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Abstract. We consider the equation −∆w = w3 with zero boundary conditions on planar
domains that are conformal images of annuli. Starting with an approximate solution, we prove
that there exist a true solution nearby. Our approach is computer-assisted. It involves simulta-
neous and accurate control of the (inverse) Dirichlet Laplacean, nonlinearities, and conformal
mappings.

1. Introduction
We consider the boundary value problem

−∆w = w3 on Ω , w = 0 on ∂Ω , (1.1)

for a real-valued function w on a bounded doubly connected domain Ω in the plane.
It is well-known [4,11] that the equation −∆w = |w|q−2w on a bounded open domain

in d ≥ 2 dimensions with smooth boundary has an infinite number of distinct solutions for
subcritical powers 2 < q < 2d/(d − 2). Furthermore, if Ω is a ball |z| < b or an annulus
a < |z| < b with a > 0, then there exist an infinite number of distinct solutions that are
radial (depend on a point z ∈ Ω only via its distance from the origin |z|), and an infinite
number of rotationally inequivalent non-radial solutions [9].

To obtain detailed information about solutions, the only approach available is often
numerical. Numerical solutions to a variety of semilinear boundary value problems in d = 2
dimensions are described e.g. in [8,10]. When an interesting solution is observed numeri-
cally, it is natural to ask whether a true solution exists nearby. The method described in
this paper allows us to answer such questions for some doubly connected domains in the
plane. The square and the disk have been considered in [13,17].

Consider first an annular domain a < |z| < b in the plane. Early results for this
domain [5,6,7] established the existence of multiple positive solutions, with the number
of rotationally inequivalent solutions tending to infinity as b/a approaches 1. The reason
why such multiple solutions exist is best seen by characterizing nonzero solutions of (1.1)
as critical points of a suitable functional J , such as

J(w) =

∫
Ω
|∇w|2[ ∫

Ω
w4
]1/2 , w ∈ H1

0(Ω) . (1.2)

To be more precise, a nonzero solution w of the equation (1.1) corresponds to a line of
critical points t 7→ tw of J . It is not hard to see that, for values of b/a close to 1, a
minimizer of J cannot be radial. A single bump whose width is of the order b− a can lead
to a lower value of J . And by minimizing J in a subspace of functions u ∈ H1

0(Ω) that are
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invariant under rotations by an angle 2π/k, it is possible to find solutions with k > 1 local
maxima, if b/a is sufficiently close to 1.

Figure 1 shows four solutions of this type, including a solution that has both positive
and negative local extrema. A more precise description of these solutions is given below.

Figure 1. Solutions 1,2,3,4 on plain tori.

Other domains that admit multi-bump solutions are (for trivial reasons) disconnected
domains. Consider e.g. a union of k mutually disjoint open disks, each containing a point
from the unit circle. Such a domain can be made doubly-connected by taking its union
with an annulus 1 − ε < |z| < 1 + ε. It is well-known that stable multi-bump solutions
persist on the resulting region Ω, if ε > 0 is chosen sufficiently small.

Similar solutions exist on topological annuli whose widths vary less drastically. Figures
2 and 3 show some solutions of this type. We note that the last solution in Figure 3, unlike
its domain, has no symmetries. Identifying R2 with the complex plane C, the domains
used in Figures 2 and 3 are images of an annulus A` = {ζ ∈ C : e−` < |ζ| < 1} under a
function ψex : A` → C of the form

ψex(ζ) = ζ − r

n+ 1
ζn+1 , n 6= −1 . (1.3)

Figure 2. Solutions 5,6,7 on Ωex = ψex(A`), with n = 3.

Figure 3. Solutions 8,9,10 on Ωex = ψex(A`), with n = 3,−3, 6.
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The values of the parameters n, r, and ` that are used to define ψex and A` are shown
in Table 1. This table lists some other geometries and solutions that will be described
below. It also includes the solutions depicted in Figure 1, which correspond to the choice
ψann(ζ) = ζ. To simplify our descriptions, the solution described by the j-th row in Table
1 will be referred to as “solution j”.

Remark 1. The 3d plots given in this section give a rather inaccurate picture of the
domains. 2d plots of some of the domains Ω = ψ(A`) and level sets for our solutions
w : Ω→ R can be found in Section 10, Figures 6,7,8,9.

Next, we describe some other domains that are images of A` under injective analytic
mappings. Let D be the open unit disk in C and denote by D̄ its closure. The mappings
ψ considered here are analytic on an open neighborhood of D̄. Substituting w = v ◦ ψ−1

into (1.1), we obtain the equation

−∆v = |ψ′|2v3 on A` , v = 0 on ∂A` . (1.4)

The most general conformal isomorphism of D is of the form R2 ◦Ψiso ◦R1, where R1

and R2 are rotations about the origin, and where

Ψiso(ζ) =
ζ − r
1− rζ

, ψiso(ζ) =
(
1− r2

)−2
Ψiso(ζ) , (1.5)

with −1 < r ≤ 0. Here ψiso is a rescaled version of Ψiso, which we prefer for our compu-
tations. Notice that the boundary of Ωiso = ψiso(A`) consists of two nested circles, which
are non-concentric if r 6= 0.

Figure 4 depicts three solutions obtained for the domain Ωiso. Intuitively, a minimizer
w of J on a distorted annulus such as Ωiso has a single bump on a wide part of the domain.
The reason is that rapid variations of w cause a large numerator in (1.2). Numerically, the
Morse indices for the solutions 11,12, and 13 in Figure 4 are 1, 2, and 5, respectively. Here,
the Morse index of a critical point w of J is defined to be one larger than the number of
descending directions of J at w. We note that solutions 12 and 13 have descending direc-
tions that correspond to a “rotation” of these solutions. This seems typical for solutions
that have bumps on narrow parts of the domain.

Figure 4. Solutions 11,12,13 on Ωiso. Numerically, the indices are 1, 2, 5.

Let us briefly comment on our procedure for finding approximate numerical solutions.
Each of the three solutions depicted in Figure 4 has been obtained by starting with

a solution on the annulus, using ψiso with r = 0, and then following the solution as r is



4 GIANNI ARIOLI and HANS KOCH

being varied. The starting points for solutions 11 and 12 are single-bump solutions on
the annulus. Solution 13 is a perturbation of the radial solution on the annulus that has
(numerically) index 5. In all three cases, the perturbations was restricted to a subspace
of functions w that are symmetric with respect to reflection about the horizontal axis. In
this subspace, the indices of the three solutions are 1, 1, and 4, respectively, along the
entire homotopy from r = 0 to the final values of r shown in Table 1. No bifurcations are
encountered in these cases.

Solution 10 has no direct analogue on the annulus A`. It was constructed by placing
bumps in the chosen places and iterating a contraction mapping of the type described in
Section 7. The other solutions in Figures 2 and 3 have been obtained via homotopy from
solutions on the annulus, by varying the value of the parameter r in the map ψex. In
particular, solution 8 is connected to a three-bump solution (at angles 0 and ±2π/3) on
the annulus via two branches that are joined by a bifurcation.

Two other well-known planar domains are the inverted ellipse Ψiel(D) defined by

Ψiel(ζ) =
2α

1 + α
ψiel(ζ) , ψiel(ζ) =

ζ

1− rζ2
, r =

1− α
1 + α

, (1.6)

and the Cassini oval Ψcas(D) defined by

Ψcas(ζ) =

√
2α

1 + α
ψcas(ζ) , ψcas(ζ) =

ζ√
1− rζ2

, r =
1− α
1 + α

. (1.7)

In both cases 0 < α ≤ 1. As α→ 0, the region Ψ(D) pinches down to zero on the imaginary
axis. In the case of the Cassini oval, the limit domain is a figure eight with vertex at zero. In
addition, we also consider the “near-Cassini oval” of order n. The corresponding mapping
ψncs is defined to be the Taylor polynomial of order 2n+ 1 associated with ψcas.

Figures 5 depicts some solutions on Ω = ψ(A`) with ψ ∈ {ψiel, ψcas, ψncs}. The associ-
ated parameter values are listed in Table 1.

Figure 5. Solutions 14,15,16,17 on Ω = ψ(A`), with ψ = ψiel, ψiel, ψcas, ψncs.

The following result establishes the existence of the solutions mentioned above and
describes some of their properties.

Theorem 1.1. Consider the equation (1.1) associated with a fixed but arbitrary row of
Table 1. The entry in column 5 specifies an annulus A`, and the entries in columns 2, 3, 4
specify an injective mapping ψ : A` → C. Then there exists a real analytic solution w
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of the equation (1.1) on Ω = ψ(A`) with the following properties, described in rows 6–9
of Table 1. Column 6 indicates whether the solution is symmetric (+) or antisymmetric
(−) under reflection about the horizontal axis. In column 7, a symbol ∞ stands for a
radial solution, an integer k > 1 indicates a symmetry under a rotation by 2π/k, and an
integer k < 0 indicates an antisymmetry under a rotation by π/k. The absence of an
entry in column 7 (6) means the absence of a rotation (reflection) symmetry. Column 8
lists the known positive local minima and negative local maxima, on a partition of the
circle range(arg ζ) into 12 arcs, as described below. And column 9 gives an interval that is
contained in the range of w. Many more known properties of these solutions are described
by our data in [20].

Each of the solutions w mentioned in this theorem is close to an approximate solution
w̄ that has been found numerically. Our (computer-assisted) proof of Theorem 1.1 consists
in verifying bounds on w̄ that imply the existence of a true solution w near w̄.

For some other computer-assisted proofs on boundary value problems in PDEs, we
refer to [12,13,15,16,17] and references therein.

label ψ n r ` ref k peaks range index

1 ann 1 + ∞ (0, 5.8] ∼ 9
2 ann 1 + • (0, 8.4] ∼ 1
3 ann 1/4 + 12 • • • • • • • • • • • • (0, 24] ∼ 24
4 ann 1/2 + −3 •

•
•
•
•
• [−13, 13] ∼ 6

5 ex 3 461/512 1 + • (0, 9.7] ∼ 2
6 ex 3 3/4 1/2 + 3 .. .. .. (0, 14] ∼ 9
7 ex 3 1/4 1 − •

• [−7.9, 7.9] ∼ 2
8 ex 3 3/8 25/32 + • • • • • (0, 10] ∼ 10
9 ex −3 51/1024 1 + 3 • • • (0, 7.0] ∼ 9
10 ex 6 1/2 1/2 • • • (0, 14] ∼ 6
11 iso −1/4 1 + • (0, 5.8] ∼ 1
12 iso −1/4 1 + • (0, 11] ∼ 2
13 iso −3/8 2 + • (0, 6.0] ∼ 5
14 iel 13/32 1 + • (0, 4.4] ∼ 1
15 iel 21/64 1 + 2 • • (0, 9.8] ∼ 9
16 cas 11/32 1 + 2 • • • • (0, 7.8] ∼ 8
17 ncs 50 3/4 1 + −1 •

• [−4.0, 4.0] ∼ 2

Table 1. Parameter values and properties of solutions.

The last column in Table 1 shows the Morse index I of the solution. This result is
purely numerical, whence the notation ∼ I.

The vertical bars in the 8-th column labeled “peaks” represent a partition of the circle
range(arg ζ) into 12 arcs C0, C1, . . . , C11. The angular interval Ck is centered at kπ/6 and
has width π/6. Each “high dot” on Ck represents a known positive local maximum of the
solution, while each “low dot” represents a known negative local minimum. These extrema
are “known” in the sense that they have been verified to exists. Numerically, there are no
other local extrema, but we have not verified this. We note that, for our solutions 5–17,
column 8 determines e.g. whether a local extremum is on a wide part of Ω or on a narrow
part.
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Remark 2. The information given in Table 1 is necessarily very incomplete. For each
row in this table, we construct a small ball in a suitable Banach space that is centered at an
approximate solution and encloses the true solution. Using this enclosure, it is possible to
give rigorous upper and lower bounds on values, derivatives, and other quantities associated
with the solution. In particular, many visible features in Figures 1-8 can be verified, if
formulated in a precise way. (An example is our procedure Horizontal Values [20] that
determines upper and lower bounds on the extreme values on the lines arg ζ = 0 and
arg ζ = π.) The necessary data and tools can be found in [20].

Results in the spirit of Theorem 1.1 have been obtained in [13,17] for equations of the
type −∆v = Wv3 on squares and disks. By choosing the weight function W > 0 carefully,
it is possible e.g. to obtain solutions with fewer symmetries than what the domain and the
weight W would allow. The equation (1.4) is of the same type; but W = |ψ′|2 cannot be
chosen ad-hoc, and the annular domain is harder to deal with than a square or a disk.

Using the methods given in [17], it would be relatively straightforward (albeit tedious)
to prove that the Morse indices listed in Table 1 are correct. Additional work could include
an analysis of solution branches and bifurcations, say as a function of our parameter r ≥ 0.
But this would go beyond the scope of the present paper.

The domains Ω = ψ(A`) considered here are relatively tame, except for near-cusps
with some choices of ψ = ψex. More “distorted” annuli could be treated with similar
methods, say ψ ∈ {ψiso, ψiel, ψcas} with r closer to 1. But this makes the computation
times for the proof uncomfortably large. The issue is that the factor |ψ′|2 that appears
in the equation (1.4) has to be controlled not only as a function, but as a multiplication
operator on a suitable space of functions.

One of the main difficulties with computer-assisted proofs that involve infinite dimen-
sional function spaces is to find a suitable expansion into “simple” functions. Our choice
of expansion and spaces will be described in Section 3. Roughly speaking, we use Fourier
series in both arg ζ and log |ζ|. With this choice, the (inverse) Dirichlet Laplacean and
products v 7→ v3 are relatively easy to control. What is less well behaved are multiplication
operators like v 7→ |ψ′|2v that appear in the equation (1.4). Much of our analysis in this
paper deals with this problem. The details are given in Sections 4, 5, and 8. Section 6 is
devoted to the injectivity problem for ψ, especially for the near-Cassini map. In Section
7 we reduce the proof of Theorem 1.1 to concrete estimates that can be (and have been)
verified with the aid of a computer. A sketch of the computer estimates is given in Sec-
tion 9. The complete details of this part can be found in [20]. Section 10 contains some
additional figures.

2. Functions on a cylinder

We parameterize the annulus A` by representing it as the image of the cylinder C = S×[0, `]
under the exponential function φ(z) = eiz. Here, S denotes the circle R/(2πZ).

Substituting v = u ◦ φ−1 into (1.4) leads to the equation

−∆u = |Φ′|2u3 on C , u = 0 on ∂C , (2.1)
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where Φ = ψ ◦ φ. For |Φ′| we have by the chain rule

|Φ′(z)| = |ψ′(ζ)φ′(z)| = |ψ′(ζ)|e−y , ζ = eiz , z = x+ iy . (2.2)

A solution u of (2.1) also yields a solution w = u ◦ Φ−1 for the original equation (1.1).
Given a real number ρ > 1, denote by B the space of all real analytic functions

h : S→ R that admit a Fourier series representation with a finite norm ‖h‖,

h(x) = h0 +

∞∑
m=1

[
hm cos(mx) + h−m sin(mx)

]
, ‖h‖ =

∞∑
m=−∞

|hm|
ρm + ρ−m

2
. (2.3)

Here, hm ∈ R for all integers m. Notice that B is a Banach algebra under pointwise
multiplication of functions.

Denote by D the subspace of all functions h ∈ B whose second derivatives h′′ belong
to B as well. For every positive integer n, define ∆n : D → B by setting

∆nh = h′′ − (nπ/`)2h , h ∈ D . (2.4)

Clearly ∆n has a compact inverse ∆−1
n : B → B.

In connection with symmetries, we also consider the following subspaces of B. Given
an integer k ≥ 2, the subspace of all functions u ∈ B with the property that um = 0
whenever m 6≡ 0 (mod k) will be denoted by Bk. For k ≥ 1, the subspace of all functions
u ∈ B with the property that um = 0 whenever m 6≡ k (mod 2k) will be denoted by B−k.
For k = ∞ we define Bk to be the set of all constant functions on S. The subspace of all
even functions in B or Bk will be denoted by B+ or B+

k , respectively. And the subspace
of all odd functions in B or Bk will be denoted by B− or B−k , respectively. Notice that all
these subspaces are invariant under ∆−1

n .
Let X be any Banach algebra with unit. Give a positive real number τ , denote by

AX the space of all functions u : [0, `] → X that admit the following expansion and have
a finite norm ‖u‖,

u(y) =
∞∑
n=1

un sin(nκy) , ‖u‖ =
∞∑
n=1

‖un‖(1 + τn) , u1, u2, . . . ∈ X , (2.5)

where κ = π/`. Notice that a function u ∈ AX is of class C1 and vanishes at the endpoints
of [0, `]. Furthermore, u 7→ u3 maps AX into itself.
AB can be identified with a space of functions u : C → R. This space will be used

in our construction of solutions for the equation (2.1). A function u = u(x, y) in AB is of
class C1 on C and real analytic in the variable x ∈ S. Furthermore, it vanishes on ∂C.

The Laplacean ∆ is defined on a dense subspace of AB and has a compact inverse
∆−1 : AB → AB given by the equation (∆−1u)n = ∆−1

n un. So the equation (2.1) for a
function u ∈ AB can be written as a fixed point equation G(u) = u, where

G(u) = −∆−1|Φ′|2u3 . (2.6)
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Remark 3. As mentioned above, every function u ∈ AB is of class C1. If u is a fixed
point of G, then u is of class C∞ by elliptic regularity. So w = u ◦ Φ−1 is of class C∞ as
well. Given that −∆w = w3 on Ω, this in turn implies that w is real analytic on Ω [1,2,19].

We note that our expansion (2.5) represents a compromise: rapid convergence is
sacrificed in favor of simple properties of the modes (x, y) 7→ cos(mx) sin(nky) and (x, y) 7→
sin(mx) sin(nky) with respect to products and the inverse Laplacean. Alternative choices
involve Zernike functions or Bessel function in the radial direction. Zernike functions can
yield exponential convergence on the disk [17], but imposing boundary conditions on the
inner circle of ∂A` reduces this to `2 convergence in general. And Bessel functions lead to
slow convergence in the linearization of products.

Remark 4. The derivative DG(u) for u ∈ AB defines a compact positive self-adjoint
linear operator on H1

0(C). It is not hard to show that, if u is a fixed point of G, then the
Morse index of w = u ◦ Φ−1 agrees with the number of eigenvalues of DG(u) of modulus
larger that 1; see also [17]. Computing these eigenvalues numerically yields the indices in
the last column of Table 1.

3. The determinants |Φ′|2

The transformation G defined by (2.6) is composed of the nonlinear map u 7→ u3, the
multiplication operator u 7→ |Φ′|2u, and the negative inverse Laplacean −∆−1. On the
space AB considered here, both u 7→ u3 and −∆−1 are quite easy to control. So let us
describe the multiplication operators in more detail.

Recall from (2.2) that |Φ′(z)| = |ψ′(ζ)|e−y, where ζ = eiz and z = x+ iy, with x ∈ R
and y ∈ [0, `]. In the example (1.3), we have∣∣ψ′ex(ζ)

∣∣2 = 1− 2r cos(nx)e−ny + r2e−2ny . (3.1)

This simple example already highlights a difficulty with Fourier series in the variable y:
the k-th Fourier coefficient of the function y 7→ e−y on [0, `] decreases only like k−2.

For the disk-isomorphism (1.5), the determinant of the derivative is given by∣∣ψ′iso(ζ)
∣∣2 = |1− rζ|−4 = F1,∞(x, y)2 , (3.2)

where

Fk,N (x, y)
def
=

N∑
m,n=0

rn+m cos(k(n−m)x)e−k(n+m)y (N ≤ ∞) , (3.3)

for all positive integers k. The convergence of this series and similar ones will be discussed
in the next section. For the inverted ellipse (1.6), we have

∣∣ψ′iel(ζ)
∣∣2 =

∣∣∣∣∣ 1 + rζ2(
1− rζ2

)2
∣∣∣∣∣
2

=
[
1 + 2r cos(2x)e−2y + r2e−4y

]
F2,∞(x, y)2 . (3.4)
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And the determinant for the Cassini oval (1.7) is given by∣∣ψ′cas(ζ)
∣∣2 =

∣∣(1− rζ2
)∣∣−3

= H∞(x, y) , (3.5)

where

HN (x, y)
def
=

N∑
n,m=0

CnCmr
n+m cos((n−m)x)e−(n+m)y (N ≤ ∞) (3.6)

and

Cn = (−1)n
(
−3/2

n

)
=

n∏
k=1

2k + 1

2k
. (3.7)

Finally, for the near-Cassini map of finite order N , we have |ψ′ncs(ζ)|2 = HN (x, y).

In all these cases, multiplication by |Φ′(z)|2 = |ψ′(z)|2e−2y is an operator of the form

L =
∞∑
q=0

ĥqL
q , (Lu)(y)

def
= e−yu(y) , (3.8)

where ĥq is multiplication by a function hq ∈ B. The multiplication operators ĥq are easy
to control, due to the fact that B is a Banach algebra. So let us now consider powers of L.

4. The operator L
A straightforward computation shows that

(Lqu)j =
∞∑
n=1

Lqj,nun , j = 1, 2, . . . (4.1)

for every q 6= 0, with

Lqj,n = Kn−j(q)

[
1

(n− j)2 + (q/κ)2
− 1

(n+ j)2 + (q/κ)2

]
. (4.2)

The functions Kn in this equation, and functions Σn that will be needed below, are given
by

Kn(q) =
q

`κ2

[
1− e−q`(−1)n

]
, Σn(q) =

∑
k≥n

1

k2 + (q/κ)2
. (4.3)

Notice that the two terms in the difference [. . .] in (4.2) nearly cancel for large values of n.
This is the main reason behind the following fact.

Lemma 4.1. L defines a bounded linear operator on A for every choice of τ > 0. Fur-
thermore, there exists a constant Bτ ≤ 4, with Bτ → 2 as τ → 0, such that for all
q 6= 0,

‖Lq‖ ≤ K1(q)
[
Σ0(q) +BτΣ1(q)

]
. (4.4)
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For relatively small values of q, we estimate Σn(q) with n ∈ {0, 1} by computing
Σn(q)− Σm(q) explicitly for some large value of m and then using that

Σm ≤
∞∑
k=m

1

k2 − 1
2

=
∞∑
k=m

[
1

k − 1
2

− 1

k + 1
2

]
=

1

m− 1
2

, m ≥ 1 . (4.5)

But in order estimate the tail of operator series like (3.8), we need a bound on ‖Lq‖ for
arbitrarily large q > 0.

Define

%p(L) = sup
q≥p
‖Lq‖1/q , p ≥ 1 . (4.6)

Clearly, the sequence p 7→ %p(L) is decreasing, and its limit is the spectral radius %(L) of
the operator L : A → A.

Proposition 4.2. %(L) = 1, and

%p(L) ≤ K1(p)1/p max
(
Σ0(p) +BτΣ1(p), 1

)1/p
, p > e`κ2 . (4.7)

Proof. Since q 7→
[
1 + e−ql

]1/q
is decreasing and x 7→ x1/x is decreasing for x > e, the

sequence q 7→ K1(q)1/q is decreasing for q > e`κ2. Let f(q) = max
(
Σ0(q) + BτΣ1(q), 1

)
.

This defines a decreasing function f ≥ 1.
Let q ≥ p > e`κ2. Then by Lemma 4.1, we have

‖Lq‖1/q ≤ K1(q)1/qf(q)1/q ≤ K1(q)1/qf(p)1/q ≤ K1(p)1/pf(p)1/p . (4.8)

This proves (4.7). Since K1(p)1/p → 1 as p → ∞, we have %(L) ≤ 1. And the definition
(Lu)(y) = e−yu(y) of L shows that %(L) ≥ 1. Thus, %(L) = 1 as claimed. QED

5. Bounds on the factors |ψ′|2

The function HN given by (3.6) defines a multiplication operator HN of the type (3.8),
acting on the space AB. Similarly, the function Fk,N given by (3.3) defines a multiplication
operator Fk,N . They are well defined for N < ∞. The goal here is to control the limit
N →∞.

Recall that these operators depend on a parameter r ∈ (−1, 1). To simplify notation,
let us assume that r is nonnegative. Denote by ρ > 1 the weight used in the definition (2.3)
of the norm on the space B. The following propositions will be used with ρ◦ ≥ %N+1(L).

Proposition 5.1. Let k,N ≥ 1. Let ρ◦ > 1 be such that rρ2k
◦ < 1. Assume that ρ < ρ◦

and ‖Lq‖ ≤ ρq◦ for q > N . Then Fk,∞ defines a bounded linear operator on AB, and

‖Fk,∞ − Fk,N‖ ≤ fN+1

(
rρ2k
◦
)
f0(r) + f0

(
rρ2k
◦
)
fN+1(r) , (5.1)
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where fm(t) =
∑∞
n=m t

n = tm(1− t)−1 for all m ≥ 0.

The proof of this proposition is analogous to to the proof of the following.

Proposition 5.2. Let N ≥ 1. Let ρ◦ > 1 be such that rρ4
◦ < 1. Assume that ρ < ρ◦ and

‖Lq‖ ≤ ρq◦ for q > N . Then H∞ defines a bounded linear operator on AB, and

‖H∞ −HN‖ ≤ hN+1

(
rρ4
◦
)
h0(r) + h0

(
rρ4
◦
)
hN+1(r) , (5.2)

where hm(t) =
∑∞
n=m Cnt

n for all m ≥ 0. In particular, h0(t) = (1− t)−3/2.

Proof. Let EN = ‖H∞ −HN‖. Using the definition (3.6) of HN and the fact that B is a
Banach algebra, we have

EN ≤
∑

n∨m>N
CnCmr

n+m ρ2(n−m) + ρ2(m−n)

2
ρ

2(n+m)
◦

≤
∑

n∨m>N
CnCmr

n+m ρ4n
◦ + ρ4m

◦
2

=
∑

n∨m>N
CnCmr

n+mρ4n
◦

≤
∑
n>N

Cnr
nρ4n
◦

∑
m≥0

Cmr
m +

∑
n≥0

Cnr
nρ4n
◦

∑
m>N

Cmr
m

= hN+1

(
rρ4
◦
)
h0(r) + h0

(
rρ4
◦
)
hN+1(r) ,

(5.3)

where n ∨ m = max(m,n). Given that HN is bounded for all positive integers N , the
assertion follows. QED

In order to get a useful bound on the functions hm that appear in Proposition 5.2, we
first need the following.

Proposition 5.3. If n ≥ N , then
Cn
CN
≤

√
n+ 1/2

N + 1/2
.

Proof. Clearly, the given bound holds for n = N . If n > N , then

C2
n

C2
N

=
∏

N<k≤n

(
2k + 1

2k

)2

<
∏

N<k≤n

2k + 1

2k

2k

2k − 1
=

∏
N<k≤n

2k + 1

2k − 1
=

2n+ 1

2N + 1
, (5.4)

where we have used the identity (3.7). QED

Proposition 5.4. Let 0 ≤ t < 1. Then hm(t) =
∑∞
n=m Cnt

n satisfies the bound

hm(t) ≤ Cmtm
1

1− t

(
1 +

1

2m+ 1
· t

1− t

)
. (5.5)
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.

Proof. We use the summation by parts formula

k∑
n=m

unv
′
n = (ukvk+1 − umvm)−

k−1∑
n=m

vn+1u
′
n ,

u′n = un+1 − un ,
v′n = vn+1 − vn ,

(5.6)

where k ≥ m ≥ 0. Setting un = Cn and vn = tn, we have

u′n = Cn

(
Cn+1

Cn
− 1

)
=

1/2

n+ 1
Cn , v′n = −(1− t)tn . (5.7)

Notice that ukvk+1 → 0 as k →∞. Using (5.6) and Proposition 5.3, we obtain

(1− t)
∞∑
n=m

Cnt
n = −

∞∑
n=m

unv
′
n = Cmt

m +
1

2

∞∑
n=m

tn+1 1

n+ 1
Cn

≤ Cmtm +
1

2
Cm

∞∑
n=m

tn+1 1

n+ 1

√
n+ 1

2

m+ 1
2

≤ Cmtm +
1

2m+ 1
Cm

∞∑
n=m

tn+1 ≤ Cmtm +
1

2m+ 1
Cm

tm+1

1− t

= Cmt
m

(
1 +

1

2m+ 1
· t

1− t

)
.

(5.8)

This implies the bound (5.5). QED

6. Injectivity of the maps ψ
Part of the claim in Theorem 1.1 is that ψ : A` → C is injective. This is obvious for ψann.
It is well-known for ψ = ψiso with |r| < 1, and for ψ ∈ {ψiel, ψcas} with 0 ≤ r < 1. In
these cases, ψ is in fact injective on the unit disk D. For ψex defined by (1.3), we have the
following.

Proposition 6.1. If n > 0 and |r| < 1, or if n < −1 and |r| < en`, then ψex is injective on
the annulus A`.

A proof of this proposition is a straightforward computation.
Injectivity of the near-Cassini map ψncs of order N cannot easily be checked by hand.

Here we will use the following.

Proposition 6.2. The near-Cassini map ψncs of order N is injective if the following two
inequalities hold:

(1 + r)
2rN+1

1− r
≤ 1 ,

1 + r2

1− r

[
1

(1− r)1/2
hN+1(r) +

rN+1

(1− r)2

]
≤ 1 , (6.1)
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where m 7→ hm is the sequence of functions described in Proposition 5.4.

A proof of this proposition will be given below.
The following is a well-known consequence of the Jordan curve theorem and the ar-

gument principle. Assume that ψ is analytic on an open neighborhood of the closed unit
disk D̄.

Proposition 6.3. ψ is one-to-one on D̄ if and only if ψ is one-to-one on ∂D.

Consider now the restriction of ψ to ∂D. Write ζ = eix and ψ(ζ) = reiϑ, with x, r, ϑ
real. Our goal is to show that ∂ϑ

∂x has no zeros on ∂D. This implies that ψ is n-to-one on

∂D for some n > 0. A straightforward computation shows that ∂ϑ
∂x = Re

(
ζψ′/ψ

)
. Thus,

let us consider

χ(ζ)
def
= Re

[
ζψ′(ζ)ψ(ζ)

]
. (6.2)

Proposition 6.3 implies the following.

Corollary 6.4. Assume that ψ(ζ) = ψ(1) holds only if ζ = 1. Assume furthermore that
ψ and χ do not vanish on ∂D. Then ψ is one-to-one on D.

Proof of Proposition 6.2. It suffices to verify the assumptions of Corollary 6.4 for
ψ = ψncs. This can be done by comparing ψncs to the Cassini mapping ψcas. By (1.7) we
have

ψcas(ζ) = ζ
(
1− rζ2

)−1/2
, ζψ′cas(ζ) = ζ

(
1− rζ2

)−3/2
. (6.3)

Expanding these functions in powers of r and restricting to ζ = eix with x ∈ R yields

ψcas(e
ix) =

∞∑
m=1

Bmr
me(2m+1)ix , eixψ′cas(e

ix) =

∞∑
n=1

Cnr
ne(2n+1)ix , (6.4)

where Bn = (−1)m
(−1/2

m

)
and Cn = (−1)n

(−3/2
n

)
. The corresponding expressions for

the near-Cassini approximation of order N are obtained by restricting the above sums to
m ≤ N and n ≤ N , respectively. This leads to the expressions

Eψ
def
=
∣∣ψcas(e

ix)
∣∣2 − ∣∣ψncs(e

ix)
∣∣2 =

∑
m∨n>N

BmBnr
m+n cos(2(n−m)x) (6.5)

and

Eχ
def
= χcas(e

ix)− χncs(e
ix) =

∑
m∨n>N

BmCnr
m+n cos(2(n−m)x) , (6.6)

where m ∨ n = max(m,n).
Notice that the sequence n 7→ Bn is decreasing. This yields a bound

∑
n>N

Bnr
n =

∑
k≥0

BN+1+kr
N+1+k ≤ rN+1

∑
k≥0

Bkr
k =

rN+1

(1− r)1/2
. (6.7)
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So Eψ can be estimated as

Eψ ≤ 2
∑
m≥0

Bmr
m
∑
n>N

Bnr
n ≤ 2

(1− r)1/2

rN+1

(1− r)1/2
=

2rN+1

1− r
. (6.8)

And for Eχ we have

Eχ ≤
∑
m≥0

Bmr
m
∑
n>N

Cnr
n +

∑
m>N

Bmr
m
∑
n≥0

Cnr
n

≤ 1

(1− r)1/2
hN+1(r) +

rN+1

(1− r)1/2

1

(1− r)3/2

=
1

(1− r)1/2
hN+1(r) +

rN+1

(1− r)2
.

(6.9)

Now we can use the upper bounds∣∣ψcas(e
ix)
∣∣2 ≥ 1

1 + r
, χcas(e

ix) ≥ 1− r
(1 + r)3

, (6.10)

which easily follow from (6.3).
Combining (6.8) with the first inequality in (6.10), we have

∣∣ψncs(e
ix)
∣∣2 =

∣∣ψcas(e
ix)
∣∣2 − Eψ ≥ 1

1 + r
− 2rN+1

1− r
. (6.11)

Thus, in order to guarantee that ψncs does not vanish on ∂D, it suffices that the right hand
side of (6.11) is positive. This condition is equivalent to the first inequality in (6.1).

Combining (6.9) with the second inequality in (6.10), we have

χncs(e
ix) = χcas(e

ix)− Eχ ≥
1− r

(1 + r)3
−
[

1

(1− r)1/2
hN+1(r) +

rN+1

(1− r)2

]
. (6.12)

Thus, in order to guarantee that χncs does not vanish on ∂D, it suffices that the right hand
side of (6.12) is positive. This condition is equivalent to the second inequality in (6.1).

Finally, we note that |ψncs(e
ix)| < ψncs(1) if eix 6= 1. This follows from the fact

that Cn > 0 for all n. Having shown that the conditions (6.1) imply the hypotheses of
Corollary 6.4, our proof of Proposition 6.2 is complete. QED

7. Solution of the fixed point equation
Here we reduce the proof of Theorem 1.1 to specific estimates. Consider the equation (2.1)
associated with a fixed but arbitrary row of Table 1, say row j. The symmetry entries in
columns 6 and 7 specify a subspace Aj of AB. To be more precise, a value k in column 7
defines Aj = ABk

or Aj = AB±
k

, depending on whether column 6 is empty or lists one of
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“±”, respectively. The absence of an entry in column 7 defines Aj = AB or Aj = AB± ,
respectively. Here, B±, Bk, and B±k are the subspaces of B defined in Section 2.

Assume for now that the transformation G given by (2.6) is well-defined on Aj .
As is common in many computer-assisted proofs, we associate with G a quasi-Newton

map N as follows. Given a function ū ∈ Aj and a bounded linear operator M on Aj ,
define

N (h) = G(ū+Ah)− ū+Mh , A = I−M , (7.1)

for every h ∈ Aj . Clearly, if h is a fixed point of N , then ū+Ah is a fixed point of G.
Our goal is to apply the contraction mapping theorem to the map N , acting on a ball

Bδ = {h ∈ Aj : ‖h‖ < δ}. Thus, ū is chosen to be an approximate fixed point of G.

Lemma 7.1. Consider the equation (2.1) associated with a fixed but arbitrary row of
Table 1, say row j. The entry in column 5 specifies an annulus A`, and the entries in
columns 2, 3, 4 specify an injective mapping ψ : A` → C. Let Φ = ψ ◦φ. Then there exists
domain parameters ρ > 1 and τ > 0 such that the following holds for the associated space
Aj . The multiplication operator u 7→ |Φ′|2u defines a bounded linear operator on Aj . So
the equation (2.6) defines a compact cubic map G on Aj . Furthermore, there exists a
function ū ∈ Aj , a bounded linear operator M on Aj , and a real number δ > 0, such that
the map N defined by (7.1) satisfies bounds

‖N (0)‖ ≤ ε , ‖DN (h)‖ ≤ K , ∀h ∈ Bδ , (7.2)

with ε,K > 0 satisfying ε + Kδ < δ. Let u = ū + Ah with h ∈ Bδ arbitrary. Then u has
precisely the symmetries described in columns 6 and 7 of Table 1. Moreover, the range
of u includes the interval in column 9. Furthermore, v = u ◦ ψ−1 has a set of extrema as
described in column 8.

Our proof of this lemma is computer-assisted and will be described in Section 9.
Lemma 7.1 implies Theorem 1.1. Namely, the contraction mapping theorem guaran-

tees that N has a fixed point h ∈ Bδ. The associated function u = ū+Ah is a fixed point
of G. Thus, w = u ◦ Φ−1 is a solution of the equation (1.1) on the domain Ω = Φ(C). It
is real analytic, for the reasons described in Remark 3. The properties of w described in
columns 6–9 of Table 1 follow from the last three statements in Lemma 7.1.

8. Estimates for the operator L

Recall from (2.5) that a function u ∈ A admits a unique representation u =
∑
j≥1 ujσj

with σj(y) = sin(jκy). For q 6= 0 define

Lq−u =
∑
n,j≥1
j≤n

Lqj,nunσj , Lq+u =
∑
n,j≥1
j>n

Lqj,nunσj , u ∈ A . (8.1)

The following two propositions imply Lemma 4.1.
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Proposition 8.1. Lq− defines a bounded linear operator on A, and ‖Lq−‖ ≤ K1(q)Σ0(q).

Proof. Using the expression in (4.2) for the coefficients Lqj,n that appear in the definition
(8.1), we have

‖Lq−‖ = sup
n

∑
j≤n

Kn−j(q)

[
1

(n− j)2 + (q/κ)2
− 1

(n+ j)2 + (q/κ)2

]
1 + τj

1 + τn
, (8.2)

with the right hand side being possibly infinite. An upper bound is obtained by dropping
the second term in [. . .]. Since 0 < Kn(q) ≤ K1(q) for all n and 1+τj

1+τn ≤ 1 for j ≤ n, we
have

‖Lq−‖ ≤ K1(q) sup
n

∑
j≤n

1

(n− j)2 + (q/κ)2
≤ K1(q)Σ0(q) , (8.3)

and the claim of Proposition 8.1 follows. QED

Proposition 8.2. Lq+ defines a bounded linear operator on A. Furthermore, there exists
a constant Bτ ≤ 4, with Bτ → 2 as τ → 0, such that ‖Lq+‖ ≤ BτK1(q)Σ1(q).

Proof. From (4.2) we have

Lqj,n = Kn−j(q)
4nj

((n− j)2 + (q/κ)2)((n+ j)2 + (q/κ)2)
. (8.4)

Thus,

‖Lq+‖ = sup
n

∑
j>n

Kn−j
4nj

((j − n)2 + (q/κ)2)((j + n)2 + (q/κ)2)

1 + τj

1 + τn
. (8.5)

Since 0 < Kn(q) ≤ K1(q) for all n and 1+τj
1+τn ≤

j
n whenever j > n, we find that

‖Lq+‖ ≤ 4K1(q) sup
n

∑
j>n

nj

((j − n)2 + (q/κ)2)((j + n)2 + (q/κ)2)

1 + τj

1 + τn

≤ 4K1(q) sup
n

∑
j>n

j2

((j − n)2 + (q/κ)2)((j + n)2 + (q/κ)2)

≤ 4K1(q) sup
n

∑
j>n

1

(j − n)2 + (q/κ)2
= 4K1(q)Σ1(q) .

(8.6)

This show that ‖Lq+‖ ≤ BτK1(q)Σ1(q) with Bτ ≤ 4.
Notice that the first sum in (8.6) is a continuous function of τ ≥ 0, and continuity is

uniform in q. So consider (8.5) for τ = 0. Then the bound nj 1+τj
1+τn ≤ j2 used in (8.6) can

be replaced by nj ≤ 1
2 (j + n)2. As a result we obtain ‖Lq+‖ ≤ 2K1(q)Σ1(q). This shows

that ‖Lq+‖ ≤ BτK1(q)Σ1(q) with Bτ → 2 as τ → 0. QED

If we think of Lq as a matrix (j, n) 7→ Lqj,n, then Lq− represents the upper triangular
part of Lq, while Lq+ represents the strictly lower triangular part. In our computer-assisted
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proofs, this matrix is being subdivided further into “blocks”. Each such block is character-
ized by additional restrictions on the index pair (j, n). This allows us to improve bounds
such as (8.3) and (8.6).

To be more specific, we represent a function u ∈ A by a finite number of “coefficient
modes” Pju and (bounds on) a finite number of “error modes” P≥du, where

Pju = ujσj , P≥du =
∑
j≥d

ujσj , u =
∑
j≥1

ujσn , (8.7)

with σj(y) = sin(jκy). Naturally, the estimates in Propositions 8.1 and 8.2 can be im-
proved when considering P≥dLq±Pn in place of Lq±. In particular, if n ≤ d, then we
have a bound ‖P≥dLqPn‖ ≤ BτK1(q)Σd−n(q). Another useful bound concerns the op-
erator Lq−ν =

∑
n>ν Pn−νLqPn with ν ≥ 0. A straightforward computation show that

‖Lq−ν‖ ≤ Kν(q)/
(
ν2 + (q/κ)2

)
.

9. Computer estimates
The estimates that are necessary to prove Lemma 7.1 are carried out with the aid of a
computer. This part of the proof is written in the programming language Ada [21] and
can be found in [20]. The following is meant to be a rough guide for the reader who wishes
to check the correctness of our programs.

9.1. Enclosures and data types

Bounds on a vector x in a space X , also referred to as enclosures for x, are given here by
sets X ⊂ X that include x and are representable as data on a computer. The enclosure
associated with data B will be denoted by BX . Our basic data type Ball consists of
a pair B = (B.C, B.R), where B.C is a representable number [23] and B.R a nonnegative
representable number (type Radius). If X is a Banach algebra with unit 1, then BX =
{x ∈ X : ‖x − (B.C)1‖ ≤ B.R}. Other types of enclosures depend on the algebra X . At a
level where details are irrelevant, we use an unspecified type Scalar.

Given an integer D > 0, data of type CpCosSin1 consist of a triple U=(U.P,U.C,U.E),
where U.P ∈ {0, 1}, U.C is an array (0 . . D) of Scalar, and U.E is an array (0 . . 2*D)
of Radius. The type CpCosSin1 is used to define enclosures in the space AX . The
enclosure UA associated with U is the set of all functions

u =
D∑
j=p

ujσj +
2D∑
j=p

ej , p = U.P , (9.1)

with uj belonging to U.C(j)X , and with ej ∈ P≥jAX having norm ‖ej‖ ≤ U.E(j). To be
more precise, the space AX defined earlier only allows odd functions (E.P=1). In this case
σj(y) = sin(jκy). Here, we also allow even functions (E.P=0), where σj(y) = cos(jκy).
For details we refer to the Ada package CpCosSins1.

In our application, we use the above mostly with X = B. In this case, CpCosSins1 is
instantiated with Scalar => Fourier1, where Fourier1 is the data type used to define
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enclosures in B. The precise definition of the type Fourier1 and the associated enclosures
is given in the Ada package Fouriers1. We will not give more detail here, since the same
type has been described and used in earlier work [14].

Consider now bounded linear operators L : AX → AX of the type (3.8). If ĥq denotes
multiplication by hq ∈ X , then we set ‖L‖L =

∑
q ‖hq‖‖Lq‖. This defines a Banach space

LX . Our enclosures for this space are associated with the type LTaylors. Data of this type
are pairs T=(T.C,T.E), where T.C is an array(0 . . d) of Scalar and T.E is a Radius.
The enclosure represented by T is the set of all operators L =

∑
q ĥqL

q with hq ∈ T.C(q)X
for q ≤ d, and with

∥∥∑
q>d ĥqL

q
∥∥
L
≤ T.E. For details we refer to the package LTaylors.

We only use this type for X = B, in which case LTaylors is instantiated with Scalar =>

Fourier1.
We use some other data types and enclosures, but they are trivial compared to the

ones described above. This includes vectors in Xn and matrices in Xn×n, with enclosures
of type Vector and Matrix, respectively, based on arrays of Scalar.

9.2. Bounds and procedures

When working with enclosures, a bound on a map f : X → Y is a function F that assigns
to a set X ⊂ X of a given type (Xtype) a set Y ⊂ Y of a given type (Ytype), in such a way
that y = f(x) belongs to Y whenever x ∈ X. In Ada, such a bound F can be implemented
by defining an appropriate procedure F(X: in Xtype; Y: out Ytype). By definition, X
belongs to the domain of F is no Exception is being raised.

Bounds on the basic operations involving the type Ball are defined in the package
Flts.Std.Balls.

Using the definition (9.1) of a CpCossin1-type enclosure, it is clearly possible to im-
plement a bound Prod on the map (f, g) 7→ f ∗ g from A×A to A. This and other basic
bounds that include the type CpCossin1 are defined in package CpCossins1. Bounds on
basic operations for the types Fourier1 and LTaylor are defined in packages Fouriers1

and LTaylors, respectively.
The package Cylinders defines the type Cylinder as a CpCossin1 with coefficients

of type Fourier1. This determines our enclosures for the space AB. Besides some general
infrastructure related to quasi-Newton maps, most procedures in Cylinders are specific to
the problem at hand. A rather trivial example is the bound NegInvLap on −∆−1. Bounds
on the operator Lq are implemented by the procedure Lq. It uses the estimates described
in Sections 4 and 8. The procedures Disk Iso, Inv Ellipse, and Cassini construct
LTaylor-type enclosures for the associated multiplication operators u 7→ |ψ′|2u. They use
the estimates in Propositions 5.1 (for k = 1, 2) and Proposition 5.2 via the procedures
PowerNegOne1 (k = 1), PowerNegOne2 (k = 2), and PowerNegThreeHalf, respectively.
The procedure Apply is a bound on the map (L, u) 7→ Lu from LB × AB to AB. Some
other procedures in Cylinders are used to plot graphs and are not part of the proof.

Cylinders also defines the type CylinderMode that characterize subspaces like PjAB
(coefficient modes) and P≥jAB (error modes). Arrays of CylinderMode are used by the
procedure Make to define partitions of unity (in the sense of direct sums) for the spaces
Aj described in Section 7. This is the problem-specific part of a general infrastructure
designed to implement bounds on quasi-Newton maps. Another part is handled by the
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packages Linear and Linear.Contr that work with a generic type Fun and associated
Modes. These two packages contain all the tools needed to construct (in terms of bounds)
a quasi-Newton map N from a given map G, and to verify bounds like (7.2). The main
task is to estimate the derivative of a linear operator such as DN (h). A description of
how this is done by using Modes is given in [18,17].

The package at the top of our hierarchy is Cylinders.Fix. It first defines a bound
GMap on the map G defined by (2.6), as well as a bound DGMap on the derivative of G.
These are just compositions of bounds implemented in Cylinder. Then Cylinders.Fix

instantiates the packages Linear and Linear.Contr with Fun => Cylinder and Mode

=> CylinderMode. Using the procedures Op Norm and DContr from these two packages,
implementing a bound DContrNorm on the map h 7→ ‖DN (h)‖ is straightforward. This
bound is used by ContrFix to verify the inequalities in the claim of Lemma 7.1. The ball
Bδ that appears in this lemma has a representable radius δ > 0 and is described by a
Cylinder-type enclosure.

9.3. Organizing the bounds

The existence part in our proof of Lemma 7.1 is organized by the program Run All. For
each row in Table 1, Run All reads the necessary parameter values from the package
Params, and then calls the (standalone) procedures Approx Fixpt and Check Fixpt with
an argument of type Param. Both of these procedures use an approximate fixed point
w̄ that is provided in a data file [20]. The procedure Approx Fixpt is purely numerical
and determines a matrix M that defines the operator M used in (7.1). Using the val-
ues in Param, the procedure Check Fixpt instantiates the package Cylinders.Fix with
the proper arguments. Then it calls ContrFix to verify the inequalities in the claim of
Lemma 7.1.

The remaining claims in Lemma 7.1 are verified by the program Run Misc, which runs
Check Misc for each choice of Param. The main procedures in Check Misc are Check Min,
Check Max, Level Stat, and Check Injective. The first two verify the ranges in column
9 of Table 1, using numerical data on extrema that has been generated by the program
Run Num Extrema. The procedure Level Stat generates extra level-set information that
shows e.g. that the symmetries listed in columns 6 and 7 are maximal. For near-Cassini
solutions, Check Injective verifies the inequalities in Proposition 6.2. The approximate
Morse index in the last row of Table 1 was obtained using the program Approx Morse.

Our programs were run successfully on a standard desktop machine, using a public
version of the gcc/gnat compiler [22]. Instructions on how to compile and run these
programs can be found in the README file that is included with the source text [20].
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10. Additional figures

Figure 6. Domains and level sets for the solutions 5,6,7.

Figure 7. Domains and level sets for the solutions 8,9,10.

Figure 8. Domains and level sets for the solutions 13,14,15.

Figure 9. Domains and level sets for the solutions 16,17.
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