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Abstract—The d’Alembert–Lagrange Principle and the theory of ideal constraints are the central
topic in the theoretical mechanics. We consider the theory of ideal constraints and the d’Alembert–
Lagrange Principle from the modern differential geometry and tensor analysis point of view. This
article is pure methodological.
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The D’Alembert–Lagrange Principle and the theory of ideal constraints play the central role in

theoretical mechanics. In this article, we conceive this theory in terms of modern differential geometry

and tensor analysis. This article is pure methodological.

The traditional presentation of these questions are contained, for example, in [1]. We use the

apparatus of differential geometry [2].

1. THE FUNCTIONS ON A TANGENT BUNDLE

Let Y be a smooth s-dimensional manifold with local coordinates y = (y1, . . . , ys) and let TY be

its tangent bundle with local coordinates (y, ẏ) = (y1, . . . , ys, ẏ1, . . . , ẏs). In what follows, all objects

(manifolds, mappings, and tensor fields) are assumed C∞-smooth.

Introduce the function L : (t1, t2)× TY → R, L = L(t, y, ẏ).

Definition 1. A set of functions

[L]i =
d

dt

∂L
∂ẏi

− ∂L
∂yi

is called the Lagrangian derivative of function L.

The Lagrangian derivative is linear and possesses the following property: For every function f :
(t1, t2)× Y → R the identity holds:

[
df

dt

]

i

= 0, ḟ =
df

dt
:=

∂f

∂t
+

∂f

∂yl
ẏl.

Let X be a smooth r-dimensional manifold with local coordinates x = (x1, . . . , xr), r ≤ s. Denote by

ϕ : (t1, t2)×X → Y , yi = ϕi(t, x) a mapping that is an embedding for every fixed t. An embedding is
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2 ZUBELEVICH

a mapping such that for every t the image M(t) = ϕ(t, X) ⊂ Y is a smooth manifold and, moreover,

in a neighborhood of every point y ∈ M(t) of Y there exist some local coordinates z1, . . . , zs (they

smoothly depend on t) such that M(t) is given by the system of equations zl = 0, l = 1, . . . , s− r;

rang
∂ϕ

∂x
= r.

Theorem 1. The next formulas hold:

∂ϕi

∂xj
[L]i = [L]j ,

where the function L : (t1, t2)× TX → R if determined by the formula

L(t, x, ẋ) = L
(

t, ϕ(t, x),
∂ϕ

∂xl
ẋl +

∂ϕ

∂t

)
. (1)

In particular, the Lagrangian derivative behaves like a covector field regarding the coordinate

changes on the manifold Y .

Proof. Calculate the derivatives:

∂L

∂xi
=

∂L
∂ym

∂ϕm

∂xi
+

∂L
∂ẏm

(
∂2ϕm

∂xl∂xi
ẋl +

∂2ϕm

∂t∂xi

)
;

d

dt

∂L

∂ẋi
=

d

dt

(
∂L
∂ẏm

∂ϕm

∂xi

)
=

∂ϕm

∂xi

(
d

dt

∂L
∂ẏm

)
+

∂L
∂ẏm

(
∂2ϕm

∂xl∂xi
ẋl +

∂2ϕm

∂t∂xi

)
.

Theorem 1 is proved.

Theorem 2. If the quadratic form with the matrix

∂2L
∂ẏ2

(t, y, ẏ) (2)

is positive-definite for all (t, y, ẏ) ∈ (t1, t2)× TY then the quadratic form with the matrix
∂2L

∂ẋ2
(t, x, ẋ) is also positive-definite for all (t, x, ẋ) ∈ (t1, t2)× TX.

Proof. Indeed,

∂2L

∂ẋk∂ẋj
=

∂2L
∂ẏi∂ẏp

∂ϕi

∂xk

∂ϕp

∂xj
.

The matrix

akj =
∂2L

∂ẏi∂ẏp

∂ϕi

∂xk

∂ϕp

∂xj

is positive-definite since it is the Gramian matrix of the vectors

uk =
(

∂ϕ1

∂xk
, . . . ,

∂ϕs

∂xk

)

with respect to the inner product given by (2).

Theorem 2 is proved.
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THE D’ALEMBERT–LAGRANGE PRINCIPLE 3

2. THE COVARIANT VERSION OF THE D’ALEMBERT–LAGRANGE PRINCIPLE

Hereinafter, we consider that the quadratic form with the matrix (2) is positive-definite.

Consider the following system of differential equations:

[L]i = Fi(t, y, ẏ), i = 1, . . . , s. (3)

The function L is called the Lagrangian function of system (3).

The functions on the right side are called active forces, they are supposed given. Function Fi and

L as well are defined on the extended phase space (t1, t2)× TY and are transformed according to the

covector law.

System (3) is the system of differential equations of order 2s with respect to functions y(t). On the

assumption made about the matrix (2), this system is solvable with respect to ÿ. The phase space of

system (3) is TY . The manifold Y is called the configurational space of the system (3).

Introduce the 1-forms ωq = ωq
jdyj , q = 1, . . . , ν < s, in Y . It means that the functions

{
ωq

j (t, y)
}

behave as the components of a covector field under changes of the coordinates on the manifold Y .

Wherein the coordinate changes either do not depend on time or time is considered as a parameter.

We will assume that rang
(
ωq

j (t, y)
)

= ν, (t, y) ∈ (t1, t2)× Y . This condition means that the 1-

forms ωq are linearly independent on each tangent space TyY for every t.

Introduce more functions:

ψq(t, y, ẏ) = ωq
j (t, y)ẏj + βq(t, y). (4)

The equations

ψq(t, y, ẏ) = 0, q = 1, . . . , ν, (5)

are called the equations of differential constraints, and they define in the extended phase space of the

system (3) some smooth submanifold

W ⊂ (t1, t2)× TY, dimW = 2s + 1− ν.

The connection of W with the system itself is explained by the following definitions:

Definition 2. The subspace

∆(t, y) =
{
δy = (δy1, . . . , δys) ∈ TyY | ωq

j (t, y)δyj = 0, q = 1, . . . , ν
}

(6)

is called the space of virtual displacements. The elements of this space are called the virtual
displacements.

Then dim∆(t, y) = s− ν is called the number of degrees of freedom of the system.

Definition 3. Assume that we can choose some Ri forces, also defined on (t1, t2)× TY , so that:

(1) the manifold W turns out to be the invariant manifold of the system

[L]i = Fi(t, y, ẏ) + Ri(t, y, ẏ), i = 1, . . . , s; (7)

(2) the equality

Ri(t, y, ẏ)δyi = 0 (8)

holds for every vector δy ∈ ∆(t, y).
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4 ZUBELEVICH

In this case we say that the ideal constraints (5) are imposed on system (3) or the system with

ideal constraints is given.

The forces Ri are called the reactions of ideal constraints. If there is no constraints then

∆(t, y) = TyY, W = (t1, t2)× TY, Ri = 0.

Remark. In a system with ideal constraints we are interested in the dynamics of system (7) only

on manifold W . Therefore, the behavior of the forces Fk and Rk outside this manifold does not matter.

However, in problems of mechanics, these forces turn out to be naturally determined all over the whole

extended phase space (t1, t2)× TY . If these forces are initially given on the manifold W then they can

be extended to smooth functions on (t1, t2)× TY . Of course, it is nonunique continuation but this does

not influence the dynamics of the system on the manifold W .

Often constraint equations are of the form f q(t, y) = 0, q = 1, . . . , ν. These constraints are called

geometric. They are reduced to the form (5) by time differentiation:

∂f q

∂t
+

∂f q

∂yi
ẏi = 0, q = 1, . . . , ν. (9)

Definition 4. If there is a set of functions f1, . . . , fν such that the manifold W is defined by (9) then

the constraints (5) are called holonomic. Otherwise, the constraints are nonholonomic.

The next is a direct corollary of (7) and (8):

Theorem 3. Suppose that (3) is the system with ideal constraints (5) and y(t) is a solution of

system (7). Then y(t) satisfies the equation

([L]i − Fi)δyi = 0 (10)

for all δy ∈ ∆(t, y(t)).

Equation (10) is called the general dynamic equation.

Theorem 4. For every sets of the forces Fk and the initial conditions

(t0, y0, ẏ0) ∈ W (11)

a function y(t) exists and is unique such that:

(1) y(t0) = y0, ẏ(t0) = ẏ0;

(2) y(t) satisfies (5);

(3) y(t) satisfies (10) for all δy ∈ ∆(t, y(t)).

Proof. Suppose first that for each initial condition (11) the specified function y(t) exists, and prove its

uniqueness.

Lemma 1 [3]. Let E be a vector space, and let u, u1, . . . , ul : E → R be some linear functionals.

If

l⋂

k=1

keruk ⊆ keru
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then there is a set of numbers λ1, . . . , λl such that

u =
l∑

k=1

λkuk.

From this lemma together with (6) and (10) for t = t0 we obtain

[L]i
(
t0, y0, ẏ0, ÿ(t0)

)− Fi(t0, y0, ẏ0) = λjω
j
i (t0, y0). (12)

Let us show that as λj you can take functions from C∞(
(t1, t2)× TY

)
; moreover, the restrictions λj |W

are uniquely defined. We denote the inverse matrix to (2) by gij(t, y, ẏ). Then equation (12) takes the

form

ÿj(t0) = gij(t0, y0, ẏ0)ωk
i (t0, y0)λk + uj

1(t0, y0, ẏ0). (13)

Here and below, uj
p are some given smooth functions.

Let us differentiate (5): ωq
l (t0, y0)ÿl(t0) = uq

2(t0, y0, ẏ0). Inserting here ÿ from (13), we find that

ωq
jg

ijωk
i λk = uq

3(t0, y0, ẏ0). (14)

We obtained a system of linear algebraic equations relative to λk. The matrix of this system ωq
jg

ijωk
i

is nondegenerate since this is a Gramian matrix of vectors ξq =
(
ωq

1, . . . , ω
q
s

)
with respect to the inner

product gij .

Hence, λk = λk(t0, y0, ẏ0) is uniquely found from (14).

Since the functions in (14), are defined on the whole extended phase space (t1, t2)× TY , we can

consider the functions λk also defined on the whole extended phase space. However, since (14) was

derived only for initial conditions (11), λk are uniquely determined only on W . Thus, the function y(t)
satisfies the equation

[L]i − Fi = λj(t, y, ẏ)ωj
i . (15)

This equation is called the Lagrange equation with multipliers. The uniqueness of y(t) follows from

the Cauchy Theorem of the existence and uniqueness of the solution to (15).

By the construction, ψq is the first integral of system (15); therefore, the existence also follows from

the Cauchy Theorem.

The proof of Theorem 4 is complete.

As the consequence we obtain the following

Theorem 5 (release from principal bundles). For every set of forces Fi there is a set of reactions
Ri such that (8) is completed for all virtual displacements and the manifold W is an invariant

manifold for (7). Moreover, narrowing Ri|W is defined unambiguously. The reactions can be taken

as Ri(t, y, ẏ) = λj(t, y, ẏ)ωj
i (t, y).

Theorems 3–5 present the d’Alembert–Lagrange Principle.
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6 ZUBELEVICH

3. REDUCTION OF A SYSTEM WITH GEOMETRIC CONSTRAINTS

Suppose that in addition to the differential constraints (5) the geometric constraints are put on the

system:

f i(t, y) = 0, i = 1, . . . , µ, µ + ν < s, (16)

and the differential forms

ωi, δf j :=
∂f j

∂yl
dyl, i = 1, . . . , ν, j = 1, . . . , µ, (17)

are linearly independent everywhere. From (16) we have the differential constraints

∂f i

∂t
+

∂f i

∂yj
ẏj = 0, i = 1, . . . , µ. (18)

We will consider system (3) with ideal constraints (5) and (18). Now, the manifold W is given by

(5) and (18). Let us remind that, by the definition of a system with ideal constraints, W is the invariant

manifold of system (7).

If we narrow (7) on manifold W then f i become the first integrals of the so-obtained the narrowing

system.

The space of virtual displacements has the form

∆(t, y) =
{

δy ∈ TyY | ωq
k(t, y)δyk = 0,

∂f j

∂yl
δyl = 0, j = 1, . . . , µ, q = 1, . . . , ν

}
.

For every fixed t system of equations (16) defines in Y a submanifold of dimension r = s− µ. Denote

this manifold by M(t). We will assume that this manifold is the embedding image ϕ(t, ·) of some r-

dimensional manifold X in

Y, ϕ(t,X) = M(t), f i(t, ϕ(t, x)) = 0.

From this point on, we will use the theory and notations of Section 1.

In mechanics, the local coordinates x on the manifold X are called the generalized coordinates, and

the sets of functions

Qi(t, x, ẋ) =
∂ϕk(t, x)

∂xi
Fk

(
t, ϕ(t, x),

∂ϕ(t, x)
∂xk

ẋk +
∂ϕ(t, x)

∂t

)

are called the generalized forces. Further we will not use this term and continue to call Qi the active

forces.

Introduce the functions

Ψq(t, x, ẋ) = Ωq
j(t, x)ẋj + Bq(t, x), q = 1, . . . , ν, (19)

where

Ωq
j =

∂ϕu(t, x)
∂xj

ωq
u(t, ϕ(t, x)), Bq = βq(t, ϕ(t, x)) + ωq

j (t, ϕ(t, x))
∂ϕj(t, x)

∂t
.

Formulas (19) are obtained by insertion of y = ϕ(t, x) into functions (4). Thus, for fixed t the differential

forms Ωq = Ωq
jdxj are the result of the operation “pull-back” applied to the narrowing of the forms ωq

on M(t).

Theorem 6. Differential forms Ωq are linearly independent for all (t, x).
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Proof. Since ϕ is an embedding, the linear operator

δϕ :=
∂ϕ

∂x
: TxX → Tϕ(t,x)M(t) =

µ⋂

j=1

ker δf j

is an isomorphism of linear spaces.

Assume that there is a nontrivial linear combination of forms Ωq that is equal to zero:

λqΩq = λqω
q ◦ δϕ = 0,

and not all numbers λq are zeros. But this means that
µ⋂

j=1

ker δf j ⊂ ker(λqω
q).

Therefore, the form λqω
q is the linear combination of the forms δf j . However, this is impossible for the

independent forms (17).

Theorem 6 is proved.

Thus, we will consider the system with configurational space X, Lagrangian (1), active forces Qi,

and ideal constraints

Ψq(t, x, ẋ) = 0, q = 1, . . . , ν. (20)

The corresponding virtual displacement space has the form

Λ(t, x) =
{
δx ∈ TxX | Ωq

j(t, x)δxj = 0, q = 1, . . . , ν
}
.

The number of degrees of freedom of this system is equal to r − ν = s− ν − µ.

By Theorem 2, for the general equation of dynamics

([L]i −Qi)δxi = 0, δx ∈ Λ(t, x), (21)

with constraints (20). Theorem 4 and 5 hold from which the generalized forces of reactions of the ideal

constraints are recovered, and so, Theorem 3 is proved.

If the differential constraints (20) are absent and there are only constraints (16), i.e. Λ(t, x) = TxX;

then (21) turns out to the Lagrange equation of the second kind [L]i −Qi = 0, i = 1, . . . , r, on the

manifold X .

Note that δϕ : Λ(t, x) → ∆(t, ϕ(t, x)) is the isomorphism of linear spaces.

By Theorem 1, we have

([L]i − Fi)δyi = ([L]j −Qj)δxj , δyi =
∂ϕi(t, x)

∂xj
δxj , δx ∈ Λ(t, x).

From this formula we derive

Theorem 7. If some function x(t) is a solution of the system of equations (20), (21) for all
δx ∈ Λ(t, x(t)) then y(t) = ϕ(t, x(t)) is the solution of the system of equations (5), (10), and (16)
for all δy ∈ ∆(t, y(t)).

Conversely, suppose that y(t) is the solution of the system of equations for all δy ∈ ∆(t, y(t)). Since

for every t the mapping ϕ is the diffeomorphism to the corresponding image; therefore, the equation

y(t) = ϕ(t, x) (22)
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determines x = x(t) uniquely, and x(t) is a smooth function. In fact, select a subsystem of r functionally

independent equations from (22) and apply to it the Implicit Function Theorem.

Theorem 8. If function y(t) is a solution to the system of equations (5), (10), and (16) for
all δy ∈ ∆(t, y(t)) then there exists a unique function x(t) that is the solution of the system of

equations (20), (21) for all δx ∈ Λ(t, x(t)) and y(t) = ϕ(t, x(t)).

4. THE D’ALEMBERT–LAGRANGE PRINCIPLE FOR A SYSTEM OF MASS POINTS

Consider a system of the material points of masses m1, . . . , mN with the position vectors

r1, . . . , rN with respect to some inertial coordinate system XY Z. Represent the position vector as

rk = (Xk, Yk, Zk).

Assume that at every point mk the force

Fk = Fk

(
t, r1, . . . , rN , ṙ1, . . . , ṙN

)
, k = 1, . . . , N,

operates so that the motion equations of the whole system of mass points are of the form

mkr̈k = Fk, k = 1, . . . , N. (23)

Functions Fi are defined on (t1, t2)× TY , where TY is the tangent bundle of some domain

Y ⊂ R3N , (r1, . . . , rN ) ∈ Y.

Note that TY = Y × R3N .

Thus, the configurational space of the system is the domain Y with the coordinates

y =
(
y1, . . . , ys

)
=

(
X1, Y1, Z1, . . . , XN , YN , ZN

)
, s = 3N,

respectively; and

Fk = (FX
k , F Y

k , FZ
k ),

(
F1, . . . , Fs

)
=

(
FX

1 , F Y
1 , FZ

1 , dots, FX
N , F Y

N , FZ
N

)
.

System of equations (23) can be rewritten in the form (3):

d

dt

∂T

∂ṙk
− ∂T

∂rk
= Fk, k = 1, . . . , N,

where

T =
1
2

N∑

i=1

mi|ṙi|2

is the kinetic energy of the system.

Thus, we can apply the above developed theory for studying (23).
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