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Abstract. In this article we consider different generalizations of
the Brachistochrone Problem in the context of fundamental con-
cepts of classical mechanics. The correct statement for the Brachis-
tochrone problem for nonholonomic systems is proposed. It is
shown that the Brachistochrone problem is closely related to vako-
nomic mechanics.

1. Introduction. The Statement of the Problem

The article is organized as follows.
Section 3 is independent on other text and contains an auxiliary ma-

terial with precise definitions and proofs. This section can be dropped
by a reader versed in the Calculus of Variations.

Other part of the text is less formal and based on Section 3.
The Brachistochrone Problem is one of the classical variational prob-

lems that we inherited form the past centuries. This problem was stated
by Johann Bernoulli in 1696 and solved almost simultaneously by him
and by Christiaan Huygens and Gottfried Wilhelm Leibniz.

Since that time the problem was discussed in different aspects nu-
merous times.

We do not even try to concern this long and celebrated history.
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This article is devoted to comprehension of the Brachistochrone
Problem in terms of the modern Lagrangian formalism and to the gen-
eralizations which such a comprehension involves.

The original version of the problem is as follows. Consider a vertical
plane with standard coordinate frame Ox1x2. The axis Ox2 is directed
upwards opposite the standard gravity g.

There are two points A,B with coordinates (0, h) and (l, 0) respec-
tively; h, l > 0. We can connect these two points by different paths.
Let a bead of mass m slide along such a path from A to B without
friction. The initial velocity of the bead is zero. What path provides
the minimal time of bead’s moving from A to B?

So the configuration space of our system is the plane Ox1x2. The
generalized coordinates are the coordinates of the bead, say (x1, x2).
This is a system with two degrees of freedom and its Lagrangian is

L =
1

2
m
(
(x1t )

2 + (x2t )
2
)
−mgx2.

Here by the subscript t we denote the derivative in t.
Then we impose an additional ideal constraint that compels the bead

to move only along a certain path between A and B. Let this path be
given as a parametric equation

x = x(s) = (x1, x2)T (s), x(s1) = A, x(s2) = B, s ∈ [s1, s2].

The law of bead’s motion along the path is thus given by the formulas

s = s(t), x = x(s(t)).

Substituting this equation into the Lagrangian we obtain a system
with one degree of freedom and the generalized coordinate s:

L′(s, st) =
1

2
m
(
(x1s(s))

2 + (x2s(s))
2
)
s2t −mgx2(s).

This Lagrangian describes the motion of the bead along the chosen
path.

That is enough to proceed with the general case.
In the sequel we assume all the functions to be smooth. Recall that

a function is smooth in the closed interval [s1, s2] if by definition it
belongs to C∞(s1, s2) and all the derivatives are extended to continuous
functions in [s1, s2].

This assumption is overly strong but we keep it for simplicity of the
wording.
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1.1. Holonomic Version of the Problem. Assume we are given
with a Lagrangian system

L = T − V, T =
1

2
xTt G(x)xt, V = V (x). (1.1)

Here x = (x1, . . . , xm)T are the local coordinates on a configuration
manifold M and G(x) is the matrix of a positively definite quadratic
form, GT (x) = G(x), detG(x) 6= 0, ∀x ∈ M . All the functions are
smooth.

Fix two points x1, x2 ∈ M . There are a lot of curves that connect
these two points. Let a curve γ be one of them. Assume that this curve
is given by the equation

x = x(s), x(s1) = x1, x(s2) = x2. (1.2)

So that s is a coordinate in γ.
Impose an additional ideal constraint that makes system (1.1) move

along the curve γ only. We obtain a one-degree of freedom system with
configuration space γ and the generalized coordinate s. Motion of this
system along the curve γ is described by the parameter s such that
s = s(t) and

x = x(s(t)). (1.3)

Substituting this formula in (1.1) we obtain the Lagrangian of this
new one-degree of freedom system:

L′(s, st) =
1

2

(
xTs (s)G(x(s))xs(s)

)
s2t − V (x(s)).

We want to choose the curve γ so that system (1.1) spends minimal
time passing along γ from x1 to x2 at the energy level h:

1

2

(
xTs (s)G(x(s))xs(s)

)
s2t + V (x(s)) = h. (1.4)

Let us assume that
V (x) < h, ∀x ∈M. (1.5)

Separating variables in this equation we see that the time of passing is
given by the formula

τ(γ) =

∫ s2

s1

√
xTs (s)G(x(s))xs(s)

2(h− V (x(s))
ds.

Therefore we are looking for a stationary point of the functional τ under
the boundary conditions (1.2).

By other words, the Brachistochrone curve is a geodesic of the metric

G(x)

2(h− V (x))
. (1.6)
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From proposition 7 (see below) it follows that we can equivalently
seek for a stationary point of the functional

τ̃(x(·)) =

∫ s2

s1

xTs (s)G(x(s))xs(s)

2(h− V (x(s)))
ds =

∫ s2

s1

T

h− V
ds

with the same boundary conditions.
By the Hamilton principle it follows that the Brachistochrone curve

is a trajectory of a dynamical system with Lagrangian

L(x, xs) =
T

h− V
.

Introduce a function

W = − 1

h− V
.

Metric (1.6) presents as follows

G(x)

2(h− V (x))
=

1

2
(−W )G.

By the principle of least action in the Moupertuis-Euler-Lagrange-
Jacobi form [3] we conclude that the Brachistochrone is a trajectory of
a system with Lagrangian

L̃ = T −W

at the zero energy level:

T +W = 0.

1.2. Holonomic Constraints. Assume that the Brachistochrone prob-
lem is stated for the system with Lagrangian (1.1) and with ideal con-
straints

w(x) = 0, (1.7)

where w = (w1, . . . wn)T (x), n < m is a vector of smooth functions
in M such that

rang
∂w

∂x
(x) = n, ∀x ∈M.

This statement brings nothing new: equations (1.7) define a smooth
submanifold N in M and all constructed above theory works for the
corresponding Lagrangian system without constraints on N .
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2. The Brachistochrone Problem with Differential
Constraints

2.1. Discussion. Assume that the Lagrangian system (1.1) is equipped
with ideal differential constraints

B(x)xt = 0. (2.1)

Here the matrix

B(x) =


b11(x) b12(x) · · · b1m(x)
b21(x) b22(x) · · · b2m(x)

...
...

. . .
...

bn1 (x) bn2 (x) · · · bnm(x)

 ,

here

rangB(x) = n < m, ∀x ∈M.

Recall that if system (2.1) can equivalently be presented in the form
(1.7) then it is referred to as a holonomic system. Otherwise (2.1) is a
nonholonomic system. What the word ”equivalently” means and when
such a presentation is possible is a content of the Frobenius theorem
[10].

As above we substitute equation (1.3) into Lagrangian (1.1) and sep-
arating the variables in the energy integral (1.4) we get the functional
τ . Then we notice condition (1.5).

But now we must pick only motions that satisfy constraints (2.1).
Substituting (1.3) in (2.1) we have

B(x(s(t))xs(s(t))st = 0.

It follows that

B(x)xs = 0. (2.2)

We postpone the discussion of the boundary conditions for a while but
note that by the same reason (proposition 7) we can replace τ with τ̃ .

Now let us observe that we have obtained the problem of stationary
points for the functional τ̃ defined on a set of curves x = x(s) that
obey constraints (2.2).

This problem provoked a lot of confusion and mistakes in classical
mechanics. Many researches thought that such a variational problem
is equivalent to the Lagrange-d’Alembert equations for the mechanical
system with the Lagrangian L and ideal constraints (2.2) (the variable
s plays a role of time). If constrains (2.2) are nonholonomic it is not
so.

Here is what in this concern Bloch, Baillieul, Crouch and Marsden
write in [5]:



6 OLEG ZUBELEVICH

It is interesting to compare the dynamic nonholonomic equations,
that is, the Lagrange-dAlembert equations with the corresponding vari-
ational nonholonomic equations. The distinction between these two dif-
ferent systems of equations has a long and distinguished history going
back to the review article of Korteweg [6] and is discussed in a more
modern context in Arnold, Kozlov, and Neishtadt [4]. (For Kozlovs
work on vakonomic systems see, e.g., [7] and [8])

As Korteweg points out, there were many confusions and mistakes in
the literature because people were using the incorrect equations, namely
the variational equations, when they should have been using the Lagrange-
dAlembert equations; some of these misunderstandings persist, remark-
ably, to the present day. The upshot of the distinction is that the
Lagrange-dAlembert equations are the correct mechanical dynamical
equations, while the corresponding variational problem is asking a dif-
ferent question, namely one of optimal control.

Perhaps it is surprising, at least at first, that these two procedures
give different equations. What, exactly, is the difference in the two pro-
cedures? The distinction is one of whether the constraints are imposed
before or after taking variations. These two operations do not, in gen-
eral, commute. We shall see this explicitly with the vertical rolling disk
in the next section. With the dynamic Lagrange-dAlembert equations,
we impose constraints only on the variations, whereas in the variational
problem we impose the constraints on the velocity vectors of the class
of allowable curves.

In case of differential constraints (2.2) the situation with boundary
conditions is much more complicated than (1.2).

The main question is as follows. Assume that the points x1, x2 ∈M
are connected with a curve x(s). This curve is a stationary point of
τ or τ̃ on the set of curves that satisfy constraints (2.2) and connect
x1, x2.

Is the collection of other smooth paths that connect x1, x2 and satisfy
(2.2) large enough to reduce the variational problem to the differential
equations? Or by other words, is this collection large enough to con-
struct the Lagrange multipliers method? In general the answer is ”no”.
See remark 1 below.

The author does not know whether the situation will be fixed if we
demand the constraints to be completely nonholonomic. Such questions
seem to be closely related to the Rashevsky-Chow theorem [9], [2].

To avoid these hard questions we suggest considering the Brachis-
tochrone Problem with another boundary conditions which guarantee
the correct employment of the Lagrange multipliers method in the case
of nonholonomic constraints.
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2.2. The Lagrange multipliers method. Let us restrict our atten-
tion to the case when M ⊂ Rm = {x = (x1, . . . , xm)T} is a domain.

We assume that perhaps after some rearrangement the coordinates
can be split in two parts

x =



y1

...
yn

z1

...
zm−n


=

(
y
z

)
, (2.3)

such that
B(x)xs = R(x)ys +Q(x)zs, (2.4)

where R is an n× n matrix and detR(x) 6= 0, ∀x ∈M .
Representation (2.3), (2.4) is not unique.
Let us impose the boundary conditions:

x(s1) = x1 = (yT1 , z
T
1 )T ∈M, z(s2) = z2. (2.5)

Here x1, z2 are fixed,

{(yT , zT )T | z = z2} ∩M 6= ∅;
and we put no restrictions on y(s2).

Thus the different choice of representation (2.3), (2.4) leads to phys-
ically different statements of the problem.

Theorem 1. Let x̃(s) be a stationary point of the functional τ̃ on the
set of functions x(s) that satisfy (2.2), (2.5).

Then there is a smooth function λ(s) = (λ1, . . . , λn)(s) such that x̃
satisfies the equations

d

ds

∂L∗

∂xs
− ∂L∗

∂x
= 0, L∗(s, x, xs) =

xTsG(x)xs
2(h− V (x))

+ λ(s)B(x)xs, (2.6)

and
p(x̃(s2), x̃s(s2))

h− V (x̃(s2))
+ λ(s2)R(x̃(s2)) = 0, (2.7)

where

p(x, xs) =
∂

∂ys

(
xTsG(x)xs

)
.

This theorem is a direct consequence from theorem 2.
By proposition 1 the stationary point x̃ preserves the ”energy”:

x̃Ts (s)G(x̃(s))x̃s(s)

2(h− V (x̃(s)))
= const.
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Show that system (2.6), (2.2) can be presented in the normal form
that is

xss = Ψ1(x, xs, λ), λs = Ψ2(x, xs, λ). (2.8)

Indeed, system (2.6) takes the form

xTss + λsB̃ = α(x, xs, λ), B̃ = B
( G

h− V

)−1
. (2.9)

Differentiate (2.2) to have

Bxss + γ(x, xs) = 0. (2.10)

Substituting the second derivatives from (2.9) to (2.10) we obtain

λsB̃B
T = ψ(x, xs, λ). (2.11)

It is clear det B̃BT 6= 0 and we can express λs from (2.11) and plug it
in (2.9).

If we choose y(s2) and zs(s2) then λ(s2) and ys(s2) are defined from
equations (2.7), (2.2); and at least for s2 − s1 small, we can solve the
Cauchy problem for (2.9), (2.11) backwards. Thus the problem is to
choose y(s2) and zs(s2) so that the boundary conditions x(s1) = x1 are
satisfied.

Once representation (2.3), (2.4) fixed the problem meets the Newton
principle of determinacy: initial conditions

x(s2), xs(s2)

determine the trajectory x(s) uniquely. Indeed, from equation (2.7)
one finds the value λ(s2). This completes the statement of the Cauchy
problem for (2.8).

3. Some Useful Facts From the Calculus of Variations

Here we collect several standard facts from the Calculus of Varia-
tions.

Let Ω ⊂ Rm be an open domain with standard coordinates

x = (x1, . . . , xm)T .

To proceed with formulations we split the vector x in two parts as
above (2.3).

Let F : Ω× Rm → R be a smooth function.
We are about to state the variational problem for the functional

F
(
x(·)

)
=

∫ s2

s1

F (x(s), xs(s))ds (3.1)

with boundary conditions

z(s1) = ẑ1, z(s2) = ẑ2, y(s1) = ŷ1, s1 < s2 (3.2)
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and constraints
a(x, xs) = 0. (3.3)

Here a = (a1, . . . , an)T is a vector of functions that are smooth in
Ω× Rm.

There also must be

(ŷT1 , ẑ
T
1 )T ∈ Ω, {(yT , zT )T | z = ẑ2} ∩ Ω 6= ∅.

Assume that

det
∂a

∂ys
(x, xs) 6= 0, (x, xs) ∈ Ω× Rm (3.4)

and equation (3.3) can equivalently be written as

ys = Φ(y, z, zs).

Definition 1. Let a smooth function

x̃ : [s1, s2]→ Ω, x̃(s) = (ỹT , z̃T )T (s)

be such that

a(x̃(s), x̃s(s)) = 0, x̃(s1) = x̂1 = (ŷT1 , ẑ
T
1 )T , z̃(s2) = ẑ2.

We shall say that x̃ is a stationary point of functional (3.1) with con-
straints (3.3) and boundary conditions (3.2) if the following holds.

For any smooth function

X : [s1, s2]× (−ε0, ε0)→ Rm, X(s, ε) = (Y T , ZT )T (s, ε), ε0 > 0

such that
1) X

(
[s1, s2]× (−ε0, ε0)

)
⊂ Ω;

2) X(s, 0) = x̃(s), s ∈ [s1, s2];
3) Z(s1, ε) = ẑ1, Z(s2, ε) = ẑ2, Y (s1, ε) = ŷ1, ε ∈ (−ε0, ε0) ;
4) a(X(s, ε), Xs(s, ε)) = 0, (s, ε) ∈ [s1, s2]× (−ε0, ε0)
we have

d

dε

∣∣∣
ε=0
F
(
X(·, ε)

)
= 0.

The functions X with properties 1)-4) are referred to as variations.

Theorem 2 ([1]). If the function x̃ is a stationary point of functional
(3.1) with constraints (3.3) and boundary conditions (3.2) then there
is a smooth function λ(s) = (λ1, . . . , λn)(s) such that x̃ satisfies the
equations

d

ds

∂F ∗

∂xs
− ∂F ∗

∂x
= 0, F ∗(s, x, xs) = F (x, xs) + λ(s)a(x, xs),

and
∂F

∂ys
(x̃(s2), x̃s(s2)) + λ(s2)

∂a

∂ys
(x̃(s2), x̃s(s2)) = 0. (3.5)
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This theorem remains valid if the functions a, F depend on s.
For completeness of the exposition sake we prove this theorem in

section 3.2.

3.1. The Homogeneous Case. In this section it is reasonable to as-
sume the second argument of the functions a, F to be defined on a conic
domain K ⊂ Rm. All the formulated above results and the argument
of section 3.2 remain valid under such an assumption.

Recall that by definition the domain K is a conic domain iff

x ∈ K =⇒ αx ∈ K, ∀α > 0.

Proposition 1. Assume that the function a is homogeneous in the
second argument:

a(x, αxs) = αa(a, xs), ∀α > 0, ∀(x, xs) ∈ Ω×K. (3.6)

Then the stationary point x̃ preserves the ”energy”:

H(x, xs) =
∂F

∂xs
xs − F

that is
H(x̃(s), x̃s(s)) = const.

Proof of Proposition 1. Consider a function

X(s, ε) = x̃(s+ εϕ(s))

with a smooth function ϕ such that suppϕ ⊂ [s1 + s′, s2 − s′] and

|ε|, s′ > 0

are small enough.
The function X satisfies all the conditions of Definition 1. Property

(3.6) is needed to check condition 4) of Definition 1.
Furthermore we have

X = x̃(s) + εϕ(s)x̃s(s) +O(ε2),

Xs = x̃s(s) + ε
(
ϕs(s)x̃s(s) + ϕ(s)x̃ss(s)

)
+O(ε2)

and
d

dε

∣∣∣
ε=0
F(X(·, ε))

=

∫ s2

s1

(
ϕ(s)

d

ds
F (x̃, x̃s) + ϕs(s)

∂F (x̃, x̃s)

∂xs
x̃s(s)

)
ds

=

∫ s2

s1

H(x̃(s), x̃s(s))ϕs(s)ds = 0.

Here we use integration by parts.
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Since ϕ is an arbitrary function the proposition is proved.

3.1.1. The Case of Both Functions a, F Homogeneous in xs.

Proposition 2. Let x̃(s) be a stationary point of F . Define a function

x̄(ξ) = x̃(f(ξ)),

where f : [ξ1, ξ2]→ [s1, s2] is a smooth function,

fξ(ξ) > 0, f(ξr) = sr, r = 1, 2.

Then x̄ is a stationary point of F with the integral taken over [ξ1, ξ2].

Indeed, such a reparameterization neither changes the shape of con-
straints (3.3) nor the shape of integral (3.1):∫ s2

s1

F (x̃(s), x̃s(s))ds =

∫ ξ2

ξ1

F (x̄(ξ), x̄ξ(ξ))dξ.

Proposition 3. If F (x̃(s), x̃s(s)) > 0, s ∈ [s1, s2] then for any con-
stant c > 0 we can choose a parametrization of x̃ such that

F (x̄(ξ), x̄ξ(ξ)) = c, ξ ∈ [ξ1, ξ2].

Indeed, the desired parametrization is obtained from the equation

dξ

ds
=

1

c
F (x̃(s), x̃s(s)).

Introduce a functional

P
(
x(·)

)
=

∫ s2

s1

(
F (x(s), xs(s))

)2
ds

with the same constraints and boundary conditions (3.3), (3.2).

Proposition 4. Let x̃(s) be a stationary point of F and assume that
x̃(s) is parametrized in accordance with Proposition 3:

F (x̃(s), x̃s(s)) = c.

Then x̃(s) is a stationary point of P.

Indeed,

d

dε

∣∣∣
ε=0
P
(
X(·, ε)

)
= 2c

d

dε

∣∣∣
ε=0
F
(
X(·, ε)

)
= 0. (3.7)

Proposition 5. Let x∗(s) be a stationary point of P. Then F is the
energy integral:

F (x∗(s), x∗s(s)) = const.
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Indeed, since F is homogeneous in xs it follows that

∂F

∂xs
xs = F.

And the assertion follows from Proposition 1:

H =
∂F 2

∂xs
xs − F 2 = F 2.

Proposition 6. Let x∗(s) be a stationary point of P such that

F (x∗(s), x∗s(s)) = c > 0.

Then it is a stationary point of F .

Indeed, it follows from (3.7).
Summing up we obtain the following proposition.

Proposition 7. If x̃(s) is a stationary point of F and F (x̃(s), x̃s(s)) >
0 then after some reparametrization it is a stationary point of P.

If x∗(s) is a stationary point of P and F (x∗(s), x∗s(s)) = c > 0 then
it is a stationary point of F .

3.2. Proof of Theorem 2. Introduce a notation

[F ]y = − d

ds

∂F

∂ys
+
∂F

∂y
, [F ]z = − d

ds

∂F

∂zs
+
∂F

∂z

and correspondingly [F ]x = ([F ]y, [F ]z).
Let us put Z(s, ε) = z̃(s) + εδz(s),

supp δz ⊂ [s1, s2]. (3.8)

Then the function Y is uniquely determined from the following Cauchy
problem

Ys(s, ε) = Φ(Y (s, ε), Z(s, ε), Zs(s, ε)), Y (s1, ε) = ŷ1. (3.9)

Particularly, it may turn out that Yε(s2, 0) 6= 0.

Remark 1. That is why we can not impose condition x(s2) = x̂2 as it
is usually done for the holonomic case. The value Y (s2, ε) has already
been uniquely defined by other boundary conditions and the constraints.
In other words if we add the condition Y (s2, ε) = ŷ2 to the conditions
1)-4) of Definition 1 then the set of variations {X(s, ε)} may turn up
to be insufficiently large to prove theorem 2.

For example, consider a plane R2 = {x = (y, z)T}. There is a unique
smooth path from x1 = (0, 0)T to x2 = (0, 1)T that satisfies the equation
ys = 0. (Much more complicated example by C. Caratheodory see in
[4].)
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Cauchy problem (3.9) has the suitable solution at least for |ε| and
s2 − s1 small. Observe also that

Yε(s1, ε) = 0. (3.10)

Using the standard integration by parts technique and from formulas
(3.10), (3.8) we obtain

d

dε

∣∣∣
ε=0
F
(
X(·, ε)

)
=

∫ s2

s1

(
[F ]zδz + [F ]yYε

)
ds+

∂F

∂ys
(x̃(s2), x̃s(s2))Yε(s2, 0) = 0.

(3.11)

The function λ(s) is still undefined but due to condition (3.4) the value
λ(s2) is determined uniquely from (3.5).

From condition 4) of definition 1 it follows that

A(ε) =

∫ s2

s1

λ(s)a(X(s, ε), Xs(s, ε))ds = 0.

By the same argument as above we have

d

dε

∣∣∣
ε=0

A

=

∫ s2

s1

(
[λa]zδz + [λa]yYε

)
ds

+ λ(s2)
∂a

∂ys
(x̃(s2), x̃s(s2))Yε(s2, 0) = 0. (3.12)

Summing formulas (3.12) and (3.11) we yield∫ s2

s1

(
[F ∗]zδz + [F ∗]yYε

)
ds = 0. (3.13)

To construct the function λ consider an equation

[F ∗]y = 0. (3.14)

This is a system of linear ordinary differential equations for λ. Due to
assumption (3.4) this system can be presented in the normal form that
is

λs = Λ(s, λ).

Since we know λ(s2), by the existence and uniqueness theorem we ob-
tain λ(s) as a solution to the IVP for (3.14).

Equation (3.13) takes the form∫ s2

s1

[F ∗]zδzds = 0.
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Since δz is an arbitrary function we get [F ∗]z = 0. Together with (3.14)
this proves the theorem.
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