plied to functionG and (2.5). Hence,

‖(−∆)
3
2u‖2L2(Rd) ≤ ε2‖G‖2L1(Rd)Q

2 ≤ ε2
M2

4
(‖u0‖H3(Rd) + 1)4Q2. (2.7)

By means of the definition of the norm (1.8) along with estimates (2.6) and (2.7) we
derive that

‖u‖H3(Rd) ≤ ε(‖u0‖H3(Rd) + 1)2M×

×

[
‖K‖2

L1(Rd)(‖u0‖H3(Rd) + 1)
8s2
d

−2d

(2π)4s2(d− 4s2)

(
|Sd|

16s2

) 4s2
d

+
Q2

4

] 1
2

≤ ρ (2.8)

for all the values of the parameterε, satisfying (1.18). Therefore,u(x) ∈ Bρ as
well.
Let us suppose that for a certainv(x) ∈ Bρ there exist two solutionsu1,2(x) ∈ Bρ

of equation (1.13). Obviously, the difference functionw(x) := u1(x) − u2(x) ∈
H3(Rd) solves the homogeneous problem

[(−∆)s1 + (−∆)s2 ]w = 0.

Since the operatorl : H2s2(Rd) → L2(Rd) introduced in (1.14) does not possess
any nontrivial zero modes,w(x) will vanish inR

d. Thus, equation (1.13) defines a
mapTg : Bρ → Bρ for all the values ofε, which satisfy inequality (1.18).
Let us establish that under the stated assumptions this map is a strict contraction. We
choose arbitrarilyv1,2(x) ∈ Bρ. The argument above implies thatu1,2 := Tgv1,2 ∈
Bρ as well forε satisfying (1.18). By means of equation (1.13), we have

[(−∆)s1 + (−∆)s2 ]u1(x) = ε

∫

Rd

K(x− y)g(u0(y) + v1(y))dy, (2.9)
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[(−∆)s1 + (−∆)s2 ]u2(x) = ε

∫

Rd

K(x− y)g(u0(y) + v2(y))dy, (2.10)

where0 < s1 < s2 < 1,
3

2
−

d

4
< s2 < 1, d = 4, 5. Let us introduce

G1(x) := g(u0(x) + v1(x)), G2(x) := g(u0(x) + v2(x)).

We apply the standard Fourier transform (2.1) to both sides of problems (2.9) and
(2.10). This yields

û1(p) = ε(2π)
d
2

K̂(p)Ĝ1(p)

|p|2s1 + |p|2s2
, û2(p) = ε(2π)

d
2

K̂(p)Ĝ2(p)

|p|2s1 + |p|2s2
,

such that

‖u1 − u2‖
2
L2(Rd) = ε2(2π)d

∫

Rd

|K̂(p)|2|Ĝ1(p)− Ĝ2(p)|
2

[|p|2s1 + |p|2s2]2
dp. (2.11)

The right side of (2.11) can be easily bounded from above by virtue of inequality
(2.2) as

ε2(2π)d
∫

|p|≤R

|K̂(p)|2|Ĝ1(p)− Ĝ2(p)|
2

|p|4s2
dp+

+ε2(2π)d
∫

|p|>R

|K̂(p)|2|Ĝ1(p)− Ĝ2(p)|
2

|p|4s2
dp ≤

≤ ε2‖K‖2L1(Rd)

{
|Sd|

(2π)d
‖G1(x)−G2(x)‖

2
L1(Rd)

Rd−4s2

d− 4s2
+
‖G1(x)−G2(x)‖

2
L2(Rd)

R4s2

}
,

whereR ∈ (0,+∞). Clearly,

G1(x)−G2(x) =

∫ u0+v1

u0+v2

g′(z)dz.

Hence,

|G1(x)−G2(x)| ≤ supz∈I |g
′(z)||v1(x)− v2(x)| ≤ M |v1(x)− v2(x)|,

so that

‖G1(x)−G2(x)‖L2(Rd) ≤ M‖v1 − v2‖L2(Rd) ≤ M‖v1 − v2‖H3(Rd).

Let us use the identity

G1(x)−G2(x) =

∫ u0+v1

u0+v2

dy
[ ∫ y

0

g′′(z)dz
]
.
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Obviously,G1(x)−G2(x) can be easily estimated from above in the absolute value
by

1

2
supz∈I |g

′′(z)||(v1 − v2)(2u0 + v1 + v2)| ≤
M

2
|(v1 − v2)(2u0 + v1 + v2)|.

Using the Schwarz inequality, we obtain the upper bound for the norm

‖G1(x)−G2(x)‖L1(Rd) ≤
M

2
‖v1 − v2‖L2(Rd)‖2u0 + v1 + v2‖L2(Rd) ≤

≤ M‖v1 − v2‖H3(Rd)(‖u0‖H3(Rd) + 1). (2.12)

Thus, we arrive at the estimate from above for‖u1(x)− u2(x)‖
2
L2(Rd)

given by

ε2‖K‖2L1(Rd)M
2‖v1 − v2‖

2
H3(Rd)

{ |Sd|

(2π)d
(‖u0‖H3(Rd) + 1)2

Rd−4s2

d− 4s2
+

1

R4s2

}
.

By means of Lemma 1.4 we minimize the expression above overR ∈ (0,+∞).
Hence,

‖u1(x)− u2(x)‖
2
L2(Rd) ≤

ε2‖K‖2L1(Rd)M
2‖v1 − v2‖

2
H3(Rd)

|Sd|
4s2
d (‖u0‖H3(Rd) + 1)

8s2
d

(2π)4s2(4s2)
4s2
d

d

d− 4s2
. (2.13)

Let us use formulas (2.9) and (2.10) to obtain that

[(−∆)
3
2
−s2+s1+(−∆)

3
2 ](u1−u2)(x) = ε(−∆)

3
2
−s2

∫

Rd

K(x−y)[G1(y)−G2(y)]dy.

By virtue of the standard Fourier transform (2.1) along withbounds (2.2) and (2.12),
we derive

‖(−∆)
3
2 (u1 − u2)‖

2
L2(Rd) ≤ ε2Q2‖G1 −G2‖

2
L1(Rd) ≤

≤ ε2Q2M2‖v1 − v2‖
2
H3(Rd)(‖u0‖H3(Rd) + 1)2. (2.14)

By means of (2.13) and (2.14), the norm‖u1 − u2‖H3(Rd) can be estimated from
above by the expression

εM(‖u0‖H3(Rd) + 1)×

×

{
‖K‖2

L1(Rd)|S
d|

4s2
d (‖u0‖H3(Rd) + 1)

8s2
d

−2

(2π)4s2(4s2)
4s2
d

d

d− 4s2
+Q2

} 1
2

×

×‖v1 − v2‖H3(Rd). (2.15)

It follows easily from (1.18) that the constant in the right side of (2.15) is less than
one. Thus, the mapTg : Bρ → Bρ defined by equation (1.13) is a strict contraction
for all the values ofε satisfying inequality (1.18). Its unique fixed pointup(x) is

11



the only solution of problem (1.11) in the ballBρ. By virtue of (2.8), we have
‖up(x)‖H3(Rd) → 0 asε → 0. The resultingu(x) ∈ H3(Rd) given by formula
(1.10) solves equation (1.2).

Let us turn our attention to establishing the validity of thesecond main statement of
the article.

3. The continuity of the resulting solution

Proof of Theorem 1.5.Evidently, for all the values of the parameterε, which satisfy
(1.18), we have

up,1 = Tg1up,1, up,2 = Tg2up,2.

Hence,
up,1 − up,2 = Tg1up,1 − Tg1up,2 + Tg1up,2 − Tg2up,2.

Clearly,

‖up,1 − up,2‖H3(Rd) ≤ ‖Tg1up,1 − Tg1up,2‖H3(Rd) + ‖Tg1up,2 − Tg2up,2‖H3(Rd).

By means of upper bound (2.15), we have

‖Tg1up,1 − Tg1up,2‖H3(Rd) ≤ εσ‖up,1 − up,2‖H3(Rd).

Note thatεσ < 1 because the mapTg1 : Bρ → Bρ is a strict contraction under the
given conditions. Here the positive constant

σ := M(‖u0‖H3(Rd) + 1)×

×

{
‖K‖2

L1(Rd)|S
d|

4s2
d (‖u0‖H3(Rd) + 1)

8s2
d

−2

(2π)4s2(4s2)
4s2
d

d

d− 4s2
+Q2

} 1
2

. (3.1)

Therefore,

(1− εσ)‖up,1 − up,2‖H3(Rd) ≤ ‖Tg1up,2 − Tg2up,2‖H3(Rd). (3.2)

Note that for our fixed pointTg2up,2 = up,2. We introduceξ(x) := Tg1up,2. Evi-
dently,

[(−∆)s1 + (−∆)s2 ]ξ(x) = ε

∫

Rd

K(x− y)g1(u0(y) + up,2(y))dy, (3.3)

[(−∆)s1 + (−∆)s2 ]up,2(x) = ε

∫

Rd

K(x− y)g2(u0(y) + up,2(y))dy, (3.4)

12



where0 < s1 < s2 < 1,
3

2
−

d

4
< s2 < 1, d = 4, 5. Let us denote

G1,2(x) := g1(u0(x) + up,2(x)), G2,2(x) := g2(u0(x) + up,2(x)).

We apply the standard Fourier transform (2.1) to both sides of equations (3.3) and
(3.4). This yields

ξ̂(p) = ε(2π)
d
2
K̂(p)Ĝ1,2(p)

|p|2s1 + |p|2s2
, ûp,2(p) = ε(2π)

d
2
K̂(p)Ĝ2,2(p)

|p|2s1 + |p|2s2
.

Obviously,

‖ξ(x)− up,2(x)‖
2
L2(Rd) = ε2(2π)d

∫

Rd

|K̂(p)|2|Ĝ1,2(p)− Ĝ2,2(p)|
2

[|p|2s1 + |p|2s2]2
dp. (3.5)

Let us estimate the right side of (3.5) using inequality (2.2). Hence,

ε2(2π)d
∫

|p|≤R

|K̂(p)|2|Ĝ1,2(p)− Ĝ2,2(p)|
2

|p|4s2
dp+

+ε2(2π)d
∫

|p|>R

|K̂(p)|2|Ĝ1,2(p)− Ĝ2,2(p)|
2

|p|4s2
dp ≤

≤ ε2‖K‖2L1(Rd)

{
|Sd|

(2π)d
‖G1,2 −G2,2‖

2
L1(Rd)

Rd−4s2

d− 4s2
+

‖G1,2 −G2,2‖
2
L2(Rd)

R4s2

}

with R ∈ (0,+∞). Clearly, the equality

G1,2(x)−G2,2(x) =

∫ u0(x)+up,2(x)

0

[g′1(z)− g′2(z)]dz

holds, such that

|G1,2(x)−G2,2(x)| ≤ supz∈I |g
′
1(z)− g′2(z)||u0(x) + up,2(x)| ≤

≤ ‖g1 − g2‖C2(I)|u0(x) + up,2(x)|.

Thus,
‖G1,2 −G2,2‖L2(Rd) ≤ ‖g1 − g2‖C2(I)‖u0 + up,2‖L2(Rd) ≤

≤ ‖g1 − g2‖C2(I)(‖u0‖H3(Rd) + 1).

Let us use another identity

G1,2(x)−G2,2(x) =

∫ u0(x)+up,2(x)

0

dy
[∫ y

0

(g′′1(z)− g′′2(z))dz
]
.
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Evidently,

|G1,2(x)−G2,2(x)| ≤
1

2
supz∈I |g

′′
1(z)− g′′2(z)||u0(x) + up,2(x)|

2 ≤

≤
1

2
‖g1 − g2‖C2(I)|u0(x) + up,2(x)|

2,

so that

‖G1,2 −G2,2‖L1(Rd) ≤
1

2
‖g1 − g2‖C2(I)‖u0 + up,2‖

2
L2(Rd) ≤

≤
1

2
‖g1 − g2‖C2(I)(‖u0‖H3(Rd) + 1)2. (3.6)

This gives us the upper bound for the norm‖ξ(x)− up,2(x)‖
2
L2(Rd) as

ε2‖K‖2L1(Rd)(‖u0‖H3(Rd) + 1)2‖g1 − g2‖
2
C2(I)×

×
[ |Sd|(‖u0‖H3(Rd) + 1)2

4(2π)d
Rd−4s2

d− 4s2
+

1

R4s2

]
. (3.7)

Expression (3.7) can be trivially minimized overR ∈ (0,+∞) using Lemma 1.4,
such that‖ξ(x)− up,2(x)‖

2
L2(Rd) ≤

≤ ε2‖K‖2L1(Rd)(‖u0‖H3(Rd) + 1)2+
8s2
d ‖g1 − g2‖

2
C2(I)

|Sd|
4s2
d

(16s2)
4s2
d (2π)4s2

d

d− 4s2
.

By means of formulas (3.3) and (3.4), we obtain

[(−∆)
3
2
−s2+s1 + (−∆)

3
2 ]ξ(x) = ε(−∆)

3
2
−s2

∫

Rd

K(x− y)G1,2(y)dy,

[(−∆)
3
2
−s2+s1 + (−∆)

3
2 ]up,2(x) = ε(−∆)

3
2
−s2

∫

Rd

K(x− y)G2,2(y)dy,

such that
[(−∆)

3
2
−s2+s1 + (−∆)

3
2 ](ξ(x)− up,2(x)) =

= ε(−∆)
3
2
−s2

∫

Rd

K(x− y)[G1,2(y)−G2,2(y)]dy.

Let us use the standard Fourier transform (2.1) along with inequalities (2.2) and
(3.6) to establish that

‖(−∆)
3
2 [ξ(x)− up,2(x)]‖

2
L2(Rd) ≤

≤ ε2‖G1,2 −G2,2‖
2
L1(Rd)Q

2 ≤
ε2Q2

4
(‖u0‖H3(Rd) + 1)4‖g1 − g2‖

2
C2(I)

.
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Hence,

‖ξ(x)− up,2(x)‖H3(Rd) ≤ ε‖g1 − g2‖C2(I)(‖u0‖H3(Rd) + 1)2×

×

[
‖K‖2

L1(Rd)(‖u0‖H3(Rd) + 1)
8s2
d

−2|Sd|
4s2
d

(16s2)
4s2
d (2π)4s2

d

d− 4s2
+

Q2

4

] 1
2

.

By virtue of bound (3.2), we have

‖up,1 − up,2‖H3(Rd) ≤
ε

1− εσ
(‖u0‖H3(Rd) + 1)2×

×

[
‖K‖2

L1(Rd)(‖u0‖H3(Rd) + 1)
8s2
d

−2|Sd|
4s2
d

(16s2)
4s2
d (2π)4s2

d

d− 4s2
+

Q2

4

] 1
2

‖g1 − g2‖C2(I).

We complete the proof of the theorem by using formula (1.19).

4. Auxiliary results

Let us derive the solvability conditions for the linear Poisson type equation with a
square integrable right side in the case of the double scale anomalous diffusion

[(−∆)s1 + (−∆)s2 ]u = f(x), x ∈ R
d, d = 4, 5, 0 < s1 < s2 < 1. (4.1)

The auxiliary statement below is easily established by applying the standard Fourier
transform (2.1) to both sides of problem (4.1).

Lemma 4.1. Let 0 < s1 < s2 < 1, f(x) : R
d → R, d = 4, 5 and f(x) ∈

L1(Rd)∩L2(Rd). Then problem (4.1) possesses a unique solutionu(x) ∈ H2s2(Rd).

Proof. It can be easily verified that ifu(x) ∈ L2(Rd) is a solution of equation (4.1)
with a square integrable right side, it will belong toH2s2(Rd) as well. For that
purpose, we apply the standard Fourier transform (2.1) to both sides of (4.1). This
yields

(|p|2s1 + |p|2s2)û(p) = f̂(p) ∈ L2(Rd),

so that ∫

Rd

[|p|2s1 + |p|2s2]2|û(p)|2dp < ∞.

Let us use the simple identity

‖(−∆)s2u‖2L2(Rd) =

∫

Rd

|p|4s2|û(p)|2dp < ∞.
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Hence, we have obtain that(−∆)s2u ∈ L2(Rd). By virtue of the definition of the
norm (1.6), we haveu(x) ∈ H2s2(Rd) as well.
To demonstrate the uniqueness of solutions for our equation, we suppose that prob-
lem (4.1) admits two solutionsu1,2(x) ∈ H2s2(Rd). Then their differencew(x) :=
u1(x)− u2(x) ∈ H2s2(Rd) solves the homogeneous equation

[(−∆)s1 + (−∆)s2 ]w = 0.

Because the operatorl : H2s2(Rd) → L2(Rd) defined in (1.14) does not have any
nontrivial zero modes,w(x) will vanish inRd.
We apply the standard Fourier transform (2.1) to both sides of equation (4.1). This
gives us

û(p) =
f̂(p)

|p|2s1 + |p|2s2
χ{|p|≤1} +

f̂(p)

|p|2s1 + |p|2s2
χ{|p|>1}. (4.2)

Here and belowχA will stand for the characteristic function of a setA ⊆ R
d.

Obviously, the second term in the right side of (4.2) can be bounded from above in

the absolute value by
|f̂(p)|

2
∈ L2(Rd) via the one of our assumptions.

Clearly, the first term in the right side of (4.2) can be estimated from above in the
absolute value by

‖f(x)‖L1(Rd)

(2π)
d
2 |p|2s2

χ{|p|≤1} (4.3)

by means of inequality (2.2). It can be trivially checked that the term (4.3) with
d = 4, 5 and0 < s2 < 1 belongs toL2(Rd).

Let us note that by proving the lemma above we demonstrate thesolvability of
problem (4.1) inH2s2(Rd), d = 4, 5 for all the values of the powers of the fractional
Laplacians0 < s1 < s2 < 1, so that no orthogonality relations are required for the
right sidef(x). This is similar to the situation when the Poisson type equation is
considered with a single fractional Laplacian in the spacesof the same dimensions
(see Theorem 1.1 of [33], also [29]). The solvability of the problem similar to (4.1)
involving a scalar potential was discussed in [13].

We write down the correspoding sequence of the approximate equations related to
problem (4.1) withn ∈ N as

[(−∆)s1 + (−∆)s2]un = fn(x), x ∈ R
d, d = 4, 5, 0 < s1 < s2 < 1. (4.4)

The right sides of (4.4) converge to the right side of (4.1) asn → ∞. Let us estab-
lish that under the certain technical conditions each equation (4.4) admits a unique
solutionun(x) ∈ H2s2(Rd), limiting problem (4.1) possesses a unique solution
u(x) ∈ H2s2(Rd) andun(x) → u(x) in H2s2(Rd) asn → ∞. This is the so called
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solvability in the sense of sequencesfor equation (4.1). The final proposition of the
article is as follows.

Lemma 4.2.Letn ∈ N, 0 < s1 < s2 < 1, fn(x) : R
d → R, d = 4, 5 andfn(x) ∈

L1(Rd)∩L2(Rd), such thatfn(x) → f(x) in L1(Rd) andfn(x) → f(x) in L2(Rd)
asn → ∞. Then problems (4.1) and (4.4) have unique solutionsu(x) ∈ H2s2(Rd)
andun(x) ∈ H2s2(Rd) respectively, so thatun(x) → u(x) in H2s2(Rd) asn → ∞.

Proof. By means of the result of Lemma 4.1 above, equations (4.1) and(4.4) admit
unique solutionsu(x) ∈ H2s2(Rd) andun(x) ∈ H2s2(Rd), n ∈ N respectively.
Let us suppose thatun(x) → u(x) in L2(Rd) asn → ∞. It can be trivially checked
thatun(x) → u(x) in H2s2(Rd) asn → ∞ as well. Indeed, by virtue of (4.4) and
(4.1)

[(−∆)s1 + (−∆)s2 ](un(x)− u(x)) = fn(x)− f(x).

Let us use the standard Fourier transform (2.1) to derive that

‖(−∆)s2(un(x)− u(x))‖L2(Rd) ≤ ‖fn(x)− f(x)‖L2(Rd) → 0, n → ∞

as we assume. Norm definition (1.6) yieldsun(x) → u(x) in H2s2(Rd) asn → ∞.
We apply (2.1) to both sides of equations (4.1) and (4.4) and arrive at

ûn(p)− û(p) =
f̂n(p)− f̂(p)

|p|2s1 + |p|2s2
χ{|p|≤1} +

f̂n(p)− f̂(p)

|p|2s1 + |p|2s2
χ{|p|>1}. (4.5)

Evidently, the second term in the right side of (4.5) can be estimated from above in

the absolute value by
|f̂n(p)− f̂(p)|

2
. Thus,

∥∥∥∥∥
f̂n(p)− f̂(p)

|p|2s1 + |p|2s2
χ{|p|>1}

∥∥∥∥∥
L2(Rd)

≤
1

2
‖fn(x)− f(x)‖L2(Rd) → 0, n → ∞

due to the one of our assumptions.
Clearly, the first term in the right side of (4.5) can be bounded from above in the
absolute value using (2.2) by

‖fn(x)− f(x)‖L1(Rd)

(2π)
d
2 |p|2s2

χ{|p|≤1}.

Hence,
∥∥∥∥∥
f̂n(p)− f̂(p)

|p|2s1 + |p|2s2
χ{|p|≤1}

∥∥∥∥∥
L2(Rd)

≤
‖fn(x)− f(x)‖L1(Rd)

(2π)
d
2

√
|Sd|

d− 4s2
→ 0, n → ∞

as assumed. Therefore,

un(x) → u(x) in L2(Rd) as n → ∞

for 0 < s1 < s2 < 1 andd = 4, 5, which completes the proof of the lemma.

17



Acknowledgements

The first author is grateful to Israel Michael Sigal for the partial support by the
NSERC grant NA 7901. The second author has been supported by the RUDN Uni-
versity Strategic Academic Leadership Program.

References

[1] G.L. Alfimov, E.V. Medvedeva, D.E. Pelinovsky,Wave systems with an
infinite number of localized traveling waves, Phys. Rev. Lett.,112 (2014),
054103, 5 pp.

[2] G.L. Alfimov, A.S. Korobeinikov, C.J. Lustri, D.E. Pelinovsky,Standing
lattice solitons in the discrete NLS equation with saturation, Nonlinearity,32
(2019), no. 9, 3445–3484.

[3] C. Amrouche, V. Girault, J. Giroire,Dirichlet and Neumann exterior
problems for then-dimensional Laplace operator: an approach in weighted
Sobolev spaces, J. Math. Pures Appl. (9),76 (1997), no. 1, 55–81.

[4] C. Amrouche, F. Bonzom,Mixed exterior Laplace’s problem, J. Math. Anal.
Appl., 338(2008), no. 1, 124–140.

[5] P. Bolley, T.L. Pham,Propriét́es d’indice en th́eorie ḧolderienne pour des
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