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ABSTRACT. In the year 1939, the Mathematician G.H. Hardy proved that the

only functions f which satisfy the classical orthogonality relation

/ CFOmt) )t =0, m £,
0

are the Bessel functions J, (t) under certain constraints, where v > —1 is the
order of the Bessel function, and Ap,, Ay are the zeros of the Bessel function.
More recently, the Mathematician L.D. Abreu proved that if a function f €
£§(07 1) is g-orthogonal with respect to its own zeros in the interval (0, 1), then

it satisfies the g-orthogonality relation

/ O F )yt =0, m #n,
0

where the g-integral is a Riemann-Stieltjes integral with respect to a step
function having infinitely many points of increase at the points ¢¢, with the
step size at the point ¢¢ being ¢, V £ € No, where N := NU{0}, and 0 < ¢ < 1.
Following these developments, herein we present an equivalence class of entire

1

g~ '-periodic functions satisfying the ¢~ !-orthogonality relation

/1 FOmOfAnt)d, 1t =0, m#n.
0

1. INTRODUCTION

The quantum calculus, otherwise known as the g-calculus [1], has been found to
have a wide variety of interesting applications in number theory [2], and the theory
of orthogonal polynomials [3, 4, 5], for example. As such, herein we investigate a

I_orthogonal with respect to their own zeros,

class of entire functions that are ¢~
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and find that in this equivalence class, the only ¢~ !'-periodic functions are nonzero
constant-valued functions. It is well understood by the Fundamental Theorem of
Algebra [6], that a nonzero constant function has no roots. Accordingly, this study

aims to develop a novel approach to the field of ¢!

-orthogonal polynomials [7],
and the distribution of their zeros [8].
The paper is organized as follows: In Sec. 2 we introduce a class of entire

I_orthogonal with respect to their own zeros, and demonstrate that

functions, ¢~
the class is comprised of ¢~ !-periodic (i.e. constant) functions on the complex plane.
Sec. 3 details the ¢~ !-Fourier series, and the completeness relations of the class.
In Sec. 4, a first-order linear ¢~!-difference equation is obtained for arriving at

the value of the g~ '-periodic constant constituted by the class. Finally, concluding

remarks are made in Sec. 5.

1.1. Preliminaries. If ¢~! € R is fixed, then a subset of C is named A, and is
also ¢~ '-geometric if g~'2 € A whenever € A. If A C C is ¢~ '-geometric then it
contains all geometric sequences {xqg~*}22,, where z € A such that as ¢ — 1 then

A — C. Unless otherwise noted, herein 0 < ¢ < 1 [9].

Definition 1.1. A function f defined on the g-geometric set A, where 0 € A, is

said to be g-regular at zero if
(1.1) lim f(zq) = f(0), V€A
{— 00

Definition 1.2. A function f defined on the ¢~ '-geometric set A, where 0 € A, is

said to be g-regular at infinity if there exists a constant C such that
(1.2) lim f(zq %) =C, VazecA
{— 00
Definition 1.3. The Euler-Heine ¢~ !-difference operator [10, 11], is defined by

(1.3) Dy f(x) = f(x)_—f(q_lx), Vae A/ {0}

a x—qlz
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If 0 € A, the g-derivative at zero is defined for |g| < 1 by

(1.4) D1 £(0) == lim Fea)—10) e A/ {0}

(—o0 sq—¢ ’

The g~ !-derivative at zero is denoted as f’(0), assuming the limit exists and is

independent of x.

The ¢~ !-product rule is [12]
(1.5) Dy [f(2)g(x)] = f¢~'2)Dy-19(x) + g(x)Dy-1 f (2),

and the ¢~ '-integral in the interval (0,z) is

(1.6) R ) S e

=0
Now let 1 < p < o0, x > 0, and n € R. Also let £§—1 17(0,:1:) be the space of all

equivalence classes of functions satisfying

(1.7) /0 O (0)Pdy 1t < oo,

where two functions are defined as equivalent if they are equivalent on the sequence
{xq=": ¢ € Ny}, where Ny := NU {0}. Hence, f is a function in the Banach space

L, ,(0, @) with norm

(1) 1 1lpme = ( / t”|f(t)pdq—1t> |

For the case when p = 2, it can be seen that the inner product

(1.9) (frg) = / () gyt

is a separable Hilbert space, where f,g € Eg,l n((),:z:). If x = 1, the resulting

Hilbert space is £, ,(0,1), and the function f € L2, ,(0:1) is g~ ‘-orthogonal
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with respect to its own zeros in the interval (0, 1) if
1 o'}
(110) [ SOt Oty 1t =3 FOaOF g g =0, m £,
0 £=0
Here, it should be pointed out that an orthonormal basis of Lz,lm(O, x) is [13]

L t gGNo;

Y e t:x N bl
(1.11) on(t) = it (1—q) q

0, otherwise.

2. ¢~ '-PERIODICITY

Theorem 2.1. If the class constituted by all entire functions f of order less than

1, or of order 1 and minimal type of the form
(2.1) F(z) = 2@ F(z),
where f(0) = —1/2, and p(x) is given by the natural logarithmic relation [14]

log ( — 2(1—x)rl(1+x/2) 1

[\

where T is the gamma function, and the entire function F(x), with real but not

necessarily positive zeros is

(2.3) F(z) = exp(cx) 10_:’[ {(1 — ;—n) exp (%) },

where ¢ = log(2m) — 1 — v/2, v is the Euler-Mascheroni constant; if F(x) # 0
and f(z) is ¢~ *-orthogonal with respect to its zeros; > A, ' is convergent, but not
absolutely [16]; then f has the ¢~ *-periodic representation

oo

1
(2.4) fo-1(2) = el;[o 22

defined on the q~*-geometric set A, i.e., fq-1(x) is constant in x.
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Proof. The proof depends on two lemmas. If

(2.5) / (O Pyt = (8™ (1 - g),

then the system

1
(2. ult) = e f )

is orthonormal in (0, 1). The following Theorem 2.2 demonstrates the system ¢, (t)

is complete, independent of ¢~ !-orthogonality.

Theorem 2.2. If f satisfies the conditions of the previous Theorem 2.1, other than

1

g~ '-orthogonality, g is ¢~ ‘-integrable, and

2.7) /O o) Ot)dy 1t =0, ¥,

then g(t) = 0.

Proof. Let t = rq~‘exp(if), where 6 is the complex argument, i = /—1, and
1
(2.8) h(z) = / o) f (xt)d, 1.
0
It is clear that
(2.9) h(z) = 2@ H(z),

where H(x) is an entire function. Here, we suppose that F'(x) is of order less than
1, when H(z) is also of order less than 1. Since h(\,) = 0V n, it then follows that

the ratio [17]

(2.10) o) = 3 = 5

is also an entire function of order less than 1. Along the imaginary axis t =

L

rq “sin(f) it can be seen that |exp(cz)] = |exp(zA,')| = 1 V n, where again
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¢ =log(2m) — 1 — /2, and

An — rtsin(6)

(2.11) v(z,t) = An —rsin(6) |

n=1
Here it should be pointed out that no factor exceeds 1, and the limit of each factor
as 7 — oo is simply ¢t. Therefore |v| < 1V r,t. Moreover, for every fixed value of

t <1, as r — oo it can be seen that v — oo. As such,

! F(xat)
/0 ol0) eyt

is bounded, and tends to zero along the imaginary axis ¢t = r¢~“sin(f). Further-

(2.12) Ix(@)| =

< / (D), )yt

more, suppose that x(z) makes an angle of 7/a at the origin, and also along the
imaginary axis. By denoting the bound on x(z) as B, such that along the imaginary

axis

(2.13) Ix(z)| < B,
then as r — oo, it can be seen that

(2.14) x(x) = (’)(exp(ér“))

for every positive d, uniformly in the angle. It then follows that the boundedness
holds in the region where f is entire and regular for t = r¢~*exp(if). Without
loss of generality, suppose that § = +7/(2«) for the two angles (—7/(2a),0), and
(0,7/(2cr)). Also, by letting

(2.15) F(z) = exp(—ex®) f(x)

it can be seen that F'(x) tends to zero on the real axis t = r¢~¢ cos(f), and therefore

has an upper bound, denoted B’. Then, by denoting

(2.16) B" = max(B, B'),
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it can be seen that

)

(2.17) |F(z)| = ‘ exp [ - 5<r exp(i@))a] f(z)

where again 6 = +7/(2a). It then follows that throughout the angle, and along

the imaginary axis t = rq~*sin(#), that
(2.18) F(a)| < B

Here, it should be pointed out that if B’ < B, then |F(z)| assumes the value B’ at

14

any point of the real axis t = r¢~* cos(). Consequently B’ = B”, F(x) reduces to

a constant, and B = B”. Otherwise B’ < B”, such that B = B” regardless. Thus,

(2.19) |F(z)| < B.
Accordingly,
(2.20) |f(z)] < B exp(—ez®)].

Taking ¢ — 0 implies that B = 0, since v — 0 for every fixed t < 1 as r — oo.

Therefore,

(2.21) /0 g(t) f(zt)d, 1t = 0.

However, we are interested in the class of functions of the form of Eq. (2.1), i.e.,
(2.22) f(z) = zr®) Z apx’,
(=0

where a; # 0 for any ¢. As such, we assume the following [15]:

(1) There exists a class of series, larger than that of series known classically as

convergent, such that a sum corresponds to each series of that class;
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(2) Let m and n, where n < m, be two positive integers. We then have the

relation
-z n m n+m 2m
1—am
At t = ¢~*, we obtain the Euler series
(2.24) D 141 —141—-14--
m

which belongs to the class from assumption (1).

(3) Let S be the sum of the series 2°(*) 3" a,, of the class, where 2°(*) is given
by Eq. (2.2). Then the series itself belongs to the class, and has the sum
2P(@) S

(4) If the series ap + a3 + -+ + ap + - -+ has the sum S, then the series a; +

o« 4 ap + - - - itself has the sum & — ag. As such, it can be seen that

S=1—-1+41—-1+1—1+--
—1-(1—-1+1—---)

(2.25) -1-8,

from which we obtain & = 1/2.

Hence,

1
(2.26) /‘ﬂwﬁwwm¢rw=0, Vn,
0

and therefore g(t) = 0. O
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3. ¢~ '-FOURIER SERIES

The ¢~ !-Fourier series of f(xt) with respect to the system Eq. (1.11) is

flat) ~ Z an(z)en(t)
1
. =L g

where the Fourier coefficient

1
an(as):/o fat)pn(t)d -1t

(3.2)

1 1
= (¢~ O 11— q) /0 f(@t) f(Ant)dy—1t;

and by the Parseval completeness theorem [19], we obtain
1
P(z,2") :/ f(at) f(a't)d,t
0
(3.3) = an(x)an(a’).

The following theorem gives the value of a,(z).

Theorem 3.1. If the conditions of Theorem 2.1 are satisfied, and x # A\, then

1 —0\n+1/1 _ T

Proof. First, supposing that F'(x) is of order less than 1, we write

(3.5) h(z) = /O CHat Oyt
(3.5b) fulw) = L

(3.5¢) g(z) = Jijffgj),

(3.5d) Gla) = L2
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It then follows that ¢ is an entire function of order less than 1; G is regular and of

order less than 1 in the half-plane r¢=* cos(d) > 0; and

(3.6) G(a _mH/fmt FOnt)dy it

is bounded, and goes to zero along the angle § = +7/4. It then follows in the

quadrant between 6 = +m/4 that

(3.7) g(x) = O(lz|).
In a similar fashion, the same result follows for the remaining three quadrants in
the complex plane C. Obviously, g is linear and

ar—+b
T — A

(3.8) h(z) = g(x) fo() = f(@).

However, G goes to zero along the angle § = 7/4 such that a = 0, and

b

(3.9) hw) = -

f(@).

The constant b can be obtained by making x — \,, to obtain Eq. (3.4). O

4. FIRST-ORDER LINEAR q_l—DIFFERENCE EQUATION

From Egs. (3.1), and (3.3)-(3.4) it follows that

(@) (@)

(A1)  Ploa’) = / Fat) f@t)dy -t = —f(2) f(")

r—x

where

— ()M (1—q)y 1 1
(4.2) Z {f Az )}? <$ - N\ * /\7)7

{=1

such that 7(0) = 0. Eq. (4.1) will enable us to determine f. By making ' — 0, it

follows that

1
(4.3) /O 1 f(at)dy 1t = — f(z) L,
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ie.,

(4.4) /0 u fu)dgu = —2" f(z)7(2).
Hence,

(4.5) 7(0) = (¢ — g “[L+ng " = 1))

Next, we write Eq. (4.1) in the form

(4.6)
/z up(u)F(u)(x/t)p(m’t)F(x/t)dqu _ —.’Iil)(m)+1F(l‘) (l'/)p(m/)F(l'/) T(l‘) — T(J?/)
0

r—x

Differentiating with respect to z’, and evaluating at 2’ = 0, it can be seen that

(4.7a) %(m’t)m’”zs(x’t) o = —%(2 +2¢+7),
/ m(z) — (2 c V71 (z
e f(@) P p ) TN @ e KR )T g g
x’=0
(4.7b) - T/éo) f(z).

Using Eqgs. (4.4)-(4.5), and by choosing n = 1 for brevity, we finally obtain the

g~ l-integral equation for f, namely

(48) [t == a2,

1

By taking the ¢~ !-difference ﬁq—l, and using the ¢~ -integration by parts, i.e.,

x

| 90Dy f0)dyat s+ [ (Do) a1t = sl

(4.9) [f9)(zq~"),

— lim
L—00

it can be seen that since f and g are also g-regular at zero,

(4.10) ﬁq—l /0 uf(u)dg-1u=xf(x) — élggo xqéf($q€>7
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and

(411) Dy 1 f ()] = (Dg-+2) f(2) + (47 2)* Dy f ().
Hence, we arrive at the first-order linear ¢~!-difference equation [18]
(4.12) Dy f(w) = a(x) f ().

Carrying out the ¢~ !-difference lA?qq and upon making further simplifications,

(4.13) f(.’L‘) = [m} f(q_lx)y
where
(4.14) i) = L- L+

(¢q— 1z

Repeating the above recurrence relation N times,
xr

(4.15) f@) = fo) I g

Al ama o

As N — oo with 0 < ¢ < 1, then ¢~V — oo, and

N-1
— 7Ngj 1
fo=ta) | rmneaa—g
> 1
(4.16) = f<°O>£1:TOM'

Since by Eq. (2.1) we have f(co) = 1, it can be seen in the classical limit where

qg—1and A— C that f(z) =1/2V 2 € C. O

5. CONCLUSION

By examining a class of entire first order ¢~ !-orthogonal functions f € 53_1 (0,1),
it has been demonstrated that the class is indeed comprised of ¢~ !-periodic func-

tions on the separable Hilbert space interval (0,1). This was accomplished with



the ¢~ !-Fourier series, and a ¢~
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Lintegral equation for obtaining the value of the

g~ !-periodic constant constituted by the class.
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