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Abstract

We revisit the special decomposition presented by L. Euler in his correspondences with
C. Goldbach. We present a proof to a general result of this decomposition using complex
variable theory.
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1. Introduction

Almost all of the correspondences between L. Euler and C. Goldbach [1] were pub-
lished by P.H Fuss [2] in 1845. Apart from much of the correspondence between Leonhard
Euler and Christian Goldbach, it also contains correspondence between Nicolas Fuss, and
several members of the Bernoulli family (Johann (I), Nicolas, and Daniel). [3]

Here, we are concerned with a special decomposition of numbers discussed in one such
correspondence, where Euler has discussed a less general case of the theorem we prove
here. Consider the expression;

n∑
i=1

xri/
∏

1≤k≤n
k 6=i

(xi − xk)


The pattern in the above expression can be visualized by substituting r = 3 and

obtaining
x31/(x1 − x2)(x1 − x3) + x32/(x2 − x1)(x2 − x3) + x33/(x3 − x1)(x3 − x2)

which evaluates to x1 + x2 + x3. We state a general formula for evaluation of the above
expression and also produce a proof using complex variable theory.

Theorem 1. Let x1, x2, . . . , xn be n distinct numbers,

n∑
i=1

xri/
∏

1≤k≤n
k 6=i

(xi − xk)

 =


0 0 ≤ r < n− 1

1 r = n− 1∑n
i=1 xi r = n



The above generalized result has been mentioned in [4]. The result can be proved
using a strong induction on the variable n. This is immediately satisfied when we observe
the resulting expression as a polynomial in xi. However, as suggested in [5], we provide
a more elegant proof of the above theorem using complex variable theory. We start by
providing some results we will be using in the course of our proof.

Theorem 2. (Cauchy’s Residue Theorem) [6]
Let W be a simply connected open subset of the complex plane containing a finite list of
points a1, . . . , an, and f a function holomorphic on W/{a1, ..., an}.

Let γ be a closed rectifiable curve in W which does not meet any of the ak, and denote
the winding number of γ around ak by I(γ, ak). Then line integral of f around γ is equal
to 2πi times the sum of residues of f at the points, each counted as many times as γ
winds around the point: ∮

γ

f(z) dz = 2πi
n∑
k=1

I(γ, ak) Res(f, ak).

If γ is a positively oriented simple closed curve, I(γ, ak) = 1 if ak is in the interior of γ,
and 0 if not, so ∮

γ

f(z) dz = 2πi
∑

Res(f, ak)

with the sum over those ak inside γ.

Definition 1. [7] The Laurent series for a complex function f(z) about a point c is given
by:

f(z) =
∞∑

n=−∞

an(z − c)n

where the an and c are constants, defined by a line integral which is a generalization of
Cauchy’s integral formula:

an =
1

2πi

∮
γ

f(z) dz

(z − c)n+1

The path of integration γ is counterclockwise around a closed, rectifiable path containing
no self-intersections, enclosing c and lying in an annulus A in which f(z) is holomorphic
(analytic).

In the above definition, consider the case when n = −1, it immediately satisfied that,

a−1 =
1

2πi

∮
γ

f(z)dz

⇒
∮
γ

f(z)dz = 2πia−1 = 2πi
n∑
k=1

Res(f(z), zk)

Hence, the argument of theorem 2 is immediately satisfied.
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Definition 2. Residue of a Simple Pole

Consider a function f , defined on W/{zo} as

f(z) =
fo(z)

z − zo
=

a−1
z − zo

+ ao + . . .

We are interested in finding the value of a−1, the residue of f

⇒ (z − zo)f(z) = fo(z) = a−1 + ao(z − zo) + a1(z − zo)2 + . . .

now since z 6= zo, we need to take limits;

lim
z→zo

(z − zo)f(z) = a−1 = Res(f(z), zo)

Definition 3. Residue of a Higher Order Pole

Consider a function f , defined on W/{zo} as

f(z) =
fo(z)

(z − zo)n
=

a−n
(z − zo)n

+ · · ·+ a−1
(z − zo)

+ ao + a1(z − zo) + . . .

again, we are interested in finding the value of a−1, the residue of f

⇒ (z − zo)nf(z) = a−n + · · ·+ a−1(z − zo)n−1 + ao(z − zo)n + . . .

now since z 6= zo, we need to take limits;

1

(n− 1)!
lim
z→zo

(z − zo)nf(z) = a−1 = Res(f(z), zo)

2. Proving The Decomposition

As stated in Section 1, consider the expression written on the left side of Theorem 1,

n∑
i=1

xri/
∏

1≤k≤n
k 6=i

(xi − xk)


Using the Residue theorem (Theorem 2), we arrive at,

n∑
i=1

xri/
∏

1≤k≤n
k 6=i

(xi − xk)

 =
1

2πi

∫
|z|=R

zrdz

(z − x1) . . . (z − xn)

where R > |x1|, . . . , |xn|. Consider the integrand in the above equation. We define

f(z) =
zr

(z − x1) . . . (z − xn)
= zr−n

(
1

1− x1/z

)(
1

1− x2/z

)
· · ·
(

1

1− xn/z

)
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we are interested in the laurent series expansion of f(z),

zr−n
(

1

1− x1/z

)(
1

1− x2/z

)
· · ·
(

1

1− xn/z

)
= zr−n

n∏
i=1

(
1

1− xi/z

)

⇒ zr−n
n∏
i=1

(
1

1− xi/z

)
= zr−n

n∏
i=1

∑
m≥0

xi
z

m

= zr−n
∑
m1≥0

(x1
z

)m1 ∑
m2≥0

(x2
z

)m2

· · ·
∑
mn≥0

(xn
z

)mn

⇒ zr−n
∑
n≥0

1

zn

∑
m1+m2+···+mn=n

xm1
1 .xm2

2 . . . . xmn
n

Thus,

f(z) = zr−n + (x1 + · · ·+ xn)zr−n−1 + (x1
2 + x1x2 + . . . )zr−n−2 + . . .

Integrating the above terms, we observe that only the following coefficient survives:∑
j1+...jn=r−n+1

j1,...jn≥0

xj11 .x
j2
2 . . . . x

jn
n =

∑
1≤j1≤···≤jr−n+1≤n

xj1 .xj2 . . . . xjn

Consequently, when r = n, the above expression simplifies to
∑n

j=1 xj. Clearly, when
0 ≤ r < n− 1, the expression evaluates to zero and when r = n− 1, it evaluates to 1. �
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