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Abstract

In the year 1939, the Mathematician G.H. Hardy proved that the only functions

f which satisfy the classical orthogonality relation

W) [ SO0 =0, mn,

are the Bessel functions J,(t) under certain constraints, where v > —1 is the order
of the Bessel function, and A,,, A\, are the zeros of the Bessel function. More
recently, the Mathematician L.D. Abreu proved that if a function f € £2(0,1) is
g-orthogonal with respect to its own zeros in the interval (0, 1), then it satisfies the

g-orthogonality relation

@ [ SOt =0, m

where the ¢-integral is a Riemann-Stieltjes integral with respect to a step function
having infinitely many points of increase at the points ¢, with the step size at
the point ¢’ being ¢, ¥V ¢ € Ny, where Ny := NU {0}, and 0 < ¢ < 1. Following
these developments, herein we present an equivalence class of entire ¢~ !'-periodic

1

functions satisfying the ¢~ "-orthogonality relation

(3) /0 FOmt) f(Ant)d,~1t =0, m #n.



1. Introduction

The quantum calculus, otherwise known as the g-calculus [1], has been found to
have a wide variety of interesting applications in computational number theory [2],
and the theory of orthogonal polynomials [3-5], for example. As such, herein we
investigate a class of entire functions that are ¢~ '-orthogonal with respect to their
own zeros, and find that in this equivalence class, the only ¢~ !'-periodic functions
are nonzero constant-valued functions. It is well understood by the Fundamental
Theorem of Algebra [6], that a nonzero constant function has no roots. Accord-
ingly, this study aims to develop a novel approach to the field of ¢~ '-orthogonal
polynomials [7], and the distribution of their zeros [8].

The paper is organized as follows: In Sec. 2 we introduce a class of entire
functions, ¢~ !-orthogonal with respect to their own zeros, and demonstrate that
the class is comprised of ¢ !-periodic (i.e. constant) functions on the complex
plane. Sec. 3 details the g~ !-Fourier series, and the completeness relations of
the class. In Sec. 4, a first-order linear ¢ '-difference equation is obtained for
arriving at the value of the ¢~ !-periodic constant constituted by the class. Finally,

concluding remarks are made in Sec. 5.

1.1. Preliminaries. If ¢! € R is fixed, then a subset of C is named A, and is
also ¢~ '-geometric if ¢~'x € A whenever z € A. If A C C is ¢ '-geometric then it
contains all geometric sequences {xq_g}ﬁio, where x € A such that as ¢ — 1 then

A — C. Unless otherwise noted, herein 0 < ¢ < 1 [9].



Definition 1. A function f defined on the ¢ '-geometric set A, where 0 € A,

is said to be ¢g-regular at infinity if there exists a constant C such that

(4) lim f(zqg")=C, VazeA.

{—00

Definition 2. The Euler-Heine ¢~ !-difference operator [10,11], is defined by

I

, Yxe A/ {0}

If 0 € A, the g-derivative at zero is defined for |¢| < 1 by

6)  Doaf(0) = 1im 1LV =FO gy

a 100 sq~! ’

The ¢ !-derivative at zero is denoted as f’(0), assuming the limit exists and is

independent of x.

The ¢ -product rule is [12]

A~ A

() Dy[f(2)g(@)] = flg'2)Dyrg(x) + g(x) Dy f(2),

and the ¢ l-integral in the interval (0, z) is

(8) fO)dgt = (1—q) > flzq )zqg "
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Now let 1 < p < oo, xz >0, and n € R. Also let L’Z,ln((),x) be the space of all

equivalence classes of functions satisfying

() /O L) Pd, 1t < o,

where two functions are defined as equivalent if they are equivalent on the sequence
{xq~" : ¢ € Ny}, where Ny := NU {0}. Hence, f is a function in the Banach space
rr

o1 (0, 2) with norm

pT = (/0 tn|f(t)|pdq1t> :

For the case when p = 2, it can be seen that the inner product

(10) If

A1) (f.g) = / (gDt

is a separable Hilbert space, where f,g € Eg,ln(O,x). If x = 1, the resulting
Hilbert space is cg_ln(o, 1), and the function f € cg_ln(o, 1) is g '-orthogonal

with respect to its own zeros in the interval (0, 1) if
o0
—0

(12) / FOmt) fnt)dgt = fOmg V(Mg g =0, m#n.
0 ¢

Here, it should be pointed out that an orthonormal basis of Ef],l (0,2) is [13]

1

(13)  pu(t) = 4 VIO

0, otherwise.

t=xq", (€N



2. ¢ '-Periodicity

Theorem 1. If the class constituted by all entire functions f of order less than

1, or of order 1 and minimal type of the form

where f(0) = —1/2, and p(x) is given by the natural logarithmic relation [14]

1
log ( - 2(1—3:)F(1+x/2)) 1

(15) ) = = >

where T is the gamma function, and the entire function F(x), with real but not

necessarily positive zeros is

(16)  F(zx) = exp(cz) ﬁ { (1 — )\in) exp (%) },

n=1

where ¢ = log(2m) — 1 — /2, ~ is the Euler-Mascheroni constant; if F(x) # 0
and f(x) is ¢ t-orthogonal with respect to its zeros; o M1 is convergent, but not

absolutely [16]; then f has the ¢~ -periodic representation

N-1 1
(17)  fi(z) = g m7

defined on the ¢~ -geometric set A, i.e., f-1(z) is constant in x.

PROOF. The proof depends on two lemmas. If

(18) / (Ot Yyt = ()7 (1 — g).
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then the system

1
n — >\n
19) ) = i)

is orthonormal in (0,1). The following Theorem 2 demonstrates the system ¢, (t)

is complete, independent of ¢~ '-orthogonality. ]

Theorem 2. If f satisfies the conditions of the previous Theorem 1, other than

q '-orthogonality, g is ¢~ '-integrable, and

1

(20) / o) fOnt)d, it =0, Vn,

0
then g(t) = 0.

PROOF. Let © = rexp(if), where 0 is the complex argument, i = y/—1, and
1
1) hiz) = / o(t) f(xt)d, .
0

It is clear that
(22)  h(x) = 2" H(x),

where H(x) is an entire function. Here, we suppose that F(z) is of order less than
1, when H(z) is also of order less than 1. Since h(),) = 0V n, it then follows that

the ratio [17]
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is also an entire function of order less than 1. Along the imaginary axis © = r sin(0)

it can be seen that |exp(cz)| = |exp(zA )| = 1V n, where again ¢ = log(27) —
1 —~/2, and

F(xt) |\, — rtsin(6)
(24)  wlz1) F(z)| % | Ay —rsin(f)

Here it should be pointed out that no factor exceeds 1, and the limit of each factor
as r — oo is simply t. Therefore |v| < 1V r,t. Moreover, for every fixed value of

t <1, as r — oo it can be seen that v — co. As such,

/O g(t) FF((?)) d, 1t

is bounded, and tends to zero along the imaginary axis = = rsin(f). Furthermore,

25)  Ix(@) = < [ lovte.d,

suppose that y(x) makes an angle of 7/« at the origin, and also along the imaginary

axis. By denoting the bound on x(z) as B, such that along the imaginary axis
(26)  [x(2)| < B,

then as r — o0, it can be seen that

27)  x(@) = O exp(6r"))

for every positive ¢, uniformly in the angle. It then follows that the boundedness
holds in the region where f is entire and regular for x = rexp(i6). Without loss

of generality, suppose that § = +7/(2«) for the two angles (—7/(2«),0), and
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(0,7/(2a)). Also, by letting

(28)  F(x) = exp(—ez®)f(z)

it can be seen that F(x) tends to zero on the real axis « = r cos(f), and therefore

has an upper bound, denoted B’. Then, by denoting
(29) B" =max(B,B),
it can be seen that

(30)  |F@)| = |exp [ —=(rexp(i0) ] £()

Y

where again § = +7/(2«). It then follows that throughout the angle, and along

the imaginary axis x = rsin(f), that

(31) |F(z)| < B

Here, it should be pointed out that if B’ < B, then |F(x)| assumes the value B’ at
any point of the real axis x = rcos(f). Consequently B’ = B”, F(z) reduces to a

constant, and B = B”. Otherwise B’ < B”, such that B = B” regardless. Thus,

(32)  |[F(z)] <B.
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Accordingly,
(33)  |f(x)] < Blexp(—ex®)].

Taking ¢ — 0 implies that B = 0, since v — 0 for every fixed t < 1 as r — .

Therefore,

(34) /0 o(t)f (xt)d, 1t = 0.

However, we are interested in the class of functions of the form of Eq. (14), i.e.,

=0
where ay # 0 for any ¢. As such, we assume the following [15]:

(1) There exists a class of series, larger than that of series known classically as

convergent, such that a sum corresponds to each series of that class;

(2) Let m and n, where n < m, be two positive integers. We then have the

relation
L —a” n m n+m 2m
(36) 1_xm:1—:z: +am =" " 4

At x = 1, we obtain the Euler series

(37) S =1-1+41-1+1—1+--
m

which belongs to the class from assumption (1).
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(3) Let S be the sum of the series 2°*) 3" a,, of the class, where 2°\%) is given
by Eq. (15). Then the series itself belongs to the class, and has the sum
2P0 S

(4) If the series ag + a; + -+ + a, + --- has the sum S, then the series a; +

<o« +a, + --- itself has the sum S — ag. As such, it can be seen that

S=1-1+1-141—-1+---
—1-(1—-1+41—---)

38) =1-8,
from which we obtain § = 1/2.

Hence,
1

(39) / g Id it =0, Vn,
0

and therefore g(t) = 0. O

3. ¢ '-Fourier Series

The ¢~ !-Fourier series of f(xt) with respect to the system Eq. (13) is

flat) ~ ) an(x)on(t)

- 1
40 — ap (T )
o j%: ( )‘x/(Q‘f)”+1(1-—-Q)
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where the Fourier coefficient

/ffvtson

Vi ‘e)”“ (1—q) /

Flat) fOnt)d,1t;

(41) -

and by the Parseval completeness theorem [19], we obtain

P(x,x') :/0 f(xt) f(z"t)d -1t
_ Z !

(42)

n=1

The following theorem gives the value of a,(x).

Theorem 3. If the conditions of Theorem 1 are satisfied, and x # \,, then

(@)1 -q) flx)
f'(An) T — Ay

(43) /O F(at) f Ot )dy ot =

PROOF. First, supposing that F(x) is of order less than 1, we write

(44a) /Of(:vt =
(110 fu(o) = L
(440)  gla) = ]’;@)
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It then follows that g is an entire function of order less than 1; GG is regular and of

order less than 1 in the half-plane r cos(#) > 0; and

T — A\,
z+1

45)  G(z) = /O é((zt)) F(Ant)dy 1t

is bounded, and goes to zero along the angle § = +7/4. It then follows in the

quadrant between 6 = £+ /4 that

(46)  g(x) = O(|z]).

In a similar fashion, the same result follows for the remaining three quadrants in

the complex plane C. Obviously, ¢ is linear and

47)  h(z) = g(2) fulz) =

().

T — A\,

However, G goes to zero along the angle § = 7/4 such that a = 0, and

(48)  h(z) =

The constant b can be obtained by making x — A, to obtain Eq. (43). O

4. First-Order Linear ¢ !-Difference Equation

From Egs. (40), and (42)-(43) it follows that

m(z) — (@)

49 Pla) = [ ) f@ )yt = =)

r—2



o0 n+1 ) 1 1
(50) Z {f’ Ag e <x—AﬁA_)’

/=1

such that 7(0) = 0. Eq. (49) will enable us to determine f. By making 2’ — 0, it

follows that

51 [ ertand = -2
(52) /03? u'f(u)dgu = —2" f(x)7(x).
Hence,

(53)  7(0)=(¢—1D)g [L+nlg " —1)

Next, we write Eq. (49) in the form

7(x) = 7(2)

/

54 xup(“)F W) (2 )PEDF (D du = —2" O E (@) ()P F(y
. q

r—
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Differentiating with respect to 2/, and evaluating at ' = 0, it can be seen that

0 1\ p(z't / _ t
(55a) %(ZC )P F(2't) . = —1(2—|—2c—|—’y),
—mf(fﬁ)%(x')p(x,)ﬁ’(x/)T(xx) : ;(x,) _ (2 +2c+ VZ’ 22~ )T(x)f(x)
(55b) -0

Using Eqs. (52)-(53), and letting n = 1 for brevity, we finally obtain the g~!-

integral equation for f, namely

56) [ ufdy= (- g0 e )

0

By taking the ¢~ '-difference ZA)qq, and using the ¢~ -integration by parts, i.e.,

/Ox g(t) (ﬁq—lf(t>)dq—1t + /: (ﬁq_1g(t))f(q1t)dq_1t = [fql(z)

(57) — lim [fg](xq™"),
— 00
it can be seen that

(58) ﬁq—1 /0 uf(u)d-1u=af(r) — EILI?O :cq_gf(:vq_g),

and

(59)  Dpla?f(2)] = (Dy1a®) f(2) + (¢ '0)* Dy f ().
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Hence, we arrive at the first-order linear ¢ !-difference equation [18]

o q L.
R e T[] LA
where
. 4= +q)
(62) a(x) = TES

Repeating the above recurrence relation N times,

T

(63)  f(z) = f(zo) tl—[ q+ td(tq)(l —q)

As N — oo with 0 < ¢ < 1, then ¢ — o0, and

N—

,_\

7 £:0q+xq Ea (g (1 —q)
(64)

2€+1
6:0 T q

Since by Eq. (14) we have f(co) = 1, it can be seen in the classical limit where

g — 1land A — C that f(x) =1/2Vz € C.
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5. Conclusion

By examining a class of entire first order ¢~ !-orthogonal functions f € /33,1 (0,1),
it has been demonstrated that the class is indeed comprised of ¢~ !'-periodic func-
tions on the separable Hilbert space interval (0,1). This was accomplished with
the ¢~ !-Fourier series, and a ¢~ !-integral equation for obtaining the value of the

g '-periodic constant constituted by the class.
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