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Abstract. We consider a two-parameter family Γa,θ of Expanding Baker Maps on

the plane, being a > 1 and 0 < θ < π an expansion rate and a rotation angle,

respectively. We prove that Γa,θ exhibits strange attractors for every a sufficiently

close to 1. We also study how such attractors may split into other ones of a larger

number of connected pieces as a decreases to 1 and θ/π is a rational number. The

study of the family Γa,θ is strongly motivated by the rich dynamics observed for the

quadratic family Ta,b(x, y) = (a+ y2, x+ by).

1. Introduction

Chaos, as the behaviour of the evolution of a certain process, can be greatly explained

when the modelling family of dynamical systems exhibits, in a observable way, strange

attractors.

Definition 1.1. An attractor for a transformation f defined on a manifold M is a

transitive f -invariant compact set Z whose stable set

W s(Z) = {P ∈ M : d(fn(P ),Z) → 0 as n → ∞}

has nonempty interior. An attractor is said to be strange if it contains a dense orbit

{fn(P0) : n ≥ 0} with some positive Lyapunov exponent, i.e. there exist a unit vector v

and a constant c > 0 such that, for every n ≥ 0,

∥Dfn(P0)(v)∥ ≥ ecn.

The supremum λ of such c is called a Lyapunov exponent. When there exist k positive

Lyapunov exponents λk (or, at least, such that λ1 + · · ·+ λk > 0), the strange attractor

is said to be a k-dimensional strange attractor.

The observability of strange attractors is expressed in terms of their persistence

with respect to small changes in the parameters of the family. The abundance of chaotic

dynamics in nature suggests that this persistence shows at least in a probabilistic sense.
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Definition 1.2. Let fµ:M → M be a family of maps such that fµ0 has a strange

attractor. This attractor is said to be persistent if, for every δ > 0, strange attractors

still exist for values of the parameter µ belonging to a positive Lebesgue measure set

E ⊂ B(µ0, δ). If E = B(µ0, δ) for some δ > 0, then the strange attractor is said to be

fully persistent.

Numerous works in the literature numerically simulate chaotic behaviours that

suggest the presence of strange attractors. However, analytical results proving the

existence of such attractors and their persistence in generic families of dynamical systems

are lacking and usually laborious. A first proof of the persistence of strange attractors

for a family of diffeomorphisms was given in [1] for the Hénon family

Ha,b(x, y) = (1− ax2 + y, bx). (1)

The starting point of such intricate proof is to note that for b = 0 the dynamics of

family (1) reduces to that of the quadratic family

fa(x) = 1− ax2, (2)

which is said to be a limit family of family (1). In [2] the authors had previously proved

that this quadratic family has persistent strange attractors for a ∈ (2 − ε, 2]. After a

lot of hard work, it was proved in [1] that these strange attractors persist on a branch

of the unstable manifold of the saddle point of family (1) when 0 < b < ε ≪ 1.

The first proof of the persistence of strange attractors in a wider scenario was

given in [3], where it is proved the persistence of strange attractors in a generic family

of diffeomorphisms fµ:M → M on a surface M, that unfold a homoclinic tangency.

This proof is strongly based on the existence of families of return maps associated

to the unfolding of homoclinic tangencies. See also [4], [5], [6], and [7]. Under an

appropriate change of coordinates, these return maps are defined in a neighbourhood

of the homoclinic point, and are very similar to the Hénon family (1). Hence their

attractors are called Hénon-like attractors. A proof on the existence of strange attractors

for families of vector fields on R3, which are not Hénon-like, can be seen in [8].

The proof of the persistence of strange attractors given in [2] for family (2)

is complicated because the zero derivative at the critical point x = 0 hinders the

expansivity of the orbits close to it, and sinks can thus appear. This difficulty does

not arise when considering the one-parameter family of one-dimensional piecewise linear

maps (tent maps) λµ: [0, 1] → [0, 1], with 1 < µ ≤ 2, given by

λµ(x) =

{
µx if x ≤ 1/2,

µ(1− x) if x ≥ 1/2.
(3)

In this case, the interval [(2 − µ)µ/2, µ/2] is an invariant set for λµ, when µ ∈ (1, 2].

This invariant set is a strange attractor for every µ ∈ (
√
2, 2]. Strange attractors with

several pieces may also be obtained for values of the parameter µ ∈ (1,
√
2] by using

renormalization techniques (see for instance [9], [10] or [11] for related details).

In many cases, the dynamics of the tent maps given in (3) is similar (i.e. conjugate)

to the dynamics of family (2). It is well known that this is the case for µ = a = 2. This
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fact is the first step in [2] to prove that family (2) displays persistent strange attractors

for values of the parameter sufficiently close to a = 2. In summary, the study of the

dynamics of piecewise linear families is a first step towards understanding the more

complicated dynamics of quadratic families.

All the above-mentioned attractors are one-dimensional. In order to get abundance

of strange attractors with two positive Lyapunov exponents, we can consider a generic

two-parameter family fa,b:M → M of three-dimensional diffeomorphisms unfolding a

generalised homoclinic tangency as it was originally defined in [12].

For the case in which the unstable manifold involved in the homoclinic tangency

has dimension one, the limit family corresponds to Hénon family. But, and this fact

explains why we are not working with generalizations of the Hénon family, if the unstable

manifold has dimension two then the limit family is conjugate to the family of two-

dimensional endomorphisms defined in R2 by

Ta,b(x, y) = (a+ y2, x+ by). (4)

Therefore, if one tries to show the persistence of two-dimensional strange attractors

when such a homoclinic tangency is unfolded, the first step should be to prove, as was

done in the one-dimensional setting, the persistence of strange attractors for the limit

family (4). Only after this does it make sense to lift the dynamics to the closure of

the unstable manifold, which is the candidate to contain the two-dimensional strange

attractor arising in the unfolding of the tangency.

Different types of strange attractors for family (4) were numerically detected in [13].

In particular, the different regions of the parameter space according to the number of

positive Lyapunov exponents are plotted (see Figure 1 in [13]). In [14], a curve of

parameters

G =

{
(a(s), b(s)) = (−1

4
s3(s3 − 2s2 + 2s− 2),−s2 + s) : s ∈ R

}
was constructed in such a way that Ta,b has an invariant region in R2 homemorphic to

a triangle for all (a, b) ∈ G. This curve contains the point (−4,−2) (by taking s = 2),

and the map T−4,−2 is conjugate to the non-invertible piecewise affine map

Λ(x, y) =

{
(x+ y, x− y) if (x, y) ∈ T0,

(2− x+ y, 2− x− y) if (x, y) ∈ T1

defined on the triangle T = T0 ∪ T1, where

T0 = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x},
T1 = {(x, y) : 1 ≤ x ≤ 2, 0 ≤ y ≤ 2− x}.

As was pointed in [14], this map Λ enjoys the same nice properties as tent map

given in (3). In particular, the consecutive pre-images {Λ−n(C)}n∈N of the critical line

C = {(x, y) ∈ T : x = 1} define a sequence of partitions (whose diameter tends to zero

as n goes to infinity) of T leading the authors to conjugate Λ (and therefore T−4,−2) to a

one-sided shift on two symbols. Furthermore, for every initial point (x0, y0) ∈ T whose
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orbit never visits the critical line, the Lyapunov exponent of Λ along the orbit of (x0, y0)

is positive (in fact, it is equal to 1
2
log 2) in all non-zero direction, and the same holds for

the limit return map T−4−2. Finally, an absolutely continuous ergodic invariant measure

for Λ can be constructed, and therefore the same holds for T−4−2. These basically were

the main reasons why the authors in [14] called Λ the 2-D tent map.

As a first approach to the study of the dynamics of Ta(s),b(s) (with s ̸= 2) the family

{Λt}t∈[0,1] of piecewise linear maps of T given by

Λt(x, y) = t · Λ(x, y) =

{
(t(x+ y), t(x− y)) if (x, y) ∈ T0,

(t(2− x+ y), t(2− x− y)) if (x, y) ∈ T1,
(5)

was introduced in [15]. This family can be seen as the composition of linear maps defined

by the matrices

At =

(
t t

t −t

)
with the fold of the whole plane along the line C = {(x, y) ∈ R2 : x = 1}. This fold can

be defined by

FC(x, y) =

{
(x, y) if x < 1,

(2− x, y) if x ≥ 1.
(6)

Note that O = (0, 0) is a fixed point for every Λt in (5). In addition, for t > 1/
√
2, each

Λt has another fixed point Pt ∈ T1 given by

Pt = (xt, yt) =

(
2t(2t+ 1)

2t2 + 2t+ 1
,

2t

2t2 + 2t+ 1

)
.

Clearly, the affine change of coordinates

X =
x− xt

1− xt

, Y = −y − yt
1− xt

moves O onto the point Pt and keeps the critical line X = 1. These coordinates

transform each Λt in (5) into the composition of FC with the linear application defined

by the matrix

Ãt =

(
−t −t

t −t

)
whose eigenvalues are

√
2te±iθ with θ = 3π/4. That is, Pt is an unstable focus and then,

in the complex plane, the family Λt in (5) can be expressed as

Γa,θ(x+ iy) =

{
aeiθ(x+ iy) if x < 1,

aeiθ(2− x+ iy) if x ≥ 1
(7)

with a =
√
2t and θ = 3π/4.

The study of the dynamics exhibited by family (5) is mainly justified when one

compares its attractors (numerically obtained in [16]) with the attractors (numerically

obtained in [13]) for the family (4) with (a, b) ∈ G. For different values of the parameters,
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both families of maps display convex strange attractors, connected (but not simply

connected) strange attractors, and disconnected strange attractors (formed by numerous

connected pieces).

A first analytical proof of the existence of a convex strange attractor for Λt was given

in [17] for all t ∈ (t0, 1], where t0 = 2−1/2(1+
√
2)1/4 and, as it was seen in [14] for t = 1,

it was also proved that the attractor supports a unique ergodic invariant probability

measure for all t ∈ (t0, 1]. The existence of persistent strange attractors with several

pieces for 2−1/2 < t < 2−2/5 is proved from [18], [19] and [20]. The proof is a consequence

of a renormalization procedure that allows us to understand how connected invariant

compact sets (formed by a unique piece) may split giving rise to others formed by an

increasing number n of pieces. Then, from Theorem 1.2 in [20], it follows that these

new disconnected invariant compact sets contain strange attractors formed by n pieces.

Moreover, it is proved in [19] the coexistence of any number of strange attractors.

The proof of the previous results is strongly based on the existence of compact setsK
that are strictly invariant, that is, Λt(K) = K. Every attractor Z for a transformation f

must be strictly invariant compact minimal set. Once proved the existence of this

attractor Z, the expansitivity of Λt allows to conclude that Z is a strange attractor. In

the case for family (4), or even for Ta(s),b(s) with (a(s), b(s)) ∈ G, this is not that simple

because, like in the one-dimensional case, the maps Ta,b are not expansive near their

critical line. Nevertheless, the numerical simulations carried out in [13], which show

the possible existence of two-dimensional strange attractors and similar to those found

for family (5), strengthen the idea that a certain possible (though surely laborious)

exclusion of parameters (like in [2] for the one-dimensional case) could conclude the

persistence of strange attractors.

Although the process of exclusion of parameters seems to be the essential (and most

complicated) step in the proof of the persistence of strange attractors for family (4),

other peculiarities should be considered when studying the dynamics of this family.

Contrary to what happens for family (5), at the fixed points of Ta,b with eigenvalues

e±θi, a Hopf bifurcation might lead to the presence of an attracting closed curve. Then,

the angle θ conditions the dynamics on this curve. This is one of the reasons why in

this paper we will study the general two-parameter family

{Γa,θ : (a, θ) ∈ (1,∞)× (0, π)} (8)

defined by (7) for a > 1 and 0 < θ < π. For θ = 0 or θ = π, the dynamics looks like

one-dimensional. For θ and −θ the respective dynamics are conjugate.

The strictly invariant compact sets of family (8) will report the strictly invariant

compact sets of family (4). As seen in references [13]-[20] for the particular case

θ = 3π/4, both sets will have the same type of connection: simply connected, connected

and successive ruptures in pieces. Having thus understood the topology and arrangement

of these sets for (4), it remains to study the effect of the quadratic nonlinearity on the

inner dynamics: existence of a dense and expansive orbit in the corresponding strictly

invariant compact sets.
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Note that Γa,θ is the composition of the fold

FC(x+ iy) = 1− |1− x|+ iy (9)

and the expanding linear map Aa,θ(z) = aeiθz being z = x+ iy. For this reason, we say

that each Γa,θ is an Expanding Baker Map (EBM for short) and write

Γa,θ = EBM(C,O, Aa,θ)

where C denotes the line x = 1 along which the plane is folded towards the half-plane

containing O. The successive images Lj = Aj
a,θ(C) of C are given implicitly by the

equations

x cos jθ + y sin jθ = aj. (10)

Later on it will be necessary to refer to EBMs of at least two folds, that we

will denote by EBM(C,Lj1 , . . . ,Ljk , Aa,θ) where C,Lj1 , . . . ,Ljk define the lines to fold

written from left to right in the order that these folds act. See Section 2.

Some initial results for the family Γa,θ were given in [21] (see Theorems A and B).

There it was proved the existence of aθ > 1 such that Γa,θ has a closed polygon Ka,θ

which is strictly Γa,θ-invariant for every a ∈ (1, aθ]. When Ka,θ is minimal (it does not

contain any other set with the same mentioned properties), then it is actually a two-

dimensional strange attractor. The existence of these attractors follows next from the

existence of invariant compact sets with nonempty interior.

Theorem A. Let 0 < θ < π. For every a ∈ (1, aθ] there exists a finite family Za,θ of

2-D strange attractors for Γa,θ with the following properties:

(i) If Z is an attractor for Γa,θ, then Z ∈ Za,θ.

(ii) For every Z ∈ Za,θ there exists an ergodic absolutely continuous invariant measure µ

for Γa,θ supported on Z.

(iii) For every Z ∈ Za,θ there exists a natural number p and a decomposition

Z = X0 ∪X1 ∪ · · · ∪Xp−1

of Z in such a way that Γa,θ(Xi) = Xi+1 mod p for all i = 0, . . . , p − 1. The

measure µ supported on Z is mixing (up to the eventual period p) from which Γp
a,θ

is topologically mixing on every Xi.

(iv) If Z ∈ Za,θ, then Z traps almost every point in W s(Z), i.e. for almost every point

P ∈ W s(Z), there exists j ∈ N with Γj
a,θ(P ) ∈ Z. Moreover, the set

⋃
Z∈Za,b

W s(Z)

covers a full Lebesgue measure set of Ka,θ.

(v) If U is a compact Γa,θ-invariant set with nonempty interior, then there exists

Z ∈ Za,θ such that Z ⊂ U . Moreover, if U1 and U2 are compact Γa,θ-invariant

sets with disjoint nonempty interiors, then there exist two different 2-D strange

attractors Zi ∈ Za,θ with Zi ⊂ Ui for i = 1, 2.
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Theorem A will be proved in the same way as Theorem 1.2 in [20]. In fact, once

again, the proof of Theorem A is strongly based on the results given in [22], [23] and

[24]. Nevertheless, we include here a sketch of the proof of Theorem A because certain

crucial considerations on the so called weighted multiplicity must be checked for all

θ ∈ (0, π). Finally, we point out that the proof of Theorem A mainly relies on the

existence of an invariant set for Γa,θ, namely Ka,θ (which is in fact strictly invariant),

hence the restriction 1 < a ≤ aθ on the space of parameters.

From now on, we will consider θ = 2πk/n ∈ (0, π) with k, n ∈ N and gcd(k, n) = 1.

The following results show how for a sufficiently close to 1 the invariant set Ka,θ (and,

consequently, the attractor it contains) may split into another set formed by pieces

permuted by Γa,θ. Thus, a connected strange attractor bifurcates for a first value a1(θ)

into a disconnected strange attractor formed by at least n pieces. When n is odd, this

new attractor splits into other strange attractors of n2 pieces for some a2 < a1. When

n = 2ν with ν odd, likewise a second splitting occurs for some a2 < a1, giving rise in

this case to another strange attractors of n2/2 pieces. However, when ν is even, the

original attractor of at least n pieces splits into two different strange attractors, each

of which having n2/2 pieces. We will call this phenomenon doubling of attractors. This

process goes on when ν/2 is even. Since for θ = π/2 it was proved in [19] the existence

of a decreasing sequence {ai} of values of splitting of strange attractors, we obtain an

infinite cascade of doubling of attractors for any n = 2s with s ≥ 2.

The next result establishes the existence of a value a1(θ) for which the first splitting

takes place:

Theorem B. Let θ = 2πk/n ∈ (0, π) with k, n ∈ N and gcd(k, n) = 1.

(a) There exists a1 = a1(θ) ∈ (1,∞) and D ⊂ R2 such that, for every a ∈ (1, a1) it

holds that

(i) Γj
a,θ (D) ∩ D = ∅ for every j = 1, . . . , n− 1.

(ii) Γn
a,θ (D) ⊂ D.

(b) For n ≥ 4, the restriction of Γn
a,θ to D is conjugate by means of an affine change in

coordinates to an 2-fold EBM.

A set verifying statements (i) and (ii) is said to be a restrictive domain of Γn
a,θ. See

Definition 2.4. According to Theorem A, the map Γa,θ displays a strange attractor with

at least n pieces, each of which contained in a different Γj
a,θ(D) with j = 0, 1, . . . , n− 1.

Note that from statement (a) it follows that for every pair i, j = 1, . . . , n it holds that

Γi
a,θ(D) ∩ Γj

a,θ(D) = ∅ whenever i ̸= j.

As a consequence of the proof of Theorem B we obtain the following result:

Corollary 1.3. Under the hypothesis of Theorem B, the set D can be constructed in

such a way that every attractor for Γa,θ is contained in the forward orbit of D.

In order to illustrate this corollary and statement a) of Theorem B, see Figures 12a,

13a, and 14a at the end of this paper.
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For values of a < a1(θ) sufficiently close to 1, the restriction of Γn
a,θ to D has an

unstable focus P with eigenvalues ane2θ1i with θ1 = 2π/n. The translation of the origin

of coordinates to P and a suitable change in coordinates allows to express Γn
a,θ as the

map Ψa,θ1 = EBM(C,La,θ1 ,O, A′), for which:

(i) C is the critical line x = 1.

(ii) La,θ1 is a line that crosses C at an angle θ1 and its distance r(a) to the origin satisfies

lim
a→1+

r(a) = 1.

(iii) A′(z) = ane2θ1iz.

Let Fk
σ,φ be the set of maps Ψσ,φ = EBM(C,Lσ,φ, A

′) satisfying (i), (ii) y (iii) for σ,

φ, and k instead of a, θ1, and n. Thus, Ψa,θ1 ∈ Fn
a,θ1

. We will consider EBM(C, A′) to

be included in EBM(C,Lσ,φ, A
′), since this trivially holds when Lσ,φ = C or Lσ,φ does

not intersect a certain invariant set on which the dynamics is studied.

Let us state a first result on renormalization:

Theorem C. Let θ = 2πk/n ∈ (0, π) with k, n ∈ N and n ≥ 3 and gcd(k, n) = 1. The

following statements hold:

(a) If n is odd, then there exists a2 = a2(θ) < a1(θ) such that for all a ∈ (1, a2) there

exists a restrictive domain D1 ⊊ D for Ψn
a,θ1

.

(b) If n = 2ν is even, then one of the following statements hold:

(i) If ν is odd, there exists a2 = a2(θ) < a1(θ) such that for all a ∈ (1, a2) the map

Ψν
a,θ1

has a restrictive domain D1 ⊊ D.

(ii) If ν is even, there exists a2 = a2(θ) < a1(θ) such that for all a ∈ (1, a2) the map

Ψν
a,θ1

has two disjoint restrictive domains D±
1 ⊊ D. Moreover, the restriction

of Ψν
a,θ1

to each one of these domains belongs to Fν
an,θ1

.

Figures 12, 13, and 14 shed some light on statements a), b-i) and b-ii) of Theorem C,

respectively.

Statement (ii) of (b) still holds for Ψ
ν/2
a,θ1

provided that ν/2 is even, and successively

for any power n = 2s with s ≥ 2. Therefore, as we have stated above, as a consequence

of the previous Theorems and Theorem B in [19] (See Lemma 2.7 in Section 2) we obtain

the following result:

Corollary 1.4. Let θ = 2πk/n ∈ (0, π) with k, n ∈ N and gcd(k, n) = 1. If n = 2s for

some s ≥ 2, then there exists a decreasing sequence {aj(θ)}j≥1 such that Γa,θ exhibits

2j−1 strange attractors simultaneously for all a ∈ [aj+1, aj) and for every j ≥ 1.

Thus, in this paper we extend to θ = 2πk/n ∈ (0, π) with k, n ∈ N, gcd(k, n) = 1

and n ≥ 4 all the results proved in [18], [19], and [20] for the case θ = 3π/4. In

particular, the existence of a cascade of doubling of strange attractors for a dense set of

values θ = πk/2j with k an odd natural number and j ≥ 1. Some questions still remain

open for the rest of values of θ. For instance, we may ask if the renormalization from

statements a) and b-i) of Theorem C can be indefinitely iterated like in statement b-ii)
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thereof. In particular, we may ask what happens with the dynamics in the special case

n = 3. Finally, one should think about the dynamics when θ/π is not rational.

This article is organized in the following manner. In Section 2 are gathered some

definitions and basic results on EBMs. Section 3 is devoted to the proof of Theorem

A. In Section 4 we prove Theorem B considering three different cases independently:

n ≥ 5, n = 4, and n = 3. In Section 5 Theorem C is proved. In Section 6 some open

questions are posed.

2. Expanding Baker Maps

In this section we will introduce the concept of EBM and renormalizable EBM. These

maps are characterized for a very particular dynamics: They fold some domain and,

after that, they expand the folded region. For our purposes it is enough to define EBMs

on compact and convex domains of R2.

To begin with, let us state the definition of fold and good fold.

Definition 2.1. Let K ⊆ R2 be a set with nonempty interior and let L be a line in

R2 intersecting the interior of K. The line L splits K into two sets K0 and K1, i.e.

K0 ∪ K1 = K and K0 ∩ K1 = L ∩ K. Let P ∈ K0. The fold with respect to L onto P

for K is the map FL,P :K → R2 given by

FL,P (Q) =

{
Q if Q ∈ K0,

Q̃ if Q ∈ K1,

where Q̃ denotes the symmetric point of Q with respect to L. If FL,P (K) = K0, we say

that FL,P is a good fold for K.

(a) A good fold (b) A not good fold

Figure 1: Examples of folds

Now, let us write L = L1 and let L2 be a line with L2 ∩ int(K0) ̸= ∅ and P /∈ L2.

Then, L2 divides K0 into two subsets K00 and K01 (K00 denotes the one containing

P ). Let us assume that FL2,P (K0) = K00 (i.e, FL2,P is a good fold). Repeating these

arguments, we may successively define a sequence of good folds FL1,P , FL2,P , . . . ,FLn,P ,

where

FL1,P : K → K0

FLj ,P : K0 j−1... 0 → K0 j...0
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Figure 2: Sequence of goods folds

with K0 j−1... 0 ⊂ K0 j...0 and P ∈ K0 j...0 for every j = 1, 2, . . . , n.

We now may introduce the concepts of EBM and renormalizable EBM.

Definition 2.2. Let K ⊂ R2 be a set with nonempty interior. Let P be a point in K and

{FL1,P , . . . ,FLn,P} a sequence of good folds of K with P ∈ K0 j...0 for every j = 1, . . . , n.

Let A:R2 → R2 be an expanding linear map, i.e. |detA| > 1. Let us consider

Ã : Q ∈ R2 → Ã(Q) = P + A(Q− P )

and assume that Ã(K0 j...0) ⊂ K. We define the Expanding Baker Map associated to

P , A, L1,. . . ,Ln as the map Γ : K → K given by

Γ = Ã ◦ FLn,P ◦ . . . ◦ FL1,P

For short, we will denote

Γ = EBM(L1, . . . ,Ln, P, A)

Figure 3: An example of EBM

We will usually take P as the origin of coordinates O and omit it in the notation

of a fold (FL instead of FL,O). The linear map A will be of the type

Aa,θ =

(
a cos θ −a sin θ

a sin θ a cos θ

)
, (11)

(or Aa,θ(z) = aeiθz in the complex variable) with a > 1.

The following lemma will be useful in Section 4:
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Lemma 2.3. Let L be a line in R2 such that O ̸∈ L. Let K0 and K1 be the two

half-planes limited by L, with O ∈ int(K0). Let L̃ = A−1
a,θ(L). Then,

FL ◦ Aa,θ(Q) = Aa,θ ◦ FL̃(Q),

for all Q ∈ K0 such that FL̃(Q) ∈ K0.

Proof. Let K00 and K01 be the two subsets into which K0 is divided by L̃ ∩ K0,

with O ∈ int(K00). Then, Aa,θ(K0i) ⊂ Ki for i = 0, 1.

For Q ∈ K00, it holds that FL̃(Q) = Q and Aa,θ(Q) ∈ K0. Thus,

FL ◦ Aa,θ(Q) = Aa,θ(Q) = Aa,θ ◦ FL̃(Q).

Now, let Q ∈ K01 and assume that FL̃(Q) ∈ K0. By definition of FL̃, the points

Q and FL̃(Q) are symmetric with respect to L̃, and so are Aa,θ(Q) and Aa,θ ◦ FL̃(Q)

with respect to Aa,θ(L̃) = L because of the orthogonality of the rotation matrix a−1Aa,θ.

Since Aa,θ(Q) ∈ K1, then

FL ◦ Aa,θ(Q) = Aa,θ ◦ FL̃(Q)

and the lemma is proved.

Definition 2.4. Let Γ be a map defined in a certain domain K. We say that D ⊂ K is

a restrictive domain if D ≠ K and there exists n = n(D) ∈ N such that

(i) Γj(D) ∩ D = ∅ for every j = 1, . . . , n− 1, and

(ii) Γn(D) ⊂ D.

Apart from several extensions to higher dimension (see [25], [26], and [27] among

others), the notion of renormalizable maps comes from the one-dimensional framework.

A one-dimensional map f belonging to some family F (for instance, the family of

unimodal maps defined on an interval) is said to be renormalizable if there exists a

restrictive domain D such that fn restricted to D is, up to an afine change in coordinates,

a member of F. In this sense, the concept of renormalizable EBM arises.

Definition 2.5. An EBM Γ defined on certain domain K is said to be renormalizable

if there exists a restrictive domain D (with an associated natural number n = n(D)) such

that the restriction Γn
|D of Γn to D is, up to an affine change of coordinates, an EBM

defined in K.

Definition 2.6. Let Γ be a renormalizable EBM with restrictive domain D (with an

associated natural number n = n(D)). If Γn
|D is a renormalizable EBM, we say that Γ is

twice renormalizable. Similarly, we can speak of k-times renormalizable EBMs

for any k ≥ 3 and infinitely many times renormalizable EBMs.

The following result for the map Γa,θ with θ = π/2 was proved in [19] (see

Lemma 2.2) and will be useful in Sections 4 and 5.

Lemma 2.7. For θ = π/2, the following statements hold:

(a) For every a ∈ [2
1
4 , 2

1
2 ], the map Γa,θ has a strongly topologically mixing strange

attractor with two positive Lyapunov exponents.

(b) For every n ≥ 2 and every a ∈ [22
−(n+1)

, 22
−n
], the map Γa,θ is n-times

renormalizable and displays 2n strange attractors with two Lyapunov exponents.
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3. Existence of 2-D Strange Attractors: Proof of Theorem A

The proof of Theorem A is similar to the proof of Theorem 1.2 in [20]. In fact, the proof

would be the same if we restrict ourselves to the case in which θ/π is a rational number.

This is because the formula given in (18) is easily obtained in the rational case without

using the Geometric Estimate given in [22] (see page 700). See also Remark 3.3. Let us

point out here that formula (18) is, as we will see soon, the key to applying the results

in [22]. Since the Geometric Estimate was not used in the proof of Theorem 1.2 in [20]

we think we must give a sketch of the proof of Theorem A paying special attention to

these new details.

Fix 0 < θ < π and then fix a ∈ (1, aθ]. In Theorem B of [21] we show the existence

of a (strictly) invariant set Ka,θ. We consider the sets

K0 = {(x, y) ∈ Ka,θ : x ≤ 1}, K1 = {(x, y) ∈ Ka,θ : x ≥ 1}. (12)

Let P = {int(K0), int(K1)} and Y = int(K0)∪ int(K1). Then, Γa,θ:Y → Y = Ka,θ is an

expanding piecewise analytic map of the plane according to the corresponding definition

given in [22].

Therefore, according to the main result in [22] we have the following result.

Proposition 3.1. Let 0 < θ < π. For every a ∈ (1, aθ] there exist absolutely continuous

invariant measures for Γa,θ. Moreover:

(i) Each one of these ACIMs is a convex combination of a fixed, finite collection of

ergodic ones.

(ii) For every ergodic measure µ of Γa,θ, there exist a constant κ < 1, a natural

number p, and a decomposition

supp(µ) = X = X0 ∪X1 ∪ . . . ∪Xp−1

of the support of µ in such a way that Γa,θ(Xi) = Xi+1 mod p for all i = 0, . . . , p− 1.

Moreover, the measure µ is mixing (up to the eventual period p) and then the map

Γp
a,θ is topologically mixing on any Xi.

Now, and here is where the differences between the proof of Theorem A and

Theorem 1.2 in [20] arise, the crucial argument is to control the weighted multiplicity

of a piecewise analytic mapping of the plane. This weighted multiplicity is defined in

Section 1 of [22]. In our context (piecewise linear maps), we may introduce this notion

as follows. Let us begin with the definition of circular sectors.

Definition 3.2. Given any P ∈ Ka,θ and any r > 0 a circular sector SP at P

is the interior of any bounded set whose boundary is formed by two different straight

segments l1 and l2 starting at P and the circle C(P, r) centered at P with radius r. For

any circular sector SP we define
−→
S P as the set of unit vectors which are in the cone

generated by the straight segments l1 and l2 at P .

The partition P = {K0,K1}, see (12), defines at each point P ∈ Ka,θ a collection

SPP of at most two circular sectors SP given by int(K0)∩B(P, r) and int(K1)∩B(P, r)
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for r > 0 small enough. Here we also consider as a possible circular sector the whole ball

B(P, r). The local weighted multiplicity of Γa,θ in a point P ∈ Ka,θ can be now defined

by

mult(P ,Γa,θ, P ) =
∑

SP∈SPP

Λ+(Γa,θ |
−→
S P )

jac(Γa,θ)A(P )
(13)

where A is the element of P containing SP and

Λ+(Γa,θ |
−→
S P ) := sup

v∈
−→
S P

∥(Γa,θ)
′
A(P )(v)∥ .

Now, let us define

mult(Pn
,Γn

a,θ):= sup
P∈Ka,θ

mult(Pn
,Γn

a,θ, P ) = sup
P∈Ka,θ

∑
SP∈SPPn

Λ+(Γ
A
a,θ |

−→
S P )

jac(ΓA
a,θ)(P )

(14)

where Pn
is made of sets A which are given by sequence of nonempty intersections

A0 ∩ Γ−1
a,θ(A1) ∩ . . . ∩ Γ−n+1

a,θ (An−1), A0, . . . ,An−1 ∈ P

and we also take the notation

ΓA
a,θ = (Γa,θ)An−1 ◦ . . . ◦ (Γa,θ)A0

for any of such sets A ∈ Pn
. Observe that in the formula given at (14) and for every

P ∈ Ka,θ, SPP
n
is the collection of circular sectors given (for r > 0 small enough) by

the nonempty intersections int(A) ∩B(P, r), whenever A ∈ Pn
.

As we said before, related to formula (13), we have Λ+(Γa,θ | −→
S P ) = a and

jac(Γa,θ)A(P ) = a2. Therefore, taking n = 1 in (14), it is easy to see that

mult(P ,Γa,θ) =
2

a
(15)

because the supremum taking part of the definition of mult(P ,Γa,θ) is achieved at points

x in the critical set.

With respect to formula (14) it follows that Λ+(Γ
A
a,θ |

−→
S P ) = an and jac(ΓA

a,θ)(P ) =

a2n, for every θ ∈ (0, π), P ∈ Ka,θ, n ∈ N and A ∈ Pn
. Therefore, for every n ∈ N, we

obtain that

mult(Pn
,Γn

a,θ) =
Rn,a,θ

an
(16)

where we have introduced the sequence

Rn,a,θ = max
P∈Ka,θ

card{A ∈ Pn
: P ∈ A} (17)

Observe that R1,a,θ = 2 and therefore equation (15) follows from equation (16).

Following the Geometric Estimate given in [22], we may conclude that

lim sup
n→∞

1

n
log mult(Pn

,Γn
a,θ) < 0

This crucial bound gives, in our case,

lim sup
n→∞

1

n
logRn,a,θ < log a. (18)
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Remark 3.3. If θ/π is rational then Rn,a,θ remains bounded as n goes to infinity. This

is because the slopes of the straight lines forming part of the boundary of any set A ∈ Pn

belong to a finite set of real numbers. Therefore, equation (18) easily follows without

using the Geometric Estimate.

Let us now consider from [23] the definition of the dilatation coefficient of Γa,θ given

by

δ(Γa,θ) = lim
n→∞

1

n
log sup

P∈Γn
a,θ(Y )

∥DΓ−n
a,θ (P )∥,

where Y = U1 ∩ U2 = int(K0) ∩ int(K1) and the norm of the derivative is taken along

each smooth branch of Γ−n
a,θ . In our case, it follows that δ(Γa,θ) = − log a. Therefore,

from (18) we have

lim
n→∞

1

n
logRn,a,θ + δ(Γa,θ) < 0

This inequality allows us to apply Lemma 2.2 in [23] to assert that some iterate of the

map Γa,θ satisfies conditions (PE1) − (PE5) in [23] (see page 226). Therefore, from

Proposition 3.4, Theorem 5.1 (ii) and Proposition 5.1 in [23] we have the following result:

Proposition 3.4. Let 0 < θ < π. For every a ∈ (1, aθ] and for every ACIM µ of Γa,θ

the interior of the support of µ has full µ-measure. Moreover, each ACIM µ of Γa,θ is

finite.

Finally, see Theorem 3 in [24], we also have the following result:

Proposition 3.5. Let 0 < θ < π. For every a ∈ (1, aθ] there exist finitely many

absolutely continuous ergodic probability measures µ1, . . . µl, for Γa,θ. Moreover, the

basin of each measure µi is an open set modulo sets with null Lebesgue measure, and the

union
⋃l

i=1 Basin(µi) has full Lebesgue measure in Ka,θ. Moreover,
⋃l

i=1 int(Basin(µi))

has full Lebesgue measure in Ka,θ.

The rest of the proof of Theorem A follows exactly in the same way as the proof

of Theorem 1.2 in [20]. In fact, it is enough to consider the measures {µ1, . . . , µl} given

by Proposition 3.5, define Zi as the support of µi for i = 1, . . . , l and take

Za,θ = {Zi : i = 1, . . . , l}.

In the same way as Lemma 5.1 in [20] was proven, we have here the following result:

Proposition 3.6. For every i = 1, . . . , l the following statements hold:

(i) The interior of Zi traps every point in Basin(µi), i.e. for every P ∈ Basin(µi),

there exists j ∈ N such that Γj
a,θ(P ) ∈ int(Zi).

(ii) The set Zi is a 2-D strange attractor for Γa,θ.

This last result is the key to completing the proof of Theorem A in the same way

as the proof of Theorem 1.2 was completed using Lemma 6.1 in [20].
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4. Splitting of Attractors: Proof of Theorem B

Let us consider the two-parameter family Γa,θ given in (8) and assume that θ = 2πk/n ∈
(0, π) with k, n ∈ N and gcd(k, n) = 1. Recall that Γa,θ = EBM(C, Aa,θ) is the

composition of the map FC which folds the plane along the line x = 1 (see (9) and

(6)) and the linear map defined by the matrix Aa,θ given in (11).

For each j = 0, . . . , n−1 we will denote by Sj the ray that starts from the origin and

extends indefinitely in the direction of the vector (cos 2πj/n, sin 2πj/n). Thus, the plane

is divided into n regions R0, . . . ,Rn−1, where Rj is the region bounded by Sj and Sj+1

for every j = 0, . . . , n−1, setting Sn = S0. See Figure 4. The dynamics of Γa,θ on these

regions depends on k and the following inclusion holds for every j = 0, . . . , n− 1:

Γa,θ(Rj ∩ {x ≤ 1}) ⊂ Rj+k mod n.

As a consequence, given a point Q ∈ Rj ∩ {x ≤ 1}, if Γi
a,θ(Q) ∈ {x ≤ 1} for every

i = 1, . . . , n− 1, then Γn
a,θ(Q) ∈ Rj. In order to define D, we will first construct the set

of points Q ∈ R0 ∩ {x ≤ 1} such that Γi
a,θ(Q) ∈ {x ≤ 1} for every i = 1, . . . , n− 1.

S0

S1

S2

R0

R1R2

Sn−1

Rn−1 M

M ′

1Figure 4: Regions for x ≤ 1

From now on, given a point B or a set B, we denote Bj = Γj
a,θ(B) and Bj = Γj

a,θ(B)
for each j ≥ 0. Furthermore, Ω(B1, . . . , Bn) denotes the polygon with vertices

B1, . . . , Bn and with sides B1B2, B2B3, . . . , BnB1, where BC is the segment joining B

and C.

We will divide the proof of Theorem B into three cases. First we will prove the

result for n ≥ 5 in order the point M ′ (see Figure 4) is on the right half-plane. In this

situation, the arguments of the proof hold regardless of the value of n. Then, we will

consider the case n = 4, for which M ′ belongs to x = 0. Actually, this case was already

studied previously and was collected separately in Lemma 2.7 because of its interest

for the successive renormalizations given in Corollary 1.4. Finally, we will consider the

special case n = 3 to which only statement (a) applies.
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4.1. Case n ≥ 5

Fix n ≥ 5. In this case, the set R0∩{x ≤ 1} is the triangle Ω(O,M,M ′) withM = (1, 0)

and M ′ = (1, tan 2π/n).

Lemma 4.1. There exists aM ∈ (1,∞) such that Mj ∈ {x ≤ 1} for every j = 1, . . . , n−1

and every a ∈ (1, aM).

Proof. Assuming that Mi ∈ {x ≤ 1} for every i = 1, . . . , j − 1, the point Mj is

given by

Mj = (aj cos jθ, aj sin jθ).

Therefore, it is enough to find a value aM such that aj cos jθ ≤ 1 for every j = 1, . . . , n−1

and every a ∈ (1, aM). In fact, we can ignore the iterates j for which Mj ∈ {x ≤ 0}
because, in that case, cos jθ ≤ 0 and hence aj cos jθ ≤ 1. Let J ⊂ {1, . . . , n− 1} be the

set of indices j such that Mj ∈ {x > 0}. For every j ∈ J it holds that 0 < cos jθ < 1.

We define

aM = min
j∈J

j
√

sec jθ. (19)

Then, aM > 1 and therefore aj cos jθ < ajM cos jθ < 1 for each j ∈ J and for every

a ∈ (1, aM).

Let us now consider a ∈ (1, aM) and denote by m the first natural number such

that Mm ∈ S1. By definition,

cosmθ = cos
2π

n
, sinmθ = sin

2π

n
. (20)

On the other hand, the point Mm belongs to the line Lm given in (10). Thus, the line

Lm is also given by

x cos
2π

n
+ y sin

2π

n
= am. (21)

See Figure 5a. We define the triangle

∆ = Ω(O,Mm, K) (22)

where K is the intersection point of Lm and S0, i.e.

K = (am sec 2π/n, 0). (23)

The first aim is to determine the values of a such that ∆n ⊂ ∆. By definition,

FC(∆) = Ω(O,Mm, H,M) where H is the intersection point of C and Lm and is given

by

H = (1, am csc 2π/n− cot 2π/n). (24)

Hence,

∆1 = Ω(O,Mm+1, H1,M1).
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According to Lemma 4.1, if m+1 ≤ n−1, then the points Mm+1 and M1, and therefore

H1, belong to {x ≤ 1}. In fact, this is also true for Mm+j, Mj, and Hj whenever

m+ j ≤ n− 1. Hence,

∆j = Ω(O,Mm+j, Hj,Mj) ⊂ {x ≤ 1}

for every j = 1, . . . , n−m+ 1 and

∆n−m = Ω(O,Mn, Hn−m,Mn−m).

However, ∆n−m ̸⊂ {x ≤ 1} because Mn = (an, 0) with a > 1. See Figure 5b. Note that,

according to (20),

cos(n−m)θ = cos
2π

n
, sin(n−m)θ = − sin

2π

n
. (25)

Since Hj ∈ {x ≤ 1} for each j = 1, . . . , n−m− 1, it follows

Hn−m = (an, an cot
2π

n
− an−m csc

2π

n
) . (26)

Therefore, the point Hn−m also belongs to the line x = an, so that Hn−m ∈ {x > 1}.
From (20) and from the definition of aM in (19) it follows that

an cot
2π

n
− an−m csc

2π

n
< 0. (27)

We denote H̃n−m the point of intersection of line C with the segment Hn−mMn−m. If

FC(Hn−m) ∈ ∆n−m, then

FC(∆n−m) = Ω(O,M, H̃n−m,Mn−m)

and

∆n−m+1 = Ω(O,M1, H̃n−m+1,Mn−m+1).

Furthermore, ∆n−m+1 is contained in certain region Rj.

O S0

S1

Sn−1

Lm

∆

H

K

M

Mm

1
(a)

O S0

S1

Sn−1

∆n−m

∆n

Hm

Hn−m

H̃n−m

H̃n

M

Mm

Mn−m

Mn

1
(b)

Figure 5
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Lemma 4.2. There exists aH ∈ (1,∞) such that FC(Hn−m) ∈ ∆n−m for every

a ∈ (1, aH).

Proof. From (26) we deduce that

FC(Hn−m) = (2− an, an cot
2π

n
− an−m csc

2π

n
).

In order to prove that FC(Hn−m) ∈ ∆n−m it is sufficient to show that FC(Hn−m) belongs

to the region

Rn−1 ∩ {x ≤ 1} = {(x, y) : 0 ≤ x ≤ 1,−x tan
2π

n
≤ y ≤ 0}.

As we have seen in (27), FC(Hn−m) ∈ {y ≤ 0}. On the other hand, for sufficiently small

a ∈ (1, aM) it holds that an < 2. Therefore, it only remains to prove that

−(2− an) tan
2π

n
≤ an cot

2π

n
− an−m csc

2π

n

or, equivalently,

an cos2
2π

n
− an−m cos

2π

n
+ (2− an) sin2 2π

n
≥ 0 (28)

since n ≥ 5 and both sin 2π/n and cos 2π/n are positive. For a = 1, inequality (28) is

strictly satisfied:

cos2
2π

n
− cos

2π

n
+ sin2 2π

n
= 1− cos

2π

n
> 0.

By continuity, there exists aH > 1 such that (28) is fulfilled and, consequently,

FC(Hn−m) ∈ ∆n−m for every a ∈ (1, aH).

Notice that both aM in Lemma 4.1 and aH in Lemma 4.2 depend on θ. From now

on we denote aθ = min{aH , aM}.

Proposition 4.3. For every θ = 2πk/n with gcd(k, n) = 1 and n ≥ 5 and for every

a ∈ (1, aθ), it holds that

(i) ∆n ⊂ ∆,

(ii) ∆j ∩ {x > 1} = ∅ for every j ∈ {1, . . . , n− 1} \ {n−m}, where m is the smallest

natural number such that Mm ∈ S1.

Proof. Recall that ∆ = Ω(O,Mm, K). As we have seen below, ∆j ∩ {x > 1} = ∅
for each j ∈ {1, . . . , n−m−1} and ∆n−m∩{x > 1} ≠ ∅. Furthermore, since a < aθ ≤ aH
it holds that

∆n−m+1 = Ω(O,M1, H̃n−m+1,Mn−m+1)

(see Lemma 4.2).

Now, since a < aθ ≤ aM , then the points M1 and Mn−m+1, and therefore

H̃n−m+1, belong to {x ≤ 1}. This is also true for Mj, Mn−m+j and H̃n−m+j whenever

n−m+ j ≤ n− 1. Hence,

∆j = Ω(O,Mj−(n−m), H̃j,Mj) ⊂ {x ≤ 1}
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for every j = n−m+ 1, . . . , n− 1 and statement (ii) is proved. For j = n, it turns out

that

∆n = Ω(O,Mm, H̃n,Mn).

See Figure 5b. To prove that ∆n ⊂ ∆ it is sufficient to note that H̃n belongs to Lm and

both H̃n and Mn are on the vertical line x = an. Since an is less than the abscissa of K

in (23), statement (i) is proved and the proof ends.

Note that

FC(∆) = FC(∆n) = Ω(O,Mm, H,M)

and consequently, ∆j = Γj
a,θ(∆) = Γj

a,θ(∆n). Therefore, we get the following corollary.

Corollary 4.4. For every θ = 2πk/n with gcd(k, n) = 1 and n ≥ 5 and for every

a ∈ (1, aθ), it holds that

(i) ∆2n = ∆n,

(ii) ∆n+j ∩{x > 1} = ∅ for each j ∈ {1, . . . , n− 1} \ {n−m}, where m is the smallest

natural number such that Mm ∈ S1.

Let us now study the dynamics of Γn
a,θ on ∆n. To that end, we denote by

L−(n−m) = A
−(n−m)
a,θ (C) the line given by

x cos(n−m)θ − y sin(n−m)θ = a−(n−m). (29)

We will prove that the n-th iterate of Γa,θ on ∆n is the two-fold EBM that results from

composing the linear map An
a,θ with the folds FL−(n−m)

and FC.

Proposition 4.5. There exists aθ ∈ (1, aθ] such that for every (a, θ) ∈ (1, aθ)×(0, π) the

map Γn
a,θ restricted to ∆n is equal to EBM(C,L−(n−m),O, anI), where m is the smallest

natural number such that Mm ∈ S1.

Proof. From the proof of Proposition 4.3, it follows that

Γn
a,θ(∆n) = Am

a,θ ◦ FC ◦ An−m
a,θ ◦ FC(∆n).

We will see that Lemma 2.3 can be used to get

FC ◦ An−m
a,θ = An−m

a,θ ◦ FL−(n−m)

Then

Γn
a,θ(∆n) = An

a,θ ◦ FL−(n−m)
◦ FC(∆n)

and, finally, since nθ = 2kπ,

Γn
a,θ(∆n) = anI ◦ FL−(n−m)

◦ FC(∆n). (30)

That is, Γn
a,θ = EBM(C,L−(n−m),O, anI).

In order to apply Lemma 2.3, we need to prove that FL−(n−m)
is a good fold defined

on ∆n ∩ {x ≤ 1}. Indeed, the equation of L−(n−m) in (29) can be expressed by

x cos
2π

n
+ y sin

2π

n
= a−(n−m). (31)
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Thus, it is parallel to Lm given in (21) and its slope is − cot 2π/n < 0. Both are

perpendicular to S1 and, since 0 < a−(n−m) < am, the line L−(n−m) cuts the set ∆n

and, in particular, to the critical line C at the point

V = (1, am−n csc
2π

n
− cot

2π

n
) (32)

forming an angle 2π/n. Then, the fold with respect to L−(n−m) is

FL−(n−m)
= am−ne−i2π/nI ◦ FC ◦ an−mei2π/nI. (33)

As a consequence, it is directly verified that the line FL−(n−m)
(Lm) is given by

x cos
2π

n
+ y sin

2π

n
= am(2a−n − 1).

This line intersects C at the point

H ′
m = (1, am−n(2− an) csc

2π

n
− cot

2π

n
),

so that FL−(n−m)
is a good fold defined on ∆n ∩ {x ≤ 1}, as long as

am−n(2− an)− cos
2π

n
≥ 0. (34)

Since am−n(2− an)− cos 2π/n > 0 for a = 1, there exits aθ > 1 such that (34) holds for

1 < a ≤ aθ. The result is proved.

Finally, we can prove Theorem B. We take ε > 0 and choose a1(θ) < aθ such that

am−n(2− an)− cos
2π

n
≥ ε > 0 (35)

for every 1 < a ≤ a1(θ). Then

Γn
a,θ = anI ◦ FL−(n−m)

◦ FC

is well defined on ∆n. In particular, it is well defined on

∆ε
n = ∆n ∩ {y ≥ ε}.

Note that FL−(n−m)
◦ FC(∆

ε
n) ⊆ ∆ε

n ∩ {x ≤ 1} and

Γn
a,θ(∆

ε
n) ⊆ ∆n ∩ {y ≥ anε} ⊊ ∆ε

n.

Therefore, ∆ε
n ⊊ ∆n is a Γn

a,θ-invariant set. Moreover, ∆ε
n traps the orbit of every point

in ∆n ∩ {y > 0}. It is clear that ∆ε
n does not intersect S0 so that ∆ε

n and Γa,θ(∆
ε
n)

are disjoint (see Figure 5b). Then D = ∆ε
n verifies each statement of Theorem B. The

proof is complete for n ≥ 5. ■
From the fact that D = ∆ε

n traps the orbits of every point in ∆n ∩ {y > 0}, we can
deduce Corollary 1.3 straightforwardly.
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4.2. Case n = 4

This case can be followed directly from the proof of Lemma 2.7; however, it is considered

here for the sake of completeness. The proof is similar to that for n ≥ 5.

Since θ = πk/2 ∈ (0, π), then k = 1 and θ = π/2. Let us define

∆n = [0, a4]× [−a3, 0]

with a4 < 2. Then, FC(∆n) ⊂ ∆n ∩ {x ≤ 1}, Γj
a,θ(∆n) ⊂ {x ≤ 1} for j = 1, 2 and

Γ3
a,θ(∆n) = ∆n.

A new fold is necessary to define Γ4
a,θ restricted to ∆n in such a way that, by

applying Lemma 2.3,

Γ4
a,θ = EBM(C,L−3,O, a4I)

where L−3 is the line y = a−3. Note that FL−3 is a good fold on ∆n ∩{x ≤ 1} whenever

2/a3 − a > 0 (or equivalently, a4 < 2). Hence, for 1 < a < a1 < 21/4, the set D = ∆n

verifies Theorem B.

4.3. Case n = 3

First of all, since θ = 2πk/3 ∈ (0, π), then k = 1 and θ = 2π/3.

Let M = (1, 0) and A = (1,
√
3
3
(2a + 1)) be the intersection points of the critical

line C and the lines S0 and C1 respectively. We define

∆̃ = Ω(O,M,A,M1) .

See Figure 6. By construction, ∆̃ ⊂ {x ≤ 1} and ∆̃1 = Ω(O,M1, A1,M2) .

S0

S1

S2

O M

M1

M2

M3

A

A1

A2F(A2)

A3

B2

B3

C2

C3

∆̃

∆̃1

∆̃2

∆̃3

1Figure 6: Orbit of ∆̃

It is clear that ∆̃1 ⊂ {x ≤ 1} . Then, ∆̃2 = Ω(O,M2, A2,M3) being

A2 =

(
a3,−

√
3

3
a2(a+ 2)

)
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Since a > 1, ∆̃2 intersects {x > 1}. Hence, to obtain ∆̃3 we first need to define FC(∆̃2).

Note that

FC(∆̃2) ⊂ Ω(O, C2,F(A2), B2,M)

where B2 is the intersection point between C and C2, given by

B2 = (1,−
√
3

3
(2a2 + 1)) ,

and C2 is the intersection point between S2 and the straight line parallel to C2 through

the point FC(A2). Therefore, see Figure 6,

∆̃3 ⊂ Ω(O, C3, A3, B3,M1),

where

A3 = (a4 + a3 − a,−
√
3

3
a4 +

√
3

3
a3 +

√
3a)

Let us define ∆ = Ω(O, C3, A3, B3,M1). We will prove that ∆ is Γ3
a,θ-invariant.

S0

S1

S2

O M

M1

M2

M3

A

A1

A2F(A2)

A3F(A3)

A4

A5

B2

B3F(B3)

B4

B5F(B5)

C3

H3

H4

H5

∆

∆1

∆2

1Figure 7: Orbit of ∆

Proposition 4.6. There exists aθ ∈ (1,∞) such that, for every a ∈ (1, aθ), it holds that

(i) ∆3 ⊂ ∆,

(ii) ∆j ∩ {x > 1} = ∅ for i = 1, 2.

Proof. See Figure 6 and Figure 7. Note that

FC(∆) = (O,M,A,FC(B3),F(A3), H3,M1)

where H3 is the intersection point between C1 and the vertical line through the point

FC(A3). Thus,

∆1 = (O,M1, A1, B4, A4, H4,M2)
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and

∆2 = (O,M2, A2, B5, A5, H5,M3)

where

A5 = (a5 + a3 − a2,
a2
√
3

3
(2a4 + a3 − 3a− 3))

We claim that

FC(∆2) ⊆ Ω(O, C2,FC(A2), B2,M)

and hence, ∆3 = Γ3
a,θ(∆) ⊆ ∆. To prove the claim is enough to prove that FC(A5) ∈ ∆2.

In fact, FC(A5) ∈ ∆2 if and only if FC(A5) ∈ {y − x tan 2θ ≤ 0} and this holds whenever

a6 + 2a5 − 3a2 − 3 ≤ 0,

Thus, ∆3 = Γ3
a,θ(∆) ⊆ ∆ as long as 1 < a < 1, 1762 . . .

As in the previous cases, the proof of the first statement of Theorem B for n = 3

concludes by taking D = ∆ ∩ {y ≥ ε} for ε > 0 arbitrarily small.

Remark 4.7. The restriction of Γ3
a,θ to ∆ is the composition Aa,θ ◦ FC ◦A2

a,θ ◦ FC with

θ = 2π/3. In order to show that Γ3
a,θ|∆ is the EBM given by EBM(C,L−2,O, a3I), where

L−2 = A−2
a,θ(C) is the line −1

2
x +

√
3
2
y = 1

a2
we need that FC ◦ A2

a,θ = A2
a,θ ◦ FL−2. But,

unfortunately, Lemma 2.3 cannot be applied, because FL−2 is not a good fold on FC(∆).

5. Renormalization and Coexistence of Attractors: Proof of Theorem C

and Corollary 1.4.

Throughout this section we will suppose that Γa,θ satisfies the assumptions in

Theorem B. In particular, we will assume that inequality (35) holds.

Since Γ2
a,π/2 is the cartesian product of two one-dimensional tent maps, the

renormalization for the case n = 4 follows from Lemma 2.2 of [19] and the results

were already collected in Lemma 2.7. For n ≥ 5 we cannot take advantage of this

fact and we will see how the construction of the restrictive domains for the successive

renormalizations get more complicated, depending on whether n is odd or even. In the

first case we will obtain a single restrictive domain as stated in statement (a) of Theorem

C. In the second case we have n = 2ν. Then, when ν is odd, we also obtain a restrictive

domain for a first step in the renormalization, statement (b-i). When ν is even, two

disjoint restrictive domains are obtained and the renormalization can be continued, at

least one more step, in each of these domains, statement (b-ii). It is clear then that

when n is a power of 2 there is a sequence of renormalizations leading to a sequence of

doubling attractors, as stated in Corollary 1.4. We emphasize that the results obtained

in previous publications [18]-[20] correspond to the case n = 23. For the general case

n ̸= 2m, obstructions to the renormalization arise from the difficulty in defining good

folds over the corresponding restrictive domain.



Splitting and coexistence of 2-D strange attractors 24

We will assume that n ≥ 5 and denote θ1 = 2π/n. As we have seen in Proposition

4.5, the restriction of Γn
a,θ to the region ∆n can be shown as the EBM given by

Ga,θ = anI ◦ FL−(n−m)
◦ FC,

which is defined as the composition of two folds: the first one along the critical line C
and the second one along the line L−(n−m) whose equation given in (31) is of the form

y = −αx + β with α = cot θ1 > 0 and β = am−n csc θ1 > 0. These critical lines cross

each other at the angle θ1, so that the respective folds are conjugated by an−me−iθ1I,

that is,

FL−(n−m)
= am−neiθ1I ◦ FC ◦ an−me−iθ1I.

Therefore, setting λ = am−n, we have (see Figure 8a) that

Ga,θ =



G0,0
a,θ = anI in K00

G0,1
a,θ = anλeiθ1I ◦ FC ◦ λ−1e−iθ1I in K01

G1,0
a,θ = anI ◦ FC in K10

G1,1
a,θ = anλeiθ1I ◦ FC ◦ λ−1e−iθ1I ◦ FC in K11

(36)

Noting that FC and FC,P are reversed folds (the same for FL−(n−m)
and FL−(n−m),P ), the

next lemma is directly obtained from definition of Ga,θ.

Lemma 5.1. The following statements hold:

(i) In K∗
01 = {Q ∈ K01 : FC,P (Q) ∈ K11} it holds that Ga,θ = G1,1

a,θ ◦ FC,P .

(ii) In K∗
00 = {Q ∈ K00 : FL−(n−m),P (Q) ∈ K∗

01} it holds that

Ga,θ = G1,1
a,θ ◦ FC,P ◦ FL−(n−m),P .

(iii) In K∗
10 = {Q ∈ K10 : FC(Q) ∈ K∗

00} it holds that Ga,θ = G1,1
a,θ ◦FC,P ◦FL−(n−m),P ◦FC.

Proof.

(i) If Q ∈ K∗
01 then

G1,1
a,θ ◦ FC,P (Q) = anλeiθ1I ◦ FC ◦ λ−1e−iθ1I ◦ FC ◦ FC,P (Q)

= anλeiθ1I ◦ FC ◦ λ−1e−iθ1I(Q) = G0,1
a,θ(Q)

But G0,1
a,θ(Q) = Ga,θ(Q) because Q ∈ K01.

(ii) If Q ∈ K∗
00 then FL−(n−m),P

(Q) ∈ K∗
01 and, according to (i),

G1,1
a,θ ◦ FC,P ◦ FL−(n−m),P

(Q) = Ga,θ ◦ FL−(n−m),P
(Q).

Since FL−(n−m),P
(Q) ∈ K01 then

Ga,θ ◦ FL−(n−m),P
(Q) = G0,1

a,θ ◦ FL−(n−m),P
(Q)

= G0,0
a,θ ◦ FL−(n−m)

◦ FL−(n−m),P
(Q) = G0,0

a,θ(Q),

but G0,0
a,θ(Q) = Ga,θ(Q) because Q ∈ K00.
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(iii) If Q ∈ K∗
10 then FC(Q) ∈ K∗

00 and, according to (ii),

G1,1
a,θ ◦ FC,P ◦ FL−(n−m),P

◦ FC(Q) = G0,0
a,θ(FC(Q)) = G1,0

a,θ(Q),

with G1,0
a,θ(Q) = Ga,θ(Q) because Q ∈ K10.

O

C
L−(n−m) L∗

−(n−m)

θ1 V
K00

K01 K11

K10

P

1

(a) Domains of definition of Ga,θ

O
θ1 V V1

Ga,θ (K11)

1

(b) Intersection of K11 and Ga,θ(K11)

Figure 8

The differential map of Ga,θ is constant in the four regions Kij with i, j ∈ {0, 1},
and we will see next that it has complex eigenvalues only in K11. More concretely, in

this case the differential map is given by the matrix anei2θ1I; see (8). In order to take

advantage of this analogy, in K11 we will search for a fixed point P of Ga,θ and then

perform a certain change of variables in which P is the origin of coordinates.

In K11, the map Ga,θ can be written in the complex variable as

G1,1
a,θ(z) = an(2λeiθ1 − 2ei2θ1 + ei2θ1z). (37)

Then, the fixed point is

z0 = x0 + iy0 =
2ei2θ1 − 2λeiθ1

ei2θ1 − a−n
(38)

where

x0 = 2
a2n − am(an − 1) cos θ1 − an cos 2θ1

1− 2an cos 2θ1 + a2n
, (39)

y0 = 2
am(1 + an) sin θ1 − an sin 2θ1

1− 2an cos 2θ1 + a2n
.

The set K11 is limited by C and the reflection L∗
−(n−m) of L−(n−m) with respect to C,

whose equation is

(2− x) cos θ1 + y sin θ1 = a−(n−m). (40)

Therefore, the point P is an interior point of K11 if and only if

r1 = x0 − 1 (41)

r2 = (2− x0) cos θ1 + y0 sin θ1 − am−n
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are positive. In this case, each rj represents the distance of P to the respective lines

limiting K11. Their values are obtained by a straightforward substitution of (39) in (41).

That is,

r1 =
an − 2am cos θ1 + 1

a2n − 2an cos 2θ1 + 1
(an − 1), (42)

r2 =
am + am−n − 2 cos θ1
a2n − 2an cos 2θ1 + 1

(an − 1).

Then, since a > 1, we have the following lemma:

Lemma 5.2. The map Ga,θ has a fixed point P in K11 if and only if the following

conditions hold:

(i) an − 2am cos θ1 + 1 > 0

(ii) am + am−n − 2 cos θ1 > 0

Remark 5.3. For any θ1 both conditions of Lemma 5.2 hold as a → 1. In particular,

for all a ∈ (1, a1), being a1 given in Theorem B. Indeed, according to (34), it holds that

cos θ1 < am−n(2− an). Then, by Lemma 5.2, and since m ≤ n− 1, we obtain

an − 2am cos θ1 + 1 > an + 2a2m(1− 2a−n) + 1

> 1 + an−2(2an + a2 − 4)

where the latter term vanishes for a = 1 and increases as a → ∞. On the other hand,

am + am−n − 2 cos θ1 > 3am(1− a−n) > 0.

From this remark we obtain the following result:

Proposition 5.4. Let θ = 2πk/n ∈ (0, π) with k, n ∈ N and gcd(k, n) = 1. For every

a ∈ (1, a1), the map Ga,θ has a fixed point P ∈ K11 whose coordinates are given in (39).

Moreover, the Jacobian of Ga,θ at P is the matrix anei2θ1I. In particular,

Ga,θ(Q) = P + anei2θ1(Q− P )

for all Q ∈ K11.

Proof. The existence of the fixed point P ∈ K11 is an immediate consequence of

Lemma 5.2 and Remark 5.3.

To calculate the differential of Ga,θ at P , substitute the expression of G1,1
a,θ given in

(36) for its differential. Then, we obtain

an

(
cos θ1 − sin θ1
sin θ1 cos θ1

)(
−1 0

0 1

)(
cos θ1 sin θ1

− sin θ1 cos θ1

)(
−1 0

0 1

)
which is equal to

an

(
cos 2θ1 − sin 2θ1
sin 2θ1 cos 2θ1

)
.

Finally, since G1,1
a,θ is a composition of affine maps and fixes P , then it can be written as

in the statement of this Proposition.
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We will now consider the folds FC,P and FL∗
−(n−m)

,P . Both folds coincide with the

identity on K11. It also holds that

FL∗
−(n−m)

,P = FC,P ◦ FL−(n−m),P ◦ FC. (43)

Going back to Lemma 5.1 to define K∗ = K∗
00 ∪ K∗

01 ∪ K11 ∪ K∗
10. Then, we obtain the

following result:

Proposition 5.5. In K∗ it holds that

Ga,θ = G1,1
a,θ ◦ FL∗

−(n−m)
,P ◦ FC,P . (44)

Proof. The first equality is trivially verified in K11 because both FL∗
−(n−m)

,P and

FC,P are the identity map. In FC,P (K∗
01), the fold FL∗

−(n−m)
,P coincides with the identity

map. Therefore, by statement i) of Lemma 5.1,

G0,1
a,θ = G1,1

a,θ ◦ FC,P = G1,1
a,θ ◦ FL∗

−(n−m)
,P ◦ FC,P .

In K∗
00, by statement ii) of Lemma 5.1 we have that

Ga,θ = G1,1
a,θ ◦ FC,P ◦ FL−(n−m),P .

Since from (43) it follows that

FC,P ◦ FL−(n−m),P = FL∗
−(n−m)

,P ◦ FC,P ,

we obtain (44). Finally, in K∗
10, statement iii) of Lemma 5.1 and (43) lead to

Ga,θ = G1,1
a,θ ◦ FC,P ◦ FL−(n−m),P ◦ FC = G1,1

a,θ ◦ FL∗
−(n−m)

,P .

We obtain (44) by noting that FC,P is the identity map in K∗
10.

Remark 5.6. It is clear that the line y = 0 is invariant for Ga,θ and that every line of

the form y = ε > 0 is moved upwards by Ga,θ. Also, every line forming an angle θ1 with

y = 0 located at the right of the origin is moved rightwards. Therefore, it easily follows

that the possible attractors for Γn
a,θ on ∆n must be in ∆n ∩ K∗.

Since ∆n is an invariant set for Ga,θ, according to Remark 5.6, the study of the

dynamics of Γn
a,θ on ∆n reduces to that on K∗. We will use the expression of Ga,θ given

in (44). The composition of the folds FL∗
−(n−m)

,P ◦FC,P takes all K∗ on K11, which is the

region limited by the lines C and L∗
−(n−m). These lines intersect at a point V given in

(32) and cross each other at an angle θ1. The image V1 of V is obtained after rotating

around P an angle 2θ1 and multiplying by a, or directly from Ga,θ(V ) = G0,0
a,θ(V ) to

obtain

V1 = (an, am csc θ1 − an cot θ1) (45)

Then, the image Ga,θ(K11) of K11 intersects K11 according to Figure 8b.

Let A = Ga,θ(A) ⊂ K∗ be a strictly Ga,θ-invariant set. Then, Ga,θ(A) ⊂ Ga,θ(K∗) =

Ga,θ(K11) and therefore A ⊂ K∗∩Ga,θ(K1,1) = R1. Repeating this process iteratively we

have that A ⊂ K∗∩Ga,θ(R1) = R2 and in general A ⊂ Rn with Rn = K∗∩Ga,θ(Rn−1).

Thus, A ⊂ ∩∞
n=1Rn. Following the arguments in [21] we can prove that there exists

a natural number N such that Rn = Rn+1 for all n ≥ N , so that R = ∩N
n=1Rn is

an strictly invariant set. However, we are interested in studying next how this strictly

invariant set can split into several pieces.
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5.1. Renormalization

We will translate O on the fixed point P = (xP , yP ) of the map Ga,θ given in (39).

Afterwards, the change of variables (x, y) → ( x
1−xP

, y
1−xP

) turns C into another critical

line whose equation is x = 1 in the new coordinates and which will be still denoted

by C. The line L∗
−(n−m) is turned into another line La,θ that crosses C at an angle θ1

and whose distance to the origin is

r(a) =
r2(a)

r1(a)
=

am(an − 2an−m cos θ1 + 1)

an(an − 2am cos θ1 + 1)
. (46)

As usual, we will denote by K00 the region limited by C and La,θ that contains the new

origin. Note that lima→1 r(a) = 1.

After performing these changes of variables, and according to Propositions 5.4

and 5.5, the dynamics of the restriction of Γn
a,θ to ∆n for a ∈ (1, a1) is equivalent

to that of the family of EBMs

Ψa,θ = anei2θ1I ◦ FLa,θ
◦ FC. (47)

As at the beginning of section 4, for each j = 0, . . . , n− 1 let us again denote by Sj

the ray that starts from the origin and has (cos jθ1, sin jθ1) as its director vector. Then,

the plane is divided into n regions R0, . . . ,Rn−1, where Rj is the region bounded by Sj

and Sj+1 for each j = 0, . . . , n− 1, setting Sn = S0. It is clear that

Ψa,θ(Rj ∩ K00) ⊂ Rj+2 mod n.

We will denote in this section Mk = Ψk
a,θ(M0). Note that Mk ∈ S2k mod n. In

Figure 9 we represent the position of the regions Rj with respect to the line La,θ

depending on whether n is odd (Figure 9a) or even (Figure 9b). We will study each

case separately.

C

La,θ

S0

S1

Sn−1

Sν−1

Sν

Sν+1

Rn−1

Rν

R0

Rν−1

O
θ1

1

(a) Case n = 2ν + 1

C
La,θ

S0

S1

Sn−1

Sν−1

Sν

Sν+1

Rn−1Rν

R0

Rν−1

O

1

(b) Case n = 2ν

Figure 9

5.1.1. Case n odd. Let n = 2ν + 1. Then, θ = 2θ1 = k2π/n with k = 2 verifies the

hypotheses of Theorem B. We will revisit its proof with δ = an instead of a and taking

again θ1 = 2π/n. In this case, m = ν + 1. Since the angle formed by La,θ and C is θ1,
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the line La,θ is orthogonal to the bisector of the region Rν−1, which is limited by Sν−1

and Sν . Let r be such that Rν−1 = Ψr
a,θ(R0). If ν is odd, then r = (ν − 1)/2, otherwise

r = 3ν/2. Note that in the latter case the iterates Ψj
a,θ(R0) with j = 0, . . . , r describe

a full rotation.

Let us take on the rays Sν−1 and Sν the points Mr = Ψr
a,θ(M0) and Mr+m =

Ψr
a,θ(Mm), respectively. Whether ν is even or odd, the distance of these points from the

origin is less than δn. The orthogonal lines through Mr and Mr+m to the respective rays

Sν−1 and Sν intersect each other at a point Hr; see Figure 10.

Lemma 5.7. There exists δM > 1 such that for all 1 < δ = an < δM it holds that

(i) The point M = (δs cos jθ1, δ
s sin jθ1) for all j = 0, 1, . . . , n − 1 and 0 ≤ s < n

belongs to the half-plane {x ≤ 1}.
(ii) The line La,θ intersects the polygon Ω(O,Mr, Hr,Mr+m) at two points H−

r and H+
r .

Proof. Statement i) is proved proceeding as in Lemma 4.1. In fact, the result

for {x < 1} is obvious taking δ = 1 and j ̸= 0. By continuity it still holds as δ → 1.

Since r(a) → 1 as a → 1 (see (46)), this argument also concludes statement ii).

Before proving statement a) of Theorem C, note that except for FLa,θ
, the map Ψa,θ

belongs to family (8) with a = δ, θ = 2θ1 = k2π/n and k = 2. Therefore, we will try

to construct the set D1 from another set ∆ = Ω(O,Mm, K) as in (22), with m = ν + 1.

Then,

FC(∆) = Ω(O,Mm, H,M)

as in Figure 5a, and

∆1 = Ω(O,Mm+1, H1,M1).

In the case r = (ν − 1)/2 we obtain

∆ν−1 = Ω(O,Mm+r, Hr,Mr).

Now, in order to obtain ∆ν , it is necessary to consider the fold FLa,θ
that leads to

FLa,θ
(∆ν−1) = Ω(O,Mm+r, H

+
r , H

−
r ,Mr)

where H+
r and H−

r are the points given in Lemma 5.7. Then,

∆ν = Ω(O,Mm+r+1, H
+
r+1, H

−
r+1,Mr+1)

and

∆n−m = Ω(O,Mn, H
+
n−m, H

−
n−m,Mn−m).

See Figure 10 and compare with Figure 5b. Of course, the set ∆n−m is contained

∆n−m = Ω(O,Mn, Hn−m,Mn−m).

Note that ∆n−m would coincide with ∆n−m if the fold FLa,θ
had not intervened. After

applying to both ∆n−m and ∆n−m the fold FC and the iteration Ψm
a,θ, we obtain

∆n ⊂ ∆n ⊂ ∆ = ∆.
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M

Mm

C

H

H+
n−m

H−
n−m

Mn−m

La,θ

S1

S0

Sn−1

Sν−1

Sν

O
K

Mr

H+
r

Hr

H−
r

Mm+r ∆

1Figure 10: Case n = 2ν + 1: The restriction of Ψn
a,θ to ∆ is a 3-fold EBM

In the case r = 3ν/2, the fold FLa,θ
would have not intervened before the (n−m)th

iterate, so that ∆n−m = ∆n−m. In fact, ∆n−m+j = ∆n−m+j for j = 0, 1, . . . , ν/2.

Since n − m + ν/2 = r, we have that FLa,θ
(∆n−m+ν/2) ⊂ ∆n−m+j, and therefore

∆n−m+j = ∆n−m+j for j = 0, 1, . . . ,m.

In conclusion, we obtain for the map Ψa,θ given in (47) the following result, which

is similar to Proposition 4.3 and, consequently, to Corollary 4.4.

Proposition 5.8. There exists 1 < δ1 < δM such that as long as 1 < δ = an < δ1 it

holds that

(i) Ψn
a,θ(∆n) ⊂ ∆n

(ii) Ψj
a,θ(∆n) ∩ {x > 1} = ∅ for each j ∈ {1, . . . , n− 1} \ {n − m}, where m is the

smallest natural number such that Mm ∈ S1.

As in the proof of Theorem B, we construct the set

D′ = ∆
ε

n = ∆n ∩ {y ≥ ε} (48)

verifying for Ψa,θ statement a) of Theorem B, which proves statement a) of Theorem C.

Remark 5.9. We have seen that each one of the n disjoint pieces Dj that contain the

strange attractor for Γa,θ for 1 < a < a1 splits itself into another n pieces D′
i when

1 < a < a2 < a1, thus giving rise to n2 disjoint pieces that contain the strange attractor

for Γa,θ. When considering the restriction of Γn2

a,θ on each one of these n2 pieces, it is

necessary to take into account the fold FLa,θ
. Then, applying Lemma 2.3 we obtain the

restriction of Γn2

a,θ as a 3-fold EBM.

5.1.2. Case n even. Let n = 2ν. The line La,θ is orthogonal to the ray Sν−1 limiting

the regions Rν−2 and Rν−1. See Figure 11. We will distinguish two cases: ν odd, and

ν even, according to statements ii) and iii) of Theorem C.



Splitting and coexistence of 2-D strange attractors 31

C

K

M+

M−

M

La,θ

S1

S0

Sn−1

Sν−2

Sν−1

Sν

Ψ
ν/2
a,θ (M) O

∆
+

∆
−

1Figure 11: Case n = 2ν with ν even: There exist two disjoint restrictive domains

respectively contained in ∆
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and ∆

−

Assume first that ν is odd. Then, we will follow the steps in the proof of Theorem B

for the map Ψa,θ in (47) with θ = 2θ1 = 2π/ν. It is straightforward to check that Ψa,θ

satisfies the hypotheses and m = 1. Let us take the domains

R0
= R0 ∪R1, . . . ,R

ν−1
2 = Rν−2 ∪Rν−1, . . . ,Rν−1

= Rn−2 ∪Rn−1,

and Rν
= R0

. It is easily checked that Ψa,θ(R
j
) = Rj+1

for j = 0, . . . , ν − 1.

Inside R0
let us take the triangle ∆ = Ω(O,M1, K), where M1 = Ψa,θ(M0), with

M0 = (1, 0) and where K is the point of intersection between y = 0 and the orthogonal

line to S2 at the point M1, whose equation is

x cos
2π

ν
+ y sin

2π

ν
= δ = an.

Then, we can proceed as in the proof of Theorem B to obtain

∆(ν−1)/2 = Ψ
(ν−1)/2
a,θ (∆).

If the line La,θ does not intersect ∆(ν−1)/2, then the process follows as in the proof of

Theorem B until obtaining ∆ν ⊂ ∆. On the other hand, if the line La,θ intersects

∆(ν−1)/2, then the fold FLa,θ
intervenes when it comes to obtaining both Ψa,θ(∆(ν−1)/2)

and Ψ2
a,θ(∆(ν−1)/2). As we have explained in the case when n is odd, despite the

intervention of such fold, it still holds that ∆ν ⊂ ∆. Therefore, taking again D′ as

in (48) we obtain statement a) of Theorem B for the map Ψa,θ, equivalently, statement

b) of Theorem C.

Remark 5.10. In this case, each one of the n disjoint pieces Dj that contain the

strange attractor of Γa,θ for 1 < a < a1 splits now into ν = n/2 new pieces D′
i when

1 < a < a2 < a1, thus giving rise to n2/2 disjoint pieces in which the strange attractor

of Γa,θ is contained. When considering the restriction of Γ
n2/2
a,θ on each one of these
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n2/2 pieces, it is necessary to take into account the fold along the line FLa,θ,O. If this

fold intervenes in the dynamics, then again by Lemma 2.3 we know that this restriction

Γ
n2/2
a,θ is a 3-fold EBM.

Finally, let us suppose that ν is even. In this case, we construct the triangles

∆+ = Ω(O,M+, K), ∆− = Ω(O,M−, K−),

with M± = (l cos θ1,±l sin θ1). The orthogonal lines to the rays S1 and Sn−1 through

M+ and M−, respectively, intersect y = 0 at K = (l sec θ1, 1). Take l > 1 such that

l cos θ1 < 1, l sec θ1 > 1. (49)

The critical line x = 1 intersects ∆± at M0 = (1, 0) and H± = (1,±(l csc θ1 − cot θ1)).

See Figure 11. It is clear that Ψ
ν/2
a,θ (M0) ∈ Sν , while Ψ

ν/2
a,θ (M

−) ∈ Sν−1 and

Ψ
ν/2−1
a,θ (M+) ∈ Sν−1. The respective distances of these points from the origin are δν/2,

lδν/2, and lδν/2−1. Arguments as in the proofs of Lemma 4.1 and Lemma 5.7 allows to

prove the next result.

Lemma 5.11. There exists δM > 1 such that for all 1 < δ = an < δM the following

statements hold:

(i) For j = 0, 1, . . . , ν − 1, the points Ψj
a,θ(M0), Ψ

j
a,θ(M

+) and Ψj
a,θ(M

−) belong to the

half-plane {x ≤ 1}.
(ii) FLa,θ

(Ψj
a,θ(M

+)) = Ψj
a,θ(M

+) for all j ̸= ν/2− 1.

(iii) FLa,θ
(Ψj

a,θ(M
−)) = Ψj

a,θ(M
−) for all j ̸= ν/2.

Actually, FLa,θ
(Ψ

ν/2−1
a,θ (M+)) = Ψ

ν/2−1
a,θ (M+) if and only if lδν/2−1 ≤ r(a) and

FLa,θ,O(Ψ
ν/2
a,θ (M

−)) = Ψ
ν/2
a,θ (M

−) if and only if lδν/2 ≤ r(a).

Let us first consider the triangle ∆+ to analyse the different iterates ∆+
j = Ψj

a,θ(∆
+)

under Ψa,θ. The segment OM0 returns into S0 after ν iterates. According to

Lemma 5.11, in each of these iterates it does not undergo any fold and thus returns with

a length of δν > 1. On the other hand, the segment OM+ also returns into S1 after

ν iterates, but it may also be folded by FLa,θ,O in its ν/2th iterate if lδν/2−1 > r(a).

Either way, the segment OM+ returns into S1 with a length less than or equal to

r(a)δν/2+1. Therefore, in order that ∆+
ν = Ψν

a,θ(∆
+) is contained in ∆+, it is enough

to take δν < l sec θ1 and r(a)δν/2+1 < l. Since l > 1 is fixed and satisfies (49) and

lima→1 δ
ν = lima→1 δ

ν/2+1r(a) = 1, we can conclude that there exists δ1 ≤ δM such that

∆+
ν = Ψν

a,θ(∆
+) ⊂ ∆+ para 1 < δ = an < δ1. Moreover, the restriction of Ψν

a,θ to ∆+
ν is

again an EBM of at most two fold. Taking D′ = ∆+
ν ∩ {y ≥ ε} as in (48), we conclude

that D′ verifies the first three statements of Theorem B, and the restriction of Ψν
a,θ to

D′ belongs to the set Fa,θ.

Let us now consider the triangle ∆−. The segment OM− returns into Sn−1 after

ν iterates, but it may also be folded by FLa,θ
in its (ν/2 + 1)th iterate if lδν/2 > r(a).

Either way, the segment OM− returns into Sn−1 with a length less than or equal to

r(a)δν . Therefore, the same value δ1 in the previous case is valid to guarantee that
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∆−
ν = Ψν

a,θ(∆
−) ⊂ ∆− for all 1 < δ = an < δ1. Then again, the restriction of Ψν

a,θ to

∆−
ν is an EBM of at most two folds. Taking D′ = ∆−

ν ∩ {y ≥ ε} as in (48), we conclude

that D′ verifies the first three statements of Theorem B, and the restriction of Ψν
a,θ to

D′ belongs to the set Fa,θ.

The proof of the third statement of Theorem C is complete.

6. Conclusions and Open Questions

An attractor for a transformation as well as the closure of its basin of attraction (if

bounded) are both invariant compact sets. Moreover, attractors are minimal strictly

invariant compact sets. Strictly invariant sets for maps defined by a fold along a certain

line (such as Γa,θ) are self-similar in some sense and are limited by the successive images

of such line. This fact allowed us to prove in [21] the existence of strictly invariant

sets Ka,θ for every θ ∈ (0, π) and every a > 1 sufficiently close to 1. These sets Ka,θ are

polygons, and there exists a nonincreasing sequence {an(θ)}n∈N of values of a at which

the number of sides of Ka,θ increases. This sequence is finite (eventually constant) if and

only if θ/π is a rational number. The question of the minimality of Ka,θ is of utmost

importance.

For θ = 3π/4 it was proved in [17] that Ka,θ is a minimal strictly invariant pentagon

for all (1 +
√
2)1/4 < a ≤

√
2. The expansivity of Γa,θ for these values of a guarantees

then that Ka,θ is a strange attractor. In [16] and [15] it was numerically shown that

for slightly smaller a-values, the pentagon Ka,θ loses its minimality only to contain

another attractor, which is connected but not simply connected (a hole around the origin

appears). For even smaller values of a, such attractor splits into eight pieces starting a

process of doubling. These processes of splitting and doubling were analytically proved

in [18] and [19]. Later in [20] it was proved that each one of these strictly invariant

sets contains a disconnected strange attractor whose pieces are contained in those of the

strictly invariant set.

The interest in extending the above-mentioned results to any θ ̸= 3π/4 motivated

the following conjectures:

(i) For every θ ∈ (0, π) there exists a0 = a0(θ) > 1 such that Γa,θ displays a strictly

invariant polygon Ka,θ for all a ∈ (1, a0).

(ii) The polygon Ka,θ is minimal (hence a strange attractor) if and only if (2, 0) ∈ Ka,θ.

(iii) Let a′0 > 1 be the minimum of the values of a for which (2, 0) ∈ Ka,θ. Then,

there exists a′′0 ∈ [1, a′0) such that for every a ∈ [a′′0, a
′
0) there exists a connected

neighborhood Ua,θ of O such that Ka,θ \Ua,θ is strictly invariant and minimal (hence

a connected but not simply connected strange attractor). It holds that a′′0 = 1 if

and only if θ/π is not a rational number.

(iv) If θ/π is a rational number, a process of splitting and/or doubling of attractors

occurs for a sequence of values of a in (1, a′′0).
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Conjecture i was positively solved in [21]. From Theorem A we then conclude that

there exist strange attractors for any θ ∈ (0, π) and any a ∈ (1, a0).

Conjectures ii and iii remain open, though some numerical experiments (see

Figures 12, 13, and 14) seem to support them. A numerical approach to the irrational

case is not possible, so that it can only be analytically tackled.

Conjecture iv is actually a complex issue which requires to control a complicated

process of renormalization. Given θ = 2πk/n ∈ (0, π) with k, n ∈ N and n > 3 and

gcd(k, n) = 1, we have proved in this paper the existence of two consecutive splittings of

the strictly invariant set and therefore of the strange attractor (one splitting for n = 3).

However, when n is odd or n = 2ν with ν odd, for the study of a possible third splitting

it is necessary to consider a 3-fold EBM. Then, it seems natural to ask whether the

splitting process finishes at that point or further renormalizations can be carried out

considering other EBMs of more folds. A possible increasing number of folds could make

this problem analytically unmanageable. Numerically, some simulations in Figure 12

show that for n = 7 each one of the 49 pieces obtained for a = 1.006 split again into

another 7 pieces as is shown for a = 1.0006.

After the proof of Theorem C, we would like to reformulate Conjecture iv in a more

precise way: Given the levels of the Sarkovskii ordering for all numbers greater than 3,

S0: 5 ▷ 7 ▷ 9 ▷ · · ·
S1: 3 · 2 ▷ 5 · 2 ▷ 7 · 2 ▷ · · ·
Sq: 3 · 2q ▷ 5 · 2q ▷ 7 · 2q ▷ · · ·
S∞: · · · ▷ 16 ▷ 8 ▷ 4,

we know by Corollary 1.4 that for every n ∈ S∞ there exists a sequence of doubling of

attractors, and we wonder whether for every n ∈ Sq there exist q − 1 doublings along

with a infinite sequence of splitting of attractors.

The singular case n = 3 should be also studied. See Figure 15.
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(a) 7-piece attractor for a = 1.05 (b) Amplification of a piece in (a)

(c) 7-piece attractor for a = 1.02 (d) Amplification of a piece in (c)

(e) Evolution of (d) before the splitting (f) Splitting of (d) for a = 1.006

(g) Amplification of a piece in (f) (h) Splitting of (g) for a = 1.0006

Figure 12: Numerical simulation for θ = 2π/7 and decreasing values of a
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(a) 6-piece attractor for a = 1.05 (b) Amplification of a piece in (a)

(c) Splitting of (b) for a = 1.04 (d) Amplification of a piece in (c)

Figure 13: Numerical simulation for θ = 2π/6 and decreasing values of a

(a) 8-piece attractor for a = 1.05 (b) Amplification of a piece in (a)

(c) Splitting of (b) for a = 1.02 (d) Amplification of a piece in (c)

Figure 14: Numerical simulation for θ = 2π/8 and decreasing values of a



Splitting and coexistence of 2-D strange attractors 37

(a) 3-piece attractor for a = 1.1 (b) Amplification of a piece in (a)

(c) Splitting of (b) for a = 1.05 (d) Amplification of a piece in (c)

Figure 15: Numerical simulation for θ = 2π/3 and decreasing values of a
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