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1. Introduction

The present article is devoted to the existence of statyos@utions of the follow-
ing nonlocal reaction-diffusion equation

8t 3x2 / K(z—y)g(w(y)u(y,))dy+ad(z), aeR, a#0.(1.1)

Herew(x) is our cut-off function the assumptions on which will be fardated be-
low. The problems of this kind appear in the cell populatignaimics. The space
variablez here corresponds to the cell genotypér,t) denotes the cell density
as a function of their genotype and time. The right side of groblem describes
the evolution of cell density via cell proliferation, mutats and cell influx. The
diffusion term here corresponds to the change of genotygetalismall random
mutations, and the nonlocal term describes large mutatkumsctiong (w(z)u(x))
stands for the rate of cell birth which dependswom (density dependent prolifer-
ation), and the kernek (x — y) gives the proportion of newly born cells changing
their genotype fromy to z. We assume that it depends on the distance between
the genotypes. Finally, the last term in the right side o$ §wioblem, which is
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proportional to the Dirac delta function denotes the in#dikix of cells for dif-
ferent genotypes. A similar equation in one dimension indh®e of the standard

negative Laplacian raised to the poviex s < - in the diffusion term was inves-

tigated recently in [27]. Note that in [27] it was assumed: tih@ influx/efflux
term f(z) € L'(R) N L?(R). Therefore, in the present article we consider the more
singular situation. In neuroscience, the integro-diffiiad equations describe the
nonlocal interaction of neurons (see [9] and the referetica®in).

Let us setD = 1 and establish the existence of solutions of the problem

o
da?

N / " Kz — y)g(w(y)uly))dy + ad(z) = 0. (12)

We will discuss the situation when the linear part of suchrajme fails to satisfy
the Fredholm property. Consequently, conventional mettadahonlinear analysis
may not be applicable. Let us use solvability conditiongion Fredholm operators
along with the method of contraction mappings.

Consider the equation

—Au+V(x)u — au = f, (1.3)

whereu € F = H*(RY) andf € F = L*(R?), d € N, a is a constant and the
scalar potential functiol’(x) either vanishes identically or convergedtat infin-
ity. Fora > 0, the essential spectrum of the operator £ — F corresponding to
the left side of problem (1.3) contains the origin. Consedyethis operator fails
to satisfy the Fredholm property. Its image is not closedfo- 1 the dimension
of its kernel and the codimension of its image are not finitee Ppresent work is
devoted to the studies of certain properties of the opesaibthis kind. Note that
elliptic problems with non Fredholm operators were treaett/ely in recent years.
Approaches in weighted Sobolev and Holder spaces werdapeaatin [4], [5],
[6], [7], [8].- The non Fredholm Schrodinger type operataese studied with the
methods of the spectral and the scattering theory in [143), [121], [22]. Fred-
holm structures, topological invariants and their appiares were covered in [13].
The Laplace operator with drift from the point of view of noreBholm operators
was treated in [24] and linearized Cahn-Hilliard problemd19] and [25]. Non-
linear non Fredholm elliptic equations were considered?8] and [26]. Important
applications to the theory of reaction-diffusion problewere developed in [11],
[12]. Non Fredholm operators arise also when studying wgstgems with an infi-
nite number of localized traveling waves (see [2]). Stagdattice solitons in the
discrete NLS equation with saturation were considered i I[Bparticular, when
a = 0 the operatorA is Fredholm in some properly chosen weighted spaces (see
[4], [5], [6], [7], [8]). However, the case af £ 0 is considerably different and the
approach developed in these articles cannot be adoptedxXigtence, stability and
bifurcations of the solutions of the nonlinear partial iffntial equations involving
Dirac delta function potentials were studied actively i, [[15], [16].
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We setK(z) = eK(x), wheree > 0. When the nonnegative parameter
vanishes, we obtain the linear Poisson equation

d?u
—5 = ad(x). (1.4)
Let us introduce the function
z, >0

Evidently, the solution of (1.4) vanishing at the minus iitfiris given by—a{, ().
Note that as distinct from the situation discussed in [2Ud[hssolution is un-
bounded and does not belong k' (R). Suppose that the assumption below is
satisfied.

Assumption 1.1. Let K(z) : R — R be nontrivial, such thatC(z), 2*K(z) €
L'(R) and orthogonality relations (4.2) hold. Let us also assuhw the cut-off
functionw(z) : R — R is such thatw(z)&y(z) is nontrivial andw(x)&(x) €
H'(R). Moreoverw(x) € H*(R) and fora € R, « # 0 the inequality

1
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(1.6)

holds.

It can be easily verified that(z) = e~ *l, » € R satisfies the assumptions
above and therefore it can be used as our cut-off functiore Nt in the argument
of [27] we did not need to use such cut-off due to the more segakhaviour of
the solution of the Poisson type equation. In the article ha@ose the space dimen-
siond = 1, which is related to the solvability of the linear Poissomni&iipn (1.4)
discussed above. From the point of view of the applicatitresspace dimension is
not restricted tal = 1 since the space variable corresponds to cell genotype but no
to the usual physical space. Let us use the Sobolev space

H'(R) := {u(z) : R — R |u(z) € L*(R), Z—z € L*(R)}.
It is equipped with the norm
du
ol ey 2= o) + | |y (L.7)

Evidently, using the standard Fourier transform (2.1 tlorm can be written as
||U||%11(R) = ||a(P)||%2(R) + ||P3(P)||i2(u@)- (1.8)
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By means of the Sobolev inequality in one dimension (see &egt 8.5 of [17]),
we have

[ ()] ooy \fHu( M w)- (1.9)

We will be using the algebraic property of our Sobolev spaeeely that for any
u(x),v(z) € H'(R)

[u(z)v(@)]|m @ < callul@)]m@llo@) | mw, (1.10)

wherec, > 0 is a constant. Upper bound (1.10) can be easily establigbed,
instance via (1.9). Let us seek the resulting solution ofinear problem (1.2) as

u(zr) = —ado(z) + up(x). (1.11)

Apparently, we derive the perturbative equation

_ L) | K- pgtewi-ast) + nhd.  @12)

dz? -
Let us introduce a closed ball in our Sobolev space
B, = {u(x) € H'(R) | ullm@ < p}, 0<p<1. (1.13)

We seek the solution of equation (1.12) as the fixed point@gtixiliary nonlinear
problem

_Lul@) _ £ /OO K(x —y)g(w(y)[—ato(y) +v(y)])dy (1.14)

dzx? -
in ball (1.13). For a given function(y) this is an equation with respect tdx).
2

: : d : . :
The left side of (1.14) contains the opera% acting onL?(R), which fails to

satisfy the Fredholm property. Its essential spectrumtfibsnonnegative semi-axis
[0, 4+00). Therefore, this operator has no bounded inverse. Theaisitlation in
the context of the integro-differential equations occdraéso in articles [23] and
[26]. The problems studied there also required the apphicadif the orthogonality
conditions. The contraction argument was used in [20] tonede the perturbation
to the standing solitary wave of the Nonlinear Schrodin®#rS) equation when
either the external potential or the nonlinear term in the&SNere perturbed but the
Schrodinger operator involved in the nonlinear probleardtsatisfied the Fredholm
property (see Assumption 1 of [20], also [10]). We introdtioe interval on the
real line

1 1
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along with the closed ball in the space®f(!) functions, namely
D = {g(2) € Cu(D) | lgllesy < MY, M > 0. (1.16)
In this context the norm

lgllciry = lgllea) + 19 llew) (1.17)

where||g||c( := max.c;|g(z)|. From the biological point of view, the rate of cell
birth function is nonlinear and vanishes at the origin.

Assumption 1.2. Letg(z) : R — R, such thaty(0) = 0. It is also assumed that
g(z) € Dy and it does not vanish identically on the interval

Note thatin [27] the function(z) was assumed to be twice continuously differ-
entiable on the corresponding intervalWe define the following positive technical

expression
Q= max{ } (1.18)
L= (R)

Let us introduce the operatdi,, such that. = 7,v, wherew is a solution of
problem (1.14). Our first main proposition is as follows.

K(p)

p

K(p)

2

Y

Lo (R)

Theorem 1.3.Let Assumptions 1.1 and 1.2 hold. Then problem (1.14) detfees
map7, : B, — B,, which is a strict contraction for alll

p
U< < RO T alel@ ) (1-19)

The unique fixed point,(z) of this mapI} is the only solution of equation (1.12)
in B,.

Evidently, the resulting solution of problem (1.2) given dy11) will be non-
trivial sinceg(0) = 0 anda # 0 as assumed.

Our second main statement is about the continuity of the ¢atnae solution of
equation (1.2) given by formula (1.11) with respect to thalim@ar functiony. Let
us define the following positive, auxiliary expression

0 = 2/mQMec,||w(x) | i w).- (1.20)

Theorem 1.4. Letj = 1,2, the assumptions of Theorem 1.3 are valid, such that
u, ;(z) is the unique fixed point of the mapy, : B, — B,, which is a strict



contraction for alle satisfying (1.19) and the resulting solution of equatior2)1
with g(z) = g;(2) is given by

uj(z) = —ado(x) + up (). (1.21)
Then for all values of, which satisfy inequality (1.19) the upper bound
2ey/TQ(L + ol w ()| )

_ <
[ui(z) — w2 (@) | ) < l—co

holds.

lg91(2) = g2(2)ll vy (1.22)

Let proceed to the proof of our first main proposition.
2. The existence of the perturbed solution

Proof of Theorem 1.3We choose an arbitrary(z) € B, and designate the term
involved in the integral expression in the right side of écura(1.14) as

G(z) = g(w(z)[-ao(r) + v(@)]).

The standard Fourier transform is given by

o 1 OO —1ipx

o) = = | ot (2.1)
Obviously, the inequality

16()llz=@) < FW )| ) (2.2)

holds. Let us apply (2.1) to both sides of equation (1.14)jctiields

/\

p
Therefore,

a(p)| < eV2rQ|G(p)l,  Ipulp)| < eV27Q|G(p), (2.3)

where() is given by (1.18). Note that under the given conditiohs: oo by virtue
of Lemma 4.1 below. By means of (1.8) along with inequali{i2s8) we easily
estimate the norm as

lu(@) | @y < 47 Q|G ()| 12 (2.4)

It can be easily verified that far(x) € B,, we have

w(z)[—ado(x) +v(z)]| < %{1 + Callw (@) ) }- (2.5)



Indeed, the left side of (2.5) can be trivially bounded framowee using inequalities
(1.9) and (1.10) by

%{M\wa)&o(az)!\m@ + Callw(@)]| [0 (@) 11 @) }- (2.6)
Hence, (2.5) holds due to (1.6). Similarly, fofx) € B,

lw(@)[=ago(x) + v(@)]ll2@) < 1+ callw(@) |1 2.7)

is valid via inequalities (1.6) and (1.10). Evidently,

w(z)[—ao(x)+v(x)]
G@r:A J(2)dz,

such thatG(z)| <

< maxelg'(2)|Jw(@)[—abo(z) + v(2)]| < Mlw(z)[-a(x) +v(z)]], (2.8)

where the interval is defined in (1.15). Therefore, by virtue of (2.8) along with
(2.7) we derive

|G ()| 2wy < M[w(z)[—ago(x) +v(2)]l| L2 < M(1+ callw(2) ]| w))- (2.9)

By means of estimates (2.4) and (2.9) we arrive at

[w(@)]| 1) < 2vTEQM (1 + callw(@) |l w) < p (2.10)

for all values of the parametersatisfying inequality (1.19), such thatx) € B, as
well.

If for a certainv(z) € B, there exist two solutions, »(z) € B, of equation
(1.14), their differencev(z) := ui(z) — uz(z) € L*(R) is a solution of the homo-
geneous problem

d2

0 w(z) =0.
Since the negative second derivative operator consideréaconvhole real line does
not possess any nontrivial square integrable zero mades, = 0 on R. Thus,
equation (1.14) defines a mdp : B, — B, for all values ofe satisfying bound
(1.19).

We will establish that under the given conditions this mag $¢rict contraction.
Let us choose arbitrarily, »(z) € B,. The argument above implies that, :=
T,v12 € B, as well where satisfies (1.19). By means of (1.14) we have

L e —s/ K(z — gw(m)—aboly) + m @)y, (211)

dx?



) =< [ K- e ast) s ol (212

Let us define
Gi(z) = g(w(z)[—abo(z) + vi(2)]), Ga(z) = g(w(x)[—ado(z) + v2(z)])

and apply the standard Fourier transform (2.1) to both safleguations (2.11) and
(2.12). This yields

o~ o~ o~

i (p) = Y IENC) Bp) = ey )G2P)
1 7 ;o U 7 ,

such that N
SV i — /s RDIG(p) ~ Ga(p)]
@(p) — W(p) = eV2r 2 :
Sy o /5= KD)ICi(p) — Gap)
P[Ul(p) 2(19)] \/2_ D :
Therefore,

@1 (p) — @a(p)| < ev27Q|G1(p) — Ga(p),
Il (p) — @ (p)]] < eV27Q|G1(p) — Ga(p)|

holds. This allows us to estimate the norm using (1.8) as

o) = o) ey = | " @) — @lp)Pdp+ / " p@(p) — @) Pdp <

< AnE QPG () — o) 22z,
such that
[ur (2) — u2(@) || 1 (r) < 2v/7EQ|G1(2) — Go(2) || 2(w).- (2.13)
Evidently, we can express
w(z)[—ago(x)+v1 (2)]

Gi(z) — Ga(x) = / g'(2)dz.

w(z)[—ago(z)+v2(2)]

Hence, we obtain

|G1(z) = Ga(z)] < maxe|g'(2)[|w(z)(vi(z) —va(2))] < Mw(z)(v1(2) —va ()]

and trivially derive the upper bound for the norm via (1.18) a

1G1(x) = G2() [ 12r) < MJw(z)(v1(2) — v2(2)) [ 11R) <
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< Meg||w(@) || g @y ||vi(z) — v () || 51wy - (2.14)
By virtue of (2.13) along with (2.14) we arrive at
[ui (@) — w2 (@) iy < 2vTEQMea|[w (@) miryllvi(2) — v2(2) [ Ry (2.15)
Clearly,

p 1
2VRQML + callw(@) ) 2/mQMeal[w(@) [

Then, by means of (1.19) for our parameteve have

1
2y/TQMe,||w(x)| ey’

Therefore, the constant in the right side of inequality $2.i% less than one, which
yields that our maf, : B, — B, defined by equation (1.14) is a strict contraction
for all the values of:, which satisfy (1.19). Its unique fixed point,(x) is the
only solution of problem (1.12) in the bafp,. It easily follows from (2.10) that
|up(2)|| ey — 0 @ase — 0. The resultingu(z) given by (1.11) is a solution of
equation (1.2). [ |

O<e<

Let us turn our attention to establishing the second mauitresour article.
3. The continuity of the resulting solution

Proof of Theorem 1.4Evidently, for all the values of satisfying inequality (1.19),
we have
Up =Ty upa,  Upa = Ty Upo.

Hence
Up1 — Upo = Tg up1 — Ty upo + Toupo — Ty upo.

Therefore,
[tpy — upellmrey < N Tgups — Ty upallm@my + 1Ty up2 — Toytp 2l o m)-
By means of bound (2.15), we have
1Ty, up1 — Ty up ol mwy < eollupr — upollme)

with o given by (1.20). Note thatr < 1 because the mdfj,, : 5, — B, under the
given conditions is a strict contraction. Thus, we derive

(1 —eo)|lupy — upallm @) < | Tgitp2 — Tooupollm(w)- (3.1)



Clearly, for our fixed point,,u, » = u, . Let us denote(z) := T}, u, ». We arrive
at

—dzrx(f) =¢ /Z Kz = y)gi(w(y)[=ao(y) + upa(y)dy,  (3.2)
o d 22;;2@) —¢ _OO Kz —y)g2(w(y)[—ao(y) + up2(y)])dy. (3.3)

Let us denote

Gra() = g1 (w(z)[=abo(2) +up2(2)]), Goa(2) = ga(w(@)[—ao(r)+ups(2)]).

We apply the standard Fourier transform (2.1) to both sidgsablems (3.2) and
(3.3) above. Thisyields

~ ~

Hp) = evar®Ca®) o e K (p)Caap)
p2 ) D,2 p2 )

such that

~

T(p) — Up2(p) = eV2r ) [61,2(29) - GQ,Q(P)L

P
pZ
PIFP) — Do) = V2T Gralp) — Caalp)]

This enables us to obtain the upper bounds

F(p) — Tpa(p)| < eV27Q|G1 2(p) — Gaa(p)], (3.4)
p[F(p) = Ty a(p)]] < eV27Q|Grs(p) — Gaa(p)]. (3.5)
By virtue of (3.4) we derive
[7(p) = Upa(P) | 72m) = / [7(p) — Tp2(p)[Pdp <
<212 Q*| G o) — Gao(@) 72wy (3.6)

Similarly, using (3.5) we arrive at
P[F(p) — U2 ()72 r) = / [p[F(p) = Tp2(p)][*dp <

< 2me* Q|G p — G2,2”%2(R)- (3.7)
By means of (1.8) along with (3.6) and (3.7) we estimate tirennas

Ir(z) = up2 (@) i1 m) = 7(P) — Up2(P)l[72 ) + IPIF(P) — Up2(P)][172(r) <

< 4me2QY| G a(w) — Gan(@)|2e(my,
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such that
[r(x) = upa ()| ®) < 2vmeQ||Gra(x) — Gaoo(2) || r2m)- (3.8)
Obviously

w(x)[—abo(x)+up, 2(x)] ) )
/ 16(2) — gb(2)]de.

GLQ(I‘) — G272(x) =

0

Therefore
G 2(x) = Gaa(2)] < Maxer|g;(2) — g5(2)[|w(w)[—abo(w) + upa(x)]] <

< llgr = g2llcynylw(@)[—abo(@) + upa(2)]],
which allows us to estimate the norm using (2.7) as

1G12(x) = Ga2(2) || 2®) < |lor — g2llcvoy |w (@) [—ado(x) + upa(2)]|| L2m) <
< lg1 = g2lley (L + callw (@) 1 w) )- (3.9)
By means of (3.8) along with (3.9) we derive
Ir(@) — up2(@)m @) < 2vmeQllgr — gelleyy (1 + callw (@)l mw).  (3.10)
Let us use (3.1) and (3.10) to obtain

2 WSQ 1+Ca wlx 1
s () — 1 2(2) 01y < 2o o !a( )i w)

||gl - 92||Cl(1)' (311)
By virtue of (1.21) along with (3.11) estimate (1.22) is dali [ |
4. Auxiliary results

Below we obtain the conditions under which the expres§jatefined above in
(1.18) is finite. Let us denote the inner product as

(f(2), 9(2)) ) = / " f@)g)de, @.1)

with a slight abuse of notations when the functions involwvef!.1) are not square
integrable, like for example the ones present in the firdtagonality relation in

(4.2) of Lemma 4.1 below. Indeed, jf(z) € L'(R) andg(z) is bounded , then
the integral in the right side of (4.1) makes sense. The pobdfemma 4.1 was
partially presented in the part b) of Lemma Al of [23]. We pdavit here for the

convenience of the readers.
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Lemma 4.1. Let K(x) : R — R be nontrivial, such thatC(z) € L'(R) and
2?K(x) € L}*(R). ThenQ < o if and only if the orthogonality conditions

(IC(I‘), l)LQ(R) = 0, (/C(l‘), x)LQ(R) =0 (42)
hold.

Proof. Let us first estimate the norm as

mmmm®=/

|lz|<1

|mmmw+/ 2l [k () dr <

|z|>1
< K@) |ea@) + [2”K(@)]| 2 gy < o0
as assumed. Therefore, the expression in the left side cfettend orthogonality
relation in (4.2) is well defined. Let us show tha{%%) € L*(R) then we have
p

KW ¢ 12 (R) as well. Evidently,
P

Y
?§>

(p) _
p
Here and below 4 will denote the characteristic function of a sé€tC R. Obvi-

ously, the second term in the right side of (4.3) can be bodialeve in the absolute
value using (2.2) by

K
](,p)X{p«} + %X{Ipbl} (4.3)

K (p)

(@)]| L1 m) < 00

< _||IC
due to the one of our assumptions. The first term in the righe sf (4.3) can be
estimated from above in the absolute value as

K p K p
# X{lpl<13|pl < # < 0
Pl ey
as assumed. Hencg,;ﬂ is bounded as well. Clearly,
Ko) _ K() @
p P
Using (2.2), we easily derive
K(p) o
—z X | < K@) < \/—H’C( Mz < oo

12



via the one of our assumptions. Let us express

) :E(o>+p%(o>+/op (/O dQZ@@)d&

Therefore, the first term in the right side of (4.4) is given by

I’C\ f ( sdQIC(q q)ds
O - - A X{lpl<1}

(4.5)
P> p p?

From the definition of the standard Fourier transform (2.tan be easily deduced
that

d21C
< |2°K(2) || L1 r)
\/_
Thus,
fo (fs de q)ds 1 9
p2q X{lpl<1}| < 2@”‘% IC(:E)||L1(R) <0

as assumed. By means of definition (2.1), we easily obtain

R(0) = <= (Kla), Vi, G20) = ~—=(K(a). 2o,

which enables us to write the sum of the first two terms in (4)

K(x ,1 2 . K(x , )2
( ( ) )L ®) Z< ( ) )L (R) X{lpl<1)- (4.6)
V2mp? V2mp
Evidently, expression (4.6) is bounded if and only if ortboglity conditions (4.2)
hold. [ |

Note that as distinct from the present article, the arguroefi27] does not rely
on the orthogonality relations.
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