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Abstract. Dissipative systems play a very important role in several
physical models, most notably in Celestial Mechanics, where the dissi-
pation drives the motion of natural and artificial satellites, leading them
to migration of orbits, resonant states, etc. Hence the need to develop
theories that ensure the existence of structures such as invariant tori or
periodic orbits and device efficient computational methods.
The point of view that we adopt is that we are dealing with real prob-
lems and that we will have to use a very wide variety of methods. From
the applications, to numerical studies to rigorous mathematics. As we
will see, all of these methods feed on each other. The rigorous mathe-
matics leads to efficient algorithms (and allows us to believe the results),
the numerical experiments lead to deep mathematical conjectures, the
applications benefit from all these tools, and set meaningful goals that
prevent from doing things just because they are easy. Of course, the road
towards this lofty goal is not rosy and there are many false starts, com-
plications, etc. After several years, we can erase the false starts from the
story, but we hope to provide some flavor. Given the rather wide scope
is unavoidable that some arguments have different standards (rigorous
proofs, numerical efficiency, conjectures). We have strived to make all
those very explicit, but may be it would be hard to keep this present. Of
course, similar programs can be applied to many problems, but in this
paper we will deal with a rather concrete set of problems.
In this work we concentrate on the existence of invariant tori for the spe-
cific case of dissipative systems known as conformally symplectic systems,
which have the property that they transform the symplectic form into
a multiple of itself. To give explicit examples of conformally symplectic
systems, we will present two different models: a discrete system known
as the standard map and a continuous system known as the spin-orbit
problem. In both cases we will consider the conservative and dissipative
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versions, that will help to highlight the differences between the symplec-
tic and conformally symplectic dynamics.
For such dissipative systems we will present a KAM theorem in an a-
posteriori format: assume we start with an approximate solution satisfy-
ing a suitable non-degeneracy condition, then we can find a true solution
nearby. The theorem does not assume that the system is close to inte-
grable.
The method of proof is based on extending geometric identities originally
developed in [39] for the symplectic case. Besides leading to streamlined
proofs of KAM theorem, this method provides a very efficient algorithm
which has been implemented. Coupling an efficient numerical algorithm
with an a-posteriori theorem, we have a very efficient way to provide
rigorous estimates close to optimal.
Indeed, the method gives a criterion (the Sobolev blow up criterion)
that allows to compute numerically the breakdown. We will review this
method as well as an extension of J. Greene’s method and present the
results in the conservative and dissipative standard maps. Computing
close to the breakdown, allows to discover new mathematical phenomena
such as the bundle collapse mechanism.
We will also provide a short survey of the present state of KAM estimates
for the existence of invariant tori in the conservative and dissipative
standard maps and spin-orbit problems.

1 Introduction

Dissipative dynamical systems play a fundamental role in shaping the motions of
physical problems. The role of dissipative forces in Celestial Mechanics is often of
less importance with respect to the conservative forces, which are mainly given
by the gravitational attraction between celestial bodies. Nevertheless dissipative
forces are present at any size and time scale and their effect accumulates over
time, so that even if some effects are negligible in a scale of centuries, they might
be dominant in a scale of a million of years.

A partial list of dissipative forces includes tidal forces, Stokes drag, Poynting-
Robertson effect, Yarkowski/YORP effects, atmospheric drag. These forces act
on bodies of different dimensions, namely planets, satellites, spacecraft, dust
particles, and in different epochs of the Solar system from the dynamics within
the interplanetary nebula at the early stage of formation of the Solar system, to
present times. For example, the effect of the Earth’s atmosphere on the orbital
lifetime of artificial satellites, happens in practical scales of time. It becomes
therefore, important to understand invariant structures (e.g., periodic orbits and
invariant tori) in dissipative systems.

The definition of dissipative system is not uniform in the literature. Here
we will addopt that a dissipative system has the property that the phase space
volume contracts. In this work we will be concerned with a special class of
dissipative systems known as conformally symplectic systems. These systems
enjoy the property that they transform the symplectic form into a multiple of
itself.
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Conformally symplectic systems have appeared in many applications (e.g.
discounted systems, [5]) or have been studied because they are geometrically
natural objects ([4]).

For applications to Celestial Mechanics, an important source of conformally
symplectic systems is that of a mechanical system with friction proportional
to the velocity. This is the case of the so-called spin-orbit problem in Celestial
Mechanics ([30, 29]), which will be presented in Section 2.3. It describes the
motion of an oblate satellite around a central planet, under some simplifying
assumptions like that the orbit of the satellite is Keplerian and that the spin-
axis is perpendicular to the orbit plane. When the satellite is assumed to be
rigid, the problem is conservative, while when the satellite is assumed to be
non-rigid, the problem is affected by a tidal torque. The dissipative part of the
spin-orbit problem depends upon two parameters: the dissipative constant, which
is a function of the physical properties of the satellite, and a drift term, which
depends on the (Keplerian) eccentricity of the orbit. A discrete analogue of the
spin-orbit problem is the dissipative standard map ([36]). In Section 2.1 we will
review conservative and dissipative versions of the standard map.

Indeed, the presence of a drift term is fundamental in conformally symplectic
systems: while in the conservative case one can find an invariant torus with fixed
frequency by adjusting the initial conditions, in the dissipative case it is not
possible to just tune the initial conditions to obtain a quasi-periodic solution of
a fixed frequency. One needs to adjust a drift parameter to find an invariant torus
with preassigned frequency (for some appropriate choice of initial conditions).

We stress that adding a dissipation to a Hamiltonian system is a very sin-
gular perturbation: the Hamiltonian admits quasi-periodic solutions with many
frequencies, while a system with positive dissipation leads to attractors with few
quasi-periodic solutions. To obtain attractors with a fixed frequency, one needs
to adjust the drift parameters.

The existence of invariant tori is the subject of the celebrated Kolmogorov–
Arnold–Moser (KAM) theory ([68, 1, 78], see also [2, 38, 97, 83]) which, in its
original formulation, proved the persistence of invariant tori in nearly–integrable
Hamiltonian systems. The theory can be developed under two main assumptions:

- the frequency vector must satisfy a Diophantine condition (to deal with the
so-called small divisors problem),

- a non–degeneracy condition must be satisfied (to ensure the solution of the
cohomological equations providing the approximate solutions).

Also, geometric properties of the system play an important role. Notably,
the original results were developed for Hamiltonian systems, but this has been
greatly extended.

A KAM theory for non-Hamiltonian systems with adjustment of parameters
was developed in the remarkable and pioneer paper [79], and later in [10, 9]. A
KAM theory for conformally symplectic systems with adjustment of parameters
was developed in [17] using the so-called automatic reducibility method intro-
duced in [39]. The paper [17] produces an a-posteriori result. A-posteriori means
that the existence of an approximate solution, which satisfies an invariance equa-
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tion up to a small error, ensures the existence of a true solution of the invariance
equation, provided some non-degeneracy conditions and smallness conditions on
parameters are satisfied.

The automatic reducibility proofs of KAM theorem provide very efficient
and stable algorithms to construct invariant tori in the symplectic ([49, 55]) and
conformally symplectic ([21, 24]) case. Examples of concrete (conservative and
dissipative) KAM estimates will be given in Section 7 with special reference to
the standard map and the spin-orbit problem. The a-posteriori format guarantees
that these solutions are correct. Indeed, it was proved that the algorithm leads
to a continuation method in parameters that, given enough resources reaches
arbitrarily close the boundary of the set of parameters for which the solution
exists. In Section 5 we will review the results on the empirical study of the break-
down, which leads to several very unexpected phenomena. In [16] it was found
numerically that the tori – which are normally hyperbolic– break down because
the stable bundle becomes close to the tangent, even if the stable Lyapunov
exponent (which is given by the conformal symplectic constant) remains away
from zero. Moreover, there are remarkable scaling effects, as shown in Section 6.

1.1 Other results

The results presented in these notes are part of a more systematic program
of providing KAM theorems in an a-posteriori format with many consequences
that, for completeness, we shortly review below.

• The a-posteriori format, leads automatically to many regularity results:
deducing finitely differentiable results from analytic ones, bootstrap of regularity,
Whitney dependence on the frequency. We will not even mention these regularity
results, but we point that in the conformally symplectic case, we can obtain
several rather striking geometric results. The conformlally symplectic systems
are very rigid. A classic result that plays a role is the paring rule of Lyapunov
exponents. The conformal geometric structure restricts severely the Lyapunov
exponents that can appear [45, 99].

• Rigidity of neighborhoods of tori.

In [18] it is shown that the dynamics in a neighborbood of a Lagrangian
torus is conjugate to a rotation and a linear contraction. In particular, the only
invariant in a neighborhood is the rotation and all the tori with the same rotation
are analytically conjugate in a neighborbood.

• Greene’s method.

An analogue of Greene’s method ([52]) to compute the analyticity breakdown
is given in [23], which presents a partial justification of the method. It is proved
that when the invariant attractor exists, then one can predict the eigenvalues of
the periodic orbits approximating the torus for parameter values close to those
of the attractor.

• Whiskered tori.

In [20, 22]), one can find a theory of whiskered tori in conformally symplectic
systems. This theory involves interactions of dynamics and geometry. The theory
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allows – there are examples – that the stable and unstable bundles are trivial,
but somewhat surprisingly, concludes that the center bundles have to be trivial.

• The singular limit of zero dissipation.
We showed in [19] that, if one fixes the frequency, one can choose the drift

parameter as a function of the perturbation in a smooth way: µ = µ(ω, ε) ≡
µε(ω). Note however that µ0(ω) = 0, but for ε > 0, the function µε is invertible so
that the function µε(ω) is a smooth function with a limit as ε→ 0. Nevertheless,
the sets of ω that appear have a complicated behaviour (devil’s staircase). Hence,
the floating frequency KAM methods, e.g. [1, 82, 35], have difficulty dealing with
this limit.

One of the advantages of the a-posteriori theorems is that they can validate
approximate solutions, no matter how they are obtained. We have already men-
tioned the validation of numerical computations. It turns out that one can also
validate formal asymptotic expansions and obtain estimates on domains of ex-
istence of the tori in the singular limit ([19]). This limit has also been studied
numerically ([11]), leading to the conjecture that the Lindstedt series are Gevrey.
A proof of the conjecture is given in [12].

• Breakdown of the rotational tori.
One of the consequences of the conformal symplectic geometry is the “pair-

ing rule” for exponents ([99]). Hence the tori, which have a dynamics which is
a rotation, must have normal exponents which are λ. The tori are normally hy-
perbolic attractors. Notice that the loss of hyperbolicity cannot happen because
of the exponents break down. This leads to the mechanism of bundle collapse
that was discovered in [16] and will be discussed in more detail in Section 6.

1.2 Organization of the paper

The work is organized as follows. In Section 2 we present the conservative and
dissipative standard maps and spin-orbit problems. Conformally symplectic sys-
tems and Diophantine vectors are introduced in Section 3. The definition of
invariant tori and the statement of the KAM theorem for conformally symplec-
tic systems is given in Section 4. Two numerical methods for the computation
of the breakdown threshold of invariant attractors is presented in Section 5. The
relation between the collision of invariant bundles and the breakdown of the
tori is described in Section 6. Applications of KAM estimates to the conserva-
tive/dissipative standard maps and spin-orbit problems are briefly recalled in
Section 7.

2 Conservative/dissipative standard maps and spin-orbit
problems

In this Section we present two models, a discrete and a continuous one, that will
help to have a qualitative understanding of the main features of conservative and
dissipative systems. The first example is a discrete paradigmatic model, known
as the standard map (see Sections 2.1 and 2.2). The continuous example is a
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physical model, known as the spin-orbit problem, which is closely related to the
standard map (see Section 2.3). In both cases we present their conservative and
dissipative formulations.

2.1 The conservative standard map

The standard map is a discrete model introduced by Chirikov in [36], which has
been widely studied to understand several features of dynamical systems, such
as regular motions, chaotic dynamics, breakdown of invariant tori, existence of
periodic orbits, etc. The standard map is a 2-dimensional discrete system in the
variables (y, x) ∈ R× T, which is described by the formulas:

y′ = y + ε V (x)

x′ = x+ y′ , (1)

where ε > 0 is called the perturbing parameter and V = V (x) is an analytic
function.

A wide number of articles and books in the literature (see, e.g., [53], [73]) deals
with the classical (Chirikov) standard map ([36]) obtained setting V (x) = sinx
in (1).

Instead of (1) we can use an equivalent notation and write the standard map
assigning an integer index to each iterate:

yj+1 = yj + εV (xj)

xj+1 = xj + yj+1 = xj + yj + εV (xj) for j ≥ 0 . (2)

We can easily verify that the standard map (2) satisfies the following prop-
erties, that will be useful for further discussion.

A) The standard map is integrable for ε = 0. In fact, for ε = 0 one gets the
formulas:

yj+1 = yj = y0

xj+1 = xj + yj+1 = xj + yj = x0 + jy0 for j ≥ 0 ,

which show that the mapping is integrable, since yj is constant and xj increases
by y0. For ε 6= 0 but small, the map is nearly-integrable.

B) The standard map is conservative, since the determinant of its Jacobian
is equal to one:

det

(
∂y′

∂y
∂y′

∂x
∂x′

∂y
∂x′

∂x

)
= det

(
1 εVx(xj)
1 1 + εVx(xj)

)
= 1 .

C) The standard map satisfies the so-called twist property, which amounts
to requiring that for a constant c ∈ R:

∣∣∣∣
∂x′

∂y

∣∣∣∣ ≥ c > 0
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for all (y, x) ∈ R × T. From (1) we have that the twist property is trivially
satisfied, since

∂x′

∂y
= 1 .

The twist property is not satisfied when considering a slight modification of
(1), yielding a discrete system which is known as the non-twist standard map
(see, e.g., [43, 42]). This mapping is described by the equations:

y′ = y + ε V (x) y ∈ R , x ∈ T

x′ = x+ a(1− y′2)

with a ∈ R. In this case, the twist condition is violated along a curve in the
(y, x) plane.

Systems violating the twist condition appear in Celestial Mechanics, for ex-
ample in the critical inclination for the motion near an oblate planet ([69]). One
of the advantages of the KAM results we will establish is that we do not need
to assume global non-degeneracy conditions on the map, but rather some prop-
erties of the approximate solution. We just need to assume that a d× d matrix
is invertible. The matrix is an explicit algebraic expression on derivatives of the
approximate solution and averages.

Figure 1 shows the graph of the iterates of the standard map for several values
of the perturbing parameter and for several initial conditions in each plot.

From the upper left plot of Figure 1, we see that for ε = 0 the system
is integrable; the initial conditions has been chosen to give rotational quasi–
periodic curves (lying on straight lines).

When we switch-on the perturbation, even for small values as ε = 0.1, the
system becomes non–integrable. It is easy to check that there exists a stable
equilibrium point at (π, 0) and an unstable one at (0, 0). The quasi–periodic
(KAM) curves are distorted with respect to the integrable case and the stable
point (π, 0) is surrounded by elliptic librational islands. The amplitude of the
islands increases as ε gets larger, as it is shown for ε = 0.4 where we also notice
the appearance of minor resonances. Chaotic dynamics is clearly present for
ε = 0.7 around the unstable equilibrium point, while the number of rotational
quasi–periodic curves decreases when increasing the perturbing parameter. In
particular, for ε = 0.9 we see large chaotic regions, a few quasi–periodic curves,
new islands around higher–order periodic orbits. Finally, for ε = 1 we have only
chaotic and librational motions, while quasi–periodic curves disappear.

As we will mention in Section 7, there is a wide literature on KAM appli-
cations to the standard map to prove the existence of invariant rotational tori
with fixed frequency, see [25, 41, 49].

The example we have presented in this Section shows a marked difference
with respect to the model that will be presented in Section 2.2, thus witnessing
the divergence of the dynamical behaviour between conservative and dissipative
dynamical systems. This difference is clearly demonstrated by the dynamics
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Fig. 1. Graphs of the conservative standard map for different values of the perturbing
parameter and different initial conditions.

associated to the conservative and dissipative standard maps, as well as by that of
more complex systems, like the conservative and dissipative spin-orbit problems,
which will be described in Section 2.3.

2.2 The dissipative standard map

The dissipative standard map is obtained from (1) adding two parameters: a
dissipative parameter 0 < λ < 1 and a drift parameter µ. For (y, x) ∈ R×T, the
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equations describing the dissipative standard map are the following:

y′ = λy + µ+ ε V (x)

x′ = x+ y′ , (3)

where λ, ε ∈ R+, µ ∈ R. We remark that we obtain the conservative standard
map when λ = 1 and µ = 0. We also remark that the Jacobian of the mapping
(3) is equal to λ, which gives a measure of the rate of contraction or expansion
of the area of the phase space. There are several results related to the existence
of attractors in the dissipative standard map; a partial list of papers is the fol-
lowing: [6, 7, 48, 60, 62, 90, 95, 98, 100]. Rigorous mathematical works on strange
attractors for dissipative 2-D maps with twist are [72, 96, 74].

It is also important to stress that for ε = 0 the trajectory {y ≡ µ
1−λ

}×T, or
equivalently {ω ≡ µ

1−λ
} × T, is invariant. In fact, for ε = 0 we have y′ = λy + µ

and since we are looking for an invariant object, we need to have y′ = y. Hence,
we must solve the equation

y = λy + µ . (4)

On the other hand, the frequency ω associated to the standard map is, by defi-
nition, given by

ω = lim
j→∞

xj
j
,

which gives ω = y. Combining this last results with (4), we obtain

ω =
µ

1− λ
,

which shows the strong relation between the frequency and the drift, which
cannot be chosen independently. In particular, if we fix the frequency (as it
will be required in the KAM theorem of Section 4.2), then we need to tune
properly the drift parameter µ. This is a substantial difference with respect to
the conservative case; dissipative dynamical systems will require a procedure to
prove KAM theory different than in the conservative case.

The dynamics associated to the dissipative standard map admits (see Fig-
ure 2) attracting periodic orbits, invariant curve attractors; for different pa-
rameters and initial conditions, there appear also strange attractors which have
an intricate geometrical structure ([73, 96]): introducing a suitable definition of
dimension, the strange attractors are shown to have, for some parameter val-
ues, a non–integer dimension (namely a fractal dimension). We will not consider
these cases and concentrate in the cases when the attractor is a one-dimensional
smooth torus and the motion is smoothly conjugate to a rotation.

We remark that, due to the dissipative character of the map, there might
exist at most one invariant curve attractor, while there might be more coexisting
periodic orbits (see Figure 2, panel c) and [48]) or strange attractors.

The existence and breakdown of smooth invariant tori in the dissipative stan-
dard map have been recently studied in [21] (see also [16]).
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Fig. 2. Left: Attractors for the dissipative standard map with ε = 0.9, λ = 0.91,

µ = 2π(1−λ)(
√

5−1

2
). Right: The corresponding basins of attraction using a color scale

providing the frequency.

Each of the attractors of Figure 2 is characterized by an associated basin

of attraction, which is composed by the set of initial conditions (x0, y0) whose
evolution ends on the given attractor. Figure 2, right, shows the basins of at-
traction for the case in Figure 2, left; they have been obtained taking a grid of
500×500 initial conditions and looking at their evolution after having performed
a number of preliminary iterations.

We want to stress that the role of the drift parameter µ is of paramount
importance in dissipative systems, since an inappropriate choice might prevent
to find a specific attractor. An example is given in Figure 3, where we look for
the torus with frequency equal to the golden ratio multiplied by the factor 2π,

namely ω = 2π
√
5−1
2 ≃ 3.8832, for the dissipative standard map with ε = 0.1,

λ = 0.9. The upper left panel shows that taking µ = 0, the solution spirals on the
point attractor at (π, 0); taking µ = 0.1 (Figure 3, upper right panel) leads to an
attractor which has frequency different than ω, while the right choice corresponds
to µ = 0.0617984 as in the left bottom panel of Figure 3. We present in Figure 3,
bottom right panel, the behaviour of the drift as a function of the dissipative
parameter λ, which shows that µ tends to zero in the limit of the conservative
case, as it is expected.

The twist condition for the dissipative standard map is a condition that now
involves the parameters. A non-twist version of the dissipative standard map is
the following map,

y′ = λy + ε V (x)

x′ = x+ (y′ − a)2 + µ . (5)

In figure 4, we notice that this map has parameter values where the rotation
number does not change in a monotone direction when we change parameter a.
See [13] for a study of the invariant circles of the map (5).
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Fig. 3. The dissipative standard map for different values of the drift: µ = 0 upper left,
µ = 0.1 upper right, µ = 0.0617984 bottom left. Graph of µ vs. λ, bottom right.
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❛

Fig. 4. Rotation number ρ in the map (5) w.r.t. the parameter a. Reproduced from
[13].

2.3 The spin-orbit problems

An interesting example of a continuous system which shows the main dynamical
features of regular and chaotic invariant objects is the so-called spin-orbit prob-
lem in Celestial Mechanics. The conservative version of the model is based upon
the following assumptions. We consider a triaxial satellite, say S, with principal
moments of inertia I1 < I2 < I3. We assume that the satellite moves on a Kep-
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lerian orbit around a central planet, say P, while it rotates around a spin–axis
perpendicular to the orbit plane and coinciding with its shortest physical axis.

We take a reference system centered in the planet and with the horizontal
axis coinciding with the direction of the semimajor axis. We denote by r the
orbital radius, by f the true anomaly, while we denote by x the angle between
the semimajor axis and the direction of the longest axis of the ellipsoidal satellite
(see Figure 5).

Fig. 5. The spin-orbit problem.

The equation of motion describing the conservative spin-orbit problem is

ẍ + ε
(a
r

)3
sin(2x− 2f) = 0 , (6)

where ε = 3
2
I2−I1
I3

is a parameter which measures the equatorial flattening of
the satellite. Equation (6) is associated to the one-dimensional, time-dependent
Hamiltonian function:

H(y, x, t) =
y2

2
−
ε

2

( a

r(t)

)3
cos(2x− 2f(t)) . (7)

Due to the assumptions of the model, the quantities r and f are known functions
of the time, being the solution of Kepler’s problem which determines the elliptical
orbit of the satellite. They depend on the orbital eccentricity, which plays the
role of an additional parameter.

It is important to observe that:
- the Hamiltonian (7) is integrable whenever ε = 0, namely the satellite has

equatorial symmetry with I1 = I2;
- the Hamiltonian (7) is integrable when the eccentricity is equal to zero,

since the orbit becomes circular, namely r = a and f coincides with the mean
anomaly, which is proportional to time.

The existence and breakdown of invariant tori in the conservative spin-orbit
problem have been investigated in [30, 29].
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We remark that Hamilton’s equations associated to (7) are given by

ẋ = y

ẏ = −ε
( a

r(t)

)3
sin(2x− 2f(t)) . (8)

Integrating (8) with a modified Euler’s method with time-step h, we obtain a
discrete system which retains the many features of the conservative standard
map when taking the solution on the Poincaré map at time intervals multiple of
2π:

yn+1 = yn − ε
( a

r(tn)

)3
sin(2xn − 2f(tn)) h

xn+1 = xn + yn+1 h

tn+1 = tn + h .

The dissipative spin-orbit problem is obtained by taking into account that
the satellite is non rigid and therefore it is subject to a tidal torque. The equation
of motion including a model for the tidal torque can be written as

ẍ + ε
(a
r

)3
sin(2x− 2f) = −Kd [L(e, t)ẋ−N(e, t)] , (9)

where

L(e, t) =
a6

r6
, N(e, t) =

a6

r6
ḟ

(see, e.g., [31, 80]). The coefficient Kd is called the dissipative constant, and
depends on the physical and orbital features of the body:

Kd = 3n
k2
ξQ

(
Re

a

)3
M

m
,

where n is the mean motion, k2 is the so-called Love number (depending on
the structure of the satellite), Q is called the quality factor (it compares the
frequency of oscillation of the system to the rate of dissipation of the energy), ξ
is a structure constant such that I3 = ξmR2

e with Re the equatorial radius, M is
the mass of the planet, m is the mass of the satellite. For bodies like the Moon
or Mercury, realistic values are ε = 10−4 and Kd = 10−8.

The expression for the tidal torque can be simplified by assuming (as, e.g., in
[37]) that the dynamics is ruled by the averages of L(e, t) and N(e, t) over one
orbital period. The averaged quantities are given by

L(e) =
1

(1− e2)
9
2

(
1 + 3e2 +

3

8
e4
)
,

N(e) =
1

(1− e2)6

(
1 +

15

2
e2 +

45

8
e4 +

5

16
e6
)
.
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Hence, we obtain the following equation of motion in the averaged case:

ẍ+ ε
(a
r

)3
sin(2x− 2f) = −Kd

(
L(e)ẋ−N(e)

)
. (10)

We can refer to the quantity λ = KdL(e) as the dissipative parameter and to

µ = N(e)

L(e)
as the drift parameter.

Let us write (10) in normal form as

ẋ = y

ẏ = −ε
( a

r(t)

)3
sin(2x− 2f(t))− λ(y − µ) . (11)

Similarly to the conservative case, the integration of (11) with a modified Euler’s
method with time-step h, leads to a discrete system similar to the dissipative
standard map with dissipative and drift parameters, when taking the solution
on the Poincaré map at time intervals multiple of 2π:

yn+1 = (1− λh)yn + λµh− ε
( a

r(tn)

)3
sin(2xn − 2f(tn)) h

xn+1 = xn + yn+1 h

tn+1 = tn + h .

As we will mention in Section 7, the existence and breakdown of invariant
attractors in the dissipative spin-orbit problem have been studied in [24] through
an application of KAM theory for conformally symplectic systems and through
suitable numerical methods.

3 Conformally symplectic systems and Diophantine
vectors

In this section we give the definition of conformally symplectic systems for maps
and flows (see Section 3.1) and we introduce the set of Diophantine vectors for
discrete and continuous systems (see Section 3.2).

3.1 Discrete and continuous conformally symplectic systems

An important class of dissipative dynamical systems is given by the conformally

symplectic systems; the dissipative standard map is an example of a confor-
mally symplectic discrete system, while the dissipative spin-orbit problem is an
example of a conformally symplectic continuous system.

Before giving the formal definition, let us say that conformally symplectic sys-
tems are characterized by the property that they transform the symplectic form
into a multiple of itself. Beside the examples mentioned before, we stress that
conformally symplectic models can be found in different fields, e.g. the Euler-
Lagrange equations of exponentially discounted systems ([5], typically found in
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finance, when inflation is present and one needs to minimize the cost in present
money) or Gaussian thermostats ([46, 99], namely mechanical systems with forc-
ing and a thermostating term based on the Gauss Least Constraint Principle for
nonholonomic constraints).

Let us start to introduce the notion of 2n-dimensional conformally symplectic
maps. Let M = U × T

n be the phase space with U ⊆ R
n an open, simply

connected domain with smooth boundary; the phase space M is endowed with
the standard scalar product and a symplectic form Ω, represented by a matrix
J at the point z acting on vectors u, v ∈ R

n as Ω(u, v) = (u, J(z)v) with (·, ·)
denoting the scalar product. Note that the matrix J depends not only on the
symplectic form but on the metric considered.

Definition 1. A diffeomorphism f on M is conformally symplectic, if there

exists a function λ : M → R such that, denoting by f∗ the pull–back of f , we
have:

f∗Ω = λΩ . (12)

We remark that for n = 1 any diffeomorphism is conformally symplectic
with λ depending on the coordinates, namely one can take λ(x) = det(Df(x))
or λ(x) = −det(Df(x)). Instead, for n ≥ 2 one obtains that λ is a constant. In
fact, taking the exterior derivative of f∗Ω = λΩ, one obtains:

d(f∗Ω) = f∗ dΩ = 0 = dλ ∧Ω + λ ∧ dΩ = dλ ∧Ω ,

which gives dλ = 0; since the manifold is simply connected, then λ is equal to a
constant (see [17]).

We also remark that for λ = 1 (and µ = 0) we recover the symplectic case.

Let us give some explicit examples which might help to clarify the meaning of
Definition 1. First, we notice that we can re-formulate the notion of conformally
symplectic by saying that the diffeomorphism f is conformally symplectic if

DfT J Df = λ J , (13)

where the superscript T denotes transposition. In fact, from (12) we have:

f∗Ω = λΩ ⇔ Ω(Df u,Df v) = λ Ω(u, v)

⇔ (Df u, J Df v) = λ (u, J v)

⇔ (u,DfT J Df v) = (u, λ J v)

⇔ DfT J Df = λ J .

An example of a conformally symplectic diffeomorphism is given by the dis-
sipative standard map. Recalling (3), we have that (13) is satisfied, as shown
below:

(
λ λ
εVx 1 + εVx

) (
0 1
−1 0

) (
λ εVx
λ 1 + εVx

)
=

(
0 λ
−λ 0

)
= λJ .
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An example of a map which does not satisfy the conformally symplectic
condition (13) is given by the following 4-dimensional dissipative standard map
with conformal factors λ1, λ2 with λ1 6= λ2:

y′1 = λ1y1 + µ1 + εV1(x1, x2)

y′2 = λ2y2 + µ2 + εV2(x1, x2)

x′1 = x1 + y′1
x′2 = x2 + y′2 .

In fact, even for ε = 0, we obtain that (13) is not satisfied:

DfT J Df =




0 0 λ1 0
0 0 0 λ2

−λ1 0 0 0
0 −λ2 0 0


 6= λ




0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0


 = λ J .

To conclude, we give the definition of conformally symplectic systems for
continuous dynamical systems.

Definition 2. We say that a vector field X is a conformally symplectic flow if,

denoting by LX the Lie derivative, there exists a function λ : R2n → R such that

LXΩ = λΩ .

In analogy to the definition of conformally symplectic maps, we remark that
the time t-flow Φt satisfies the relation

(Φt)
∗Ω = eλtΩ .

3.2 Diophantine vectors for maps and flows

In this Section we give the definition of Diophantine vectors for maps and flows
and we briefly recall the main properties of Diophantine vectors. We start by
giving the definition for maps.

Definition 3. We say that the vector ω ∈ R
n satisfies the Diophantine condi-

tion, if for a constant C > 0 and an exponent τ > 0, one has

∣∣∣
ω · q

2π
− p
∣∣∣
−1

≤ C|q|τ , p ∈ Z , q ∈ Z
n\{0} .

In the case of flows we have the following definition.

Definition 4. We say that the vector ω ∈ R
n satisfies the Diophantine condi-

tion, if for a Diophantine constant C > 0 and a Diophantine exponent τ > 0,
one has:

|ω · k|−1 ≤ C|k|τ , k ∈ Z
n\{0} .
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We conclude this Section by listing below some important properties of Dio-
phantine vectors.

(i) Let us denote by D(C, τ) the set of Diophantine vectors satisfying Defi-
nition 4. Then, the size of the set of Diophantine vectors D(C, τ) increases as C
or τ increases. The set of vectors that satisfy this condition for some C, τ . is of
full Lebesgue measure in R

n.
(ii) There are no Diophantine vectors in R

n with τ < n− 1.
(iii) The set of Diophantine vectors with τ = n− 1 in R

n has zero Lebesgue
measure, but it is everywhere dense.

(iv) For τ > n − 1, almost every vector in R
n is τ -Diophantine, namely the

complement has zero Lebesgue measure, although it is everywhere dense.

4 Invariant tori and KAM theory for conformally
symplectic systems

In this Section we provide the definition of KAM (rotational) invariant tori (for
maps and flows) (see Section 4.1); the statement of the KAM theorem for con-
formally symplectic maps is given in Section 4.2, whose proof is briefly recalled
in Section 4.3. The proof can be translated into a very efficient KAM algorithm
(see [17]), which is at the basis of different results: the derivation of numerical
methods to compute the breakdown threshold (Section 5), the investigation of
the breakdown mechanism (Section 6), the implementations to specific models
(see Section 7).

4.1 Invariant KAM tori

We start by giving the definition of conditionally periodic and quasi-periodic

motions.

Definition 5. A conditionally periodic motion is represented by a function t 7→
f(ω1t, . . . , ωnt), where f(x1, . . . , xn) is periodic in all variables; the vector ω =
(ω1, . . . , ωn) is called frequency.

A quasi-periodic motion is a conditionally periodic motion with incommen-

surable frequencies.

Next we give the following definition of invariant torus.

Definition 6. An invariant torus is an invariant manifold diffeomorphic to the

standard torus T
n.

We remark that any trajectory on an invariant torus carrying quasi-periodic
motions is dense on the torus. We conclude by giving the definition of (rota-
tional) KAM torus for maps and flows. This definition is based on the invariance
equation (14) below, whose solution will be the centerpiece of the KAM theorem
presented in Section 4.2.
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Definition 7. Let M ⊆ R
n × T

n be a symplectic manifold and let f : M →
M be a symplectic map. A KAM torus with frequency ω ∈ D(C, τ) is an n–
dimensional invariant torus described parametrically by an embedding K : Tn →
M, which is the solutions of the invariance equation:

f ◦K(θ) = K(θ + ω) . (14)

For a family fµ of conformally symplectic diffeomorphisms depending on a real

parameter µ, a KAM attractor with frequency ω ∈ D(C, τ) is an n–dimensional

invariant torus described parametrically by an embedding K : Tn → M and a

drift µ, which are the solutions of the invariance equation:

fµ ◦K(θ) = K(θ + ω) . (15)

For conformally symplectic vector fields Xµ, the invariance equation is given by

Xµ ◦K(θ) = (ω · ∂θ) K(θ) .

We remark that for symplectic systems the invariance equation (14) contains
as only unknown the embedding K, while for conformally symplectic systems
the invariance equation (15) contains as unknowns both the embedding K and
the drift term µ.

A graphical representation of the invariance equation (14) is given in Figure 6.

Fig. 6. Geometric interpretation of the invariance equation fµ ◦ K(θ) = K(θ + ω) in
the unknowns K, µ.

Although the theory that will be presented in the next Sections apply both
to maps and flows, for simplicity of exposition we will limit to the presentation
of KAM theory for maps. We refer to [17] for the details concerning continuous
systems.
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4.2 Conformally symplectic KAM theorem

We will try to answer a specific question, which is formulated below, by means
of a suitable statement of the KAM theorem; the question is motivated by many
applications in several models of Celestial Mechanics, which are often described
by nearly-integrable systems. This is why we set the following question in the
framework of nearly-integrable systems, although the formulation of KAM the-
ory does not need that the system is close to integrable (compare with [39]).

Assume that a given integrable dynamical system admits an invariant torus
run by a quasi-periodic motion with frequency ω (e.g., think at Kepler’s 2-body
problem). Consider a perturbation of the integrable system (e.g., the restricted
3-body problem, which is described by the 2-body problem with a perturba-
tion proportional to the primaries’ mass ratio). The main question that we want
to raise in the framework of KAM theory for nearly-integrable systems is the
following: does the perturbed system still admits an invariant torus run by a
quasi-periodic motion with the same frequency as the unperturbed system? The
answer is given by celebrated KAM theory ([68, 1, 78]), which can be imple-
mented under very general assumptions, precisely a non-degeneracy condition of
the unperturbed system and a Diophantine condition on the frequency.

We remark that invariant tori are Lagrangian: if f is a symplectic map and
K satisfies the invariance equation (14), then

K∗Ω = 0 .

The same holds for a conformally symplectic map fµ, when |λ| 6= 1 and K
satisfies the invariance equation (15). If f is symplectic and ω is irrational, then
the torus is Lagrangian, i.e. with maximal dimension and isotropic (namely,
the symplectic form restricted on the manifold is zero, which implies that each
tangent space is an isotropic subspace of the ambient manifold’s tangent space).

Next step is to consider a nearly-integrable dynamical system affected by a
dissipative force, so that the overall system is conformally symplectic (an ex-
ample is given by the spin-orbit problem with tidal torque). We assume that
the integrable symplectic system admits an invariant torus with Diophantine
frequency; the question becomes whether the non-integrable system with dissi-
pation still admits, for suitable values of the drift parameter, an invariant attrac-
tor run by a quasi-periodic motion with the same frequency of the unperturbed
system. The answer is given by the KAM theorem for conformally symplectic
systems as given by Theorem 1 (see [17]).

Since we will be interested to give explicit estimates in specific model prob-
lems, we introduce the following norms for analytic and differentiable functions.

Definition 8. Analytic norm. Given ρ > 0, we define the complex extension of
the torus, say T

n
ρ , as the set

T
n
ρ = {θ ∈ C

n/(2πZ)n : Re(θ) ∈ T
n, |Im(θj)| ≤ ρ , j = 1, ..., n} ;
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we denote by Aρ the set of analytic functions in Int(Tn
ρ ) with the norm

‖f‖ρ = sup
θ∈Tn

ρ

|f(θ)| .

Sobolev norm. For a function f = f(z) expanded in Fourier series as f(z) =∑
k∈Zn f̂k e

2πik·z for an integer m > 0, we define the space Hm as

Hm =
{
f : Tn → C : ‖f‖2m ≡

∑

k∈Zn

| f̂k |
2(1 + |k|2)m <∞

}
.

Borrowing the statement from [17], we give below the formulation of the
KAM theorem for conformally symplectic systems (see [39] for the statement for
symplectic systems). We give the statement for maps, although the results can
be formulated also for systems with continuous time (flows). Indeed in [17] one
can find a construction that shows that the results for maps imply the results
for flows as well as direct proof of the results for flows.

Theorem 1. Let ω ∈ D(C, τ), fµ : R
n × T

n → R
n × T

n be a conformally

symplectic diffeomorphism, and let (K,µ) be an approximate solution of the in-

variance equation (15) with error term E:

fµ ◦K(θ)−K(θ + ω) = E(θ) .

Let N be the quantity

N(θ) = (DK(θ)TDK(θ))−1 (16)

and let M(θ) be the 2n× 2n matrix defined by

M(θ) = [DK(θ) | J(K(θ))−1 DK(θ)N(θ)] .

Let P (θ) be defined as

P (θ) ≡ DK(θ)N(θ) ;

let A(θ) ≡ λ Id and let S(θ) be

S(θ) ≡ P (θ+ω)TDfµ ◦K(θ)J−1 ◦K(θ)P (θ)−N(θ+ω)T γ(θ+ω)N(θ+ω)A(θ)
(17)

with

γ(θ) ≡ DK(θ)TJ−1 ◦K(θ)DK(θ) .

Assume that the following non–degeneracy condition is satisfied:

det

(
〈S〉 〈SB0〉+ 〈Ã1〉

(λ− 1)Id 〈Ã2〉

)
6= 0 (18)

with Ã1, Ã2 the first and second n columns of Ã = M−1(θ + ω)Dµfµ ◦ K,

B0 = B − 〈B〉 is the solution of λB0(θ)−B0(θ + ω) = −(Ã2)
0(θ).
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For ρ > 0, let 0 < δ < ρ
2 ; if the solution is sufficiently approximate, namely

‖E‖ρ ≤ C3 C
−4 δ4τ

for a suitable constant C3 > 0, then there exists an exact solution (Ke, µe), such
that

‖Ke −K‖ρ−2δ ≤ C4 C
2 δ−2τ ‖E‖ρ , |µe − µ| ≤ C5 ‖E‖ρ

with suitable constants C4, C5 > 0.

Remark 1. It is useful to make a remark on the non–degeneracy condition (18),
when applied to the conservative and dissipative standard maps ((1), (3)). For
the conservative standard map, the non–degeneracy condition is typically the
so-called twist condition, which can be written as

∂x′

∂y
6= 0 , (19)

implying that the lift of the map transforms any vertical line always on the same
side.

Instead, for the dissipative standard map, that we modify adding a generic
dependence on the drift through a function p = p(µ), say

y′ = λy + p(µ) + ε V (x)

x′ = x+ y′ ,

then the non–degeneracy condition involves the twist condition and a non–
degeneracy condition with respect to to the parameters, namely:

∂x′

∂y
6= 0 ,

dp(µ)

dµ
6= 0 . (20)

We remark, however, that (19) and (20) involve global properties of the system,
while (18) is a condition involving just the approximate solution, so that (18)
may be applied in situations where (19), (20) fail.

The proof of Theorem 1 is given in [17] through the a-posteriori approach
developed in [39] and making use of an adjustment of parameters (see [79, 8]):
assume we can find an approximate solution (K,µ) of the invariance equation,
satisfying a non-degeneracy condition, then we can find a true solution (Ke, µe)
close to (K,µ), such that ‖Ke −K‖, |µe − µ| is small. A sketch of the proof of
Theorem 1 is presented in Section 4.3.

We conclude this Section by remarking that the a-posteriori approach presents
several advantages, among which:

– (i) it can be developed in any coordinate frame and not necessarily in action-
angle variables. In many practical problems, the action-angle variables are
difficult to compute and involve complex singularities.
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Of course, once we have the existence of the torus, we can construct action
angle variables. Hence, compared to more standard results, the accomplish-
ment of the method is that the existence of action variables and the quasi-
integrablility is moved from the hypothesis to the conclusions. This is useful
in practice since the hypothesis is hard to verify in applications.
Of course, moving conclusions to hypothesis without regards on how to check
them, one can get the same conclusions. In that respect, adding the hy-
pothesis of the existence of the torus would get a theorem with the same
applicability and a simpler proof.

– (ii) The system is not assumed to be nearly integrable.
– (iii) Instead of constructing a sequence of coordinate transformations on

shrinking domains as in the perturbation approach, one computes suitable
corrections to the embedding and the drift.
The computation of the embeddings requires to work only with variables of n
dimensions whereas transformation theory requires to work with variables in
2n dimensions. The complexity of representing functions grows exponentially
– with a large exponent – on the dimension. The composition of two functions
has rather awkward analytic and numerical properties.

– (iv) The non-degeneracy assumptions are not global properties of the map,
but are rather properties of the approximate solution considered.

– (v) One does not need to justify how the approximate solution was obtained.
In particular, one can take as approximate solution the result of numerical
calculations or a formal expansion.
Verifying the hypothesis in a numerical approximation is just a finite number
of calculations. Even if this number is too large to do by hand, it could be
moderate to do with a computer (e.g., a few hours in a common laptop). If
these can be done taking care of roundoff and truncation errors, this may
lead to a computer assisted proof.
One can also verify the hypothesis easily in a numerical expansion.
Note that, in these verifications it is crucial as noted in (i) to move the
difficult to verify facts from the hypothesis that need to be checked to the
conclusions.

4.3 A sketch of the proof of the KAM theorem

The proof of Theorem 1 can be summarized as composed by five main steps:

– Step 1: starting from an approximate solution, write the linearization of the
invariance equation.

– Step 2: by a Newton’s method find a quadratically smaller approximation.
– Step 3: under a non–degeneracy condition, solve the cohomological equation

that allows to find the new approximation.
– Step 4: iterate the procedure and show its convergence.
– Step 5: prove that the solution is locally unique.

We briefly describe such steps as follows.
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Step 1: approximate solution and linearization. Let (K,µ) be an approx-
imate solution satisfying

fµ ◦K(θ)−K(θ + ω) = E(θ) . (21)

Using the Lagrangian property K∗Ω = 0 written in coordinates, namely

DKT (θ) J ◦K(θ) DK(θ) = 0 ,

we get that the tangent space is given by

Range
(
DK(θ)

)
⊕Range

(
V (θ)

)
(22)

with N as in (16) and

V (θ) = J−1 ◦K(θ) DK(θ)N(θ) .

Define the quantity
M(θ) = [DK(θ) | V (θ)] . (23)

Then, we have the following result.

Lemma 1. Up to a remainder R, we have the following relation:

Dfµ ◦K(θ) M(θ) =M(θ + ω)

(
Id S(θ)
0 λId

)
+R(θ) .

Proof. Recalling the definition of M in (23), we have that taking the derivative
of

fµ ◦K(θ) = K(θ + ω) + E(θ) ,

one obtains the relation

Dfµ ◦K(θ) DK(θ) = DK(θ + ω) +DE(θ) .

Due to (22), one obtains:

Dfµ ◦K(θ) V (θ) = DK(θ + ω) S(θ) + V (θ + ω) λ Id + h.o.t.

with S as in (17).

Step 2: determine a new approximation. Let the new approximation
(K ′, µ′) be defined as K ′ = K + MW , µ′ = µ + σ. Let E′ be the error as-
sociated to (K ′, µ′):

fµ′ ◦K ′(θ)−K ′(θ + ω) = E′(θ) . (24)

Expanding (24) in Taylor series, we get

fµ ◦K(θ) +Dfµ ◦K(θ) M(θ)W (θ) +Dµfµ ◦K(θ)σ

−K(θ + ω)−M(θ + ω) W (θ + ω) + h.o.t. = E′(θ) .
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Recalling (21), the new error E′ is quadratically smaller provided the following
relation holds:

Dfµ ◦K(θ) M(θ)W (θ)−M(θ+ ω) W (θ+ ω) +Dµfµ ◦K(θ)σ = −E(θ) . (25)

Combining (25) and Lemma 1, we have:

Dfµ ◦K(θ) M(θ) =M(θ + ω)

(
Id S(θ)
0 λId

)
+R(θ) .

This allows to get the following equations for W = (W1,W2) and σ

M(θ + ω)

(
Id S(θ
0 λId

)
W (θ)−M(θ + ω) W (θ + ω) = −E(θ)−Dµfµ ◦K(θ)σ

that we are going to make more explicit. Multiplying byM(θ+ω)−1 and writing
W = (W1,W2), one gets that the previous equation is equivalent to:

(
Id S(θ)
0 λId

)(
W1(θ)
W2(θ)

)
−

(
W1(θ + ω)
W2(θ + ω)

)
=

(
−Ẽ1(θ)− Ã1(θ)σ

−Ẽ2(θ)− Ã2(θ)σ

)
(26)

with Ẽj(θ) = −(M(θ+ω)−1E)j , Ãj(θ) = (M(θ+ω)−1Dµfµ ◦K)j . Writing (26)
in components, we obtain:

W1(θ)−W1(θ + ω) = −Ẽ1(θ)− S(θ)W2(θ)− Ã1(θ)σ

λW2(θ)−W2(θ + ω) = −Ẽ2(θ)− Ã2(θ)σ . (27)

The cohomological equations (27) allow to find the corrections W1, W2 and σ,
as sketched in the next step.

Step 3: solve the cohomological equations. To determine the new approx-
imation, we need to solve equations (27), which are equations with constant

coefficients for W1, W2 and σ for known S, Ẽ ≡ (Ẽ1, Ẽ2), Ã ≡ [Ã1| Ã2].
The first equation in (27) is a standard small divisor equation, which can be

solved under the Diophantine condition on the frequency, so to bound the small
divisors.

For |λ| 6= 1 and for all real vectors ω, it is possible to solve the second
equation in (27) by an elementary contraction mapping argument.

We remark that, using Cauchy estimates for the cohomological equations
(27), we can bound ‖W1‖ρ−δ and ‖W2‖ρ−δ by ‖E‖ρ.

To solve the cohomological equations, we proceed as follows. Take the aver-
ages of each equation in (27) and use the non–degeneracy condition to determine
〈W2〉, σ by solving the equation

(
〈S〉 〈SB0〉+ 〈Ã1〉

(λ− 1)Id 〈Ã2〉

)(
〈W2〉
σ

)
=

(
−〈SB̃0〉 − 〈Ẽ1〉

−〈Ẽ2〉

)
,
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where we have split W2 as W2 = 〈W2〉+B0 + σB̃0.

Next, we need to solve the second equation in (27) for W2, which is an
equation of the form λW2(θ)−W2(θ+ω) = Q2(θ) with Q2 known. Such equation
is always solvable for any |λ| 6= 1 by a contraction mapping argument, using that

λW2(θ)−W2(θ + ω) =
∑

k Ŵ2,k e
ik·θ(λ− eik·ω).

Finally, we solve the first equation in (27) for W1, which amounts to solve
an equation of the form W1(θ)−W1(θ+ω) = Q1(θ) with Q1 known. It involves
small (zero) divisors, since for k = 0 one has 1− eik·ω = 0. The left hand side of
the first equation in (27) can be expanded as

W1(θ)−W1(θ + ω) =
∑

k∈Zn\{0}
Ŵ1,k e

ik·θ(1− eik·ω) .

To get a bound for the solution of (27), we need the following result.

Proposition 1. Let Z = Z(θ) be a function with zero average and such that

Z ∈ Aρ or Z ∈ Hm. Let ω ∈ D(C, τ). Assume that the function U = U(θ)
satisfies

λU(θ)− U(θ + ω) = Z(θ) .

Then, if λ 6= 1, |λ| ∈ [A,A−1] for 0 < A < 1, we have that

‖U(θ)‖ρ−δ ≤ Cδ−τ‖Z‖ρ .

We refer to [17, 88] for the proof of Proposition 1.

Step 4: convergence of the iterative step. The solution described in Step 3,
allows to state that the invariance equation is satisfied with an error quadratically
smaller, i.e.

‖E′‖ρ−δ ≤ C8δ
−2τ‖E‖2ρ , ‖E′‖Hm−τ ≤ C9‖E‖2Hm .

The procedure at Step 3 can be iterated to get a sequence of approximate so-
lutions, say {Kj , µj}. Its convergence is obtained through an abstract implicit
function theorem, alternating the iteration with carefully chosen smoothings op-
erators defined in a scale of Banach spaces (analytic functions or Sobolev spaces).

Step 5: local uniqueness. Under smallness conditions, one can prove that, if
there exist two solutions (Ka, µa), (Kb, µb), then there exists ψ ∈ R

n such that

Kb(θ) = Ka(θ + ψ) and µa = µb .

We remark that in the analytic case, the smoothing is obtained by rescaling the
size of the strip on which the analytic functions are defined at each step, given
that the domains where they are defined shrink by a given amount. Then, for the
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sequence of solutions {Kj , µj}, one can take the analyticity domain parameters
ρh and the shrinking parameters δh as

ρ0 = ρ , δh =
ρ0

2h+2
, ρh+1 = ρh − δh , h ≥ 0 .

Given that the error is quadratic, we can write for some a, b > 0 and a constant
CE > 0:

‖E(Kh+1, µh+1)‖ρh+1
≤ CE νaδbh ‖E(Kh, µh)‖

2
ρh
.

If the quantity ε0 ≡ ‖E(K0, µ0)‖ρ0
is small enough, then one can prove that

‖Kh −K0‖ρh
≤ CKε0 , |µh − µ0| ≤ Cµε0

for some constants CK , Cµ > 0. A finite number of conditions on parameters and
norms will imply the indefinite iterability of the procedure and its convergence.

The a-posteriori approach for conformally symplectic systems has a num-
ber of consequences and further developments that we briefly summarize below,
referring to the cited literature for full details:

– the method provides an efficient algorithm to determine the breakdown
threshold, very suitable for computer implementations ([14]);

– the a-posteriori method allows to find rigorous lower estimates of the break-
down threshold ([84, 49]). The rigorous lower estimates for symplectic maps
in [84, 49] are very close to to the rigorous upper estimates in [57]. In [21] one
can find very detailed estimates (they do not control completely the round
off error, but they control everything else), that are comparable with the
best numerical estimates computed by other methods;

– one gets that the local behavior near quasi–periodic solutions is given by a
rotation in the angles and a shrink in the actions ([18]);

– the method allows to obtain a partial justification of Greene’s criterion for
the computation of the breakdown threshold of invariant attractors ([23]);

– one obtains a bootstrap of regularity, which allows to state that all smooth
enough tori are analytic, whenever the map is analytic ([17]);

– one gets a characterization of the analyticity domains of the quasi–periodic
attractors in the symplectic limit ([19]);

– one can prove the existence of whiskered tori for conformally symplectic
systems ([20]).

Concerning the first item above, we stress that the proof given in [17] leads
to a very efficient KAM algorithm, which can be implemented numerically and
it is shown to work very close to the boundary of validity ([21]). Indeed, all
steps of the algorithm involve diagonal operations in the Fourier space and/or
diagonal operations in the real space. Moreover, if we represent a function in
discrete points or in Fourier space, then we can compute the other functions by
applying the Fast Fourier Transform (FFT). Using N Fourier modes to discretize
the function, then we need O(N) storage and O(N logN) operations. Note that
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all the steps in the algorithm can be implemented in a few lines in a high level
language so the the resulting algorithm is not very hard to implement (about 200
lines in Octave and about 2000 lines in C). Even if the above transcription of the
algorithm works extremely well in near integrable systems, when approaching
the breakdown, one needs to take some standard precautions (e.g. monitoring
the size of the tails of Fourier series).

We also remark that the KAM proof requires a computer to make very long
computations, which are needed to determine, for example, the initial approxi-
mate solution or to check the KAM algorithm. However, the computer introduces
rounding-off and propagation errors, which can be controlled through interval
arithmetic for which we refer to the specialized literature (see, e.g., [77, 70, 64,
54]).

5 Breakdown of quasi–periodic tori and quasi–periodic
attractors

The analytical estimates which can be obtained through the implementation of
the KAM theorem represent a rigorous lower bound of the breakdown threshold
of invariant tori. In problems with a well-defined physical meaning, one can
compare the KAM results with a measure of the parameter(s). For example
in the restricted 3-body problem, one aims to prove the theorem for the true
value of the mass ratio of the primaries. If we consider an asteroid under the
gravitational attraction of Jupiter and the Sun, then the mass ratio amounts
to ε ≃ 10−3, which represents the benchmark that one wants to reach through
rigorous KAM estimates.

Model problems like the standard maps do not have a physical reference
value; therefore, one needs to apply numerical techniques that allow to deter-
mine the KAM breakdown threshold. Among the others, we mention Greene’s
technique ([52]), frequency analysis ([71]), Sobolev’s method ([14]).

In the next Sections we review two methods for the numerical computation
of the breakdown threshold that have been successfully applied to the standard
map ([52, 15, 14]): one is based on Sobolev’s method (Section 5.1) and the other
is based on Greene’s method (Section 5.2). The problem of breakdown of KAM
tori has been studied by many methods. The paper [15] contains a small survery
and comparison of several different methods, some of which we will not mention
here.

5.1 Sobolev breakdown criterion

To illustrate the method, we focus on the specific examples of the conservative
and dissipative standard maps; hence we have a two-dimensional discrete system,
which can be parametrized by a one-dimensional variable θ ∈ T. In particular,
in the conservative case we write the invariance equation for K as

f ◦K(θ) = K(θ + ω) ,
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while in the dissipative case we write the invariance equation for (K,µ) as

fµ ◦K(θ) = K(θ + ω) . (28)

As shown rigorously in [15] for the conservative case and in [14] for the dissipative
case, the continuation method based in the constructive Newton method can
(if given enough computer resources) reach arbitrarily close to the breakdown.
Furthermore, the breakdown of analytic tori happens if and only if some Sobolev
norm of sufficiently high order blows up.

This rigorous result can, of course, be readily implemented. Today’s com-
puters, of course, do not have infinite resources, but they are fairly impressive
for people who cut their teeth in a PDP-11 with 16K of RAM. Since the algo-
rithms we describe are based on computing Fourier series, one can get readily
the Sobolev norms of the embedding K and monitor their blow up.

The blow up of the Sobolev norm, gives a clear indication that the torus is
breaking down. Note that, given the a-posteriori theorem, and the bootstrap of
regularity results, if the norm of the computed solution is not blowing up, it is
a very clear indication that the torus is there.

Remark 2. Something that increases the possible effectiveness of this method
is that it has been found empirically that the blow up of Sobolev norms is
given by power laws whose exponents are universal. Even if this is mainly an
empirical observation (that needs to be somehow tone down since [15] contains
several warnings for some maps), it can improve dramatically the computation of
breakdowns. Many of these empirical results are organized using Renormalization

Group methods ([85–87, 76]). Even if some aspects of renormalization group have
been made rigorous ([63, 65–67, 93, 94]), much more mathematical work seems
to remain.

We implement the method for the conservative and dissipative standard
maps, computing in Table 1 the value of εcrit for the frequency equal to the

golden ratio: ω = 2π
√
5−1
2 . The result in the conservative case is in full agree-

ment with the value which can be obtained by implementing Greene’s method
(see [52]). The values for the dissipative case given in Table 1 will be compared
in Section 5.2 to those obtained implementing a version of Greene’s method for
the dissipative standard map.

Conservative case Dissipative case

εcrit λ εcrit

0.9716 0.9 0.9721

0.5 0.9792

Table 1. Breakdown values of the golden mean curve obtained implementing Sobolev’s
method for the conservative case (left column) and for the dissipative case (right col-
umn), the latter one for two different values of the dissipative parameter.
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In Figure 7, we present the existence domain of the dissipative standard map
(3) with a two harmonic potential given by

V (θ) = ε1 sin(x) + ε2 sin(2x) . (29)
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Fig. 7. Existence domain for invariant circles of the dissipative standard map with
potential (29). Left: λ = 0.9. Right: λ = 0.1.

We call attention to the fact that this region contains parts with smooth
boundaries, but – specially in the conservative case – it contains some parts of
the boundary that are rather ragged. A tentative explanation ([75]) is that the
smooth parts of the the boundary of the region of existence are the intersection
of the family considered with the stable manifold of fixed point of renormaliza-
tion. Even if this is not a completely rigorous picture, there has been significant
mathematical progress in verifying it in an open set of families. We hope that,
in the future there could be more progress in this area.

One important advantage of the Sobolev method is that it can be pro-
grammed systematically and run unattended. The Greene’s method relies on
periodic orbits and one has to pay attention to making sure that the periodic
orbits are continued correctly. We also note that the Sobolev method works for
models of long range interaction in Statistical Mechanics without a dynamical
interpretation.

5.2 Greene’s method, periodic orbits and Arnold’s tongues

The method developed by J. Greene in [52] is based on the conjecture that the
breakdown of an invariant curve with frequency ω, say C(ω), is related to a
change from stability to instability of the periodic orbits P(

pj

qj
) with frequencies

pj

qj
tending to ω. We observe that a standard procedure to obtain the rational

approximants of ω is to compute the successive truncations of the continued
fraction representation of ω.
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Greene’s method has been successfully developed for the conservative stan-
dard map for which a partial justification is given in [47, 75]. In the dissipative
case, there appears an extra difficulty due to the fact that the periodic orbits with
frequency

pj

qj
occur in a whole interval of the drift parameter. This phenomenon

gives rise to the appearance of the so-called Arnold tongues. Figure 8, left panel,
gives a graphical representation of the Arnold tongues; having fixed a value of the
dissipative parameter ε, there is a whole interval of the drift parameter µ which
admits a periodic orbit of the same period. The right panel of Figure 8 shows
several periodic orbits approaching the torus with frequency equal to the golden
mean; such periodic orbits have frequency equal to the rational approximants
which are given by the ratio of the Fibonacci numbers.

A partial justification of an extension of Greene’s criterion in the conformally
symplectic case is presented in [23], where it is proved that if there exists a
smooth invariant attractor, one can predict the eigenvalues of the periodic orbits
approximating the torus for parameters close to those of the attractor.

Fig. 8. Left: Arnold’s tongues providing µ vs. ε for three periodic orbits of the dissipa-
tive standard map with periods 1/3, 1/2, 2/3. Right: periodic orbits of the dissipative
standard map approximating the golden mean curve.

Figure 9 shows some approximating periodic orbits (left panels) and the
corresponding behaviour of the drift parameter (right panels) that, in the limit,
tends to the value of the drift that corresponds to the golden mean torus.

We also call attention to [33] which contains tentative results on the non-
existence of invariant tori for the spin-orbit models. Even if the methods devel-
oped there are not rigorous, they may present a counterpoint to the methods to
study the existence.
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Fig. 9. Left: periodic orbits with increasing periods, approximating the golden mean
curve. Right: the corresponding drift parameters with the successive periodic orbits
labeled by integer numbers on the x-axis.
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6 Collision of invariant bundles of quasi-periodic
attractors

Quasi-periodic attractors of conformally symplectic maps are normally hyper-
bolic invariant manifolds (NHIM). We can obtain the Lyapunov multipliers of
the attractor from a simple computation. We start from the invariance equation
(28) for a pair (K,µ). We then introduce a change of variables to reduce the co-
cycle. Let M̃(θ) = [DK(θ) |Es(θ)] be the matrix whose columns are the tangent
and stable bundles of K = K(Tn):

Dfµ ◦K(θ)M̃(θ) = M̃(θ + ω)

(
1 0
0 λ

)
. (30)

From equation (30) we can write the stable bundle as follows

Es(θ) = DK(θ)B(θ) + J−1DK(θ)N(θ) ,

where B(θ) is the function that satisfies

B(θ)− λB(θ + ω) = −S(θ) .

Indeed, after j iterates of the map we have that,

Df jµ ◦K(θ) = M̃(θ + ω)

(
1 0
0 λj

)
M̃−1(θ) ,

which shows that the tangent space of M at K(θ) is

TK(θ)M = Range(DK(θ))⊕ Es
K(θ) .

We can conclude that there exists a constant C such that

C−1λj |v| ≤ |Df jµ ◦K(θ) v| ≤ Cλj |v| , v ∈ Es
K(θ) ,

C−1 |v| ≤ |Df jµ ◦K(θ) v| ≤ C |v| , v ∈ Ec
K(θ) ,

showing that K = K(Tn) is a NHIM. Equation (30) also tells us that the Lya-
punov multipliers are constant along the family of quasi-periodic attractors for
fixed Diophantine vectors.

In the case of maps of the cylinder M = R × T, we know that the curve
K is Cr, one dimensional, and since ω satisfies the Diophantine condition, we
know by the results of [56, 61, 59, 58] that the map conjugating the dynamics in
K to a rigid rotation is in Cr−τ−δ for a small δ > 0. Therefore, by the bootstrap
of regularity results4, the conjugacy is analytic for analytic maps. Since the
bundles depend on the conjugacy, then the regularity of the manifold implies
the analyticity of K and the bundles up to the breakdown.

To investigate the breakdown of normal hyperbolicity, we note that, because
of the pairing rule of Lyapunov exponents [46, 99], since one Lyapunov multiplier

4 i.e., all tori which are smooth enough are analytic if the map is analytic ([17]).
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is 1 – the one along the tangent directional (remember that the map on the torus
is smoothly conjugate to the torus) – the other one is precisely λ.

We recall that hyperbolicity is equivalent to the existence of transversal in-
variant bundles with different rates. In our case, if the tori have to cease to be
normally hyperbolic, because the exponents remain constant, the only thing that
can happen is that the transversality of the bundles deteriorates.

What is found empirically is that the breakdown happens because at the
same time the regularity of the conjugacy deteriorates quantitatively (even if
the conjugacy remains analytic, some Sobolev norm blows up).

At the same parameter values, the breakdown of hyperbolicity happens via
the stable and tangent bundle collision. Even if the Lyapunov exponents remain
safely away, the transversality deteriorates and the tangent and stable bundles
become close to tangent.

In the case at hand, we can make a very detailed study: the bundles are one
dimensional and we compute a formula for the angle between the bundles for
every θ. In fact, let α(θ) be the angle between the stable and tangent bundles
for every θ ∈ T, then we have

α(θ) = arctan

(
1

B(θ)(DK(θ)TDK(θ))

)
.

This formula says that the angle α(θ) goes to zero at points where the functions
in the denominator go to infinity.

We present figures (see Figure 10) of the angle between the bundles close to
the breakdown.
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Fig. 10. Invariant bundles close to their collision. Left: dissipative standard map. Right:
dissipative standard non-twist map. Reproduced from [13].

Rather remarkably these two phenomena (the blow up of Sobolev norms and
the stable bundles and the tangent becoming parallel) happen at the same time
and present very unexpected regularities. There are scaling relations that seem
to be independent of the family considered and they happen in codimension 1
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smooth submanifolds in the space of maps. We think that this is a very inter-
esting mathematical phenomenon that deserves rigorous study. It seems quite
unlikely that it would have been discovered except for the very careful numerics
that can explore with confidence close to the breakdown. Such delicate numerics
are only possible because of the rigorous mathematical development.

7 Applications

In this Section we want to briefly review some constructive applications of KAM
theory for conservative and dissipative models. We will consider applications to
the standard map and to the spin-orbit problem, both in the conservative and
dissipative settings. Although we will not present other applications of KAM
theory, it is worth mentioning also the constructive KAM results to the N-body
and planetary problems in Celestial Mechanics ([81]); in this context, for results
obtained in the conservative framework we refer the reader to [26–28, 89, 51] and
to [34] for numerical investigations including dissipative effects.

7.1 Applications to the standard maps

The first applications of computer-assisted KAM proofs have been given for
the conservative standard map; these results show that the golden mean torus
persists for values of the perturbing parameter equal to 93% of the numerical
breakdown value (see [41, 40]); we also mention [25] which, at the same epoch but
using a different approach than [41, 40], reached 86% of the numerical breakdown
value.

Rigorous estimates for the conservative standard map using the a-posteriori
method have been proved in the remarkable paper [49], where for the twist
and non-twist conservative standard maps the golden mean torus is proved to
persist for values of the perturbing parameter as high as 99.9% of the numerical
breakdown value.

For the dissipative standard map, the paper [21] analyzes the persistence of
the invariant attractor with frequency equal to the golden mean and for a fixed
value of the dissipative parameter (precisely λ = 0.9); such persistence is shown
for values of the perturbing parameter equal to 99.9% of the breakdown value,
where the numerical value has been obtained through the techniques presented
in Sections 5.1 and 5.2.

7.2 Applications to the spin–orbit problems

The first application of KAM theory to the conservative spin-orbit problem is
found in [30, 29]. In those articles some satellites in synchronous spin-orbit reso-
nance have been considered; the synchronous or 1:1 spin-orbit resonance implies
that the satellite always points the same face to the host planet. In particu-
lar, the following satellites have been considered: the Moon, and three satellites
of Saturn, Rhea, Enceladus, Dione. Being the normalized frequency (namely,
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the ratio between the rotational and orbital frequency) equal to one, two Dio-
phantine numbers bounding unity from above and below have been considered.
Through a computer-assisted KAM theorem, the existence of invariant tori with
frequency equal to the bounding numbers have been established for the true val-
ues of the parameters of the satellites, namely the eccentricity and the equatorial
oblateness.

Such result guarantees the stability for infinite times in the sense of confine-
ment in the phase space. In fact, the phase space associated to the Hamiltonian
describing the conservative spin-orbit problem is 3-dimensional; since the KAM
tori are 2-dimensional, one gets a confinement of the motion between the bound-
ing invariant tori.

We remark that the confinement is no more valid for n > 2 degrees of free-
dom, since the motion can diffuse through invariant tori, reaching arbitrarily far
regions; this phenomenon is known as Arnold’s diffusion ([3]) for which we refer
to the extensive literature on this topic (see, e.g., [44, 50] and references therein).

For the dissipative spin-orbit problem, we refer to [32] for the development
of KAM theory for a model of spin-orbit interaction with tidal torque as in
(11). Precisely, for λ0 ∈ R+ and ω Diophantine, it is proven that there exists
0 < ε0 < 1, such that for any ε ∈ [0, ε0] and any λ ∈ [−λ0, λ0] there exists
a unique function K = K(θ, t) and a drift term µ which is the solution of the
invariance equation for the dissipative spin-orbit model.

Explicit estimates for the dissipative spin-orbit problem, even in the more
general case with a time-dependent tidal torque as in (9), are given in [24] (see
also [91]). Here, the a-posteriori method is implemented to construct invariant
attractors with Diophantine frequency; the results are valid for values of the
perturbing parameter consistent with the astronomical values and very close to
the numerical breakdown threshold, which has been computed in [24] through
Sobolev and Greene’s method (see also [92]).
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9. H. W. Broer, G. B. Huitema, and M. B. Sevryuk. Quasi-Periodic Motions in
Families of Dynamical Systems. Order Amidst Chaos. Springer-Verlag, Berlin,
1996.

10. H. W. Broer, G. B. Huitema, F. Takens, and B. L. J. Braaksma. Unfoldings and
bifurcations of quasi-periodic tori. Mem. Amer. Math. Soc., 83(421):viii+175,
1990.

11. Adrián P. Bustamante and Renato C. Calleja. Computation of domains of ana-
lyticity for the dissipative standard map in the limit of small dissipation. Phys.
D, 395:15–23, 2019.

12. Adrián P. Bustamante and Rafael de la Llave. Gevrey estimates for the asymptotic
expansion of tori of weakly dissipative systems. Preprint, 2020.

13. R. Calleja, M. Canadell, and A. Haro. Non-twist tori in conformally symplectic
systems. Preprint, 2020.

14. R. Calleja and A. Celletti. Breakdown of invariant attractors for the dissipative
standard map. Chaos, 20(1):013121, 2010.

15. R. Calleja and R. de la Llave. A numerically accessible criterion for the breakdown
of quasi-periodic solutions and its rigorous justification. Nonlinearity, 23(9):2029–
2058, 2010.

16. Renato Calleja and Jordi-Lluis Figueras. Collision of invariant bundles of quasi-
periodic attractors in the dissipative standard map. Chaos, 22(3):033114, 10,
2012.

17. Renato C. Calleja, Alessandra Celletti, and Rafael de la Llave. A KAM theory
for conformally symplectic systems: efficient algorithms and their validation. J.
Differential Equations, 255(5):978–1049, 2013.

18. Renato C. Calleja, Alessandra Celletti, and Rafael de la Llave. Local behavior near
quasi-periodic solutions of conformally symplectic systems. J. Dynam. Differential
Equations, 25(3):821–841, 2013.

19. Renato C. Calleja, Alessandra Celletti, and Rafael de la Llave. Domains of ana-
lyticity and Lindstedt expansions of KAM tori in some dissipative perturbations
of Hamiltonian systems. Nonlinearity, 30(8):3151–3202, 2017.

20. Renato C. Calleja, Alessandra Celletti, and Rafael de la Llave. Existence of
whiskered KAM tori of conformally symplectic systems. Nonlinearity, 33(1):538–
597, 2020.

21. Renato C. Calleja, Alessandra Celletti, and Rafael de la Llave. KAM estimates
for the dissipative standard map. Preprint, 2020.



KAM theory for dissipative systems 37

22. Renato C. Calleja, Alessandra Celletti, and Rafael de la Llave. Whiskered KAM
tori of conformally symplectic systems. Mathematics Research Reports, 1:15–29,
2020.

23. Renato C. Calleja, Alessandra Celletti, Corrado Falcolini, and Rafael de la Llave.
An Extension of Greene’s Criterion for Conformally Symplectic Systems and a
Partial Justification. SIAM J. Math. Anal., 46(4):2350–2384, 2014.

24. Renato C. Calleja, Alessandra Celletti, Joan Gimeno, and Rafael de la Llave.
Breakdown threshold and KAM estimates in the spin-orbit problem with tidal
torque. Preprint, 2020.

25. A. Celletti and L. Chierchia. A constructive theory of Lagrangian tori and
computer-assisted applications. In Dynamics Reported, pages 60–129. Springer,
Berlin, 1995.

26. A. Celletti and L. Chierchia. On the stability of realistic three-body problems.
Comm. Math. Phys., 186(2):413–449, 1997.

27. A. Celletti and L. Chierchia. KAM tori for N -body problems: a brief history.
Celestial Mech. Dynam. Astronom., 95(1-4):117–139, 2006.

28. A. Celletti and L. Chierchia. KAM stability and celestial mechanics. Memoirs of
the Americal Mathematical Society, 187(878), 2007.

29. Alessandra Celletti. Analysis of resonances in the spin-orbit problem in celes-
tial mechanics: higher order resonances and some numerical experiments. II. Z.
Angew. Math. Phys., 41(4):453–479, 1990.

30. Alessandra Celletti. Analysis of resonances in the spin-orbit problem in celestial
mechanics: the synchronous resonance. I. Z. Angew. Math. Phys., 41(2):174–204,
1990.

31. Alessandra Celletti. Stability and Chaos in Celestial Mechanics. Springer-Verlag,
Berlin; published in association with Praxis Publishing, Chichester, 2010.

32. Alessandra Celletti and Luigi Chierchia. Quasi-periodic attractors in celestial
mechanics. Arch. Ration. Mech. Anal., 191(2):311–345, 2009.

33. Alessandra Celletti and Robert MacKay. Regions of nonexistence of invariant tori
for spin-orbit models. Chaos, 17(4):043119, 12, 2007.

34. Alessandra Celletti, Letizia Stefanelli, Elena Lega, and Claude Froeschlé. Some
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