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1. Introduction

The present article is devoted to the existence of stationary solutions of the follow-
ing nonlocal reaction-diffusion equation

∂u

∂t
= D

∂2u

∂x2
+

∫ ∞

−∞

K(x−y)g(w(y)u(y, t))dy+αδ(x), α ∈ R, α 6= 0. (1.1)

Herew(x) is our cut-off function the assumptions on which will be formulated be-
low. The problems of this kind appear in the cell population dynamics. The space
variablex here corresponds to the cell genotype,u(x, t) denotes the cell density
as a function of their genotype and time. The right side of this problem describes
the evolution of cell density via cell proliferation, mutations and cell influx. The
diffusion term here corresponds to the change of genotype due to small random
mutations, and the nonlocal term describes large mutations. Functiong(w(x)u(x))
stands for the rate of cell birth which depends onu, w (density dependent prolifer-
ation), and the kernelK(x − y) gives the proportion of newly born cells changing
their genotype fromy to x. We assume that it depends on the distance between
the genotypes. Finally, the last term in the right side of this problem, which is
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proportional to the Dirac delta function denotes the influx/efflux of cells for dif-
ferent genotypes. A similar equation in one dimension in thecase of the standard

negative Laplacian raised to the power0 < s <
1

4
in the diffusion term was inves-

tigated recently in [27]. Note that in [27] it was assumed that the influx/efflux
termf(x) ∈ L1(R)∩L2(R). Therefore, in the present article we consider the more
singular situation. In neuroscience, the integro-differential equations describe the
nonlocal interaction of neurons (see [9] and the referencestherein).

Let us setD = 1 and establish the existence of solutions of the problem

d2u

dx2
+

∫ ∞

−∞

K(x− y)g(w(y)u(y))dy+ αδ(x) = 0. (1.2)

We will discuss the situation when the linear part of such operator fails to satisfy
the Fredholm property. Consequently, conventional methods of nonlinear analysis
may not be applicable. Let us use solvability conditions fornon Fredholm operators
along with the method of contraction mappings.

Consider the equation

−∆u + V (x)u− au = f, (1.3)

whereu ∈ E = H2(Rd) andf ∈ F = L2(Rd), d ∈ N, a is a constant and the
scalar potential functionV (x) either vanishes identically or converges to0 at infin-
ity. For a ≥ 0, the essential spectrum of the operatorA : E → F corresponding to
the left side of problem (1.3) contains the origin. Consequently, this operator fails
to satisfy the Fredholm property. Its image is not closed, for d > 1 the dimension
of its kernel and the codimension of its image are not finite. The present work is
devoted to the studies of certain properties of the operators of this kind. Note that
elliptic problems with non Fredholm operators were treatedactively in recent years.
Approaches in weighted Sobolev and Hölder spaces were developed in [4], [5],
[6], [7], [8]. The non Fredholm Schrödinger type operatorswere studied with the
methods of the spectral and the scattering theory in [14], [18], [21], [22]. Fred-
holm structures, topological invariants and their applications were covered in [13].
The Laplace operator with drift from the point of view of non Fredholm operators
was treated in [24] and linearized Cahn-Hilliard problems in [19] and [25]. Non-
linear non Fredholm elliptic equations were considered in [23] and [26]. Important
applications to the theory of reaction-diffusion problemswere developed in [11],
[12]. Non Fredholm operators arise also when studying wave systems with an infi-
nite number of localized traveling waves (see [2]). Standing lattice solitons in the
discrete NLS equation with saturation were considered in [3]. In particular, when
a = 0 the operatorA is Fredholm in some properly chosen weighted spaces (see
[4], [5], [6], [7], [8]). However, the case ofa 6= 0 is considerably different and the
approach developed in these articles cannot be adopted. Theexistence, stability and
bifurcations of the solutions of the nonlinear partial differential equations involving
Dirac delta function potentials were studied actively in [1], [15], [16].
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We setK(x) = εK(x), whereε ≥ 0. When the nonnegative parameterε

vanishes, we obtain the linear Poisson equation

−d2u

dx2
= αδ(x). (1.4)

Let us introduce the function

ξ0(x) :=

{
x, x ≥ 0

0, x < 0
(1.5)

Evidently, the solution of (1.4) vanishing at the minus infinity is given by−αξ0(x).
Note that as distinct from the situation discussed in [27], such solution is un-
bounded and does not belong toH1(R). Suppose that the assumption below is
satisfied.

Assumption 1.1. Let K(x) : R → R be nontrivial, such thatK(x), x2K(x) ∈
L1(R) and orthogonality relations (4.2) hold. Let us also assume that the cut-off
functionw(x) : R → R is such thatw(x)ξ0(x) is nontrivial andw(x)ξ0(x) ∈
H1(R). Moreover,w(x) ∈ H1(R) and forα ∈ R, α 6= 0 the inequality

|α| ≤ 1

‖w(x)ξ0(x)‖H1(R)

(1.6)

holds.

It can be easily verified thatw(x) = e−|x|, x ∈ R satisfies the assumptions
above and therefore it can be used as our cut-off function. Note that in the argument
of [27] we did not need to use such cut-off due to the more regular behaviour of
the solution of the Poisson type equation. In the article we choose the space dimen-
siond = 1, which is related to the solvability of the linear Poisson equation (1.4)
discussed above. From the point of view of the applications,the space dimension is
not restricted tod = 1 since the space variable corresponds to cell genotype but not
to the usual physical space. Let us use the Sobolev space

H1(R) :=
{
u(x) : R → R | u(x) ∈ L2(R),

du

dx
∈ L2(R)

}
.

It is equipped with the norm

‖u‖2H1(R) := ‖u‖2L2(R) +
∥∥∥du
dx

∥∥∥
2

L2(R)
. (1.7)

Evidently, using the standard Fourier transform (2.1), this norm can be written as

‖u‖2H1(R) = ‖û(p)‖2L2(R) + ‖pû(p)‖2L2(R). (1.8)
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By means of the Sobolev inequality in one dimension (see e.g.Sect 8.5 of [17]),
we have

‖u(x)‖L∞(R) ≤
1√
2
‖u(x)‖H1(R). (1.9)

We will be using the algebraic property of our Sobolev space,namely that for any
u(x), v(x) ∈ H1(R)

‖u(x)v(x)‖H1(R) ≤ ca‖u(x)‖H1(R)‖v(x)‖H1(R), (1.10)

whereca > 0 is a constant. Upper bound (1.10) can be easily established,for
instance via (1.9). Let us seek the resulting solution of nonlinear problem (1.2) as

u(x) = −αξ0(x) + up(x). (1.11)

Apparently, we derive the perturbative equation

−d2up(x)

dx2
= ε

∫ ∞

−∞

K(x− y)g(w(y)[−αξ0(y) + up(y)])dy. (1.12)

Let us introduce a closed ball in our Sobolev space

Bρ := {u(x) ∈ H1(R) | ‖u‖H1(R) ≤ ρ}, 0 < ρ ≤ 1. (1.13)

We seek the solution of equation (1.12) as the fixed point of the auxiliary nonlinear
problem

−d2u(x)

dx2
= ε

∫ ∞

−∞

K(x− y)g(w(y)[−αξ0(y) + v(y)])dy (1.14)

in ball (1.13). For a given functionv(y) this is an equation with respect tou(x).

The left side of (1.14) contains the operator− d2

dx2
acting onL2(R), which fails to

satisfy the Fredholm property. Its essential spectrum fillsthe nonnegative semi-axis
[0,+∞). Therefore, this operator has no bounded inverse. The similar situation in
the context of the integro-differential equations occurred also in articles [23] and
[26]. The problems studied there also required the application of the orthogonality
conditions. The contraction argument was used in [20] to estimate the perturbation
to the standing solitary wave of the Nonlinear Schrödinger(NLS) equation when
either the external potential or the nonlinear term in the NLS were perturbed but the
Schrödinger operator involved in the nonlinear problem there satisfied the Fredholm
property (see Assumption 1 of [20], also [10]). We introducethe interval on the
real line

I :=
[
− 1√

2
− ca√

2
‖w(x)‖H1(R),

1√
2
+

ca√
2
‖w(x)‖H1(R)

]
(1.15)
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along with the closed ball in the space ofC1(I) functions, namely

DM := {g(z) ∈ C1(I) | ‖g‖C1(I) ≤ M}, M > 0. (1.16)

In this context the norm

‖g‖C1(I) := ‖g‖C(I) + ‖g′‖C(I), (1.17)

where‖g‖C(I) := maxz∈I |g(z)|. From the biological point of view, the rate of cell
birth function is nonlinear and vanishes at the origin.

Assumption 1.2. Let g(z) : R → R, such thatg(0) = 0. It is also assumed that
g(z) ∈ DM and it does not vanish identically on the intervalI.

Note that in [27] the functiong(z) was assumed to be twice continuously differ-
entiable on the corresponding intervalI. We define the following positive technical
expression

Q := max

{∥∥∥∥∥
K̂(p)

p2

∥∥∥∥∥
L∞(R)

,

∥∥∥∥∥
K̂(p)

p

∥∥∥∥∥
L∞(R)

}
. (1.18)

Let us introduce the operatorTg, such thatu = Tgv, whereu is a solution of
problem (1.14). Our first main proposition is as follows.

Theorem 1.3. Let Assumptions 1.1 and 1.2 hold. Then problem (1.14) definesthe
mapTg : Bρ → Bρ, which is a strict contraction for all

0 < ε ≤ ρ

2
√
πQM(1 + ca‖w(x)‖H1(R))

. (1.19)

The unique fixed pointup(x) of this mapTg is the only solution of equation (1.12)
in Bρ.

Evidently, the resulting solution of problem (1.2) given by(1.11) will be non-
trivial sinceg(0) = 0 andα 6= 0 as assumed.

Our second main statement is about the continuity of the cumulative solution of
equation (1.2) given by formula (1.11) with respect to the nonlinear functiong. Let
us define the following positive, auxiliary expression

σ := 2
√
πQMca‖w(x)‖H1(R). (1.20)

Theorem 1.4. Let j = 1, 2, the assumptions of Theorem 1.3 are valid, such that
up,j(x) is the unique fixed point of the mapTgj : Bρ → Bρ, which is a strict
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contraction for allε satisfying (1.19) and the resulting solution of equation (1.2)
with g(z) = gj(z) is given by

uj(x) = −αξ0(x) + up,j(x). (1.21)

Then for all values ofε, which satisfy inequality (1.19) the upper bound

‖u1(x)−u2(x)‖H1(R) ≤
2ε
√
πQ(1 + ca‖w(x)‖H1(R))

1− εσ
‖g1(z)−g2(z)‖C1(I) (1.22)

holds.

Let proceed to the proof of our first main proposition.

2. The existence of the perturbed solution

Proof of Theorem 1.3.We choose an arbitraryv(x) ∈ Bρ and designate the term
involved in the integral expression in the right side of equation (1.14) as

G(x) := g(w(x)[−αξ0(x) + v(x)]).

The standard Fourier transform is given by

φ̂(p) :=
1√
2π

∫ ∞

−∞

φ(x)e−ipxdx. (2.1)

Obviously, the inequality

‖φ̂(p)‖L∞(R) ≤
1√
2π

‖φ(x)‖L1(R) (2.2)

holds. Let us apply (2.1) to both sides of equation (1.14), which yields

û(p) = ε
√
2π

K̂(p)Ĝ(p)

p2
, pû(p) = ε

√
2π

K̂(p)Ĝ(p)

p
.

Therefore,

|û(p)| ≤ ε
√
2πQ|Ĝ(p)|, |pû(p)| ≤ ε

√
2πQ|Ĝ(p)|, (2.3)

whereQ is given by (1.18). Note that under the given conditionsQ < ∞ by virtue
of Lemma 4.1 below. By means of (1.8) along with inequalities(2.3) we easily
estimate the norm as

‖u(x)‖2H1(R) ≤ 4πε2Q2‖G(x)‖2L2(R). (2.4)

It can be easily verified that forv(x) ∈ Bρ, we have

|w(x)[−αξ0(x) + v(x)]| ≤ 1√
2
{1 + ca‖w(x)‖H1(R)}. (2.5)
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Indeed, the left side of (2.5) can be trivially bounded from above using inequalities
(1.9) and (1.10) by

1√
2
{|α|‖w(x)ξ0(x)‖H1(R) + ca‖w(x)‖H1(R)‖v(x)‖H1(R)}. (2.6)

Hence, (2.5) holds due to (1.6). Similarly, forv(x) ∈ Bρ

‖w(x)[−αξ0(x) + v(x)]‖L2(R) ≤ 1 + ca‖w(x)‖H1(R) (2.7)

is valid via inequalities (1.6) and (1.10). Evidently,

G(x) =

∫ w(x)[−αξ0(x)+v(x)]

0

g′(z)dz,

such that|G(x)| ≤

≤ maxz∈I |g′(z)||w(x)[−αξ0(x) + v(x)]| ≤ M |w(x)[−αξ0(x) + v(x)]|, (2.8)

where the intervalI is defined in (1.15). Therefore, by virtue of (2.8) along with
(2.7) we derive

‖G(x)‖L2(R) ≤ M‖w(x)[−αξ0(x) + v(x)]‖L2(R) ≤ M(1+ ca‖w(x)‖H1(R)). (2.9)

By means of estimates (2.4) and (2.9) we arrive at

‖u(x)‖H1(R) ≤ 2
√
πεQM(1 + ca‖w(x)‖H1(R)) ≤ ρ (2.10)

for all values of the parameterε satisfying inequality (1.19), such thatu(x) ∈ Bρ as
well.

If for a certainv(x) ∈ Bρ there exist two solutionsu1,2(x) ∈ Bρ of equation
(1.14), their differencew(x) := u1(x)− u2(x) ∈ L2(R) is a solution of the homo-
geneous problem

− d2

dx2
w(x) = 0.

Since the negative second derivative operator considered on the whole real line does
not possess any nontrivial square integrable zero modes,w(x) ≡ 0 on R. Thus,
equation (1.14) defines a mapTg : Bρ → Bρ for all values ofε satisfying bound
(1.19).

We will establish that under the given conditions this map isa strict contraction.
Let us choose arbitrarilyv1,2(x) ∈ Bρ. The argument above implies thatu1,2 :=
Tgv1,2 ∈ Bρ as well whenε satisfies (1.19). By means of (1.14) we have

− d2

dx2
u1(x) = ε

∫ ∞

−∞

K(x− y)g(w(y)[−αξ0(y) + v1(y)])dy, (2.11)
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− d2

dx2
u2(x) = ε

∫ ∞

−∞

K(x− y)g(w(y)[−αξ0(y) + v2(y)])dy. (2.12)

Let us define

G1(x) := g(w(x)[−αξ0(x) + v1(x)]), G2(x) := g(w(x)[−αξ0(x) + v2(x)])

and apply the standard Fourier transform (2.1) to both sidesof equations (2.11) and
(2.12). This yields

û1(p) = ε
√
2π

K̂(p)Ĝ1(p)

p2
, û2(p) = ε

√
2π

K̂(p)Ĝ2(p)

p2
,

such that

û1(p)− û2(p) = ε
√
2π

K̂(p)[Ĝ1(p)− Ĝ2(p)]

p2
,

p[û1(p)− û2(p)] = ε
√
2π

K̂(p)[Ĝ1(p)− Ĝ2(p)]

p
.

Therefore,
|û1(p)− û2(p)| ≤ ε

√
2πQ|Ĝ1(p)− Ĝ2(p)|,

|p[û1(p)− û2(p)]| ≤ ε
√
2πQ|Ĝ1(p)− Ĝ2(p)|

holds. This allows us to estimate the norm using (1.8) as

‖u1(x)− u2(x)‖2H1(R) =

∫ ∞

−∞

|û1(p)− û2(p)|2dp+
∫ ∞

−∞

|p(û1(p)− û2(p))|2dp ≤

≤ 4πε2Q2‖G1(x)−G2(x)‖2L2(R),

such that

‖u1(x)− u2(x)‖H1(R) ≤ 2
√
πεQ‖G1(x)−G2(x)‖L2(R). (2.13)

Evidently, we can express

G1(x)−G2(x) =

∫ w(x)[−αξ0(x)+v1(x)]

w(x)[−αξ0(x)+v2(x)]

g′(z)dz.

Hence, we obtain

|G1(x)−G2(x)| ≤ maxz∈I |g′(z)||w(x)(v1(x)−v2(x))| ≤ M |w(x)(v1(x)−v2(x))|

and trivially derive the upper bound for the norm via (1.10) as

‖G1(x)−G2(x)‖L2(R) ≤ M‖w(x)(v1(x)− v2(x))‖H1(R) ≤
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≤ Mca‖w(x)‖H1(R)‖v1(x)− v2(x)‖H1(R). (2.14)

By virtue of (2.13) along with (2.14) we arrive at

‖u1(x)− u2(x)‖H1(R) ≤ 2
√
πεQMca‖w(x)‖H1(R)‖v1(x)− v2(x)‖H1(R). (2.15)

Clearly,

ρ

2
√
πQM(1 + ca‖w(x)‖H1(R))

<
1

2
√
πQMca‖w(x)‖H1(R)

.

Then, by means of (1.19) for our parameterε we have

0 < ε <
1

2
√
πQMca‖w(x)‖H1(R)

.

Therefore, the constant in the right side of inequality (2.15) is less than one, which
yields that our mapTg : Bρ → Bρ defined by equation (1.14) is a strict contraction
for all the values ofε, which satisfy (1.19). Its unique fixed pointup(x) is the
only solution of problem (1.12) in the ballBρ. It easily follows from (2.10) that
‖up(x)‖H1(R) → 0 asε → 0. The resultingu(x) given by (1.11) is a solution of
equation (1.2).

Let us turn our attention to establishing the second main result of our article.

3. The continuity of the resulting solution

Proof of Theorem 1.4.Evidently, for all the values ofε satisfying inequality (1.19),
we have

up,1 = Tg1up,1, up,2 = Tg2up,2.

Hence
up,1 − up,2 = Tg1up,1 − Tg1up,2 + Tg1up,2 − Tg2up,2.

Therefore,

‖up,1 − up,2‖H1(R) ≤ ‖Tg1up,1 − Tg1up,2‖H1(R) + ‖Tg1up,2 − Tg2up,2‖H1(R).

By means of bound (2.15), we have

‖Tg1up,1 − Tg1up,2‖H1(R) ≤ εσ‖up,1 − up,2‖H1(R)

with σ given by (1.20). Note thatεσ < 1 because the mapTg1 : Bρ → Bρ under the
given conditions is a strict contraction. Thus, we derive

(1− εσ)‖up,1 − up,2‖H1(R) ≤ ‖Tg1up,2 − Tg2up,2‖H1(R). (3.1)
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Clearly, for our fixed pointTg2up,2 = up,2. Let us denoter(x) := Tg1up,2. We arrive
at

−d2r(x)

dx2
= ε

∫ ∞

−∞

K(x− y)g1(w(y)[−αξ0(y) + up,2(y)])dy, (3.2)

−d2up,2(x)

dx2
= ε

∫ ∞

−∞

K(x− y)g2(w(y)[−αξ0(y) + up,2(y)])dy. (3.3)

Let us denote

G1,2(x) := g1(w(x)[−αξ0(x)+up,2(x)]), G2,2(x) := g2(w(x)[−αξ0(x)+up,2(x)]).

We apply the standard Fourier transform (2.1) to both sides of problems (3.2) and
(3.3) above. This yields

r̂(p) = ε
√
2π

K̂(p)Ĝ1,2(p)

p2
, ûp,2(p) = ε

√
2π

K̂(p)Ĝ2,2(p)

p2
,

such that

r̂(p)− ûp,2(p) = ε
√
2π

K̂(p)

p2
[Ĝ1,2(p)− Ĝ2,2(p)],

p[r̂(p)− ûp,2(p)] = ε
√
2π

K̂(p)

p
[Ĝ1,2(p)− Ĝ2,2(p)].

This enables us to obtain the upper bounds

|r̂(p)− ûp,2(p)| ≤ ε
√
2πQ|Ĝ1,2(p)− Ĝ2,2(p)|, (3.4)

|p[r̂(p)− ûp,2(p)]| ≤ ε
√
2πQ|Ĝ1,2(p)− Ĝ2,2(p)|. (3.5)

By virtue of (3.4) we derive

‖r̂(p)− ûp,2(p)‖2L2(R) =

∫ ∞

−∞

|r̂(p)− ûp,2(p)|2dp ≤

≤ 2πε2Q2‖G1,2(x)−G2,2(x)‖2L2(R). (3.6)

Similarly, using (3.5) we arrive at

‖p[r̂(p)− ûp,2(p)]‖2L2(R) =

∫ ∞

−∞

|p[r̂(p)− ûp,2(p)]|2dp ≤

≤ 2πε2Q2‖G1,2 −G2,2‖2L2(R). (3.7)

By means of (1.8) along with (3.6) and (3.7) we estimate the norm as

‖r(x)− up,2(x)‖2H1(R) = ‖r̂(p)− ûp,2(p)‖2L2(R) + ‖p[r̂(p)− ûp,2(p)]‖2L2(R) ≤

≤ 4πε2Q2‖G1,2(x)−G2,2(x)‖2L2(R),
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such that

‖r(x)− up,2(x)‖H1(R) ≤ 2
√
πεQ‖G1,2(x)−G2,2(x)‖L2(R). (3.8)

Obviously

G1,2(x)−G2,2(x) =

∫ w(x)[−αξ0(x)+up,2(x)]

0

[g′1(z)− g′2(z)]dz.

Therefore

|G1,2(x)−G2,2(x)| ≤ maxz∈I |g′1(z)− g′2(z)||w(x)[−αξ0(x) + up,2(x)]| ≤

≤ ‖g1 − g2‖C1(I)|w(x)[−αξ0(x) + up,2(x)]|,
which allows us to estimate the norm using (2.7) as

‖G1,2(x)−G2,2(x)‖L2(R) ≤ ‖g1 − g2‖C1(I)‖w(x)[−αξ0(x) + up,2(x)]‖L2(R) ≤

≤ ‖g1 − g2‖C1(I)(1 + ca‖w(x)‖H1(R)). (3.9)

By means of (3.8) along with (3.9) we derive

‖r(x)− up,2(x)‖H1(R) ≤ 2
√
πεQ‖g1 − g2‖C1(I)(1 + ca‖w(x)‖H1(R)). (3.10)

Let us use (3.1) and (3.10) to obtain

‖up,1(x)− up,2(x)‖H1(R) ≤
2
√
πεQ(1 + ca‖w(x)‖H1(R))

1− εσ
‖g1 − g2‖C1(I). (3.11)

By virtue of (1.21) along with (3.11) estimate (1.22) is valid.

4. Auxiliary results

Below we obtain the conditions under which the expressionQ defined above in
(1.18) is finite. Let us denote the inner product as

(f(x), g(x))L2(R) :=

∫ ∞

−∞

f(x)ḡ(x)dx, (4.1)

with a slight abuse of notations when the functions involvedin (4.1) are not square
integrable, like for example the ones present in the first orthogonality relation in
(4.2) of Lemma 4.1 below. Indeed, iff(x) ∈ L1(R) andg(x) is bounded , then
the integral in the right side of (4.1) makes sense. The proofof Lemma 4.1 was
partially presented in the part b) of Lemma A1 of [23]. We provide it here for the
convenience of the readers.
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Lemma 4.1. Let K(x) : R → R be nontrivial, such thatK(x) ∈ L1(R) and
x2K(x) ∈ L1(R). ThenQ < ∞ if and only if the orthogonality conditions

(K(x), 1)L2(R) = 0, (K(x), x)L2(R) = 0 (4.2)

hold.

Proof. Let us first estimate the norm as

‖xK(x)‖L1(R) =

∫

|x|≤1

|x||K(x)|dx+

∫

|x|>1

|x||K(x)|dx ≤

≤ ‖K(x)‖L1(R) + ‖x2K(x)‖L1(R) < ∞
as assumed. Therefore, the expression in the left side of thesecond orthogonality

relation in (4.2) is well defined. Let us show that if
K̂(p)

p2
∈ L∞(R) then we have

K̂(p)

p
∈ L∞(R) as well. Evidently,

K̂(p)

p
=

K̂(p)

p
χ{|p|≤1} +

K̂(p)

p
χ{|p|>1}. (4.3)

Here and belowχA will denote the characteristic function of a setA ⊆ R. Obvi-
ously, the second term in the right side of (4.3) can be bounded above in the absolute
value using (2.2) by

|K̂(p)| ≤ 1√
2π

‖K(x)‖L1(R) < ∞

due to the one of our assumptions. The first term in the right side of (4.3) can be
estimated from above in the absolute value as

∣∣∣∣∣
K̂(p)

p2

∣∣∣∣∣χ{|p|≤1}|p| ≤
∥∥∥∥∥
K̂(p)

p2

∥∥∥∥∥
L∞(R)

< ∞

as assumed. Hence,
K̂(p)

p
is bounded as well. Clearly,

K̂(p)

p2
=

K̂(p)

p2
χ{|p|≤1} +

K̂(p)

p2
χ{|p|>1}. (4.4)

Using (2.2), we easily derive
∣∣∣∣∣
K̂(p)

p2
χ{|p|>1}

∣∣∣∣∣ ≤ |K̂(p)| ≤ 1√
2π

‖K(x)‖L1(R) < ∞
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via the one of our assumptions. Let us express

K̂(p) = K̂(0) + p
dK̂
dp

(0) +

∫ p

0

(∫ s

0

d2K̂(q)

dq2
dq

)
ds.

Therefore, the first term in the right side of (4.4) is given by

[
K̂(0)

p2
+

dK̂
dp
(0)

p
+

∫ p

0

( ∫ s

0
d2K̂(q)
dq2

dq
)
ds

p2

]
χ{|p|≤1}. (4.5)

From the definition of the standard Fourier transform (2.1) it can be easily deduced
that ∣∣∣d

2K̂(p)

dp2

∣∣∣ ≤ 1√
2π

‖x2K(x)‖L1(R).

Thus, ∣∣∣∣∣

∫ p

0

( ∫ s

0
d2K̂(q)
dq2

dq
)
ds

p2
χ{|p|≤1}

∣∣∣∣∣ ≤
1

2
√
2π

‖x2K(x)‖L1(R) < ∞

as assumed. By means of definition (2.1), we easily obtain

K̂(0) =
1√
2π

(K(x), 1)L2(R),
dK̂
dp

(0) = − i√
2π

(K(x), x)L2(R),

which enables us to write the sum of the first two terms in (4.5)as
[
(K(x), 1)L2(R)√

2πp2
− i

(K(x), x)L2(R)√
2πp

]
χ{|p|≤1}. (4.6)

Evidently, expression (4.6) is bounded if and only if orthogonality conditions (4.2)
hold.

Note that as distinct from the present article, the argumentof [27] does not rely
on the orthogonality relations.
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