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Abstract

Consider an analytic Hamiltonian system near its analytic invariant torus T0 car-
rying zero frequency. We assume that the Birkhoff normal form of the Hamiltonian
at T0 is convergent and has a particular form: it is an analytic function of its non-
degenerate quadratic part. We prove that in this case there is an analytic canonical
transformation—not just a formal power series—bringing the Hamiltonian into its
Birkhoff normal form.

1 Introduction

The goal of this paper is to study the convergence of the transformations of an analytic
Hamiltonian system in a neighborhood of an invariant torus to the Birkhoff normal form.
Here we assume that the frequency vector at the invariant torus is very resonant, hence
already at the formal level, the existence of the Birkhoff normal form has obstructions.
The main result, Theorem 1 below, will show that if the obstructions for the formal
equivalence between the system and its Birkhoff normal form vanish and the normal form
is convergent and has a particular form, then the system is analytically equivalent to
its normal form. Hence, this result can be considered as a part of the rigidity program:
identifying obstructions for a weak form of equivalence whose vanishing implies a stronger
form of equivalence.

1.1 Classical theory of normal forms: existence and uniqueness.

Consider an analytic function

H(I, θ) = 〈λ0, I〉+O2(I), (1.1)

where θ ∈ Td = Rd/Zd, I ∈ (Rd, 0), 〈·, ·〉 denotes the usual scalar product in Rd, and λ0 ∈
Rd is a constant vector called the frequency vector. The Hamiltonian system associated to
it is İ = ∂θH(I, θ), θ̇ = −∂IH(I, θ). Note that we are assuming the standard symplectic
form. In particular, the set T0 := {0} × Td is an invariant torus of this system. We say
that H(I, θ) has a Birkhoff normal form (BNF) N(I) in a neighborhood of T0 if N(I) is a
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formal power series, and there exists a formal symplectic transformation Ψ(I, θ), tangent
to the identity

Ψ(I, θ) = (I +O2(I), θ +O(I))

such that
H ◦ Φ(I, θ) = N(I)

in the sense of formal power series. Any canonical coordinate change Φ(I, θ) as above
is called a normalizing transformation. The following fundamental result is called the
Birkhoff normal form [SM71, MHO]. For H(I, θ) as above, assume that λ0 satisfies a
Diophantine condition: there exist constants (C, τ) such that for all k ∈ Zd \ {0} we have

|〈λ0, k〉| ≥ C|k|−τ . (1.2)

Then H(I, θ) has a (formal) Birkhoff normal form. Moreover, if a normal form exists
and λ0 is rationally independent, then the Birkhoff normal form is unique (up to triv-
ial changes relabelling the actions). Note that the normalizing transformations are not
unique, since composing Φ(I, θ) with any transformation that preserves I gives a normal-
izing transformation.

Birkhoff normal form is an important tool in the study of Hamiltonian systems. Already
the assumption of existence and nondegeneracy of the normal form has strong dynami-
cal consequences (see, e.g., [EFK15] Th.C). The importance of the BNF becomes even
stronger if the normal form is convergent, and even more so if there exists an analytic
normalizing transformation.

The standard way of constructing BNF, which we will review in more detail later, is to
proceed iteratively, devising transformations that normalize H(I, θ) up to the coefficients
of order In. The normalization step involves solving differential equations with analytic
conditions. The Diophantine conditions (1.2) can be somewhat weakened to subexponen-
tial growth (limN→∞

1
N

log sup|k|≤N |〈λ0, k〉|−1 = 0).

If λ0 is resonant, one cannot guarantee the existence of the Birkhoff normal form even at
the level of formal power series, since there may be some terms in the formal power series of
H that cannot be eliminated by a canonical transformation. On the other hand, there are,
of course, systems (e.g the BNF itself, or changes of variables from it) for which one can
construct a BNF even in the resonant case. Then one speaks of the Birkhoff-Gustavson
normal form [Gu66].

Analogous definitions and statements hold true for symplectic maps in a neighborhood
of a fixed point. Even if the formal elimination procedures are very similar, the analysis
is very different. Handy references for the classical theory of Birkhoff normal forms are
[SM71, MHO, Mu, EFK13, EFK15].

1.2 Generic divergence both of the Birkhoff Normal Form and
the normalizing transformation.

The BNF and the normalizing transformations are constructed as formal power series.
The following natural questions are of great importance: the first one is whether the BNF
converges for Hamiltonians in a certain class. The second—whether there is a convergent
normalizing transformation.
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Concerning the first question, R. Perez-Marco [PM] proved the following dichotomy: for
any given nonresonant quadratic part, either the BNF is generically divergent or it always
converges. The original proof was done in the setting of Hamiltonian systems having a
non resonant elliptic fixed point. The extension of this result to the case of the torus, that
is not completely straightforward, has been worked out by R. Krikorian, see Theorem 1.1
in [Kri].

Up to very recently it was unclear which of the possibilities is actually realized. A large
progress has been made by R. Krikorian [Kri], who proved that there exists a real analytic
symplectic diffeomorphism f of a two-dimensional annulus such f(T× {0}) = (T× {0}),
f(θ, 0) = (θ+ω0, 0) with ω0 Diophantine and having a non-degenerate divergent Birkhoff
normal form. Combined with the aforementioned result of Perez-Marco, this implies that
Birkhoff Normal Form of an analytic Hamiltonian is “in general” divergent.

Concerning the normalizing transformations, H. Poincaré proved that they are divergent
for a generic Hamiltonian. C. L. Siegel proved the same statement in a neighborhood of
an elliptic fixed point (in fact, for a larger class of Hamiltonians than just generic, [Si54]).
This is implied by showing that the orbit structure of the map in any neighborhood is
very different from that of the Birkhoff normal form (which is integrable). Analogous
results for symplectic maps near an elliptic fixed point appear in [Rü59 ]. Very different
arguments showing divergence of normalizing transformations for generic systems appear
in [Ze73] and for some concrete polynomial mappings in [Mo60].

1.3 Convergence of the transformations under the Diophantine
conditions for some particularly simple BNF

There are classes of Hamiltonians for which we can guarantee the convergence of the
normalizing transformation. The following influential rigidity result was proved indepen-
dently by A. D. Bruno [Br71] and H. Rüssmann [Rü67]. Note that the main assumption
is that the (in principle only formal) BNF is of a particular kind.

Consider an analytic Hamiltonian H(I, θ), whose frequency λ0 satisfies a Diophantine
condition (1.2). Assume moreover that the Birkhoff normal form N(I) of H(I, θ) is a
formal function B of one single variable Λ0 := 〈λ, I〉, i.e.,

N(I) = B(Λ0(I)).

Then there exists an analytic normalizing transformation, and the BNF is, in fact, ana-
lytic.

We remark that Bruno proves the above result under a weaker condition on λ0 than (1.2).
For analogous statements in the case of invariant tori see [Br89]. Other modifications
can be found in [Rü02, Rü04]. This result has been recently generalised to a much more
general context by Eliasson, Fayad and Krikorian [EFK13, EFK15]. We stress that in all
these works mentioned above, λ0 is assumed to be non-zero and the crucial assumption is
that λ0 satisfies a Diophantine-type condition and that the BNF is of a very simple form.
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1.4 “Sometimes” convergence of the BNF implies convergence
of a normalizing transformation.

Our main result is close in spirit to the above works, but it does not rely on a Diophantine
condition. In fact, we consider a special class of diffeomorphisms such that the frequency
λ0 is zero. Thus, the BNF is degenerate in the previous sense. But within this class of
Hamiltonians we just use a standard non-degeneracy assumption on the quadratic part.
Namely, we prove the following.

Theorem 1. Assume the following:

(A1) H(I, θ) has a formal Birkhoff normal form N(I) that starts with quadratic terms
in I, i.e there exists a formal symplectic change of variables Ψ(I, θ), tangent to the
identity, i.e. Ψ(I, θ) = (I +O2(I), φ+O(I)), such that

H ◦Ψ(I, θ) = N(I) = N0(I) +O3(I)

in the sense of power series.

(A2) N0(I) = I trΩI (for some symmetric Ω) is non-degenerate: det Ω 6= 0.

(A3) N(I) = B(N0(I)) = N0 +
∑∞

j=2 bj(N0(I))j where B is an analytic function.

Then there exists an invertible analytic symplectic transformation

Φ(I, θ) = (I +O2(I), φ+O(I))

such that
H ◦ Φ(I, θ) = N(I). (1.3)

Note that we start from a resonant torus, so that the existence of a BNF of the form
we assume, requires vanishing of (formal) obstructions. Hence, our main result can be
reformulated as saying that the formal assumptions imply convergence of the normalizing
transformation.

Similar rigidity statements have appeared in other contexts. In [Po92, Ch. 5], H.Poincaré
studied the formal power series of canonical transformations, which send a family of
Hamiltonian systems into a family of integrable systems (in the sense of power series).
In [Po92] it was shown that these formal power series do not exist unless there are some
conditions (which are not met in the three body problem for arbitrary masses). The non-
existence of formal power series, a fortiori implies the non-existence of analytic families
of analytic transformations integrating the three body problem.

The paper [Ll] proved a converse to the result in [Po92]: if the system satisfies a very
specific and generic non-degeneracy condition, then, existence of a formal power series
that integrates the family of transformations in the sense of power series implies existence
of a convergent one.

Assumption A3 is there for technical purposes, see Sec. 3.3. Note that it is trivial for
d = 1. This assumption reminds of that of Rüssmann in [Rü67, Rü02, Rü04].

The assumption that the Birkhoff normal form is a function of N0 has been discussed in
[Ga] under the name of relative integrability. Two Hamiltonian dynamical systems are
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relatively integrable when one of them can be obtained from the other by a symplectic
change of coordinates and a reparameterization of the time which only depends on the
total energy. That is, the orbit structures of the two systems in an energy surface are
equivalent up to a change of scale of time. The paper [Ga] includes several arguments for
why the notion of relative integrability is natural when discussing formal equivalence. In
the present paper, however, the focus lies on the notion of equivalence under a symplectic
change of variables. We show that, for a certain class of systems, equivalence in the
sense of formal power series implies equivalence in the sense of analytic canonical changes
of variables. Hence, our main result can be understood as a rigidity result. The class
of systems for which this rigidity result holds can be succinctly described as the set of
systems that relatively integrable with respect to the main term.

In the context of formal equivalence implying analytically convergent equivalence, it is
natural to formulate:

Conjecture. Assume that an analytic Hamiltonian H(I, θ) as in (1.1) has a conver-
gent BNF that satisfies the non-degeneracy assumption that the frequency map is a local
diffeomormphism. Then there is a convergent normalizing transformation.

Note that the problems studied in [Rü67] and [Br71] do not satisfy the hypothesis of the
conjecture, even though they satisfy the conclusions.

In the other direction one can construct examples [S] of analytic maps near a hyper-
bolic fixed point such that the Birkhoff normal form is quadratic (in the above notations,
N = Λ0) with a non-resonant set of eigenvalues, and any normalizing transformation
to the normal form diverges. In these examples, the eigenvalues form carefully chosen
Liouville vectors. That is, the paper [S] shows that, depending on the Diophantine con-
ditions, quadratic normal forms may be rigid or not. The models in [S] do not satisfy the
hypothesis of the conjecture above.

1.5 Overview of the proof.

The standard method of obtaining the Birkhoff Normal form is an iterative procedure
in which we construct the transformations order by order: at the n-th step of the pro-
cedure one computes the n-th order terms in the Taylor expansions, assuming that all
the terms of lower orders are computed. It would appear natural to follow this scheme
and try to estimate the transformations at each step of the recursive procedure. Unfortu-
nately, this seems technically unfeasible. One of the main complications in any possible
proof of convergence of the transformations is that even if the BNF is unique, the formal
transformations ΦN are very far from unique (Since the BNF depeds only on the actions,
the ΦN can be composed with any canonical transformation which moves the angles but
preserves the actions. So, an essential ingredient of any proof of convergence should be a
especification of how to choose the normalizing transformations.

In this paper we use a quadratically convergent method in which we double the number
of known coefficients at each step. Roughly – see more details in the next paragraphs –
we will show that if the formal obstructions vanish we can choose a sequence of canonical
transformations that proceed to converge quadratically: doubling the order of the BNF
at every step of the construction. More importantly, there is a specific choice of the
transformation that satisfies very explicit bounds. The bounds on the new transformation
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in terms of the remainder turn out to involve a loss of derivatives. Therefore we need
to implement a Nash-Moser scheme to estimating the important objects in a sequence of
domains which decrease slowly.

Here is a short overview of the proof; all the necessary notations are introduced in the
next section. At the n-th step of the iterative procedure we will start with a Hamiltonian
of the form

Hn(I, θ) = Nn(I) + R̃n(I, θ),

where Nn(I) is a polynomial in I of degree mn = 2n + 1, and the remainder term R̃n

is small in the following sense: for a certain domain-dependent norm, introduced in Sec.
2.1.1, for a certain small δn (we assume δn → 0 with n → ∞) and κ > 0 the remainder

term satisfies |R̃n|ρn,ρn ≤ δκn.

At this step we construct a symplectic change of coordinates Φn, such that

Hn ◦ Φn(I, θ) = Nn+1(I) + R̃n+1(I, θ),

where Nn+1 has degree mn+1 = 2mn − 1, and |R̃n+1|ρn+1,ρn+1 ≤ δκn+1 = 2−κδκn.

We construct Φn as a time one map of a the flow of a Hamiltonian vector field Fn. The
main ingredient consists in constructing and estimating the norm of Fn (and thus Φn),
which is found as a solution of a certain homological equation (see (3.1) and in a simplified
form (4.1)). In general, this equation may not have even a formal solution unless some
constraints are met. However, the assumption of Theorem 1 implies that this equation
does have a formal solution. The key observation in this paper is the following: if this
homological equation has a formal solution, then it also has an analytic solution with tame
estimates for it (in the sense of Nash-Moser theory). This statement is the contents of
Lemma 6. We note that the tame estimates use an argument different from the matching
of powers.

The procedure can be repeated, because the main assumption used to show the existence
of solutions of the Newton equation is that there is a formal solution to all orders. This
assumption is clearly preserved if we make any analytic change of variables. Once we know
that the Newton procedure can be repeated infinitely often, the convergence is more or
less standard.

2 Notations and a step of induction.

2.1 Notations.

2.1.1 Norms and majorants.

Let Td = Rd/Zd be a d-dimensional torus, and for σ > 0 consider its complex extension
Tdσ =

(
Rd + (−σ, σ)

√
−1
)
/Zd. Let Dd

ρ = {I ∈ Cd : |I| < ρ} be a complex disc, and define
the ”d-dimensional annulus”

Aρ,σ := Dd
ρ × Tdσ.

Let O(Aρ,σ) be the set of functions holomorphic in Aρ,σ that are real symmetric, i.e.,

such that f(Ī , θ̄) = f(I, θ) (where the bar stands for the complex conjugate). We use
supremum norms over Aρ,σ, denoted by ‖f‖ρ,σ. In the same way we define the set O(Dρ)
with the corresponding norm ‖f‖ρ being the sup-norms over the disc Dd

ρ.
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For a function f ∈ O(Aρ,σ) consider its Taylor-Fourier representation in the powers of I:
f(I, θ) =

∑
j∈Nd

∑
k∈Zd fj,ke

2πi〈k,θ〉Ij. Consider a majorant for f of the form

f̂(I) =
∑
j∈Nd

∑
k∈Zd
|fj,k|Ije2π|k|σ

We denote by |f |ρ,σ the norm of the corresponding majorant f̂(I):

|f |ρ,σ = ‖f̂‖ρ,σ.

Clearly, ‖f‖ρ,σ ≤ |f |ρ,σ. Analogous notation |f |ρ corresponds to the norm ‖f‖ρ above.

In what follows we will mostly have σ = ρ.

2.1.2 Important constants for the iterative procedure.

� Let ρ0 = min{1, ρ},

� The order of polynomials involved in the n-th step of the iterative procedure is

mn = 2n + 1.

� The norm of the rest term R̃n at the n-th step will be estimated as |R̃n|ρn ≤ δκn. Let

κ = d+ 6,

b = 2−(κ+3)

δ0 = ρ0b2
−3 = ρ02−(κ+6)

δn+1 = 2−1δn.

� Finally, let

qn = (2b)2−(n+1)

,

and
ρn+1 = (ρn − 3δn)qn.

2.1.3 Polynomials.

In the iterative procedure we will work with polynomials in I whose coefficients depend
on θ.

� Let
N0(I) = I trΩI (2.1)

where Ω is a symmetric non-degenerate matrix: det Ω 6= 0.

� An expression M = f(θ)Ik (where k is a multi-index) is called a monomial.

� We will say that a monomial Mk,l = Ike2πi〈l,θ〉 is resonant if it satisfies {N0,M} = 0.

� R[j](I, θ) stands for a homogeneous polynomial in I of degree j with coefficients
depending on θ:

R[j](I, θ) =
∑
|k|=j

rk(θ)I
k.
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� We also use notation R[m,n] to denote the range of degrees in I:

R[m,n](I, θ) =
n∑

j=m

R[j](I, θ), R[≥m](I, θ) =
∞∑
j=m

R[j](I, θ).

Let mn be as above. The following functions will be of special importance.

� The normal form N(I) is assumed to have the form

N(I) = B(N0(I)) = N0(I) +
∞∑
j=2

bj(N0(I))j. (2.2)

Denote

Nn = N [2,mn] = (B(N0))[2,mn] ; (2.3)

in particular, since m0 = 2, N0 = N
[2,m0]
0 = N

[2]
0 is quadratic.

� The rest term at the n-th inductive step is R̃n(I, θ):

R̃n = R̃n

[>mn]
. (2.4)

� We will also need polynomials in I with θ-dependent coefficients: Rn(I, θ) and
Fn(I, θ) of the following degrees:

Rn = R[mn+1,mn+1]
n , Fn = F [mn,mn+1−1]

n . (2.5)

2.2 Base of induction: an equivalent problem.

Lemma 1. Suppose that

H(I, θ) = N0(I) + R̃0(I, θ) ∈ O(Aρ,σ),

where |R̃0|ρ,σ ≤ δ, and there exists a formal (resp., analytic) symplectic transformation

Ψ(I, θ) = (φ(I, θ), ψ(I, θ)) = (I +O2(I), θ +O(I))

such that

H ◦Ψ(I, θ) = N(I) = N0(I) +
∞∑
j=2

bj(N0(I))j.

Then for any a > 0 there exists a Hamiltonian Ĥ(I, θ) and a formal (resp., analytic)

symplectic transformation Ψ̂(I, θ) = (I +O2(I), θ +O(I)) such that

Ĥ ◦ Ψ̂(I, θ) = N0(I) + R̂0(I, θ) ∈ O(A 1
a
ρ,σ),

where |R̂0| 1
a
ρ,σ ≤ aδ, and

N(I) = N0(I) +
∞∑
j=2

bja
2(j−1)(N0(I))j.
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Proof. Define Ĥ(I, θ) = 1
a2
H(aI, θ), and Ψ̂(I, θ) =

(
1
a
φ(aI, θ), ψ(aI, θ)

)
. It can be

verified directly that Ψ̂ is symplectic and tangent to the identity. Moreover,

Ĥ ◦ Ψ̂(I, θ) =
1

a2
H(φ(aI, θ), ψ(aI, θ)) = N0(I) +

∞∑
j=2

bja
2(j−1)(N0(I))j.

2

2.3 Induction step.

While the base of induction is given by formula (2.12), the step of the iterative procedure
is provided by the following proposition.

Proposition 1. For a fixed n > 0, let mn, ρn and δn be as in Sec. 2.1.2 above. Suppose
that Hn(I, θ) is formally conjugated to the BNF of the form (2.2):

N(I) = N0(I) +
∞∑
j=2

bj(N0(I))j,

and the normal form satisfies:

|N [mn+j]|ρn < δκ+1
n , j = 0, . . .mn, (2.6)

and denoting g2j(I) = jbj(N0(I))j−1, we assume

|gj|ρn ≤
1

4j
, j = 1, . . . ,mn; (2.7)

Suppose that
Hn(I, θ) = Nn(I) + R̃n(I, θ),

where Nn(I) = (B(N0(I)))[2,mn] and R̃n = R̃n

[>mn]
satisfies

|R̃n|ρn,ρn ≤ δκn.

Then there exists a symplectic change of coordinates Φn : (I ′, θ′) 7→ (I, θ),

Φn(I ′, θ′) = (U (n)(I ′, θ′), V (n)(I ′, θ′)),

given by a Hamiltonian Fn = F
[mn,mn+1−1]
n such that

Hn+1(I ′, θ′) := Hn ◦ Φn(I ′, θ′) = Nn+1(I ′) + R̃n+1(I ′, θ′), (2.8)

where Nn+1(I ′) = N [2,mn+1](I ′), R̃n+1(I ′, θ′) = R̃n+1

[>mn+1]
(I ′, θ′), and

|R̃n+1|ρn+1,ρn+1 ≤ δκn+1. (2.9)

Moreover, Φn(I ′, θ′) = (U (n)(I ′, θ′), V (n)(I ′, θ′)) satisfies

d∑
j=1

‖U (n)
j (I ′, θ′)− I ′j‖ρn−3δn,ρn−3δn + ‖V (n)

j (I ′, θ′)− θ′j‖ρn−3δn,ρn−3δn < δn, (2.10)
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and the inverse map, Φ−1
n (I, θ) := (U (−n)(I, θ), V (−n)(I, θ)), satisfies

d∑
j=1

‖U (−n)
j (I, θ)− Ij‖ρn−3δn,ρn−3δn + ‖V (−n)

j (I, θ)− θj‖ρn−3δn,ρn−3δn < δn. (2.11)

The proof of this proposition constitutes the main technical tool of this paper. It implies
Theorem 1 in a standard way. See, e.g., [Rü67], pp 61-63). For convenience, we give a
proof below.

2.4 Proof of Theorem 1.

Lemma 1 permits us to assume without loss of generality that for the given Hamiltonian
H0(I, θ) := H(I, θ) = N0(I) + R̃0(I, θ),

|R̃0|ρ0,ρ0 ≤ δκ0 . (2.12)

Since the function B is analytic, the same lemma permits us to assume that (2.6) and
(2.7) hold for each n.

The step of induction is provided by Proposition 1. Since Hn is formally reducible to the
normal form N , the same can be said about Hn+1.

Repetition of this process leads to a sequence of transformations

Tn = Φ0 ◦ Φ1 ◦ · · · ◦ Φn−1.

Let us show that Tn converges to the desired coordinate change Φ = T∞, analytic in the
polydisc Aρ∞,ρ∞ , where ρ0b < ρ∞ < ρ0. Indeed, with the notations of Sec. 2.1.2,

3
∞∑
k=0

δk ≤ 3 · 2δ0 < 3 · 2ρ0b2
−3 < ρ0b.

Then for any n we have

ρn+1 = qn(ρn − 3δ) ≥ ρ0

n∏
j=0

qj − 3
n∑
j=0

δn ≥ ρ0

∞∏
j=0

qj − 3
∞∑
j=0

δn ≥ ρ02b− 3 · 2δ0 > bρ0

It is left to prove that Tn converges of to an analytic function T∞, satisfying (1.3). Denote
the variables, involved in the n-th step of the induction by wn−1 = (I, θ) and wn = (I ′, θ′),
where

wn = Φ−1
n−1wn−1.

In these notations,
w0 = Φ0 ◦ Φ1 ◦ · · · ◦ Φn−1wn = Tnwn.

Now, for wn = (I ′, θ′) we have

H ◦ Tn(I ′, θ′) = Nn(I ′) + R̃n(I ′, θ′).

Since (Φn(I ′, θ′)−(I ′, θ′)) starts with the terms of degree 2n in I ′, for each j the expansion
of (Tn(I ′, θ′)− Tn+j(I

′, θ′)) starts with the terms of degree 2n in I ′. This implies that the
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sequence of maps Tn formally converges, when n → ∞, to a formal map T∞ such that
(1.3) holds:

H ◦ T∞(I ′, θ′) = N(I ′).

We still need to show that T∞ is analytic. It is more convenient to prove that the maps

T−1
n := Φ−1

n−1 ◦ · · · ◦ Φ−1
1 ◦ Φ−1

0

converge to an analytic map T−1
∞ .

By Proposition 1, the map
wn+1 = Φ−1

n wn

is analytic in Aρ0b/2,ρ0b/2, and for all n we have:

|Φ−1
n wn − wn|ρ0b/2,ρ0b/2 ≤ δn,

since ρn − 3δ ≥ ρn+1 > ρ0b for all n. Therefore, the map T−1
n such that

wn = T−1
n w0

is analytic in Aρ0b/4,ρ0b/4, and for such w0 we have

|T−1
n w0| ≤

n−1∑
j=0

|T−1
j (wj)− wj|+ |w0| ≤

∞∑
j=0

δj + ρ0b/4 ≤ ρ0b/2.

Estimate

|T−1
n+m(w0)− T−1

n (w0)|ρ0b/4,ρ0b/4 ≤
n+m−1∑
j=n

|T−1
j (wj)− wj)|ρ0b/4,ρ0b/4 ≤

∞∑
j=n

δj = 21−nδ0

implies the convergence of the sequence of maps T−1
n to an analytic map T−1

∞ in Aρ0b/4,ρ0b/4.
Since the formal inverse of T−1

∞ is the series T∞, the latter also defines an analytic function,
providing the desired coordinate change. We set Φ = T∞ in the notations of Theorem 1.
2

3 Formal analysis.

Here we start the proof of Proposition 1 by the formal analysis of the iterative procedure.

3.1 Iterative Procedure.

Given Hn as in Proposition 1, we will construct Φn as the time one map of the flow of a
Hamiltonian Fn, i.e., Φn = X1

Fn
where X t

Fn
is the flow defined by

İ = Fθ(I, θ), θ̇ = −FI(I, θ).

In this case, Φn is automatically symplectic.

Notice that the normalising transformation Φn, as well as the corresponding generating
function Fn, is not unique (one can compose with rotations in the angles which preserve

11



the actions, for example). Clearly, the transformation that converges has to be very
carefully chosen.

In the following Lemma 2 we show that if a (formal) normalizing transformation exists,
then there exists (another) normalizing transformation of a special kind. Namely, such
that the corresponding generating function is a polynomial (in the sense of section 2.1.3),

Fn = F
[mn,mn+1−1]
n and free from resonant monomials (see notations in Sec. 2.1.3).

The idea of the proof is that we can always move the formal normalizing transformation
by composing with some transformations that do not change the normal form. Therefore,
we can ensure that the normalizing transformations belong to a space which is transversal
to the space spanned by resonant monomials. Note that in the proof of Lemma 2 we use
crucially the fact that the normal form is a function of N0 so that the resonant terms are
the same at all orders.

There are some analogies between Lemma 2 and Proposition 2.6 in [Ll], but that result
is significantly less delicate since there is an extra parameter that controls the smallness.
In our case, the variable I controls both the smallness and the distance to the origin at
the same time.

Let {·, ·} denote the standard Poisson bracket. Recall that for a differentiable function G
it holds:

d

dt
G ◦X t

F = {G,F} ◦X t
F .

Lemma 2. Suppose that for H(I, θ) there exist N2m(I) = N0 + B(N0) with B(X) =∑m
j=2 bjX

j, R(I, θ) = R[>2m](I, θ) and G(I, θ) = O2(I) such that Ψ := X1
G satisfies

H ◦Ψ(I, θ) = N2m(I) +R(I, θ).

1. Then there exists G̃(I, θ), that is free from resonant monomials of order < 2m, such
that Ψ̃ := X1

G̃
normalises H to the same normal form, i.e., for some R̃(I, θ) =

(R̃)[>2m](I, θ) we have:

H ◦ Ψ̃(I, θ) = N2m(I) + R̃(I, θ).

2. If, an addition to the previous assumption, we have that the original H(I, θ) has the
form

H(I, θ) = Nm(I) +R[>m](I, θ),

where Nm = N
[2,...,m]
m , then there exists a polynomial F = F [m,2m−2], that is free from

resonant monomials, such that Φ := X1
F normalises H to the same normal form,

i.e., for some
≈
R(I, θ) =

≈
R

[>2m]
(I, θ) we have:

H ◦ Φ(I, θ) = N2m(I) +
≈
R(I, θ).

Proof: (1). All the calculations below are made in the sense of formal Taylor-Fourier
expressions. Suppose that K(I, θ) is such that {N0, K} = 0. Notice that in this case

12



{N2m, K} = B′(N0){N0, K} = 0. Use K(I, θ) as a Hamiltonian to define k(I, θ) := X1
K .

Then by Taylor formula we have:

H ◦Ψ ◦ k = (N2m +R) ◦ k = (N2m +R) ◦X t
K

∣∣∣
t=1

= N2m +R + {(N2m +R), K}

+
1

2
{{(N2m +R), K}, K}+ · · · = N2m +R1,

where R1(I, θ) = R
[>2m]
1 (I, θ).

It is a classical fact that the composition Ψ ◦ k in the sense of formal power series is
the time-one map of another Hamiltonian given by the Cambell-Baker-Dynkin formula
[Dragt, Appendix C], [LlMM, Appendix]; here we denote it by CBD formula. Note that
in these references the usual notation for the Hamiltonian vector field defined by G is
LG, and exp(LG) stands for its time one map. In the present paper the same map is
denoted by X1

G. Now, suppose that Ψ = X1
G and k = X1

K . CBD formula implies that the
composition of these maps satisfies:

Ψ̃ := Ψ ◦ k = X1
G̃
, where

G̃ = G+K +
1

2
{G,K}+

1

12
{G, {G,K}} − 1

12
{K, {K,G}}+ · · ·

The last sum is to be understood in the sense of formal power series in I.

To prove Lemma 2, we use CBD formula, and choose K recursively (order by order in I)
so that G̃ has no resonant terms up to order 2m. At each step of the recursion we choose
(−K(I, θ)) to be equal to the lowest order resonant term of G, and set G̃ to be the new
G. As we saw above, the map Ψ̃ = Ψ ◦ K, used as a normalization map, brings H to
the same normal form as Ψ did. But its generating Hamiltonian G̃ has no lower order
resonant monomials. Iterating this procedure, we get a normalization with the desired
property.

(2). Since we can normalise H = Nm + R[>m] to N2m with the help of the generat-
ing function G = O2(I), then, by (1), we can also achieve the normalization using the
transformation Ψ̃ generated by a resonance-free Hamiltonian G̃. Note that G̃ = O2(I).

By the Taylor formula for power series, we have:

H ◦ Ψ̃ = (Nm +R[>m]) ◦ Ψ̃ = (Nm +R[>m]) ◦X t
G̃

∣∣∣
t=1

= Nm +R[>m]

+ {(Nm +R[>m]), G̃}+
1

2
{{(Nm +R[>m]), G̃}, G̃}+ · · · = N2m +R1.

Since G̃ is resonance-free, any monomial P in G̃ gives a non-zero impact {N0, P} to the
sum above, whose order in I is strictly larger than the order of P . By comparing the
orders of the coefficients in I we see that the lowest possible order of a monomial in
{N0, G̃} is the same as that in R[>m], and hence G̃ = G̃[≥m]. Finally notice that the
reduced generating function F := G̃[m,2m−2] produces the same normal form.

2

The following lemma introduces the notations used in the proof of the Main Theorem.
Here we use the results of Lemma 2 to relate the conjugating function to the solutions of
the homological equation (3.1) below.
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Lemma 3. Adopt the notations for the degrees of polynomials from Sec. 2.1.3 (in partic-

ular, Nn = N [2,mn] as in 2.3, and Rn = R
[mn+1,mn+1]
n ). Let B(X) =

∑∞
j=1 bjX

j. Suppose
that Hn has the form

Hn = Nn + R̃n = Nn +Rn + R̃n

[>mn+1]
.

where Nn(I) = N0 +B(N0)[4,mn].

Suppose that there exists G(I, θ) = O2(I) such that Ψ := X1
G satisfies

H ◦Ψ(I, θ) = Nm+1(I) +R(I, θ).

Then there exists a polynomial (in I) Fn = F
[mn,mn+1−1]
n with the following properties: the

time one map Φn := X1
Fn

satisfies

Hn+1 := Hn ◦ Φn = Nn+1 + R̃n+1,

and Fn satisfies
{Nn, Fn}[mn+1,mn+1] +Rn +Nn −Nn+1 = 0, (3.1)

and
R̃n+1 := An +Bn + Cn,

where

An := R̃n

[>mn+1]
◦ Φn, Bn :=

∫ 1

0

{(1− t){Nn, Fn}+Rn, Fn} ◦X t
Fndt, (3.2)

Cn = ({Nn, Fn})[>mn+1]. (3.3)

Notice that the expressions for An, Bn, Cn start with terms of order mn+1 + 1, and hence,

R̃n+1 = R̃n+1

[>mn+1]
, as needed.

Proof. Let m = mn = 2n + 1. Then mn+1 = 2m − 1. With the notations for the
degrees of polynomials from Sec. 2.1.3, Lemma 2 implies that there exists a polynomial

Fn = F
[mn,mn+1−1]
n such that Φn := X1

Fn
satisfies Hn ◦ Φn = Nn+1 + R̃n+1. By the Taylor

formula we have:

Hn ◦ Φn =(Nn +Rn + R̃n

[>mn+1]
) ◦X t

Fn

∣∣∣
t=1

= Nn + {Nn, Fn}+Rn+∫ 1

0

{(1− t){Nn, Fn}+Rn, Fn} ◦X t
Fn dt+ R̃n

[>mn+1]
◦ Φn

=Nn+1 + R̃n+1.

(3.4)

Notice that by extracting all the terms of orders mn + 1, . . . ,mn+1 from the equation
above, one gets the cohomological equation (3.1).

2
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3.2 Homological equation order by order.

Here we rewrite equation (3.1) as a (finite) set of equations for each degree of I. Equations
corresponding to degrees mn + 1, . . . ,mn+1 will formally determine Fn (they are written
out explicitly in (3.5)). The rest of equations define Cn (which is a part of the new
remainder term). Equating coefficients with the same homogeneous degree in I in both
sides of (3.4) we obtain for the degrees from mn+1 to mn+1 the following recursive formula
(we write m instead of mn for typographic reasons):

{N0, F
[m]}+R[m+1] = N [m+1],

{N0, F
[m+1]}+ {N [3], F [m]}+R[m+2] = N [m+2],

{N0, F
[m+2]}+ {N [4], F [m]}+ {N [3], F [m+1]}+R[m+3] = N [m+3],

. . .

{N0, F
[2m−2]}+

m−3∑
j=0

{N [m−j], F [m+j]}+R[2m−1] = N [2m−1].

(3.5)

Recall that 2mn − 1 = mn+1, see Sec. 2.1.2. From the formal solvability we know that

each of these equations has a formal solution F
[m+j]
n . Of course, such a solution is not

unique. We will make the solution unique by prescribing the condition∫
Td
F [m+j]
n (I, θ) = 0.

As we will see, this normalization will allow us to get the estimates needed for the proof
of the convergence. The sum of the terms of orders mn+1 + 1, . . . ,mn+1 + mn − 2 (i.e.,
2mn, . . . , 3mn−3) that appear in equation (4.1) is denoted by Cn. In the notationm = mn,

we have: Cn = C
[2m,3m−3]
n . The terms of the uniform degree satisfy

C [2m]
n = {N[3], F

[2m−2]}+ {N[4], F
[2m−3]}+ · · ·+ {N[m], F

[m+1]},
C [2m+1]
n = {N[4], F

[2m−2]}+ {N[5], F
[2m−3]}+ · · ·+ {N[m], F

[m+2]}
. . .

C [3m−3]
n = {N[m], F

[2m−2]}.

(3.6)

This can be written more compactly as

Cn =
m−2∑
k=1

{F [2m−1−k],

m∑
j=k+2

N [k+j]}. (3.7)

This should be viewed as a definition of the remainder term Cn.

3.3 An important simplification.

In the case when the normal form is an analytic function of N0(I) as in (2.2), we have
an important simplification. Denote

g2j(I) := jbj(N0(I))j−1 and g2j+1(I) ≡ 0. (3.8)

Then for j ∈ N we have:

{N [2j], F} = {bj(N0)j, F} = jbj(N0)j−1{N0, F} = g2j(I){N0, F}
{N [2j+1], F} = g2j+1(I){N0, F} ≡ 0.

(3.9)
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We formulate this as a lemma:

Lemma 4. If the normal form is an analytic function of N0(I) as in (2.2), then equation
(3.5) is equivalent to

{N0, F
[m]}+R[m+1] = N [m+1],

{N0, F
[m+1]}+ g3(I){N0, F

[m]}+R[m+2] = N [m+2],

{N0, F
[m+2]}+ g4(I){N0, F

[m]}+ g3(I){N0, F
[m+1]}+R[m+3] = N [m+3],

. . .

{N0, F
[2m−2]}+

m−3∑
j=0

gm−j(I){N0, F
[m+j]}+R[2m−1] = N [2m−1].

(3.10)

and

Cn =
m−2∑
k=1

(
{F [2m−1−k], N0} ·

m∑
j=k+2

gj

)
. (3.11)

3.4 Homological equations in majorants.

Here we study a simple recursive formula and estimate its terms. Later it will provide
an important estimate of |{N0, F

j}|ρn,ρn . Here is the idea: suppose that in the Lemma
above for some ε > 0, for all j = 0, . . . ,m we have:

Pj := |R[m+j]|ρn,ρn + |N [m+j]|ρn,ρn ≤ ε, |gj|ρn ≤ 1/4j.

Define Sj by the relations (3.12) below. Then, by Lemma 4, for all j = 0, . . . ,m we have

|{N0, F
j}|ρn,ρn ≤ Sj.

Lemma 5. Given ε > 0, suppose that for all j = 1, . . . ,m− 1 the numbers Pj satisfy

0 < Pj ≤ ε.

Let Sj be defined recursively by equations

S1 = P1,

S2 = P2 +
1

4
S1,

S3 = P3 +
1

4
S2 +

1

42
S1

S4 = P4 +
1

4
S3 +

1

42
S2 +

1

43
S1

. . .

Sm−1 = Pm−1 +
m−1∑
j=1

1

4j
Sm−1−j.

(3.12)

Then for each j we have
Sj ≤ 2ε, j = 1, . . . ,m− 1.
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Proof. By the formula for S[j] above,

Sj ≤ Pj +
1

4
Sj−1 +

1

4
(Sj−1 − Pj−1) = Pj + 2

1

4
Sj−1 ≤ Pj + Sj−1/2.

This implies

Sj ≤
j−1∑
k=0

2−kPj−k ≤ ε

j−1∑
k=0

2−k < 2ε.

2

4 Formal solution provides analytic with estimates.

In this section we study a homological equation (4.1) below with an analytic right-hand
side Q(I, θ). Assuming that it has a formal solution, we will find an analytic one, and
estimate it in terms of the right hand side. Similar procedures appear in [Ll].

Lemma 6. Let N0(I) = I trΩI where Ω is a symmetric matrix with det Ω 6= 0, and let
Q(I, θ) be analytic in an annulus Aρ,σ for some ρ, σ > 0. Suppose that the following

equation has a formal solution F̃ (I, θ):

{N0, F̃} = Q. (4.1)

Then equation (4.1) has an analytic solution F (I, θ), defined in Aρ,σ, and for any 0 <
δ < ρ, 0 < γ < σ we have:

|F |ρ−δ,σ−γ ≤ c(d,Ω)
1

δγd
|Q|ρ,σ,

where c(d,Ω) is a constant only depending on d and Ω.

Moreover, if Q(I, θ) is a homogeneous polynomial in I with coefficients depending on θ,
then so is F (I, θ).

Proof. Expanding F formally into a Fourier series: F =
∑

k∈Zd F̂k(I)e2πi〈k,θ〉, we get:

{N0, F} =
d∑
j=1

Fθj(N0)Ij = 2πi
∑
k∈Zd
〈k, 2ΩI〉F̂k(I)e2πi〈k,θ〉.

Recall that Ω is symmetric, so 〈k,ΩI〉 = 〈Ωk, I〉. Expressing Q =
∑

k∈Zd Q̂k(I)e2πi〈k,θ〉,
we can rewrite equation (4.1) as a series of equations indexed by k:

Q̂k(I) = 4πi〈Ωk, I〉F̂k(I). (4.2)

If 〈k,ΩI〉 6= 0, we can express F̂k = Q̂k(I)/(4πi〈Ωk, I〉).

Since we have assumed existence of a formal solution of the homological equation (4.1)
(and hence, a solution of (4.2) for each k), we have:

〈Ωk, I〉 = 0⇒ Q̂k(I) = 0.
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Hence, for 〈Ωk, I〉 = 0, the equation is satisfied for any value of F̂k(I). We define F̂k at
these points by continuity. A way to do it is the following. Differentiate equation (4.2) in
the direction of Ωk:

〈Ωk,∇Q̂k(I)〉 = 4πi
(
|Ωk|2F̂k(I) + 〈Ωk, I〉〈Ωk,∇F̂k(I)〉

)
,

where for a vector v ∈ Rd we denote |v|2 =
∑d

j=1 v
2
j . For 〈Ωk, I〉 = 0, define F̂k(I) =

〈Ωk,∇Q̂k(I)〉/(4πi|Ωk|2). Summing up, we have defined a continuous function F̂k(I) by

F̂k(I) =
1

4πi

{
〈Ωk, I〉−1Q̂k(I), 〈Ωk, I〉 6= 0,

1
|Ωk|2 〈Ωk,∇Q̂k(I)〉, 〈Ωk, I〉 = 0.

Moreover, since F̂k(I) is analytic in Dρ \ {〈Ωk, I〉 = 0} and bounded in Dρ, it is analytic

in Dρ. Notice that if in equation (4.2) Q̂k(I) is a homogeneous polynomial in I, then so

is F̂k(I).

Now let us estimate the norm of the solution. Fix 0 < δ < ρ/2, 0 < γ < σ. For each

fixed k ∈ Zd, we will estimate the corresponding F̂k(I) in two steps: first ‘δ/2-close” to
the resonant plane 〈Ωk, I〉, and then in the rest of Dρ−δ.

For the first step, let Πδ = {〈Ωk, I〉 = 0} ∩Dρ−δ be the part of the resonant plane falling
into Dρ−δ. Notice that the orthogonal complement to this plane is formed by the vectors
αe2πiφΩk, α ≥ 0, φ ∈ [0, 1). Let

∆ =

{
I = α

Ωk

|Ωk|
e2πiφ

∣∣∣α < δ/2, φ ∈ [0, 1)

}
be the complex disk of radius δ/2 centered at zero and orthogonal to Πδ. Note that the

restrictions of Q̂k(I) and F̂k(I) to this disc are analytic. Consider the δ/2-neighbourhood
Oδ of Πδ: Oδ =

⋃
I0∈Πδ

(I0 + ∆). Then and Oδ ⊂ Dρ−δ.

For each fixed I ∈ Oδ there exists I0 ∈ Πδ such that I ∈ I0 + ∆. We can estimate
|F̂k(I)| by the maximum modulus principle on the disk I0 + ∆. Namely, for I lying on
the boundary of this disk we have: |〈Ωk, I〉| = |〈Ωk, I0〉 + 〈Ωk, δΩk/(2|Ωk|)〉| = |Ωk|δ/2.
Hence, for such I we have

|F̂k(I)| ≤ 2|Q̂k|ρ
4πδ|Ωk|

<
|Q̂k|ρ
δ|Ωk|

.

As the second step in this estimate, consider I ∈ Dρ−δ \ Oδ. Here |〈Ωk, I〉| ≥ |Ωk|δ/2, so

|F̂k(I)| satisfies the same estimate as above.

By Cauchy estimates, we have:

|Q̂k|ρ ≤ |Q|ρ,σe−|k|σ.

Since det Ω 6= 0, there exists a constant c(Ω) such that |Ωk| ≥ |k|/c(Ω) for all k. Then

|F̂k|ρ−δ ≤
1

δ|Ωk|
|Q̂k|ρ ≤ c(Ω)

e−σ|k|

δ|k|
|Q|ρ,σ.
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Finally, for small δ and γ we have:

|F |ρ−δ,σ−γ ≤
∑

k∈Zd\{0}

e(σ−γ)|k||F̂k|ρ−δ ≤
c(Ω)

δ

∑
k∈Zd\{0}

e−γ|k|

|k|
|Q|ρ,σ

≤c(d,Ω)

δγd
|Q|ρ,σ,

where c(d,Ω) is a constant only depending on d and Ω. The estimates above are very
wasteful, but they are enough for our purposes. 2

5 Proof of Proposition 1.

Here we summarize the preparatory work to complete the proof of Proposition 1. Let
us return to the original problem. For a fixed n, let the necessary constants be as in
Sec.2.1.2, |R̃n|ρn ≤ δκn, and let g2j(I) = j bj (N0(I))j−1 as in (3.8).

5.1 Estimate of |{N0, Fn}|ρn,ρn and |Cn|ρn,ρn.
For j = 1, . . . ,mn − 1 denote

Pj := |N [mn+j]|ρ0 + |R[mn+j]|ρn .

By the choice of ρ0, see Sec. 2.1.2, for all j = 1, . . . ,mn − 1 we have:

|gj(I)|ρ0 ≤ 4−j, |N [mn+j]|ρ0 ≤ δκn.

Since for j = 1, . . . ,mn − 1 we have |R[mn+j]|ρn ≤ |R̃n|ρn ≤ δκn, and so for these values of
j we get

Pj ≤ 2δκn.

let Sj be defined by (3.12). By Lemma 5, for j = 1, . . .m− 1 we have Sj ≤ 2ε. Equations
(3.10) imply that for j = 1, . . .m− 1 we have

|{N0, F
[m+j−1]
n }|ρn,ρn ≤ Sj ≤ 2ε = 4δκn. (5.1)

By linearity,

|{N0, Fn}|ρn,ρn ≤
mn−1∑
j=1

|{N0, F
[mn+j−1]
n }|ρn,ρn ≤ 4mnδ

κ
n ≤ 4δκ−1

n .

The latter estimate follows from the definition of mn and δn, see Section 2.1.2.

Moreover, by (3.11),

|Cn|ρn =
m−2∑
k=1

(
Sm−k

m∑
j=k+2

Gj

)
≤

m−2∑
k=1

(
Sm−k

∞∑
j=k+2

4−j

)

≤ 1

3

m−2∑
k=1

4−(k+1)Sm−k ≤
1

2
ε = δκn.

Hence,

|Cn|ρn ≤ δκn. (5.2)
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5.2 Estimates for Fn.

Consider equation (5.1). Lemma 6 with ρ = σ = ρn, δ = γ = δn and |Q|ρ,σ ≤ 4δκn, implies:

|F [m+j−1]
n |ρn−δn,ρn−δn ≤ 4c(d,Ω)δκ−d−1

n .

Since Fn = F
[mn,mn+j−1]
n where mn ≤ δ−1

n , we get:

|Fn|ρn−δn,ρn−δn ≤
mn−1∑
j=1

|F [m+j−1]
n |ρn−δn,ρn−δn ≤ mn 4c(d,Ω)δκ−d−1

n ≤ δκ−d−3
n ≤ δ3

n. (5.3)

The latter estimate follows from the definition of κ, see Section 2.1.2.

5.3 Estimates for Φn.

Here we prove that with Fn as above, estimates (2.10) and (2.11) hold true. Indeed, the
coordinate change Φn = X1

Fn
is the time one map of the flow X t

Fn
defined by the equations

İ = ∂θFn(I, θ), θ̇ = −∂IFn(I, θ).

By (5.3) and Cauchy estimates we get

|∂IFn|ρn−2δn,ρn−δn ≤ δ2
n, |∂θFn|ρn−δn,ρn−2δn ≤ δ2

n. (5.4)

Then for any t ≤ 1:

|X t
Fn(I, θ)− (I, θ)|ρn−3δn,ρn−3δn ≤ t δ−1

n |Fn|ρn−2δn,ρn−2δn ≤ δ2
n.

X t
Fn : Aρn−3δn,ρn−3δn 7→ Aρn−2δn,ρn−2δn (5.5)

In particular, since Φn = X1
Fn

, we get the desired formulas (2.10) and (2.11).

5.4 Estimate of the new remainder R̃n+1.

Lemma 7. For Fn constructed above, estimate (2.9) holds:

|R̃n+1|ρn−3δn,ρn−3δn < 4δκn.

Proof. By Lemma 3,

R̃n+1 = An +Bn + Cn,

where An, Bn and Cn are defined by (3.2) and (3.3).

Estimate of An: Using (5.5), we get:

|R̃n

[>mn+1]
◦ Φn|ρn−3δn,ρn−3δn ≤ |R̃n|ρn−2ρn,ρn−2δn ≤ δκn.

Estimate of Cn: We showed in section 5.1 that

|Cn|ρn,ρn ≤ δκn.
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Estimate of Bn: By (5.4), |∂IFn|ρn−2δn,ρn−δn ≤ δ2
n and |∂θFn|ρn−δn,ρn−2δn ≤ δ2

n. By (2.9)

|Rn|ρn,ρn ≤ |R̃n|ρn,ρn ≤ δκn.

This implies, using Cauchy estimates, that

|{Rn, Fn}|ρn−2δn,ρn−2δn ≤ δκn.

Notice that, by formulas (3.1) and (3.3), we have {Nn, Fn} = Rn +Nn −Nn−1 + Cn.

By (2.6),

|Nn −Nn−1|ρ0,ρ0 =
mn∑
j=1

N [mn+j] ≤ mnδ
κ+1
n ≤ δκn.

and therefore

|{Nn, Fn}|ρn,ρn = |Rn|ρn,ρn + |Nn −Nn−1|ρn,ρn + |Cn|ρn,ρn ≤ 3δκn.

Combining the above estimates, we get

|{{Nn, Fn}, Fn}|ρn−2δn,ρn−2δn ≤ δκn,

Since, by (5.5), for any t ≤ 1 we have X t
Fn

: Aρn−3δn,ρn−3δn 7→ Aρn−2δn,ρn−2δn , we obtain

|{{Nn, Fn}+Rn, Fn} ◦X t
Fn|ρn−3δn,ρn−3δn ≤ |{{Nn, Fn}+Rn, Fn}|ρn−2δn,ρn−2δn ≤ 2δκn.

2

Here we get the desired estimate for the remainder term. We have proved above that

|R̃n+1|ρn−3δn,ρn−3δn < 4δκn

Recall that R̃n+1 = R̃n+1

[>mn+1]
. By Lemma 8 proved below, this implies the desired

estimate
|R̃n+1|ρn+1,ρn+1 < δκn+1

This finishes the proof of Proposition 1, and hence Theorem 1 (as explained in the intro-
duction). 2

Lemma 8. Suppose that the constants κ, b, δn, qn, ρn are defined in Section 2.1.2, and
an analytic function G(I, θ) satisfies G = G[>mn+1], and

|G|ρn−3δn,ρn−3δn < 4δκn.

Then
|G|ρn+1,ρn+1 < δκn+1.

Proof. By the definition of κ in Section 2.1.2 we have: qmn+1+1
n = q2n+1+2

n < q2n+1

n = 2b =
2−κ−2. Also recall that δn+1 = 2−1δn.

Since G starts with terms of degree mn+1 = 2n+1 + 2, we have:

|G|qn(ρn−3δn),qn(ρn−3δn) < q2n+1+2
n 4δκn ≤ 2−κ−2 4δκn ≤ δκn+1.

2
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