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Abstract. In the year 1939, the Mathematician G.H. Hardy proved that the

only functions f which satisfy the classical orthogonality relation

∫ 1

0
f(λmt)f(λnt)dt = 0, m 6= n,

are the Bessel functions Jν(t) under certain constraints, where ν > −1 is the

order of the Bessel function, and λm, λn are the zeros of the Bessel function.

More recently, the Mathematician L.D. Abreu proved that if a function f ∈

L2q(0, 1) is q-orthogonal with respect to its own zeros in the interval (0, 1), then

it satisfies the q-orthogonality relation

∫ 1

0
f(λmt)f(λnt)dqt = 0, m 6= n,

where the q-integral is a Riemann-Stieltjes integral with respect to a step

function having infinitely many points of increase at the points q`, with the

step size at the point q` being q, ∀ ` ∈ N0, where N0 := N∪{0}, and 0 < q < 1.

Following these developments, herein we present an equivalence class of entire

q−1-periodic functions satisfying the q−1-orthogonality relation

∫ 1

0
f(λmt)f(λnt)dq−1 t = 0, m 6= n.

1. Introduction

The quantum calculus, otherwise known as the q-calculus [1], has been found to

have a wide variety of interesting applications in number theory [2], and the theory

of orthogonal polynomials [3, 4, 5], for example. As such, herein we investigate a

class of entire functions that are q−1-orthogonal with respect to their own zeros,
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and find that in this equivalence class, the only q−1-periodic functions are nonzero

constant-valued functions. It is well understood by the Fundamental Theorem of

Algebra [6], that a nonzero constant function has no roots. Accordingly, this study

aims to develop a novel approach to the field of q−1-orthogonal polynomials [7],

and the distribution of their zeros [8].

The paper is organized as follows: In Sec. 2 we introduce a class of entire

functions, q−1-orthogonal with respect to their own zeros, and demonstrate that

the class is comprised of q−1-periodic (i.e. constant) functions on the complex plane.

Sec. 3 details the q−1-Fourier series, and the completeness relations of the class.

In Sec. 4, a first-order linear q−1-difference equation is obtained for arriving at

the value of the q−1-periodic constant constituted by the class. Finally, concluding

remarks are made in Sec. 5.

1.1. Preliminaries. If q−1 ∈ R is fixed, then a subset of C is named A, and is

also q−1-geometric if q−1x ∈ A whenever x ∈ A. If A ⊂ C is q−1-geometric then it

contains all geometric sequences {xq−`}∞`=0, where x ∈ A such that as q → 1 then

A → C. Unless otherwise noted, herein 0 < q < 1 [9].

Definition 1.1. A function f defined on the q-geometric set A, where 0 ∈ A, is

said to be q-regular at zero if

lim
`→∞

f(xq`) = f(0), ∀ x ∈ A.(1.1)

Definition 1.2. A function f defined on the q−1-geometric set A, where 0 ∈ A, is

said to be q-regular at infinity if there exists a constant C such that

lim
`→∞

f(xq−`) = C, ∀ x ∈ A.(1.2)

Definition 1.3. The Euler-Heine q−1-difference operator [10, 11], is defined by

D̂q−1f(x) :=
f(x)− f(q−1x)

x− q−1x
, ∀ x ∈ A / {0}.(1.3)
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If 0 ∈ A, the q-derivative at zero is defined for |q| < 1 by

D̂q−1f(0) := lim
`→∞

f(sq−`)− f(0)

sq−`
, ∀ x ∈ A / {0}.(1.4)

The q−1-derivative at zero is denoted as f ′(0), assuming the limit exists and is

independent of x.

The q−1-product rule is [12]

D̂q−1 [f(x)g(x)] = f(q−1x)D̂q−1g(x) + g(x)D̂q−1f(x),(1.5)

and the q−1-integral in the interval (0, x) is∫ x

0

f(t)dq−1t = (1− q)
∞∑
`=0

f(xq−`)xq−`.(1.6)

Now let 1 ≤ p < ∞, x > 0, and η ∈ R. Also let Lpq−1,η(0, x) be the space of all

equivalence classes of functions satisfying∫ x

0

tη|f(t)|pdq−1t <∞,(1.7)

where two functions are defined as equivalent if they are equivalent on the sequence

{xq−` : ` ∈ N0}, where N0 := N ∪ {0}. Hence, f is a function in the Banach space

Lpq−1,η(0, x) with norm

||f ||p,η,x :=

(∫ x

0

tη|f(t)|pdq−1t

) 1
p

.(1.8)

For the case when p = 2, it can be seen that the inner product

〈f, g〉 :=

∫ x

0

tηf(t)g(t)dq−1t,(1.9)

is a separable Hilbert space, where f, g ∈ L2
q−1,η(0, x). If x = 1, the resulting

Hilbert space is L2
q−1,η(0, 1), and the function f ∈ L2

q−1,η(0, 1) is q−1-orthogonal
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with respect to its own zeros in the interval (0, 1) if∫ 1

0

f(λmt)f(λnt)dq−1t =

∞∑
`=0

f(λmq
−`)f(λnq

−`)q−` = 0, m 6= n.(1.10)

Here, it should be pointed out that an orthonormal basis of L2
q−1,η(0, x) is [13]

(1.11) ϕn(t) =


1√

tη+1(1−q)
, t = xq−`, ` ∈ N0;

0, otherwise.

2. q−1-Periodicity

Theorem 2.1. If the class constituted by all entire functions f of order less than

1, or of order 1 and minimal type of the form

f(x) = xρ(x)F (x),(2.1)

where f(0) = −1/2, and ρ(x) is given by the natural logarithmic relation [14]

ρ(x) =
log
(
− 1

2(1−x)Γ(1+x/2)

)
log(x)

> −1

2
,(2.2)

where Γ is the gamma function, and the entire function F (x), with real but not

necessarily positive zeros is

F (x) = exp(cx)

∞∏
n=1

{(
1− x

λn

)
exp

( x
λn

)}
,(2.3)

where c = log(2π) − 1 − γ/2, γ is the Euler-Mascheroni constant; if F (x) 6= 0

and f(x) is q−1-orthogonal with respect to its zeros;
∑
n λ
−1
n is convergent, but not

absolutely [16]; then f has the q−1-periodic representation

fq−1(x) =

∞∏
`=0

1

q2`+1 + q2
,(2.4)

defined on the q−1-geometric set A, i.e., fq−1(x) is constant in x.
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Proof. The proof depends on two lemmas. If∫ 1

0

{f(λnt)}2dq−1t = (q−`)η+1(1− q),(2.5)

then the system

ϕn(t) =
1√

(q−`)η+1(1− q)
f(λnt)(2.6)

is orthonormal in (0, 1). The following Theorem 2.2 demonstrates the system ϕn(t)

is complete, independent of q−1-orthogonality.

Theorem 2.2. If f satisfies the conditions of the previous Theorem 2.1, other than

q−1-orthogonality, g is q−1-integrable, and∫ 1

0

g(t)f(λnt)dq−1t = 0, ∀ n,(2.7)

then g(t) ≡ 0.

Proof. Let t = rq−` exp(iθ), where θ is the complex argument, i =
√
−1, and

h(x) =

∫ 1

0

g(t)f(xt)dq−1t.(2.8)

It is clear that

h(x) = xρ(x)H(x),(2.9)

where H(x) is an entire function. Here, we suppose that F (x) is of order less than

1, when H(x) is also of order less than 1. Since h(λn) = 0 ∀ n, it then follows that

the ratio [17]

χ(x) =
h(x)

f(x)
=
H(x)

F (x)
(2.10)

is also an entire function of order less than 1. Along the imaginary axis t =

rq−` sin(θ) it can be seen that | exp(cx)| = | exp(xλ−1
n )| = 1 ∀ n, where again
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c = log(2π)− 1− γ/2, and

ν(x, t) =

∣∣∣∣∣F (xt)

F (x)

∣∣∣∣∣ =

∞∏
n=1

∣∣∣∣∣λn − rt sin(θ)

λn − r sin(θ)

∣∣∣∣∣.(2.11)

Here it should be pointed out that no factor exceeds 1, and the limit of each factor

as r → ∞ is simply t. Therefore |ν| ≤ 1 ∀ r, t. Moreover, for every fixed value of

t < 1, as r →∞ it can be seen that ν →∞. As such,

|χ(x)| =

∣∣∣∣∣
∫ 1

0

g(t)
F (xt)

F (x)
dq−1t

∣∣∣∣∣ ≤
∫ 1

0

|g(t)|ν(x, t)dq−1t(2.12)

is bounded, and tends to zero along the imaginary axis t = rq−` sin(θ). Further-

more, suppose that χ(x) makes an angle of π/α at the origin, and also along the

imaginary axis. By denoting the bound on χ(x) as B, such that along the imaginary

axis

|χ(x)| ≤ B,(2.13)

then as r →∞, it can be seen that

χ(x) = O
(

exp(δrα)
)

(2.14)

for every positive δ, uniformly in the angle. It then follows that the boundedness

holds in the region where f is entire and regular for t = rq−` exp(iθ). Without

loss of generality, suppose that θ = ±π/(2α) for the two angles (−π/(2α), 0), and

(0, π/(2α)). Also, by letting

F (x) = exp(−εxα)f(x)(2.15)

it can be seen that F (x) tends to zero on the real axis t = rq−` cos(θ), and therefore

has an upper bound, denoted B′. Then, by denoting

B′′ = max(B,B′),(2.16)
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it can be seen that

|F (x)| =
∣∣∣ exp

[
− ε
(
r exp(iθ)

)α]
f(x)

∣∣∣,(2.17)

where again θ = ±π/(2α). It then follows that throughout the angle, and along

the imaginary axis t = rq−` sin(θ), that

|F (x)| ≤ B′′.(2.18)

Here, it should be pointed out that if B′ ≤ B, then |F (x)| assumes the value B′ at

any point of the real axis t = rq−` cos(θ). Consequently B′ = B′′, F (x) reduces to

a constant, and B = B′′. Otherwise B′ < B′′, such that B = B′′ regardless. Thus,

|F (x)| ≤ B.(2.19)

Accordingly,

|f(x)| ≤ B| exp(−εxα)|.(2.20)

Taking ε → 0 implies that B = 0, since ν → 0 for every fixed t < 1 as r → ∞.

Therefore, ∫ 1

0

g(t)f(xt)dq−1t = 0.(2.21)

However, we are interested in the class of functions of the form of Eq. (2.1), i.e.,

f(x) = xρ(x)
∞∑
`=0

a`x
`,(2.22)

where a` 6= 0 for any `. As such, we assume the following [15]:

(1) There exists a class of series, larger than that of series known classically as

convergent, such that a sum corresponds to each series of that class;
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(2) Let m and n, where n < m, be two positive integers. We then have the

relation

1− xn

1− xm
= 1− xn + xm − xn+m + x2m + · · · .(2.23)

At t = q−`, we obtain the Euler series

n

m
= 1− 1 + 1− 1 + 1− 1 + · · ·(2.24)

which belongs to the class from assumption (1).

(3) Let S be the sum of the series xρ(x)
∑
n an of the class, where xρ(x) is given

by Eq. (2.2). Then the series itself belongs to the class, and has the sum

xρ(x)S.

(4) If the series a0 + a1 + · · · + an + · · · has the sum S, then the series a1 +

· · ·+ an + · · · itself has the sum S − a0. As such, it can be seen that

S = 1− 1 + 1− 1 + 1− 1 + · · ·

= 1− (1− 1 + 1− · · · )

= 1− S,(2.25)

from which we obtain S = 1/2.

Hence, ∫ 1

0

g(t)tρ(xt)+ndq−1t = 0, ∀ n,(2.26)

and therefore g(t) ≡ 0. �
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3. q−1-Fourier Series

The q−1-Fourier series of f(xt) with respect to the system Eq. (1.11) is

f(xt) ∼
∑
n

an(x)ϕn(t)

=
∑
n

an(x)
1√

(q−`)η+1(1− q)
,(3.1)

where the Fourier coefficient

an(x) =

∫ 1

0

f(xt)ϕn(t)dq−1t

=
1√

(q−`)η+1(1− q)

∫ 1

0

f(xt)f(λnt)dq−1t;(3.2)

and by the Parseval completeness theorem [19], we obtain

P(x, x′) =

∫ 1

0

f(xt)f(x′t)dq−1t

=

∞∑
n=1

an(x)an(x′).(3.3)

The following theorem gives the value of an(x).

Theorem 3.1. If the conditions of Theorem 2.1 are satisfied, and x 6= λn, then∫ 1

0

f(xt)f(λnt)dq−1t =
(q−`)η+1(1− q)

f ′(λn)
· f(x)

x− λn
.(3.4)

Proof. First, supposing that F (x) is of order less than 1, we write

h(x) =

∫ 1

0

f(xt)f(λnt)dq−1t,(3.5a)

fn(x) =
f(x)

x− λn
,(3.5b)

g(x) =
h(x)

fn(x)
,(3.5c)

G(x) =
g(x)

x+ 1
.(3.5d)
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It then follows that g is an entire function of order less than 1; G is regular and of

order less than 1 in the half-plane rq−` cos(θ) > 0; and

G(x) =
x− λn
x+ 1

∫ 1

0

f(xt)

f(x)
f(λnt)dq−1t(3.6)

is bounded, and goes to zero along the angle θ = ±π/4. It then follows in the

quadrant between θ = ±π/4 that

g(x) = O(|x|).(3.7)

In a similar fashion, the same result follows for the remaining three quadrants in

the complex plane C. Obviously, g is linear and

h(x) = g(x)fn(x) =
ax+ b

x− λn
f(x).(3.8)

However, G goes to zero along the angle θ = π/4 such that a = 0, and

h(x) =
b

x− λn
f(x).(3.9)

The constant b can be obtained by making x→ λn, to obtain Eq. (3.4). �

4. First-Order Linear q−1-Difference Equation

From Eqs. (3.1), and (3.3)-(3.4) it follows that

P(x, x′) =

∫ 1

0

f(xt)f(x′t)dq−1t = −f(x)f(x′)
τ(x)− τ(x′)

x− x′
,(4.1)

where

τ(x) =

∞∑
`=1

(q−`)η+1(1− q)
{f ′(λ`)}2

( 1

x− λ`
+

1

λ`

)
,(4.2)

such that τ(0) = 0. Eq. (4.1) will enable us to determine f . By making x′ → 0, it

follows that ∫ 1

0

tηf(xt)dq−1t = −f(x)
τ(x)

x
,(4.3)
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i.e., ∫ x

0

uηf(u)dqu = −xηf(x)τ(x).(4.4)

Hence,

τ ′(0) = (q − 1)q−`[1 + η(q−` − 1)].(4.5)

Next, we write Eq. (4.1) in the form

∫ x

0

uρ(u)F (u)(x′t)ρ(x
′t)F (x′t)dqu = −xρ(x)+1F (x)(x′)ρ(x

′)F (x′)
τ(x)− τ(x′)

x− x′
.

(4.6)

Differentiating with respect to x′, and evaluating at x′ = 0, it can be seen that

∂

∂x′
(x′t)ρ(x

′t)F (x′t)

∣∣∣∣∣
x′=0

= − t
4

(2 + 2c+ γ),(4.7a)

−xf(x)
∂

∂x′
(x′)ρ(x

′)F (x′)
τ(x)− τ(x′)

x− x′

∣∣∣∣∣
x′=0

=
(2 + 2c+ γ + 2x−1)τ(x)

4
f(x)

− τ ′(0)

2
f(x).(4.7b)

Using Eqs. (4.4)-(4.5), and by choosing η = 1 for brevity, we finally obtain the

q−1-integral equation for f , namely∫ x

0

uf(u)dq−1u = (1− q)q−2`x2f(x).(4.8)

By taking the q−1-difference D̂q−1 , and using the q−1-integration by parts, i.e.,∫ x

0

g(t)
(
D̂q−1f(t)

)
dq−1t+

∫ x

0

(
D̂q−1g(t)

)
f(q−1t)dq−1t = [fg](x)

− lim
`→∞

[fg](xq−`),(4.9)

it can be seen that since f and g are also q-regular at zero,

D̂q−1

∫ x

0

uf(u)dq−1u = xf(x)− lim
`→∞

xq`f(xq`),(4.10)
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and

D̂q−1 [x2f(x)] = (D̂q−1x2)f(x) + (q−1x)2D̂q−1f(x).(4.11)

Hence, we arrive at the first-order linear q−1-difference equation [18]

D̂q−1f(x) = ã(x)f(x).(4.12)

Carrying out the q−1-difference D̂q−1 and upon making further simplifications,

f(x) =
[ q

q + xã(x)(1− q)

]
f(q−1x),(4.13)

where

ã(x) =
q − q2(q2` + q)

(q − 1)x
.(4.14)

Repeating the above recurrence relation N times,

f(x) = f(x0)

x∏
t=qx0

q

q + tã(t)(1− q)
.(4.15)

As N →∞ with 0 < q < 1, then q−N →∞, and

f(x) = f(q−Nx)

N−1∏
`=0

q

q + xq−`ã(xq−`)(1− q)

= f(∞)

∞∏
`=0

1

q2`+1 + q2
.(4.16)

Since by Eq. (2.1) we have f(∞) = 1, it can be seen in the classical limit where

q → 1 and A → C that f(x) = 1/2 ∀ x ∈ C. �

5. Conclusion

By examining a class of entire first order q−1-orthogonal functions f ∈ L2
q−1(0, 1),

it has been demonstrated that the class is indeed comprised of q−1-periodic func-

tions on the separable Hilbert space interval (0, 1). This was accomplished with
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the q−1-Fourier series, and a q−1-integral equation for obtaining the value of the

q−1-periodic constant constituted by the class.
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