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The evolution of the universe is described by the second law of thermodynamics, which states
that the entropy at a point farther in time would have a greater entropy than that of a point in
time earlier. The usual description of entropy is by thermodynamic information, where the universe
at a time very close to the initial singularity is homogeneous and therefore of a lower entropy state.
As time progresses, structure formations increase, which imply an increasing entropy. A geometric
description of this was proposed by Penrose, who looked for an account of gravitational clumping
in terms of the Weyl curvature, in the Weyl curvature hypothesis. This hypothesised that the
increasing entropy of the universe can be described as the increasing Weyl curvature, starting from
zero at the initial singularity, and eventually tidal distortions increase due to clumping of matter
due to gravitation, and structure formations account for the increasing anisotropies. In this paper,
we look at gravitational entropy briefly, looking at the conditions such a proposal should satisfy,
and some examples of where this proposal reduces to the familiar entropy and where this proposal
requires further investigation.

I. INTRODUCTION

The evolution of the universe has always puzzled physi-
cists, and one of the most interesting puzzles in cosmol-
ogy and in describing the evolution of the universe is how
the entropy of the universe is modelled. Following Pen-
rose’s hypothesis [13] on using the Weyl tensor to quan-
tify some sort of ”gravitational entropy”, a large volume
of literature has been contributed to this question. The
dominance of the Weyl tensor over the Riemann tensor
in particular, is an interesting point used to describe the
universe’s evolution. Since the Weyl tensor vanishes only
for conformally flat spacetimes such as the Friedmann-
Robertson spacetime, and following that the early uni-
verse must have had a lower order of entropy than at the
present, the question then is, if the universe’s entropy
always increases, can some form of the Weyl curvature
be used to describe the universe?
The notion of gravitational entropy is fundamental to the
WCH, since describing entropy as a result of the Weyl
tensor seems rather unnatural. The idea of this can be
described via black hole thermodynamics by consider-
ing that the information lost ”into” a black hole. For
a description of this topic, refer to section 2. Since en-
tropy encoded into the black hole must follow the second
law of thermodynamics, the information in the black hole
must somehow be a quantification of the black hole itself,
as was shown by Bekenstein in his thought experiment.
However, since the most elementary case of Schwarzschild
black holes in themselves are vacuum solutions, a gravita-
tional description of entropy seems appropriate, at least
in terms of a ”good” function. Seemingly, this function
must remain non-zero in vacuum cases in order to de-
scribe entropy, and must also be a curvature contribution.
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Therefore the geometric nature of the function must be
similar to that of the Riemann tensor, obeying the sym-
metries

Cabcd = Cbadc

Cabcd = −Cbacd

Cabcd + Cacdb + Cadbc = 0

Therefore, the Weyl tensor seems to be an appropriate
choice given that it is not necessarily zero and that it
describes curvature contributions. This is important es-
pecially considering that in the case of black holes, the
model is a vacuum solution but with non-zero entropy.
Recall that the Einstein field equations are of the form

Rµν − 1

2
gµνR = kTµν (1)

The Friedmann-Robertson-Walker metric is a solution to
the field equations (1), described by a scale factor a(t)
and a sectional curvature k:

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
(2)

It is known that this solution is conformally flat, i.e. the
metric describing the FRW spacetime follows that there
exists some function λ such that g ∼ λ2η, where η is
the Minkowskian metric. Since the Weyl tensor vanishes
only in the case of conformally flat spacetime and the
early universe was closer to the FRW model due to lower
entropy, the Weyl tensor can be considered to describe
the state of the universe in the form of gravitational en-
tropy, since naturally structure formations increase in fu-
ture states of the universe [5]. Due to this, the entropy
of the universe increases, and the Weyl tensor becomes
non-zero due to the state of the universe. Penrose hy-
pothesised that since the Weyl curvature would increase
as a result of asymmetries and structure formations, the
monotonicity of the Weyl tensor can be considered as the
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gravitational entropy described earlier. While a mathe-
matical proof of this is yet to be found, it is interesting
to note that there have been many papers accounting
for black hole thermodynamics and gravitational entropy
(e.g. [1, 2, 4, 6, 8]).

A. The Weyl tensor

The Weyl tensor is somewhat similar to the Riemann
tensor in two ways. Firstly, it is a measure of tidal forces,
and secondly, it obeys the same symmetries as the Rie-
mann tensor. In n−dimensions, the Weyl tensor can be
written as

Cabcd = Rabcd−(
1

n− 2
(gacRdb+gbdRac−gbcRad−gadRbc)

+
1

(n− 1)(n− 2)
(gadRbc − gacRbd)R) (3)

As said previously, the Weyl tensor is only vanishing
in the case of conformally flat spacetimes. Further,
the trace of the Weyl tensor is zero, and Ca

bac = 0.
Due to this, the construction of an invariant using the
Weyl tensor Cabcd can be done similar to forming the
Kretschmann scalar of the Riemann tensor by ”squar-
ing”, i.e.

W = CabcdC
abcd

In order to capture the strictly increasing nature of the
Weyl tensor, we can say that the entropy of the universe
is governed by the second law of thermodynamics, which
says that [7, 17, 18]

∆S

∆t
≥ 0 (4)

At times very close to t = 0, the universe is a perfect
FRW spacetime and has very low entropy, and this can
be attributed in some sense to the vanishing nature of the
Weyl tensor for FRW spacetime. At times t > 0, the uni-
verse experiences inflation and structure formations, and
due to the clumping of matter the gravitational entropy
increases, and therefore the Weyl curvature increases.
While the original hypothesis did not point to cosmology
directly, it regarded to the reproduction of the entropy
formula for black holes in terms of gravitational entropy.
Further, the dominance of the Weyl tensor over the Rie-
mann tensor can be seen in the case stated previously,
where the vacuum solution nature of the Schwarzschild
solution can be pointed out. This can be done by looking
at the trace form of the energy-momentum tensor in (1)
by rewriting the field equations as

Rµν = k

(
Tµν − 1

2
gµνT

)
(5)

Clearly, when Tµν = 0, the expression reduces to Rµν =
0. The landscape of WCH has this as a fundamental

point, since it is not necessary that the gravitational en-
tropy be zero in vacuum cases, nor be non-zero in cases
where Tµν is not zero, particularly for FRW spacetimes.
The description then is that the Weyl tensor is zero at
the initial singularity at t = 0, and monotonically in-
creases with time, representing a gravitational analog of
thermodynamic entropy.
But what are the conditions on the gravitational entropy
model chosen? It is clear that there exist specific con-
straints on the gravitational description of entropy, and
as we will see the mathematical formulation of this must
satisfy these conditions. Since the entropy of the universe
can never decrease, the first condition is that the gravita-
tional entropy must never decrease and must be strictly
increasing, accounting for the structure formations in the
universe. Secondly, the preset condition on the Weyl ten-
sor being non-vanishing must hold true, i.e. the only
cases where the entropy is zero is when the spacetime is
conformally flat. Thirdly, it must reduce to the familiar
entropy formula in the case of black holes. The last point
is of particular interest, since the problem in itself con-
cerns more or less the gravitational entropy more than
a cosmological description at this stage. Therefore, in
the case of non-charged black holes, the interpretation of
the entropy formula is the point of interest with respect
to gravitational entropy. This can be attributed to the
fact that black hole formation results in larger entropy
states than that of ordinary forms of matter such as stars.
After the gravitational collapse of a star, the resulting
black hole[27] obtains the familiar Hawking-Bekenstein
relation, which must be the general form for the formu-
lation of gravitational entropy.

B. Thermodynamics

A mathematical formulation can then be attempted
by first considering this important point, by basing the
notion of gravitational entropy on the condition that it
must be of the familiar Hawking-Bekenstein form, which
is to say that S ∼ A. We define the gravitational analogs
of thermodynamic components as

TgdSg = dUg + pgdV (6)

Where Tg is the temperature, Ug is the internal energy, pg
is the pressure and Sg is the entropy of the gravitational
field. While Sg is the point of interest here, no com-
ponents of the above equation actually contribute to the
field equations as the T , p or S contributions from matter
fields on (M, g). The contribution from Sg is of particular
interest here, and we wish to see what the above equa-
tion reduces to in the case of Schwarzschild black holes in
an attempt to relate to the Hawking-Bekenstein relation.
On choosing specific coordinates (here the Gullstrand-
Painlev coordinates [5]) and adopting the tetrad formal-
ism, we see that the gravitational entropy term reduces
to Sg ∼ A, which we use as a reverse-chronological con-
dition on the gravitational entropy. While previously we
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had made it necessary for the black hole to remain un-
charged, a description of charged black holes can also be
found – however, this would face problems with the case
of extremal Reissner-Nordstrom black holes as we will
discuss soon.

C. Remarks

The picture of the formulation of gravitational entropy
can be broken into two parts – the black holes sector,
where we are concerned with the interpretation of gravi-
tational entropy in terms of black hole thermodynamics,
and the cosmological sector, where we are interested in
knowing how gravitational entropy can be used to de-
scribe the way the early universe behaved, referring to
the anisotropies present in those times. The CET pro-
posal [5] refers to the use of the Bel-Robinson tensor in
general relativity. The definition of the gravitational en-
tropy in the CET proposal is more or less the general
definition of gravitational entropy as stated previously,
accounting for the conditions that Sg satisfies. In the
next section, we will overview black hole thermodynam-
ics and pave way for the gravitational entropy proposal,
where we will describe the gravitational entropy in terms
of a surface integral using a scalar field. We then con-
sider a suitable scalar and use the divergence theorem
to define the entropy density. To solve the integral we
consider a spatial metric and define the spatial volume
element, which would allow us to find the entropy. How-
ever, note that there is an important point to take into
consideration – the integral must not contain the singu-
larity to prevent a divergence. In order to ensure this,
we can consider a small sphere of infinitesimal radius
around the singularity and remove this sphere. In the
CET proposal, this is not so – the removal of a spherical
element in order to prevent the divergence of the inte-
gral is not a necessary operation, and is replaced by the
usual Newmann-Penrose formalism construction of the
gravitational entropy, where we consider the Cartan in-
variants DW and Ψ2, where W is the Weyl tensor and
Ψ2 is the Newmann-Penrose scalar. Further, a variation
of the parameters of the black hole, such as the entropy
of the black hole would require a variation of the horizon,
and therefore the mass of the black hole.

II. GRAVITATIONAL ENTROPY

The thermodynamics underlying black holes is very in-
teresting for a number of reasons. Firstly, black holes
in themselves pose a problem with information and the
second law of thermodynamics, since matter falling into
the universe contributes to the entropy of the black hole,
which evaporates steadily due to Hawking radiation. Sec-
ondly, the description of entropy of black holes must be
in some way directly related to the area of the event hori-
zon, as proposed by Bekenstein. The problem with the

first point is that when matter falls into a black hole, it
seems to ”disappear” from the viewpoint of an observer
in the universe. Therefore, an appropriate description of
black holes and information falling into the black hole
must be provided [7].

A. Schwarazschild black hole

Following what may be considered one of the most im-
portant debates in general relativity, Bekenstein [17] pro-
posed a thought experiment where a box of gas with a
mass m and a temperature Tbox was lowered into a black
hole. Assuming that the box has a length l close to the
thermal wavelength of the box ℏ/T , and since the lower-
ing of the box of gas into the black hole would decrease
the entropy of the universe for an observer, this would be
of the order −ml

ℏ . The increase in the horizon area would
be of the order Gml, and therefore the relation between
the area of the horizon and the entropy of the black hole
would be of the form

SBH ∼ ∆A

ℏG
(7)

This is the form that we wish the gravitational entropy
Sg to reduce to in cases of black holes. The second law
of thermodynamics takes the form

SBH = ST + SHB (8)

Where SBH is the entropy of the black hole and SHB is
the Hawking-Bekenstein entropy of the black hole.
For our gravitational entropy proposal we wish the grav-
itational entropy to be SHB , and therefore we have

Sg = SHB (9)

We will now describe the formulation for the gravita-
tional entropy.
We will start by defining Sg as the surface integral [1]

Sg = ks

∫
σ

Ψer · dσ (10)

Where σ is the surface of the horizon. The scalar field Ψ
is built on the Weyl invariant seen previously, and Ψer
denotes that the vector field is radial. It is trivial to use
the divergence theorem to transform this into a volume
integral:

Sg = ks

∫
V

∇ ·Ψer dV (11)

The entropy density sd can be defined in terms of the
divergence of the field – however, we must take the ab-
solute value of this in order to ensure that the value is
always non-negative. Then, we have

sd = ks|∇ ·Ψer| (12)
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We will consider the example of a Schwarzschild-like so-
lution and attempt a gravitational entropy description
of the solution using the above formalism. Consider the
scalar Ψ to be of the form

Ψ =

√
CabcdCabcd

RabcdRabcd
(13)

Where we considered the Weyl invariant and the
Kretschmann invariant to define the scalar Ψ. The sim-
plest case of Ψ = CabcdC

abcd is an unviable option,
since the entropy determined by this scalar does not
follow the usual area-entropy relation. Recall that the
Schwarzschild solution is described by a metric of the
form

ds2 = −e2α(r)dt2 + e2β(r)dr2 + r2dΩ2 (14)

Here the exponential terms are of the form e2α(r) =(
e(2β(r)

)−1
=

(
1− 2GM

c2r

)
. In this case the Kretschmann

scalar and Weyl invariant are both equal, and so in this
case the gravitational entropy is maximum. Then, con-
sidering some small sphere of radius ϵ around the sin-
gularity and remove this in order to ensure the integral
does not diverge. Then, given that the scalar Ψ reduces
to unity due to the equivalence of the Weyl invariant and
the Kretschmann scalar, the integral can be found triv-
ially from (10) by first identifying that we are working in
a three-dimensional setting. Then, a spatial metric hij

by removing i0 components from the metric gµν :

hij = gij −
gi0gj0
g00

Under the Schwarzschild setting (14) this metric would
be the diagonal diag(e2β(r), r2, r2 sin2 θ). We use this to
define the dσ surface element:

dσ =

√
h

h11
dθdϕer

Then, we remove a spherical element of radius ϵ:

Sg = ks

∫
(R2

sch − ϵ2) sin θdθdϕ

Which reduces to

Sg = 4πks(R
2
sch − ϵ2)

If we let the sphere of radius ϵ be zero, we will be left
with:

Sg = 4πksR
2
Sch (15)

Where 4πR2
Sch is the area of the event horizon, and

therefore S ∼ A via our gravitational entropy formal-
ism. Since Sg must be the Hawking-Bekenstein formula
(9), and therefore the constant ks can be found to be of
the form

ks =
kBc

3

4Gℏ
(16)

We can then find the entropy density sd from (12), which
would allow us to ensure that the entropy density be-
comes asymptotically null as the value of r increases,
where the solution becomes asymptotically Minkowskian.
In fact, this is not a surprise, since the CET pro-
posal showed that describing this entropy leads to the
Hawking-Bekenstein formula. This description was made
by considering the Schwarzschild solution in the appro-
priate coordinates. The gravitational forms of entropy
density ρg and the temperature would be [5]

ρg =
2m

8πr3
(17)

Tg =
m

2πr2
√
|1− 2m

r |
(18)

Further, the entropy density would be given in terms of ρg
and Tg, allowing us to calculate the entropy density and
therefore the entropy, which would reduce to the familiar
relation (7). Note that there is a constant that we set to
1, which appears beforehand in the expression for ρg and
Tg which we substituted as unity. This was found out by
requiring that the entropy was the Hawking-Bekenstein
entropy, which would require the constant to be unity.
So far we have looked at gravitational entropy in the
case of the Schwarzschild solution. We will now turn our
attention to the special case of de Sitter spacetime, where
the gravitational entropy proposal is challenged.

B. de Sitter spacetime and modified gravity

The de Sitter solutions to the field equations are de-
fined by a cosmological constant Λ, which affects the ge-
ometry of the universe – if Λ is positive, we refer it to the
de Sitter solution, whereas if Λ is negative, we refer it as
the anti-de Sitter solution. The geometry of the universe
is based on the constant sectional curvature k = +1, 0
or −1, and the last two cases require a negative Λ. The
de Sitter spacetime is defined by setting M = 0 for a
Schwarzschild de Sitter spacetime, and is therefore an ele-
mentary case of this spacetime. The SdS spacetime has a
Weyl invariant independent of Λ, while the Kretschmann
scalar is a function of Λ. Adopting the previously seen
formalism, we consider the W/S form, which would give
us the value of Ψ. Then, we again identify a sphere of
radius ϵ and remove this from the integral:

Sg = ks

∫
(Ψ(RSdS)R

2
SdS −Ψ(ϵ)ϵ2) sin θdθdϕ

Where RSdS is the black hole horizon radius. This would
again reduce to the individual Ψ(RSdS) and Ψ(ϵ) terms,
which would leave us with

Sg = 4πks(Ψ(RSdS)R
2
SdS −Ψ(ϵ)ϵ2)

This would reduce to (15) when Λ = 0, which is the usual
Schwarzschild solution. The dS case is when M = 0, and
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therefore the Weyl invariant is zero, since it is only a

function of M . In this solution, the radius RdS =
√

3
Λ is

a cosmological horizon, and Gibbons and Hawking [18]
showed that this has an entropy similar to that of black
hole entropy, only with area of the black hole being de-
fined in terms of RdS rather than an event horizon radius.
It is trivial to see that the Weyl curvature of a dS space-
time is zero, and therefore the gravitational entropy this
suggested would be zero, which is a contradiction to the
well-known area-entropy relation for the dS spacetime as
said above. Therefore, the Weyl curvature-based entropy
proposal proves to be inconsistent with the dS spacetime.
Corrections using different curvature invariants proves to
be ineffective, since any factor would also vanish due to
the Weyl tensor being zero in the dS spacetime.
In fact, this is also the case of extreme Reissner-
Nordstrom black holes as shown by [6], which showed
that as the general case of a Reissner-Nordstrom black
hole tends to the extremal case, the entropy of the black
hole becomes zero, which also is a problem for the grav-
itational entropy proposal. Therefore, alternatives must
be considered, at least for the dS spacetime[28].
The gravitational entropy proposal also has problems
with the modification of the Hawking-Bekenstein rela-
tion in the case of modified theories of gravity. For in-
stance, in f(R) gravity, the Hawking-Bekenstein relation
is a function of f(R):

Sf(R) =
f ′(R)A

4Gℏ
(19)

Where the prime denotes the derivative of the function
f(R) w.r.t the spatial r coordinate. (19) clearly imposes
a further restriction on the gravitational entropy pro-
posal – since f ′(R) affects the entropy, there is a form
of ”background theory effect”, where different f(R) the-
ories would produce a non-general form of the Hawking-
Bekenstein entropy. Since (7) no longer holds true with-
out any other parameters, the gravitational entropy pro-
posal needs to take into account of this extension too.
Clearly, the determined Hawking-Bekenstein entropy in
f(R) gravity affects the entropy and is not necessarily of
the form of (7) with a denominator 4, since f(R) = R
is only a general case of general reltivity as an f(R)
theory. Therefore, under different background theories
(i.e. theories that have different forms of f(R), such as
the Nojiri-Odintsov f(R) theory, which has the function
f(R) = R + αRm − βR−n – clearly, the resulting f ′(R)
does not yield the usual Hawking-Bekenstein entropy),
the entropy of the black hole changes, only following
the area-entropy proportionality. This is also the case
in other modified theories of gravity such as Lovelock
gravity, where the general D = 5 case is that of Gauss-
Bonnett gravity, described by

S =
1

k

∫
(R+α[R2−4RµνR

µν +RµνβγR
µνβγ ]) d5x

√
−g

(20)

Where d5x
√
−g is simply the five-dimensional volume el-

ement, k = 16πG and α is a constant parameter. In this
case, the black hole entropy again receives a modification,
which must also be held accountable by the gravitational
entropy proposal.

C. Wormhole gravitational entropy

The initial hypothesis was that the Weyl invariant
W = CabcdC

abcd functions as a measure of entropy, start-
ing from zero at the initial singularity when the uni-
verse has low entropy, accounting for the homogeneity
of the universe and increases strictly. This was shown to
be inconsistent in the case of isotropic singularities, in
which case the W−form of entropy description is contra-
dicted [3]. In order to correct this, a modified form of the
scalar by also considering the square of the Ricci tensor
S = RµνR

µν :

W

S
=

CabcdC
abcd

RabRab

Under this, the expression (10) may be modified so that
the scalar Ψ is no longer solely described by W but by
S too. In [1], it was shown that while choosing between
curvature invariants for describing gravitational entropy,
the above form of Ψ is not totally satisfactory. This form
of entropy was also shown to have problems by [25], and
therefore a different description of entropy might work.
The next attempt would be to define a curvature invari-
ant using the square of the Riemann tensor, which would
be the Kretschmann scalar form we have seen previously.
Describing entropy models using the Newmann-Penrose
formalism has been investigated in several cases, such as
[2, 8, 22]. These investigations show that the gravita-
tional entropy proposal does retain the reduction to the
Hawking-Bekenstein relation condition, and therefore the
proposal is quite strong.
In fact, the approach mentioned in section II A can be
applied to wormhole solutions to investigate the entropy
density variation of such solutions. Wormholes are topo-
logical solutions that join two points from the same or
different universe [26]. For instance, considering the El-
lis wormhole metric

ds2 = −dt2 + dr2 + (r2 + r20)dΩ
2 (21)

Where r0 is the ”throat” radius of the wormhole. Adopt-
ing the scalar W/S, the entropy density is given by

sd =
4ks
3

∣∣∣∣ r

(r2 + r20)

∣∣∣∣ (22)

This approach allows us to understand the specifics of
wormhole solutions such as the gravitational entropy den-
sity of the solution, and the comparison between the
CET approach and the usual approach using [1] has been
concluded in [24]. The motivation behind investigating

sec:IIA
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wormholes that are traversable is the existence of ex-
otic matter, i.e. matter violating the energy conditions
and how the gravitational entropy description works in
such a background. The variation of the gravitational
entropy in the model is also an important point, where
different wormhole solutions have a different variation
of gravitational entropy – any formalism must describe
this variation consistently. The calculation of gravita-
tional entropy via the Rudjord approach and the CET
approach both yield the gravitational entropy variation,
but at different regions in the wormhole solution function
differently. For a more local description of the solution,
the CET proposal yields a consistent result of the gravita-
tional entropy, but the calculations of temperature yield
inconsistent results under different wormhole models.
We will finally discuss the CET proposal and some ex-
amples of black hole solutions via this proposal.

III. THE CET PROPOSAL

The Newmann-Penrose formalism [20] is adopted
throughout this section, and we consider the Clifton, El-
lis and Tavakol’s adoption of the Bel-Robinson tensor to
describe the gravitational entropy. We define the Bel-
Robinson tensor in the usual format as

Tαβγδ =
1

4
(CλαβρC

λρ
γδ + C∗

λαβρC
∗λρ
γδ ) (23)

From this, we construct a symmetric trace-free tensor
tab that is defined as the square-root of the Bel-Robinson
tensor. We define the complex null tetrad required as

la = 1√
2
(xa − iya)

na = 1√
2
(va − za)

ma = 1√
2
(va + za)

Where xa, ya and za are spacelike unit vectors and va is
the matter 4−velocity. CET showed that by following a
series of calculations, the local gravitational entropy is

Sg =

∫
V

ρg
Tg

dV (24)

The CET approach has been considered by many sources
of literature, and has been applied to black holes, cos-
mologies and wormhole solutions. For instance, consider-
ing the AdS Reissner-Nordstrom solution, where the pa-
rameters specified are M,Q,Λ, with Q being the charge,
the Newmann-Penrose scalar Ψ2 and DCabcd are re-
quired, where D ≡ nµ∇µ. The metric can be written
in terms of the tetrad as

ds2 = −2l(anb) + 2m(am̄b) (25)

Where the bar denotes complex conjugation. We choose
the null coframe, defined by lal

a = nan
a = mam

a =
m̄am̄

a = 0. The approach using the subtraction of a

spherical element of radius ϵ around the singularity in
the previously seen approach can be discarded by this
approach, where we can directly calculating the grav-
itational entropy, which would reduce to the familiar
Hawking-Bekenstein entropy formula, and this approach
has been found useful in several literatures. The changed
forms of the scalar Ψ can be incorporated into the ap-
proach specified above. Using this, we can switch from
the original Weyl invariant form Cabcd to the factors in-
cluding RµνR

µν and the Kretschmann scalar.
This proposal can be applied to the FLRW case, where
the metric is as seen in (2). Adopting a null coframe [8]
(with k=1),

la = 1√
2

(
dt− a(t)dr

1−r2

)
na = la = 1√

2

(
dt+ a(t)dr

1−r2

)
ma = 1√

2
(ra(t)(dθ + i sin θdϕ))

From this, we can find the gravitational entropy by
choosing the limits of integration to the horizon radius.
This reduces to a form of the Hawking-Bekenstein en-
tropy, specified by the horizon radius, called the Gibbons-
Hawking entropy [18].

CONCLUSION

The gravitational entropy proposal has two fascinating
elements – firstly in terms of black holes, where the reduc-
tion of the gravitational entropy to the entropy formula
is found, and secondly in terms of approaches towards
describing cosmological evolution. The current under-
standing of gravitational entropy in cosmology was fu-
elled by Penrose’s hypothesis that the Weyl curvature
tensor can be used to describe a form of gravitational
entropy, and this in turn was to describe the evolution
of the universe as the monotonically increasing nature
of the Weyl curvature due to gravitational clumping of
matter in later stages of the universe, which described
the structure formations and therefore the anisotropies
formed, which were due to the increasing entropy of the
universe. While the cosmological aspects of WCH are not
the only aspects of gravitational entropy that are of in-
terest, the cosmological implications of gravitational en-
tropy descriptions are huge – particularly, it would allow
us to understand the formalism of gravitational entropy
in the large picture of the evolution of the universe under
different conditions. Other aspects of gravitational en-
tropy that are of interest are different black holes models,
corrections to the usual gravitational entropy in modi-
fied gravity and in wormhole solutions. In further works,
the relation of WCH to the conformal cyclic cosmolo-
gies (CCC) hypothesis by Penrose will be investigated,
where different conformally related metrics correspond-
ing to two ”aeons” will be used to understand the WCH,
and the notion of gravitational entropy in other forms
of wormholes such as charged wormholes will be inves-
tigated. In this paper, we looked at some of the key
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aspects of the gravitational entropy landscape, and we
looked at two approaches towards mathematically defin-
ing gravitational entropy, one by Rudjord and Gron, and
the Newmann-Penrose formalism approach by Clifton,
Ellis and Tavakol. We looked at some of the require-
ments of the formalism suggested by [1], and looked at
places where these two proposals can be used to mathe-
matically define a consistent description of gravitational
entropy. We applied the approach suggested by [1] in the

case of a Schwarzschild black hole, and applied this to a
SdS case. We then discussed points where this approach
requires modifications, such as the case of dS spacetimes,
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