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Abstract

We consider a forager diffusing via a fractional heat equation and we introduce several
efficiency functionals whose optimality is discussed in relation to the Lévy exponent of the
evolution equation.

Several biological scenarios, such as a target close to the forager, a sparse environment, a
target located away from the forager and two targets are specifically taken into account.

The optimal strategies of each of these configurations are here analyzed explicitly also with
the aid of some special functions of classical flavor and the results are confronted with the
existing paradigms of the Lévy foraging hypothesis.

Interestingly, one discovers bifurcation phenomena in which a sudden switch occurs between
an optimal (but somehow unreliable) Lévy foraging pattern of inverse square law type and a
less ideal (but somehow more secure) classical Brownian motion strategy.

Additionally, optimal foraging strategies can be detected in the vicinity of the Brownian one
even in cases in which the Brownian one is pessimizing an efficiency functional.

1 Introduction

Foraging theory (see e.g. [47]) is a fascinating, important and cross-disciplinary topic of investigation
that gathers together researchers from different areas (such as biologists, ethologists, physicists,
statisticians, computer scientists, mathematicians, etc.). It is commonly accepted that the broad
variety of environmental and biological situations in nature and the Darwinistic evolution through
natural selection have led over time to highly efficient foraging strategies see e.g. [6] (it is however
under an intense debate whether Lévy type patterns in animal searches are an evolutionary stable and
well consolidated outcome [24] or they are produced by innate composite correlated random walks |7,
38]; under investigation is also the role of particular distribution of resources for the emergence of
foraging patterns, see e.g. [9]; it is also debatable that natural selection alone can always optimize a
specific parameter in complex environments, see e.g. [21,32]).

In general, the precise determination of optimal foraging strategies depends in a very complex way
on a large number of parameters (such as the density and mobility of the preys and of the searchers
and the mutable environmental conditions); furthermore, the collection and analysis of empirical data
are typically challenging tasks, also open to controversial interpretations due to the use of different
mathematical models or even due to spurious information (see e.g. [16]).
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A rather consolidated attempt to understand and classify different foraging strategies according to
the evolution of the distribution of the searchers lies in the so-called Lévy flight foraging hypothesis.
Namely, rather than diffusing in analogy to the classical Brownian motion, empirical evidence has
often backed the hypothesis that animals move according to a scale-free fractal-like pattern similar to
the one produced by long-jump random walks of Lévy type, possibly to avoid being trapped in a search
of food confined in a narrow region beyond sensory range and to reduce the chances of intensively
revisiting immediate surrounding areas in environments of scarce resources (see e.g. [46,23,24,25] for
empirical evidence for such biological Lévy flights). Phenomena related to Lévy flights are attracting
increasing interest and they seem to possess some kind of universality, occurring also in situations
different from animal foraging and including, among the others, human settlements and travels,
see [8,/10,11}20,36,[39] and also [17] for related virtual reconstructions. Lévy patterns also emerge in
dynamical models as a non-Gaussian transport related to chaos, see e.g. [3}/45].

Several studies have exploited tools from mathematical analysis and statistical mechanics to
validate the hypothesis that Lévy flights confer a significant advantage for foragers, see [51},5,50,37].
Typically, to confirm the Lévy flights optimality, structural assumptions on the environment, on
the searcher and on the target are taken, such as: the foraging should be of non-destructive type
(that is, once a target has been foraged, it has to reappear infinitely fast); after foraging, the seeker
starts a new flight “infinitely close” to the previous target; the searcher moves rapidly relative to
the target; the target density is low; the forager does not keep memory of previous encounters; the
forager has inadequate information on the area to patrol and on the target location, etc. Of course,
all these characteristics provide a highly simplified representations of real foragers, yet conceptual
simplifications (rather than trivializations) are often very advantageous to advance and consolidate
the knowledge on a complex topic. As a matter of fact, due to the difficulty of the analytical setting
(and also to mimic situations of biological interest), to develop a mathematical theory of foraging
related to the Lévy flight hypothesis it is often necessary to introduce additional parameters (such
as a “direct vision distance” of the predator, see page 912 in [51]) and approximations (see e.g.
equations (2) and (5) in [51]). In general, in spite of several quite strong and convincing attempts
to completely deduce the Lévy flight foraging hypothesis from prime principles, several important
details have generated debate, see e.g. [31,27,/1328] and also [26] for a review of several controversial
aspects of the Lévy foraging hypothesis.

In this paper, we consider the optimal foraging strategies in several situations of biological interest,
such as:

e the case in which a single target is located in the proximity of the forager’s burrow,
e the case in which targets are sparsely distributed,
e the case in which a single target is located far away from the forager’s burrow,

e the case in which there are two targets, one close and one far from the forager’s burrow.

The optimal strategies of each of these configurations will be analyzed in light of new efficiency
functionals relying also on methods from mathematical analysis and with the aid of some classical
special functions.

A few comments are in order to highlight some of the main structural differences between our
approach and the rather abundant existing literature on optimal animal foraging. On the one hand,
the models considered here share with the existing literature several common treats, such as the
assumption that the forager has no memory about the targets previously hit and that the pray has
no awareness of the strategy and the movement of the predator. On the other hand, our models
present significant differences with the existing literature for at least the following features:



e the forager does not restart its strategy after hitting each single target (instead, the seeker
diffuses according to a Lévy type of diffusive equation, and this feature happens to be consistent
with the setting of some of the existing literature, see equation (1) in [31]; similar, but different,
space-fractional equations in biological environment have also been considered in view of the
Caputo derivative, see equation (2.1) in [48]),

e no additional parameter related to direct vision is taken into account, no a-priori bound on
step lengths is imposed, no truncation of the power law distribution is assumed (with the
advantage of not endowing the problem with auxiliary and sometimes arbitrary parameters;
as a counterpart of these technical and conceptual simplifications, the diffusions corresponding
to infinite mean displacements are ruled out as infinite overshooting and this feature happens
to be consistent with the setting of some of the existing literature, see e.g.the discussion after
formula (2) in [31]),

e we will take into account time averages of foraging success (though some integrals over time
were previously considered, such as in the cumulative probability in equation (6) of [31], we will
specialize our analysis in detecting different optimal strategies according to the different time
scales involved in the seeking process, rather than simply considering the foraging outcome at
a given time),

e we will analyze in detail the role played by possibly different normalizing constants appearing
when linking probabilistic models to analytical ones (typically, these constants dependE] on the
fractional exponent s, hence they may play a significant role when the objective is to optimize
in s and, in general, they cannot be light-heartedly disregarded),

e we will find solutions in closed form, relying only on elementary special functions (and, since
these functions, such as the Euler Gamma Function and the Riemann Zeta Function, are widely
studied and already carefully implemented in all mathematical softwares, in our approach no
expensive or advanced numerical simulations are needed),

e we introduce a number of new efficiency functionals whose optimization can be explicitly dis-
cussed (these functionals are inspired by, but somewhat different from, the mean first passage
time adopted in [51] — in this way, we also avoid any overlap with some controversial details in
the contemporary literature such as in [27}/13}28]).

Though the arguments developed here essentially carry over to the multi-dimensional case, for the
sake of simplicity (and following a consolidated tradition in mathematical biology, see e.g. [1231]),
we stick here to dimension 1. The multi-dimensional case will be treated separately in a subsequent
work, also taking into account new sets of structural parameters according to the geometry of the
space and of the diffusive process.

Also, we focus here on the case of stationary targets (the case of mobile preys possibly with
different velocities will be accounted for in a forthcoming work).

'In terms of optimization strategies, we think it would have been beneficial, for instance, to discuss more extensively
the possible dependences on p (corresponding to 1 + 2s here) in the right hand sides of equation (5) in [51] and
equation (11) in [37], as well as the constant C' in equation (4) of [49]. The explanation for the pseudo mean squared
displacements in the right hand side of equation (10) of [37] could have also benefitted from further details on the
possible dependence of § and « (the latter corresponding to 2s here).



Notation Table

Fourier Transform of f F(&) == Ff() = / f(x)e ™ dy
Fourier Antitransform of ¢ g(x) :=F / )e2miet ¢
Poisson Summation Formula Z flz+ k) Z J? gZmiak
keZ €z
Dirac Delta Function at zg
Integral of a continuous function ¢ against / d(x)dy, (z) dz = ¢(x0)
the Dirac Delta
Fractional parameter s€ (0,1)
Fractional Laplacian of u (—A)*u := F1(|2n€*0)
+oo
Gamma Function (z € C, R(z) > 0) ['(z) = / 97 e " dy
0
1
Euler-Mascheroni constant v := lim (— Inn + Z —) = 0.5772156...
n—o0 — k
d I’
Digamma Function P(z) = - In (T'(2)) = I‘((ZZ))
= 1
Riemann Zeta Function (z € C, R(z) > 1) | ((2) := Z -

The results obtained will detect the optimal exponent s corresponding to the most efficient forag-
ing strategy (according to the different possible efficiency functionals). Several interesting patterns
will arise. Quite often, optimal strategies are obtained in nature either by Lévy flights modeled
on the inverse square law, or by the classical Brownian motion, or by some intermediate fractional
values. In our discussion, all these three patterns will clearly arise and suitable bifurcation of optimal
strategies will occur in dependence of the environmental parameters.

For instance, varying the time in which the search occurs or the sparseness of the targets, the
optimality of the inverse square law may be lost in favor of a classical Gaussian strategy (or viceversa),
and in some cases optimal values are found arbitrarily close to pessimal ones (and, conversely, pessimal
values arbitrarily close to optimal ones). We think that this is a very interesting phenomenon,
underlying the fact that the theoretical optimality of the strategy by itself might be not the main
information to take into account for efficient search algorithms, since less ideal strategies might
produce more consistent results and prove themselves to be more reliable and viable in concrete
situations.

In some circumstances, we will also detect optimal fractional values of intermediate type between
the inverse square law and the Gaussian. In all cases, we will develop explicit (and somewhat
“elegant”) representations of the efficiency functional that we introduce, thus allowing simple and
effective analytic manipulations. As a byproduct, many of the environmental bifurcation parameters
will be computed exactly.

The rest of the paper is organized as follows. In the forthcoming Section [2| we introduce our
mathematical setting adopted in this paper, modeled on a forager randomly diffusing through a
nonlocal heat equation and immobile targets with different types of distributions (see also the Nota-
tion Table for the list of the main mathematical objects and notations utilized in this paper). The
different biological scenarios corresponding to these distributions of resources will be discussed in
Section [3, where several efficient functionals will be optimized with respect to the diffusion exponent.



The results obtained will be also compared with the existing literature related to the Lévy foraging
hypothesis.

2 Mathematical setting

We introduce now the formal mathematical that setting we work with. The setting is modeled on
the fractional heat equation and goes as follows.
Let >0, s € (0,1) and u(z,t) be the solution] of

{@u = —k*(=A)u  in R x (0,+00),
u(z,0) = 0p(x).

By taking the Fourier Transform of this relation,

ot = —|2rk€|*U in R x (0, +00),
u(z,0) = 1.

Therefore
u(é, t) = exp ( — [2mKE]*) and u(x,t) = f’l(exp (- |27rr<;§]25t)). (2)

It is possible that the similarity (and the difference) between the expression for u in and the
standard Gaussian (corresponding to s = 1) were one of the inspiring motivations for Lévy’s approach
to the Central Limit Theorem in presence of infinite moments, see equation (7) in [45].

We observe that, by scaling,

u(z,t) = /Rexp ( — [2mRE)*t + 27ri:v£) dg

1 1
= — / exp (— |2mrn|*® + 2mit "2 an) dn

t2s JR

1 . (3)
= = fﬁl(exp(— ]27&5\25)) ( - )

t2s t2s

1
= —Tu <i1, 1> .
tas t2s
In addition (see e.g. formula (2.30) in [1]),

Cs,/-;
0<u(z,1) < T4 22

(4)

for some Cj, > 0 depending only on s and k.

2In several occurrences in the existing literature, the Lévy exponent in biological contexts is denoted by p. With
respect to our notation, it holds that p =1 + 2s.



It is also useful to recall that, according to formula (6) of [34],

r—+o0

lim |z|'""*u(z,t) = lim |x|1+25/e_|2”“£|25tcos(27m§) d¢
T—Fo00 R

+o0o
=2 lim \x|1+25/ e~ O™ cog(2ma€) dE
0

r—+00

1 +m s /19
= lim \x]lHS/ e cos ( ’ : ) d¢ (5)
0

1
2mkt2s T+ Kktzs

K2t s [T g
= lim |y| e " cos(yv) d§
0

o2 y—Eoo

k*t T(1+ 2s) sin(ws)
27 ’

where the substitutions 9 := 27m§t2% and y := —%— have been used.

Kt2s

3 Description of the optimal strategies in different frame-
works

We introduce here the notion of value functional related to the foraging success that we aim at
optimizing with respect to the parameter s.

Given a distribution of targets p(z, t), the foraging success functional will be taken as proportional
to the encounters between seekers and preys over time and therefore, given 7' > 0, it takes the form

/ /R gy Pl dr (6)

We will compare this quantity, which is advantageous for the forager, with several quantities of
interest which instead provide a penalization for the seeker’s strategy. These terms will be time
(thus, we will consider the amount of targets met over the time span T'), a renormalization of time
that takes into account, in some sense, the trajectory performed at a discrete level by a corresponding
Lévy walker (as presented in below), and the average distance from the origin (that is the distance
of the forager “from home”, as discussed in () below).

To present the renormalization of time, we let s € (1,1) and we recall (see e.g. formula (4.6)
in [1]) that the mean excursion for each time step of a discrete Lévy walker is proportional to the
spacial step by a factor of the form

—l—oo1

25 )

=1 ¢(1+2s)

Z j1+2s

J=1

Though one cannot really consider this as the distance traveled by the Lévy walker in the unit of time
(due to the nonlinear dependence between space and time variables in long-jump random processes),
it is suggestive to consider a possible renormalization of time of the form

T ¢(2s)

(s, T) := t2s) (7)
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As for the distance between the forager and its burrow (located at the origin), we consider the
average displacement for s € (%, 1) given by

0(s,T) = / /]R o B (8)

We observe that this is a natural quantity to take into consideration as a penalization for long
excursions to account for the forager’s need to return to home. Related (but different) displacement
functions were taken into account in equation (1) of [17]. A variant of this approach (that will
be accounted for in a forthcoming work) consists in considering pseudo mean displacements as in
equation (10) of [37], possibly also including different normalization constants.

We also recall that the quantity in (8) can be computed by using the Fourier Transform for
generalized functions (see Section 3.3 in Chapter II of [19] for the main results on this topic and
Section 3.9 in Chapter I of [19] for the setting of the notation related to generalized functions).
Indeed, fronff| equation (2) on page 194 of [19] we know that

1
F(|z|) = eI

and therefore, by Plancherel Theorem, and the substitution y := (27k&)?5t,

// 2| u(e, ) da di — // 2] (ulz, 1) — So()) der dt
Rx(0,T) Rx (0
u exp (— [2mrE[*t) — 1
_ et — // de dt
2n2 //RX(O,T) |§|2 Rx(0,T) |§|2
_ _ig // exp (— (27T;£§)25t) -1 a¢ dt
T
(0,4+50)x(0,7) 3

S // t2 (e7¥ — 1)y’ﬁ’1 dy dt.
7S JJ(0,400)x(0,T)

In this way we obtain that

2/€T1;s2S oo _ 1
(s, T) = (1525 / (e =1)y>"dy

ks TR / v -1\, eV,
o (1 + 25) yzs y?ls Y
142s

4rsT 2s 25—1
= —— i T 2s 1d
7T(1+25)/ v Y

B dks T35 r 2s — 1
(14 2s) 2s )
One of the main goals of this paper is to consider, as efficiency functional for the forager, the ratio
between @ and either the time 7', or the quantity in , or that in . We stress that while T is

3We stress that the notation of [19] for the Fourier Transform chooses a different normalization than the one here,

by defining
_ /Rf(a;)em§ do = Ff (—fﬂ),

see formula (1) on page 153 in [19].



obviously well defined for all s € (0, 1), the quantities in (7)) and (8) are finite only when s € (%, 1)
(formally, they can be defined to be equal to +0o when s € (0, %]) The reduction of the analysis
of foraging strategies in the range s € (%, 1) has been also performed elsewhere in the literature,
see e.g. the discussion after formula (2) in [31] or formula (35) in [3] (it is however interesting to
pursue also different approaches to incorporate conveniently modified situations in which the average
jump distance is infinite, but possibly incorporating waiting times between subsequent jumps, see
e.g. [30,43,44] and pages 34-35 in [45]).

We will also distinguish two cases of interest according to the diffusion coefficient x in . Namely,
we will consider the standard case in which x = 1 (this is a classical normalization choice, see e.g.

formula (1) in [31]), as well as the case in which x depends on s via the relation

()

= Kg. (10)

This form of the diffusion coefficient is the one emerging in the formal passage to the continuous
limit of a random Lévy walker in the discrete lattice hZ for time steps 7 = h?®, since, in this setting,

-1

u(z,t +71) —u(z,t) Z 1 Z u(z + hk,t) — u(z,t)
|

T k|1+28 h2s|k|l+23
kez\{0} kezZ\{0}
R u(w + hk,t) +u(x — hk,t) — 2u(z,t)
- (2 Z k1+28> Z 2sf1+2s
k=1
N 1 /+°° (x—i—y,t)—i—u(x—y,t)—2u(x,t)d
- 2<(1 + 28) y1+23 Y,

where we have approximated a Riemann sum with the corresponding integral. Thus setting v, ;(z) :=
u(z + y,t), and noticing that

0,.4(€) = /Ru(ac + v, 15)6_27”"ng dx = > /Ru(z, t)e —2miz 1 — 2TWE Y u(é,t),

we see that, in the formal limit,

1 +o0 627riy§ + 6727m'y£ -9
) = = F " dy (€, t
i) = s (| L)

B 1 B Tl —cos(2myé) .
([ we)

2 2s +oo 1— R
. ( 7T) )/ %dz J,—_-—l (|f|25u(§,t))

C(1+2s
) 5?1 §3> 9 F (2t 1)
~ cos(ms)['(—2s) s
T ez MY

see e.g. the appendix in [15] for the computation of the latter constant (which is negative), and this

justifies .



Moreover, using the functional equation (40.5) in [35] (and, as customary, adopting the notation
that extends the Riemann Zeta Function by analytic continuation), we can simplify the expression

for Kk, in and get

3.1 Single prey at the origin

We now consider the case of a single target located at the origin. In this case, the distribution of
prey can be written as

po(z) = do(x).
We observe that, by ,

/po(x)u(x,t) dz =u(0,t) = F " (u(-,1))(0,t) = / exp (— |2mrE|*t) d€
R R (12)

+o0o
— _ 2s
= 2/0 exp (—(2mr€)*t) dE.

Also, making use of the change of variable ¥ := (27x£)*t, we see that
z/m exp (—(2mk€)*t) d¢ = _ /m 9E ey — — - T <i> : (13)
0 21k stes Jo Omk st 2s

Thus, in the notation of @, using and , the foraging success functional for a single target
located at the origin takes the form, for s € (%, 1),

T 1 1 T2s;1 1
o(s;k,T) // u(z,t)dxdt = / —1F<—) dt:—2F<—), (14)
Rx ( OT) 0 2mK st 2s k(25— 1) \2s

and takes value equal to +0o0 when s € (O, %} Hence, recalling , @ and , we consider the
utility functionals defined for s € (%, 1) given by

S: = = —
e T 7T 23— 1 2s

1

oy Po(siks, T) (— 2((~2s)) *
E(s;T) = 7 = =1 2 1 r (28
. . q)O(SalaT) <(1—|—25 i
ST T R rE s )¢ ( )
Eu(s:T) = Py (s; ks, T) _ C(1+42s)2 (— 2§ ZL (i) (15)
w ' Z(S7T) T2ls (28 — 1) C(Qs) 2s )’
Es(s;T) := Po(s;L,T) _ (1+25) T (5)

Us,T)  4s(2s—1)T+ T (22)

oy Polsiks, T)  w(—20(=2s))° (1+2s) I (5;)
and E(s;T) := T s(2s—)TiT D (220
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Figure 1: Plot of (3,1) 2 s+ & (s;T) for T =107, j € {0,...,5}.

We observe that
lim & (s;T) = +o0,
sN\1/2

therefore, for every 7" > 0.
. : 1 o : 1
the supremum of the utility functional (5, 1> — &1(s;T) is uniquely attained at s = 3" (16)

We recall that the value s = % occurs often in optimal foraging problems, as an ideal balance between
intensive search and longer (hence energetically more expensive) movements, both in terms of real
world data (such as for atlantic cods, see e.g. Figure 1d in [46], jackals, see e.g. [4], wandering
albatrosses, see e.g. Figure 1 in [25], deers, see e.g. Figure 2(a) in [29], bees, see [42], fruit flies,

see [40], and also Amazonian farmers searching for nuts, see Figure 3(b.09) in [39], etc.) and of
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theoretical optimization (see [51,/12]). Interestingly, it also occurs in patterns generated by human
ecology (such as distances between campsites, see Figure 1 in [11]). With respect to these data, the
statement in can be seen as a confirmation of the most common paradigm in the Lévy foraging
hypothesis. On the other hand, the qualitative behaviour of & (s;7) changes dramatically for large
intervals of time: indeed, as hinted by Figure [1] (that plots & (+;T) for T € {1,10,102,103,10%,10°}),
we have that

1
for large T', the utility functional (5, 1) — &1(s;T)

has a unique minimum at some point s7 such that (17)
1
lim s;p == and lim & (sp;T) =0.
T—+o0 2 T—+o0

This is an interesting phenomenon, showing that the optimality at s = % may become “unstable” and

depends on the time span in which the phenomenon is observed, allowing a sudden switch between
the optimal (but somehow unreliable) Lévy foraging pattern and the less ideal (but somehow more
secure) classical Brownian motion strategy.

It is suggestive to compare this phenomenon to other occurrences in which Lévy flights with s =
should theoretically provide the optimal seeking strategy but they coexist with another possibl
notion of foraging optimization related to Brownian walks, see e.g. the end of page 9 in [12].

=

oD N

T T T T
—40 -30 -20 -10

Figure 2: Plot of « — u(z,1) with k = 1 corresponding to s = 1 (in magenta) and to s = 1 (in blue).

A heuristic explanation for the statement in ((17)) can be given in terms of the behaviour of the
function u (with k = 1) at the origin and at infinity in dependence of the parameter s. Indeed, while
the usual paradigm is to relate small values of s to long excursions of the traveller, this general notion
has sometimes to be revised according to the specific mathematical model taken into account in the
diffusive strategy of the forager, since, on the one hand, solutions of equation (|1} corresponding to
lower values of s do present a fatter tail distribution, but, on the other hand, due to the loss of the
regularizing effect of the diffusive operator for small s, they also present a more prominent mass at
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the origin: see e.g. Figure[2[in which one can compare solutions at time ¢t = 1 corresponding to s = %
and s = 1. Thus, the balance of these two apparently contrasting features may provide advantageous
foragers’ strategies for small values of s also in presence of proximate preys (not due to the long
range excursion induced by the fat tail of the distribution, but rather due to the distribution peak
at the origin produced by the less regularizing effect of a lower order operator). With respect to
this observation, in view of the scaling properties of the equation (see (3))), the prominent role of
the peak at the origin occurs for small times, while it becomes less significant for larger times. This
somehow explains why the Lévy flights corresponding to s = % are, in principle, more favorable than
the classical Brownian motion, but this effect may become less relevant and rather insecure for very
long time spans. It is suggestive to investigate whether the interplay between optimal but unstable
strategies with suboptimal but safer ones may play a role in the appearance in nature of composite
correlated random walks and in the biological approximation of Lévy walks as an innate composite
correlated random walks, see [7,38].

It is also interesting to compare with biological situations in which a predominance of classical
random walks coexists with patterns close to a theoretical optimum of s = %, see e.g. Figure 4 in [22].

We stress that the phenomenon described in (17)) relies on the ideal assumption that the target is
modelled as a “material point” (thus any arbitrarily small diffusion of the forager misses the resource)
and is a byproduct of a memory-less search strategy (see e.g. [18] for a discussion of memory-enhanced
foraging strategies).

The statement in can be checked analytically as detailed in Appendix .
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Figure 3: Plot of (3,1) 2 s+ &(s;T) for T =107, j € {1,4,8,16}.
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We also have that
lim &(s;7T) = 400
sN\1/2

and, in view of the divergence of the Gamma Functions at negative integers,
lim & (s; T) = 0.
SI/I% 2(5 ) )

These equations show that, for every 7" > 0

1 1
the supremum of the utility functional (5, 1) — &(s;T) is uniquely attained at s = 3 (18)

and the infimum is uniquely attained at s = 1,

which in turn suggests a very strong advantage for the Lévy strategy compared to the Poisson one.
On the other hand, for long time spans, the pattern in shows a significant instability, as sketched
in Figure [3, which depicts the map & (+;T) for T' € {10,10%,10%,10'°}. As a result,

1
for large T', the utility functional (5, 1) — E(s;T)

has a local minimum at some point sy such that (19)
1

lim sp=— and lim & (sp;T) =0,
T—+o0 2 T—+00

and a local maximum at some point St such that lim Sr = 1.
T—4o00

The statement in can be checked analytically as detailed in Appendix .

Interesting patterns having a theoretical (but unstable for large time) optimum at s = % with a
stabilizing option at s = 1 are exhibited by the utility functionals & and &: see Figure [ for the
sketch of &(+;T) (notice the pattern change between 7' = 1.1 and 7' = 1.5 and the development of
an interior maximum at 7" = 1.3) and Figure [5| for the sketch of &(-;T"). We also stress that, for a
given T', the values of & and & remain finite (differently from the cases of & and &,).

The cases of the utility functionals & and &4 are instead surprisingly different. Indeed, Figure [0]
hints that & is monotone decreasing with a supremum at s = % when 7" < 1.5, but then its
monotonicity behavior changes when 7' > 1.6 and develops a supremum at s = 1 when 7" > 1.7. In
this case, even the theoretical optimality at s = % is lost for large times and additionally the switch
between Lévy and Poisson optimal strategy occurs with a rather abrupt transition with respect to
the parameter 7T'.

The functional &, exhibits a different and interesting pattern, as highlighted in Figure [} in
this case the system shows a sudden change of optimality occurring between 7' = 2 and T = 3: it

appears indeed that the Lévy foraging for s = % is optimal when T < 2, but when T" > 3 a new

13
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Figure 4: Plot of (,1) 3 s — &(s;T) for T € {1.1,1.2,1.3,1.5,5,10}.

1
27

optimal strategy for a different fractional exponent s arises (with this new optimal exponent moving
towards s = 1 as T becomes large).

As a matter of fact, we can detect analytically this bifurcation phenomenon and find an explicit
value for the critical T" by the following analytic argument. We use the notation € := 2s — 1 according
to which we have that

(2s —1)¢(2s) = eC(1 +€) =1+ ve + o(e)

and therefore

ey — 262+ (2

T (1+ ei:o_(;)m (1 -1F 6>

2(¢(2) + '(2)e + o(¢))

2¢(=

D) +2¢'(=

Le + o(e) 7+

(T —TInTe

)
(=
+

0(€))(1 + ve + ofe))

14
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7T2

6

— 2 (T 4 ¢(2)e+ ofe)

1 1
+ G In6e+ 2¢'(—1)e + o(e)

1 InT
— 4+ ——€+ o(e)

7t +o(e)
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72 72 72 72 ¢'(2)
2 InT 6+ 2 ¢'(~1
18T © 6<36T nT+ sgp O+ g =+ Sn ) +ole)

This yields that

9T d&, (1 6
— — | =T = InT+1 12¢'(—1 —('(2
= (57) = wTemer iy See

and this quantity is positive (respectively, negative) when T' > T, (respectively, when T' < T), where

T, := exp (— In6 — 12¢'(—1) — %g’@)) — 2.145248182...
s

and, as a result, when T" > T, the inverse square law s = % cannot maximize &, and values of s even
slightly larger than % provide greater values of such an efficiency functional.
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3.2 Preys on a sparse lattice

Now we take into consideration a set of targets displayed in the lattice AZ, for some A > 0, and we
consider the asymptotics related to large values of A\, corresponding to the case of sparse preys. To
this end, we consider the target distribution

J}) = Z 5>\k(ZL’)

kEZ
We observe that
/p(m)u(x,t) de = Z (Ak, 1) ZuA (k,t) (20)
R keZ kez

where

By and (4],

1 1+2s >\
(14 [2"2) ur(z, 1) = (14 |2[*"2%)|u(Az, t)| = —i_l#u (tig, 1)
C(1+ |z|'**) (21)

< . 1+2s < Cs,)\,ta
b A
t?s ( lx )
t

for some Cj ;€ (0, +00).
Moreover, by ,

ux(z,t) = u(Ax,t).

. 1 L
ux (€, )—/11()\96,13)6_2’”’”é dr = —/U(y,t)e_2m’\ Y€ dy
R AJr
La(Se) = Le [2mig [t
=3ul\y =—exp| —————
A )\’ A b )\23

1+ fgle 2nRE[) _ 5
P TT < Gt

and accordingly
(L+[€[" ) [aa(s, 1) =

for some 537” € (0,400).
In view of this estimate and , for a given t > 0 we can use the Poisson Summation Formula
on uy (see e.g. formula (4.4.2) and Theorem 4.4.2 in [33]) and, in light of (20]), conclude that

e Ei- o Lo ).

keZ keZ keZ

For large A, we can consider the latter term as a Riemann sum, therefore, using polar coordinates,

+oo
/Rp(x)u(m,t) dx ~ /Rexp (—2my|*t) dy = 2/0 exp (—(2mp)**t) dp.

Thus, recalling @, and , we can consider, for large A, the foraging success functional

1 1\ [Tat T 1
// u(z,t) dx dt ~ F(—)/ —1:—F<_) = ®y(s;1,7T).
Rx(0, T) oms 2s) Jo tz=  w(2s—1) 2s

The case of a sparse distribution of targets is therefore reduced to that of a single prey at the origin
and, since the optimizers discussed in Section were isolated and nondegenerate, the analysis pro-
vided in Section for a single prey gives asymptotic information to the case of sparsely distributed
targets when A is sufficiently large.
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3.3 Remote single prey

Now we consider the case of a single target located far away from the initial position of the seeker.
For this, given L > 0, let

pr(x) :=0r(x).

For T' > 0, in view of @, we consider the foraging success functional

T
O r(s; k) = //R (OT)pL(x)u(x,t)dxdt:/o u(L,t)dt

By , for large L,
T k2t T(1 + 2s) sin(ms) k2 T? T'(1 + 2s) sin(nws)

LY ®p (s k) ~ / dt =

0 2m A7

Thus, in the lines of , we set

~ k% T? T(1 + 2s) sin(7s)
Crr(sin) = A [1+2s )

we notice that B
O 7(s;k) > @pr(s; k) (22)

for large L, and we discuss the optimization of the utility functionalﬁ

Gi(s: L.T) = 25D TT{+2s) sin(rs)

T A [1+2s
O 7(s;Ks) TT(—2s)I'(1 4+ 2s) sin(27s) T
Go(s; L,T) := == 1t2s T Q7 112s ’
T 8m L1+25 ((1 1 25) SL1+2 ((25 + 1)
O, r(s;1) T C(1+28)T(1 + 2s) sin(ms)
LT = —= =
g3(83 9 ) é(s, T) 47TL1+2S C(23> )
Gu(si 1. 1) o Birlsife) _ TT(-29T(429) sin2rs) T (23)
A T S T 87 L1+25 ((2s) T 8LM2((2s)’
O, r(s:1)  T'% T(2+ 2s) sin(rs)
LT = — =
Gs(s; L, T) (s, 7) 16L1+2 T (1)
~ 2s—1 25—1
.  Prr(sikg) -1 = T7% [(2+ 2s) sin(7s)
and gb‘(s, L, T) = K(s, T) - 21+257T25<(_23) 16L1+2s T (%)

We point out that the final time 7" does not play any role in the optimization in s of the value
functionals G, Gs, g3 and G, in . We also stress that the biological meaning of the efficiency
functionals in only occurs for large values of L > 0, due to the asymptotics in , nevertheless
it is interesting to study those functionals for all values of L also to detect bifurcation phenomena
with respect to this parameter that depend only on the final analytic formulation and not on their
initial construction.

4The final expressions for G, and G, are due to Euler’s reflection formula

s

I'(1—2)(z) = for all z€ R\ Z.

sin(7z)
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Figure 8: Plot of (3,1) 2 s+ Gi(s; L,T) (say, when T = 1) for L = 107, with j € {-3,...,2}.

A plot of Gy is given in Figure[§] where one can appreciate that for small values of L the optimal
exponent is close (but not equal) to 1 (consistently with the idea that if the prey is close to the
starting point of the predator the best seeking strategy is close to that of local type), while for large

values of L the optimum is provided by the inverse square law s = %

The functional G, also shows an interesting bifurcation diagram plotted in Figure [9 also in
this framework preys located close to the origin favor local diffusive strategies (optimized in this
case for s = 1) and when L becomes larger an larger the optimal exponent moves to the left till
becomes s = % The similarities and differences between Figures |8 and @ highlight how different

normalization choices in the model can affect optimal strategies: note indeed that the only difference
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Figure 9: Plot of (3,1) > s+ Go(s; L, T) (say, when T = 1) for L € {1,1.2,1.3,1.5,2,10}.

between G; and G, lies in the way the diffusion coefficient x is modeled on the basis of the underlying
random process. The sensitivity of the optimization strategies with respect to these normalizing
constants seems to be not investigated in the current literature and it produces in Figures [§] and [9]
a different outcome on the optimality of the Gaussian exponent s = 1; this interesting difference is
induced by the analytical observation that G;(1; L,T) = 0 < Go(1; L, T).

As for the functional Gs, plots for different values of L are given in Figure Interestingly, on
the one hand, both the inverse square law s = % and the Gaussian law s = 1 are minima for the

functional for every T and L; on the other hand, for very sparse targets (corresponding to large values
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Figure 10: Plot of (3,1) 3 s+ G3(s; L,T) for T =1 and L = 107, j € {0,...,5}.
of L),
the optimal foraging strategy for Gs(s; L, T) is uniquely attained at some sy,
. 1 (24)
such that lim s; = —.
L—+o00 2

This can also be proved analytically, see Appendix [A 3]

The graph of the functional G, is instead plotted in Figure notice that for L < 1.7 this
functional is increasing and attains its maximum for the Gaussian strategy s = 1, but for L > 2 the
functional G, develops an interior maximum. More precisely, as proved analytically in Appendix [A.4]
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setting
¢'(2)
L* == exp (— = 1.768198... (25)
¢(2)
we have that
if L < L* the optimal foraging strategy for G4(s; L, T) is uniquely attained at s = 1,
while if L > L* the optimal foraging strategy for G4(s; L, T) is uniquely attained (26)

1 . 1
at some sy, € (5, 1) such that LEI—POO sp = 3
Therefore, for larger and larger values of L > L*, the optimal strategy for G, is getting closer and

closer to the inverse power law distribution induced by s = %
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Figure 12: Plot of (1,1) 3 s = Gs(s; L, T) for L = T=07%0

The cases of G5 and Gg are quite sophisticated, since their optimization strategies depend both
on the final time T and on the scantness of the targets modeled by L. In the special situation

in which L =T B (1729 these value functionals do not depend on L and 7' and they are plotted in
Figures [12 and [I3] respectively.
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Figure 13: Plot of (3,1) 3 s+ Gg(s; L, T) for L = =T

In particular, it appears that when L = TG+ the functional G5 is maximized in proximity
of s = 0.80261... and Gg in proximity of s = 0.861187...: in spite of the rather arbitrary choice
relating 7" and L in Figures [12] and [13], it is suggestive to compare these optimal intermediate values
between the inverse square power law distribution and the Gaussian one with the ones observed
experimentally for some blue sharks (see e.g. Figure 1b in [23] which would correspond to s = 0.73),
basking sharks and bigeye tunas (see e.g. Figures 1b and 1c in [46] which would correspond to s = 0.7).
See also the red curves in Figures 2, 4 and 6 of [31] (which corresponds to s ~ 0.75). It is also
interesting to compare these values with the simulation data of some swarm dynamics (corresponding
to s = 0.745, see Figure 3 in |41]). Of course, we are not aiming here at precisely reconstructing
the quantitative results arising in specific real-world experiments, but we think it is an interesting
feature that even the very simplified situation that we describe may lead to optimal values of s which
are somewhat intermediate between s = % and s = 1.
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3.4 Prey at the origin and remote prey

We now consider the case of two targets, one located “at home” at the origin and another far away
at a given distance L > 0. This corresponds to a prey distribution of the form

po.r(x) := do(x) + ().

Since the foraging success functional in @ is linear with respect to the target distribution, the
analysis of this case reduces to the superposition of the value functionals introduced in and :
thus, in the above notation, we define

Hi(s; L, T) :=E&(s;T) + Gj(s; L, T) for j e {1,...,6}
and we find that

Hi(s: L, T) = 1 F(1)+TF(1+2$) sin(7s)

TRy \2) T o

1
2

_ C2(—2¢(—29))* 1 T
Ha(s; L, T) = T% (25— 1) I (2_3) + 8LI+25 (25 + 1)’

_ _ C(1+2s) (i) T ((1+2s) (1 + 2s) sin(ws)
Molsi L T) = g (25 — 1) g(zs)F 2s A L1+25 ((2s) ’
(2602~ 20(~2s)F (L) T
Ml LT =13 (25 —1)¢(2s) "\2s) T arcs)y
_ B (142s)T (%) T*5 (2 + 2s) sin(rs)
Holsi L,T) = 2 (25— 1)TH T (221 16L1+2: T (251)

® =

(= 2¢(=2s))° (1+2s) T (%)
s(2s—1) T:T (ﬁ)

2s

and He(s; L, T) =

25— 2s—1

N -1 = T ['(2 + 2s) sin(7s)
FEm) wpeT (5

We point out that in all the above value functionals, the second term becomes predominant for
large values of T', hence the long time analysis for H; boils down to the one developed for G; in
Section (this is consistent with the idea that for long times the forager has drifted away from its
initial location). Similarly, small values of T" reduce the analysis of H; to the one developed for £; in
Section (consistently with the ansatz that for small times the forager will exploit the targets in
the vicinity of its burrow).

Instead, when 7" = 1 both the terms in H; contribute to the optimization of H; and the cor-
responding plots (when also L = 1) are given in Figure , showing an optimal foraging strategy
corresponding to s = % in these specific situations.
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A Appendices

A.1 Analytical verification of (|17))
Let

and notice that

d InT 4 2 1 1
TesT) = (g — g =) s T) - —— (o
ds 252 2s—1 s 47T (25 — 1)2s4 2s

(28)



Moreover, by ,
E1(s;T) =25%(25 — 1) c(s; T)

and therefore

%51(3; T) = (4s(2s — 1) +4s%) c(s; T) + 257 (2s — l)d%c(s; T)

= ((23 —1)InT — 45> — (25 — 1)y (%)) c(s;T).

Now we define

Accordingly, we can rewrite equation as

d

ds s

Moreover, since s € (%, 1), we have that % € (%, 1) and therefore, for each k£ > 1,

11
k(k+1) 7 k2

1 > l
kL kT E+1 K

As a result,

We now define the function
f(s):= ((23 —1)InT+ (2s — 1)y —2s — 2(2s — 1)) c(s;T)

and we deduce from and that

£(s) < (s T).

For T large enough such that InT + v > 3, let
_ 1 /IT+~—-2
Spi== | ———
T o\lnT++v-3

f(s) = 0if and only if s € (57,1) .

and observe that

Recalling , we observe that
lim & (s,T) = 400

s—=3
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This limit together with and imply that

the map (1,1) 2 s — & (s;T) attains its minimum somewhere in the interval (%,ET). (39)

Furthermore, by and ,

d2
ﬁgl (S T)

— <21nT—85 — 2 (%) + 2525_211”/ <2is>) o(s:7T)

+ ((25 —1)InT —4s* — (25 — 1) (215)> —c(s;T)

1\ 2s—1,/1
(2111T—85—2w (%)—l— 52 (0 (%)

1 InT 4 2 1 1
25 — 1)InT — 45 — (25 — 1)y | — — == == ;T
* (( s=1)n G e (25)> <232 2s—1 s 2s? (25)> (;7)
(2s — 1) In*T 22s—1) 2s—1 (1 1652
> |2 - (4 — | | InT -C ;T
252 * s * 52 4 2s ni 2s — 1 (s T)
for some C' > 0 independent on 7.
Hence, setting A := —VQS\};;“T and B := \/24387—1’ and noticing that
s o (2s—1)In’T 165
42 InT =2AB < A’ + B? = :
252 25 — 1
we conclude that
& 202s—1) 2s—1 (1
Tabi(sT) > (4\f—4— — - (2?)) InT — C|e(s;T). (40)

Now, recalling (32)) and (34)),
25 —1 25 — 1 1
piog- 2D 2 ( >

= AV2—4- (2{_1 25_1(7+2s+z(28)>
— 4\/5—4+288 <7+Z<2i>)
> e

> 4\/5—4—2+7,

which is strictly positive.
This observation and entail that & is strictly convex for large T, and consequently, the
minimum in is attained at a unique point that we denote by sr. Since

lim 57 =
T—o0
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we thus obtain from that

i 1
1m =
T—o0 5T = 2

which concludes the analytical proof of (17 .

A.2 Analytical verification of (19)

We point out that

| T 41
s\lrlr}Qc‘fg(s ) = +o0, (41)

since the denominator in the definition of & in ([15)) vanishes. Moreover, since the Riemann Zeta

Function vanishes at the negative even integers (different from —1), we note that ((—2) = 0, whence
li ;T) = 0. 42
lim &(s; T) = 0 (42)
Also, in light of (17]), we can rewrite &(s;T) as

E(s;T) = 2m(h(s)) = & (s, T),

where we have defined h(s) := —2((—2s) > 0 for each s € (1/2,1).
We remarlf| that, if s € (1/2,1),

h(s) = 2272 sin(rs) T(1 + 25) C(1 + 25) € (0, M} _ (07 1]

T2

and therefore

In(h(s)) < lné < 0. (43)

Also,

B(s) = 2127 2710(1 4 2) [2 sin(ms)¢/(1 + 2s)
(44)
+ (1 + 2s) <7r cos(ms) + 2sin(ms) (Y(1 +2s) —In2 — In W))] :

We recall that
Y(14+2s) —In2—In7m < ¢Y(3) —In2 — In7m = —0.9150927...
and therefore we infer from that

h'(s) 125257101 4 25) [2 sin(7s)C’ (1 + 2s) + (1 + 2s) COS(TI‘S)]

2
2172525 (1 4 25)((1 + 25) cos(ms).

NN

Since the latter term is nonpositive for s € [)%, 1], and actually strictly negative when s € (%, 1}, the

observations above yield that A’ < 0 in (l and more precisely, for all s € (%, 1),

51

— Cl < h/(S) < —CQ, (45)

SHere we are using the Riemann’s Functional Equation

¢(2) = 2°7* Lsin (%) (1 —2)¢(1—=2).
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where (' and Cs are positive constants.
We now compute the derivative with respect to s of & (s;T') and get

@«

Leu(si) = 2m [ LT BDE + &6, TR (o mlhis)) + ).

Hence, from equations and we deduce that

L 6(s:7) = 2me(s: T)(h(3)) '

where

(P(s, T)(s) = (25 = 1) In(h(s)) h(s) + s(25 = ) (s)),  (46)

P(s,T) = (25 — 1) InT + (25 — 1)y — 25 + (25 — 1) Z (%)

and ¢ and Z are as defined in and , respectively.
Now, using and , we observe that

P(s,T) = (25— 1)InT+ (25— 1)y — 25+ (25 — 1) Z (%)

= 2s—1)InT+(2s—1)y—2s—2(25s—1)+ (25— 1) (2+Z<%>>
> (2s—1)InT+ (2s— 1)y —2s—2(2s — 1)

f(s)

c(s;T)

As a consequence, owing also to , and we find that

i&(s; T) > 2me(s; T) (h(s)) = (M +5(25 — 1) h’(s))

T

" 12 fc(gh(l) )

> - e _ _ .

>2mc(s;T) (h(s)) ( (5T s(2s 1)C’1>

Consequently, by (38)) and the fact that h(s) is decreasing, we get that for all s € (ET, %),
1-2s f(S) h(3/4) d
N 2s - L — < - .

27me(s; T)h(s) ( ) s(2s —1)Cy | < dng(S, T) (48)

where 37 is as defined in (37)). Now we set

N | s(2s — 1)y 1 /InT =2+~ +s(2s—1)Cy/h(3/4)
TS\ hEA (InT -3+ 9) _5( T -3+~ )

Hence, recalling again and assuming 71" conveniently large, for all s € (§T, %),

f(s)h(3/4)
c(s;T)

~s(2s — 10y = h(3/4)<(25 1) InT + (25 — 1)y — 25 — 2(2s — 1)> ~s(2s — 1O,
= 25h(3/4)(InT+7=3) + h(3/4) (=T — 5 +2) — (25 = 1)C

> 257 h(3/4) (InT + 9= 3) + h(3/4)( —InT =7 +2) = 525 — 1)Cy
— 0.
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Plugging this information into (48]) we find that, for large T, the function (%, 1) > s = &(s;T)
is strictly increasing in (.§T, 3) and in view of we obtain that this function possesses a local
minimum sy € (3,57] and (recalling also ([42)) a local maximum Sy € [2,1). Since 7 converges
to % as T' — 400, we also obtain that s — % as T — +o0.

Accordingly, to complete the proof of , it only remains to check that Sy — 1 as T — +o0.
To this end, we note that, by and ,

0= e el > LN

- - — Sp(287 — 1)C
(S T) h(Sy) = @5
- h(ST)((st ) InT + (2Sr — 1)y — 257 — 2(257 — 1)) — Sp(28r — 1)C)
InT
> W(Sr)=5- — C2 — Cah(Sr),

for some constants Cy, C3 > 0.
For this reason,

I;
TiToo h(ST) T—+oco 2

whence

0= lim h(ST):ThT —2((—2s7).
—+0o0

T—+o0

Since the only zero of the Riemann Zeta Function in [—2,—1] occurs at —2, we thereby infer
that —2sp — —2, and thus s — 1, as T" — +oo. With this, we have concluded the analytical

verification of .

A.3 Analytical verification of (24)
We observe that

P(s; L, T)
4 L1725 ((2s)
TT(1 + 2s)

= ((1+ 25)( —2In L sin(ws) 4+ wcos(ms) + 2sin(mws)(1 + 28)) + 2sin(ms)C’ (1 + 2s)
~ 2¢(1 + 2s) sin(ms)(’(2s)
¢(2s)

and the positivity of the derivative of G3 is equivalent to the positivity of P.
We also recall that near z = 1 the derivative of the Riemann Zeta Function has the Laurent
expansion

d
— - L. T
dsg3(57 ) )

O =—211+7+0(z—1), (49)

see e.g. page 481 in [14].
Let also

Q(s) :=¢(1+2s) <7r cos(ms) + 2sin(mws)y (1 + 25)) + 2sin(7s)¢’ (1 + 2s)

and note that SUP ¢ (1 1) |Q(s)] < C for some C' > 0; in addition,

N|=

2¢(1 + 2s) sin(ms)('(2s)

P(s;L,T) = —2¢(1+2s)InL sin(ns) — C(25)

+Q(s)
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. ¢'(2s)
= —2((1+ 2s)sin(7s (lnL+ + 9Q(s)
(1-+25)sin(rs) (L 5520 ) + €
1 ~
= —2((1 + 2s)sin(ms) (lnL ~ 51 + Q(s),
5 —
where C'(29) 1
~ s
3(s) = Qo) — 2601+ 25)sinrs) (S22 + 51
We stress that SUP e (1 1) 1Q(s)| < C for some C > 0, thanks to (A9).
Let now
o 1 q s(i) . 1 1+ €L
LT L o L2 2InL’
We notice that
lim ¢, =0 and lim S(Li) = -
L—+00 L—+4o00

Also, when s € (%, s({)}, we have that

2s—1<2s\) —1=2""2&

and, as a result, for large L,

P(s; L, T) > 2¢(1+ 2s)sin(ws) (—lnL—I— 11nL > —C

el
2e, In L (1 + 2s) sin(7s) &

1—€L
> VInL ¢(1+ 2s)sin(rs) — C
2 \/111[2/<<3)_'CV’
> 0.

Instead, when s € [5(L+), 1),

1
25— 13225 1= ;“;L,
n

which entails that

P(s; L, T) < 2¢(1+ 2s)sin(ws) (—lnL + 11_?_[/ ) + 9(s)

€L
2¢r, In L (1 + 2s) sin(ms)

< + 9Q(s) + C sin(7s)
1+eg
< - 2vInL ¢(3) sin(rs) + mcos(ms)((1 4 2s) + Cysin(7s)
1+ gL
= —sin(ws) (%Lf(?)) - Cg> + mcos(ms)C(1 + 2s)
L

< —sin(mws) (\/E ¢(3) — C’g) + 7 cos(ws)C(1 + 2s)
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< 0,

where C; and (5 are suitable positive constants.

From these considerations, it follows that there exists at least one zero for P and all the zeros

of P are located in <s(L_), S(L+)>. As a consequence,

there exists at least a critical point for G3

and all the critical points of G5 are located in (s(L_), s(L+)>.

We now show that

P is strictly decreasing in (S(L ), s(;)).

For this, we calculate that

d%ﬂs L,T) = L ( - 4sin(rs)¢'(1 + 2s) — 27¢(1 + 25) cos(ms)
+ 7 cos(ms) [44/(1 +25) +2¢(1 + 2s) (¢(1 +25) - CC,((QQ::)))}
| ) ¢'(2s)
+ 4 sin(7s) {C (14 25) + C(1+2s) (1 +25) C(QS))

+c<1+23)< C"<(23)) ( 85;) +w(1+2s)—w)]

<InL < — 4sin(ms)¢' (1 + 2s) — 2w¢(1 + 2s) cos(ws))

CI(ZS)— sin WS@
(s~ ) oy

C”(Qs) C’(2s) 2
+ C(l + 28) <_ €(28) + (C(Zs) ) > TG
for some constant C5 > 0.

Additionally, differentiating the Laurent expansion in (49)),

¢"(2) <<’(2>>2 _4cE) 1 o,

— 7 cos(7s)

¢(z) ¢(2) dz ¢(z)  (z—1)?
Plugging this information into (53|) we find that
d%P(S L,T) <InL ( — 4sin(ms)C' (1 + 2s) — 27¢(1 + 2s) cos(ws))
('(2s) : ¢'(2s)  ¢(1+2s)
— wcos(ﬂs)m — 4sin(7s) (25 (21 + Cy
for some constant C; > 0. Thus, since ¢’ <0
6%73(3 L,T) <InL ( — 4sin(ws)C'(1 4 2s) — 27x¢(1 + 2s) COS(?TS))

_A4¢(2s) (1 +2s)
C2s) (s O
<InL ( — 4sin(ms)¢' (1 + 2s) — 2w¢(1 + 2s) cos(ws))
4 (14 26)
T 1T s

+Cs
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for some C5 > 0, where has been used once again.
Moreover, if s € (%, s(L+)], then, for large L,

Lte 2

2 _1< X
5 InL InL

and therefore we deduce from that

d Cs  C(1+2s) 1 ¢B3)
o . < — < -
as’ TS 5 (25 —1)2 " 251 R

1 ¢(3) 1 [¢(3)InL
< — - < — -
X 28 _ 1 (23(L+) _ 1 06) X 28 — 1 ( 2 06 < 07

which completes the proof of .
The desired claim in (24]) now follows combining and with the second limit in ([50)).

A.4 Analytical verification of (26)
We start by computing the derivative of G, with respect to s, and we get that

Ao T (. (@)
9T =~ (b o ) (55)

Now we observe that, for s € (%, 1), the function

¢'(2s)
((2s)

is negative and strictly increasing. Furthermore, from we infer that

m(s) =

I — —o0.
8\1‘21}2771(5) 00 (56)

Now, in light of ,

d
£Q4(S,T, L) > 0 if and only if In L 4+ m(s) < 0, (57)

and thus if and only if L < exp (—m(s)).
Also, from and the monotonicity of the function m, for each L < L* and s € (%, 1) we have that
exp (—m(s)) > exp (—m(1)) = L* > L,
and therefore we deduce from that
when L < L* the supremum of (%, 1) S s+ Ga(s; L, T) is uniquely attained at s = 1. (58)
If instead L > L*, using we see that

li — = L
s\llrlr}QeXp( m(s)) = +oo0 >
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and £1}ri exp (—m(s)) =exp (—m(1)) = L* < L.

This and the strict monotonicity of m yield that for each L > L* there exists a unique sy € (%, 1)
such that

d
£g4(8[z7 L7 T) - 07 (59)

with %94(5,L,T) > 0 if and only if s € (%, sL), namely sy is the unique maximum for Gy(s, L, T)
when L > L*.
From these observations and , in order to complete the analytical proof of , it is only left

to show that
] 1
lim s, = 3 (60)

L—+o00

To this end, equations and give that
0=1InL+m(sg),

which leads to
+oo= lim InL=— lim m(sg). (61)

L—+o00 L—+o00

Since the only pole of m(s) at [%, 1} occurs in s = %, then we obtain , as desired.
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