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Abstract: We study solvability of some linear nonhomogeneous edliptoblems
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of their right sides implies the existence and the convergém/*(R¢) of the solu-
tions. The problems contain the squares of the sums of serdednon- Fredholm
differential operators and we use the methods of the spectthscattering theory
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cially emphasize that here we are dealing with the fourtleoogerators in contrast
to the second order operators in [28].
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1. Introduction

Consider the problem
—Au+V(x)u —au = f, (1.1)

whereu € £ = H*(R?) andf € F = L*(R?Y), d € N, a is a constant and the scalar
potential functionV/(x) tends to0 at infinity (it is well known that ifV (z) — oo
as|z| — oo, it leads only to the discreteness of the spectrum). d~or 0, the
essential spectrum of the operatér: £ — F corresponding to the left side of
equation (1.1) contains the origin. Consequently, thisatoe fails to satisfy the
Fredholm property. Its image is not closed, for- 1 the dimensions of its kernel
and the codimension of its image are not finite. The presemk wgodevoted to
the studies of certiain properties of the operators of timsl k Let us recall that
elliptic equations containing non Fredholm operators wesated extensively in
recent years (see [22], [23], [24], [25], [26], [27], also])[@long with their



potential applications to the theory of reaction-diffusiequations (see [8], [9]).
Non-Fredholm operators are also very significant when stigdyave systems with
an infinite number of localized traveling waves (see [1])pémticular, whern = 0
the operatoA satisfies the Fredholm property in certain properly choseighed
spaces (see [2], [3], [4], [5], [6], [10], [11], [12], [13])However, the case of
a # 0 is considerably different and the method developed in tiesks cannot be
applied.

One of the important questions about problems with non{kokd operators
concerns their solvability. We address it in the followiredtsg. Letf, be a se-
quence of functions in the image of the operatoisuch thatf, — f in L?(R?) as
n — oo. Denote byu, a sequence of functions frofi?(R?) such that

Au, = fn, n € N.

Since the operatad does not satisfy the Fredholm property, the sequenamay
not be convergent. Let us call a sequengehe solution in the sense of sequences
of the equationdu = f if Au, — [ (see [22]). If such sequence converges to
a functionu, in the norm of the spacé, thenu, is a solution of this equation.
Solution in the sense of sequences is equivalent in thistoakee usual solution.
However, in the case of the non-Fredholm operators, thigargence may not hold
or it can occur in some weaker sense. In such case, solutitteisense of se-
guences may not imply the existence of the usual solutiothdrpresent work we
will find sufficient conditions of equivalence of solutiomsthe sense of sequences
and the usual solutions. In the other words, the conditionseguenceg, under
which the corresponding sequenagsare strongly convergent. Solvability in the
sense of sequences for the sums of non-Fredholm Schradypeoperators was
studied in [28]. In the first part of the work we consider sugemtors squared,
namely

{0 +V(2) = Ay + U@ 'u—a*u= f(z,y), zyeR’, (1.2)
with the constant > 0. The operator
Hy v ={-A, +V(z) - A, +U(y)}* : H*(R®) — L*(R%) (1.3)

under the technical conditions on the scalar potentialtians V'(z) and U(y)
stated below. Here and throughout the article the LaplaegadprsA, and A,
are with respect to the andy variables respectively, such that cumulativély=
A, + A,. Similarly for the gradientsy, and V, are with respect to the and
y variables respectively. In the applications the sum of e $chrodinger type
operators has the physical meaning of the resulting hanetoof the two non-
interacting quantum particles.

The boundedness of the gradient of a solution for the bi-barcequation was
established in [17]. The behavior near the boundary of smiatto the Dirichlet

2



problem for the biharmonic operator was studied in [18].id&t [19] is devoted
to the Dirichlet problem in Lipschitz domains for higher erelliptic systems with
rough coefficients. Solvability conditions for a lineadz€ahn-Hilliard equation
were obtained in [24].

The scalar potential functions involved in operator (11&@assumed to be shal-
low and short-range, satisfying the assumptions analogotie ones of [25] and
[26]. We also add a few extra regularity conditions.

Assumption 1. The potential function® (z), U(y) : R* — R satisfy the estimates

¢ U < —C

‘ -1 + |y|3.5+€

V(z)] <

| — 1+ |x|3.5+5’

with somes > 0 andz, y € R? a.e. such that

19 _2
B2 IV g IVIEy o <1, (1.4)
B3 24m) U IU1F, <1 (1.5)
8 L>(R3) L3R3) '

and
VerisVil g e <47, VeurslUl g o) < 4
Moreover,|V,.V (z)|, AV (z), |[V,U(y)|, A,U(y) € L= (R?).

Here and further down’ denotes a finite positive constant atyg, s given on
p.98 of [16] is the constant in the Hardy-Littlewood-Sobaleequality

[ LB ey < sl € LEE)

LQ(RS)

The norm of a functionf; € LP(R?), 1 < p < oo, d € N is designated as
1 f1ll 2o ey -

Proposition. The functionl/ (z) = 1 whereC' is small enough satisfies As-

, + |z
sumption 1.

Proof. A straightforward computation yields

4C |z |3

VoV ()] = At e €

€ L™(R?)

and
5x|* — 3|x|°

AV (z) = —4C 1+ 2])?

€ L®(R?)



as well. [ |

Let us denote the inner product of two functions as

() gt = [ F)gla)ds (1.6)

with a slight abuse of notations when these functions aresguoare integrable.
Indeed, iff (z) € L'(R?) andg(z) is bounded, like for example the functions of the
continuos spectrum of the Schrodinger operators disdusslew (see Corollary 2.2
of [26]), then the integral in the right side of (1.6) makess® We use the spaces
H?(RY) and H*(R?) equipped with the norms

lull oy = Il Zoga) + 1 A2 @) L.7)

and
HUH%M(Rd) = HuH%Q(Rd) + ”AzuH%Q(Rd) (1.8)

respectively. Throughout the work, the sphere of radius 0 in R? centered
at the origin will be designated b§?. By means of Lemma 2.3 of [26], under
Assumption 1 above on the scalar potentials, operator ¢bi33idered as acting in
L*(R%) with domain*(RY) is self-adjoint and is unitarily equivalent fo-A, —
A, }? on L*(R%) via the product of the wave operators (see [15], [21])

PH=DatV (@) itAs ~BytU)) ithy.

+ . : +._ : it
O =5 =M1 . Q=5 —lim 1€’ (

with the limits here understood in the stroig sense (see e.g. [20] p.34, [7]
p.90). Hence, operator (1.3) has no nontrivid[R®) eigenfunctions. Its essential
spectrum fills the nonnegative semi-afis+oc). Therefore, operator (1.3) does
not satisfy the Fredholm property. On the contrary, the ajoer

hy, v =—0, +V(z) = Ay +U(y) +a

considered as acting ih?(R%) with domain H*(RR%) satisfies the Fredholm prop-
erty, has only the essential spectrum, which fills the irgkfw, +00), such that
the inverseh, ', : L*(R%) — H*(R®) is bounded. The functions of the continuos
spectrum of the first operator involved in (1.3) are the sohs of the Schrodinger
equation

A, + V(@)]on(@) = Koi(), k€ R,

in the integral form the Lippmann-Schwinger equation (sge 0] p.98)

etk 1 6i\l<:||mfy|
o) = =g L Ve (19)

for the perturbed plane waves and the orthogonality caorubti
(or(x), or, (1)) 2@sy = 0(k — k1), k, ky € R,

4



The integral operator involved in (1.9)

1 [ eilklla—yl
(Veo)(y)dy, e(z) € L=(R?).

(Qp)(z) =

4m R3 \x—y\

Let us considef) : L>°(R?) — L>(R?). Its norm||@Q|| < 1 under Assumption 1
via Lemma 2.1 of [26]. In fact, this norm is bounded above ®y/ithndependent
quantity, which is the left side of inequality (1.4). Simlig for the second operator
involved in (1.3) the functions of its continuous spectrustve

[=Ay +UW)ng(y) = i®ngly), q € R’

in the integral formulation

W=t | A ) (1.10)
= - — — 2)dz, :
Nq\Y (2mE a7 Jas ly— 2| Mg

such that the orthogonality conditiotw, (y), 7, () r2s) = 6(¢ — ¢1), ¢, 1 € R?
hold. The integral operator involved in (1.10) is

1 etlally—z|

(Un)(2)dz,  n(y) € L=(R?).

For P : L>*(R*) — L*™(R®) its norm|| P, < 1 under Assumption 1 by means
of Lemma 2.1 of [26]. As before, this norm can be estimatethfedbove by the

g-independent quantity , which is the left side of inequa(ity5). Let us denote

by the double tilde sign the generalized Fourier transfoiith the product of these

functions of the continuous spectrum

Flk,q) == (f(z, ), or(@)ng () L2ms)y, K, q € R, (1.11)

(1.11) is a unitary transform oh*(IR%). Our first main proposition is as follows.

Theorem 2. Let Assumption 1 holdy > 0 and f(x,y) € L*(R®). Assume also
that |z| f(x,v), y|f(z,y) € L*(R®). Then problem (1.2) has a unique solution
u(x,y) € HY(R®) if and only if

(f(@,), eu(@)ng(y))r2@e) =0, (k,q) € Sz ace. (1.12)

In the very special case when the scalar potential functiopag andU (y) van-
ish identically inR?, condition (1.12) gives us the orthogonality to the produat
the corresponding standard Fourier harmonics. Then wepturattention to the is-
sue of the solvability in the sense of sequences for our equakhe corresponding
sequence of approximate equations witk N is given by

{_AJ»‘ + V(ZL‘) - Ay + U(y)}Qun - a2un = fn(xv y)v T,y € R37 (113)
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with the constant. > 0 and the right sides converge to the right side of (1.2) in
L?*(R%) asn — oc.

Theorem 3.Let Assumption 1 hold, > 0, n € Nandf,(z,y) € L*(R®), such that
fo(z,y) — f(x,y)in L*(R®) asn — oo. Letin addition|z| f,.(z, y), |y|f.(z,y) €

LY(R%), n € N, such thatiz|f, (x,y) = |z|f(x,y), |ylfulz,y) = [ylf(z,y)in
L'(R%) asn — oo and the orthogonality relations

(a2, 9), or(@)4(Y)) 12@s) = 0, (K, q) € Sy ace. (1.14)

hold for alln € N. Then problems (1.2) and (1.13) admit unique solutions y) €
H*(R%) and u,(x,y) € H*(R®) respectively, such that,(z,y) — u(z,y) in
H*(R®) asn — oo.

The second part of the article is devoted to the studies cddlo@tion
(-0 = Ay +U@W)Yu - a*u=d(z,y), z€R!, yeR®  (1.15)

whered € N, the constant > 0 and the scalar potential function involved in (1.15)
is shallow and short-range under Assumption 1 above. Theatge

Ly = {-A, — A, + U(y)}? : H{R™) — L*(R*). (1.16)

Similarly to (1.3), under the given assumptions operatat@lconsidered as act-
ing in L?(R4+3) with domainH*(R?*?) is self-adjoint and is unitarily equivalent to
{—A, — A,}?. Thus, operator (1.16) does not have nontrivia[R¢3) eigenfunc-
tions. Its essential spectrum fills the nonnegative sensi{éx+oc). Therefore,
operator (1.16) is non Fredholm. On the contrary, the operat

ly=—0, — A, +U(y)+a

considered as acting ih*(R?"?) with domain H%(R*"?) satisfies the Fredholm
property, has only the essential spectrum, which fills tiberiml[a, +00), such that
the inversd, ' : L2(R¥3) — H?(R*?) is bounded. Let us consider another gen-
eralized Fourier transform with the standard Fourier hamig®and the perturbed
plane waves

éf:)(kAQ) = (cb(l“,y), gm(y)) , keRY qeR. (1.17)
L2(Rd+3)

(1.17) is a unitary transform oh?(R¢*3). We have the following statement.

Theorem 4. Let the potential functiord/(y) satisfy Assumption 12 > 0 and
additionally(x,y) € L*(R**3), |z|é(x,y), |y|o(z,y) € L*(RY3), d € N. Then
problem (1.15) possesses a unique solution i) € H*(R**?) if and only if

eilm
(cb(l“,y), wq(y)> =0, (kq) €S ae (1.18)
(27T) 2 L2 (Rd+3)



Our final main proposition is devoted to the issue of the dolitg in the sense
of sequences for our problem. The corresponding sequenggpobximate equa-
tions withn € N is given by

(=0 = A+ U Y)Y up—a’u, = ¢u(e,y), z€R? deN, yeR’ (1.19)
where the right sides converge to the right side of (1.19)%fR*3) asn — oo.

Theorem 5. Let the potential functiod/(y) satisfy Assumption I, > 0, n € N
and ¢, (z,y) € L?*(R%3), d € N, such thatp, (z,y) — ¢(z,y) in L*(R43) as
n — oo. Letin addition|z|d, (z,y), |y|¢n(z,y) € L (RY3), such that

|zl on(x,y) = [2|o(z, v), [Ylon(e,y) = lylo(z, )
in L'(R43) asn — oo and the orthogonality relations

ik

<¢n(x,y), im(.v)) =0, (kq) €S ae (1.20)
2 L2(Rd+3)

hold for all n € N. Then problems (1.15) and (1.19) admit unique solutions
u(z,y) € HY(R¥3) andu,(x,y) € H*(R3) respectively, such that,(z,y) —
u(z,y)in H4(R¥3) asn — oo.

Remark. Let us note that (1.12), (1.14), (1.18), (1.20) are the ogtreality condi-

tions containing the functions of the continuous spectréiouo Schbdinger oper-

ators, as distinct from the Limiting Absorption Principlewhich one orthogonal-
izes to the standard Fourier harmonics (see e.g. Lemma 23aoposition 2.4 of
[14]).

We proceed to the proof of our statements.
2. Solvability in the sense of sequences with two potentials

Proof of Theorem 2First of all, let us observe that it is sufficient to solve efa
(1.2) in H*(R"), since this solution will belong té7*(R%) as well. Indeed, it can
be easily shown that

Afu+ V() + U (y)lu — [A.V (2) + AU (y)]u = 2[V(2) + U(y)| Au—

-2V, V(2).Vou =2V, U(y).V,u+ 2V (2)U(y)u — a*u = f(z,y), (2.21)

with u(z, ) a solution of (1.2) belonging té/%(R®). The dot symbol in the fifth
and the sixth terms in the left side of (2.21) and throughbatdrticle denotes the
standard scalar product of two vectorsRA. Evidently, all the terms in the left



side of (2.21) starting from the second one are square elbégsince according to
Assumption 1 our scalar potential functions are boundexigatath

VoV (@), [V, Uyl AV (2), AU(y)

andu(z,y) € H*(R®). The right side of (2.21) is square integrable as well as
assumed. Thereforé\?u(z,y) € L*(R%), which yields that.(z, y) € H*(R").

To show the uniqueness of solutions for our equation, we csgphat prob-
lem (1.2) admits two solutions, (x, y), us(x,y) € H*(RS). Then their difference
w(z,y) = ui(z,y) — us(z,y) € H*(RY) solves the equation

Hy yvw = a’w.

But the operatoi/;; v : H*(R®) — L*(R®) has no nontrivial eigenfunctions as
discussed above. Therefore(z, y) vanishes irR°.

Let us apply the generalized Fourier transform (1.11) tdnIsides of problem
(1.2). This yields

- ~ f(k,q)
u(k,q) = 2+ @22 —a
Hence . . B
ﬂ(k7Q) = gl(k7Q) +.§~]2(k7Q)7 (222)
where
. (k) . k)
(k. q) = 2a(k* + ¢*> —a)’ g2k, q) = 2R+ @ +a)

It is worth noting that in the right side of (2.22) the firstrteg, (k, ) appeared in
[25]. The second term theig(k, ) is the new one which reflects the presence of
the fourth order operator. Evidently, the functionéz, y) andg.(x, y) satisfy the
equations

(04 V@) = A+ U)oy —agi = 5 fey)  (223)

and .
{=A: +V(2) = A, +U(y)}g2 + ag: = —%f(% Y) (2.24)

respectively. The operator involved in the left side of peoi (2.24) has a bounded
inverseh, ', : L>(R°) — H?*(R°) as discussed above and the right side of (2.24) is
square integrable as assumed. Therefore, equation (Z&#d)saa unique solution
go(z,y) € H?*(R®). By means of the part a) of Theorem 3 of [25], under the
given conditions equation (2.23) has a unique solutigr, y) € H*(R®) if and
only if orthogonality condition (1.12) holds. Note that thelvability of problem
(2.23) in L*(R%) is equivalent to its solvability inf72(R%) since the right side of



(2.23) is square integrable and the scalar potentials\edoin (2.23) are bounded
as assumed. [ |

Let us turn our attention to the solvability in the sense afussces for our
equation in the case of two scalar potentials.

Proof of Theorem 3First of all, let us demonstrate thatifz, y) andu,(x,y), n €
N are the uniqué?*(IR%) solutions of (1.2) and (1.13) respectively angdx,y) —
u(x,y) in H*(R®) asn — oo, then we haveu,(z,y) — u(x,y) in HY(R®) as
n — oo as well. Indeed, (1.2) and (1.13) yield that foe N andz, y € R?

{=8s +V(2) = &y + U (un — u) — a*(uy — u) = fu(z,y) — f(2,y).
Hence

A (un — ) + [VE(2) + U () (un — ) = [AsV (@) + AU (y))(un — u)—
—2[V(x) + U(y)|A(uy, — u) — 2V, V(2).Vy(u, —u) — 2V, U(y).Vy(u, — u)+

+2V (@)U (y) (uy — u) — a*(uy — ) = fulw,y) — f(z,y). (2.25)
Sinceu,(z,y) — u(z,y) in H*(R%) asn — oo as assumed, we have here

up(z,y) = u(z,y), Vauu(z,y) = Voulz,y), Vyu,(z,y) = Vyu(z,y),

Auy(z,y) — Au(z,y)

in L?(R%) asn — oo and
Viz), Uly), VoV, AV(x), [V,UW)l AU(y)

are bounded functions due to Assumption 1 above. Thereddirthe terms in the
left side of identity (2.25) starting from the second onedtém zero inL?(R®) as
n — oo. The right side of (2.25) converges to zerdi(R®) asn — oo as assumed.
Hence,A?u,, — A%uin L?(R%) asn — oco. By means of norm definition (1.8) we
obtain thatu,,(z,y) — u(z,y) in H4(R®) asn — co.

By virtue of Theorem 2 above, under the given conditions gaga#l.13) admits
a unique solution,(x,y) € H*(R®), n € N. Let us recall formula (2.5) in the
proof of Theorem 2 of [28]. Hence, under the stated assumptiee arrive at the
limiting orthogonality relation

(f(2,y), ox(x)nq(y)) L2msy = 0, (K, q) € S?/a a.e.

Then by means of Theorem 2 above problem (1.2) possessegjaeusnlution
u(x,y) € H*(R®). Let us apply the generalized Fourier transform (1.11) tth bo
sides of problems (1.2) and (1.13). This yields the reprasem (2.22) as in the
proof of Theorem 2 above, where the functignér, y), g2(z,y) € H?*(R%) under
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the given conditions are the unique solutions of equati@r&3) and (2.24) respec-
tively. Similarly,

ﬁn(ka Q) = 51,”(1{;7 Q) + 52,n(k7 Q>7 ne N7 (226)
where

Fulh, )
k2 +q*+a)

fulk, q)
k?+q¢%>—a)’

g1k, q) = Gon(k,q) = —
gl,n( 7q) 2@( gQ,n( 7Q) 2&(

Apparently, the functions, ,,(x, y) andg.,(z, y) solve the equations
1
and .
{—=A; +V(z) - Ay + U(y)}gon + agon = _%fn(xa y) (2.28)

respectively. Since the operator involved in the left sifi€2028) has a bounded
inverseh, ! : L*(R®) — H?(R®), such that its norm|h, || < co as discussed
above and the right side of (2.28) belongsItqRR%) as assumed, (2.28) admits a
unique solutiony,,(z,y) € H?*(R®). Becausef,(z,y) — f(z,y) in L*(R%) as

n — oo via the one of our assumptions, we have

1., _
92,0 — g2llE2me) < %Hhuiﬂ |fn = fllzz@®ey = 0, n — o0,

such thatgs ,(z,y) — ga(x,y) in H*(R®) asn — oo. By virtue of the result of
the part a) of Theorem 2 of [28], we have that equation (2.®8spsses a unique
solutiong, ,,(z,y) € H*(R®), suchthay, ,(z,y) — g1(x,y) in H*(R®) asn — oo.
Using formulas (2.26) and (2.22) considered in ihg space, we easily arrive at
[un(z,y) — u(z,y)| m2@e) <

< lgin(@,y) — g1(2, Yl 2@e) + | 920(2, y) — g2 (2, y)|| 2 RSy — O

asn — oo. Thereforeu,(z,y) — u(x,y) in H*(R%) asn — oo as discussed
above. -

In the last section of the article we treat the case when e lflaplacian is
added to our three dimensional Schrodinger operator.

3. Solvability in the sense of sequences with Laplacian andsangle potential

Proof of Theorem 4First of all, we show that it is sufficient to solve problemi3)
in H%(R%*3), because such solution will belong k6! (R?*?) as well. Apparently,

Au+U?(y)u —2U (y) Au — uld,U(y) — 2V, U(y).Vyu —a’u = ¢(z,y), (3.29)
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whereu(z,y) is a solution of (1.15), which belongs #@*(R¢+3). Clearly, all the
terms in the left side of (3.29) starting from the second amesguare integrable
because by means of Assumption 1 our scalar potential fumgdibounded along
with |V, U(y)| andA,U(y) andu(z,y) € H*(R3). The right side of (3.29) is
square integrable as well as assumed. Heaée,c L?(R4*3), which implies that
u(z,y) € HH(R™3).

To establish the uniqueness of solutions for our equatierswppose that (1.15)
possesses two solutions(z,y), ux(z,y) € H*RY3). Then their difference
w(z,y) == u(z,y) — us(z,y) € HY(RY3) satisfies the equation

Lyw = d*w.

Apparently, the operatat;; : H*(R*"?) — L*(R%"3) has no nontrivial eigenfunc-
tions as discussed above. Thugy, y) vanishes iR¢*3,

We apply the generalized Fourier transform (1.17) to botlesiof problem
(1.15) and obtain

a(k,q) = Gi(k, q) + Gk, q), (3.30)
where

~ ~

~

A o(k, o(k,
G1(k,q) :== 22 (+ qq2)_ oL Go(k,q) = a2 (+ q%)+ s

Clearly, the functiongs; (z, y) andGs(x, y) solve the equations

[~ = A, + UG — aGr = () 331

and .
{=A; = Ay + U(y)}Ga + aGy = —%dm’, y) (3.32)

respectively. The operator involved in the left side of doura(3.32) has a bounded
inversel;;' : L2(R43) — H?(RY+?) as discussed above and the right side of (3.32)
Is square integrable due to the one of our assumptions. Hemoblem (3.32)
possesses a unique solutiGh(z,y) € H?(R4™?). By virtue of the part a) of
Theorem 6 of [25], under the given assumptions equatiorij3ad@mits a unique
solutionG(x,y) € H?(R?) if and only if orthogonality relation (1.18) holds.
Evidently, the solvability of equation (3.31) ib*(R4*3) is equivalent to its solv-
ability in H?(R4*?) because the right side of (3.31) is square integrable and the
scalar potential involved in (3.31) is bounded due to ouugxions. [ |

We finish the work with establishing the solvability in thése of sequences for
our problem when the free Laplacian is added to a three diimealsSchrodinger
operator.
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Proof of Theorem 5First of all we establablish that if(z, y) andu,(z,y), n € N

are the uniqué?*(R?*3) solutions of equations (1.15) and (1.19) respectively and
un(z,y) — u(x,y)in H2(R43) asn — oo, thenu, (z,y) — u(z,y) in H4(RY3)

asn — oo as well. Clearly, (1.15) and (1.19) imply that ferc N andz € R?, y €

R3, deN

(=80 = Ay + UW)Y (un — u) = a*(un — u) = dnl2,y) — oz, y).
Hence
A?(up — u) 4+ U (y) (tn — ) = 2U () A(un, — u) — (up — u)A,U(y)—

-2V, U(y).Vy(u, — u) — a*(u, — u) = ¢n(z,9) — ¢(,y). (3.33)
The fact thatu,,(z, y) — u(z,y) in H*(R*3) asn — oo as assumed implies that

un(z,y) = u(z,y),  Vyun(z,y) = Vyu(z,y), Auulz,y) = Au(z,y)
in L2(R43) asn — oo and

Uly), VU@l AU(Y)

are bounded functions via Assumption 1. Thus, all the termtisa left side of (3.33)
starting from the second one converge to zerd itR%+3) asn — oo. The right
side of (3.33) tends to zero i?(R"?) asn — oo via the one of our assumptions.
Therefore A2u,(z,y) — A?u(x,y) in L?(R*3) asn — oco. By virtue of norm
definition (1.8) we have that, (x,y) — u(z,y) in H*(R*?) asn — .

By means of Theorem 4 above, under our assumptions problelf)(has a
unique solutionu, (z,y) € H*(R*3), n € N. We recall formula (3.6) in the proof
of Theorem 3 of [28]. Thus, under the given conditions we iobtae limiting
orthogonality relation

ikx
(¢<x, ), e—dnq@))) =0, (kg €S ae.
(27T) 2 LQ(Rd+3)
Therefore, by virtue of Theorem 4 above equation (1.15) &lenunique solution
u(z,y) € HY(RI3). We apply the generalized Fourier transform (1.17) to both
sides of equations (1.15) and (1.19). This gives us the septation (3.30) given in
the proof of Theorem 4, where the functiofig(z, y), Go(r,y) € H*(R**3) under
our assumptions are the unique solutions of problems (334)3.32) respectively.
Apparently,

&n(ka Q) = Gl,n(ka CJ) + GQ,n(kv Q)a ne Nv (334)
where
: _ oulkq) x | Oulk.q)
Gl,n(k7Q) T 2&(]{Z2 + q2 _ a)a GQ,n(k7Q) T 20/(]%'2 4 q2 + a)'



Evidently, the functionss, ,,(z,y) andGs,,(, y) satisfy the equations

1
{=A, — A, +U(y)}G1n — aGyy, = 2—a¢n(:1:, ) (3.35)

and
1
{_Ax - Ay + U(y)}GQ,n + aGQ,n - _%gbn(xa y) (336)

respectively. Because the operator involved in the left sid3.36) has a bounded
inversel,;' : L*(R*3) — HZ(R3), such that its nornj|l;'|| < oo as dis-
cussed above and the right side of (3.36) is square integce to the one of
our assumptions, (3.36) has a unique solution,(z,y) € H?(RY3). Since
bn(z,y) — (2, 7y)in L2(R¥3) asn — oo as assumed, we obtain

I
||G27n — G2||H2(]Rd+3) < %HlUlH ||¢n — ¢||L2(Rd+3) — 0, n— oo

Hence, Gy, (z,y) — Ga(z,y) in H*(R¥3) asn — oo. By means of the re-
sult of the part a) of Theorem 3 of [28], problem (3.35) admaitsnique solution
Gia(z,y) € HY(RI?), such thatd, ,,(z,y) — Gi(z,y) in H2(R43) asn — .
By virtue of formulas (3.34) and (3.30) considered initheg space, we easily derive
(@, y) — (e, )| pegrass) <

|Gz, y) = Gi(@, Y) || p2rars) + (| Gon(@,y) — Gal@, y) || n2(rars) — 0
asn — oo. This implies thaty,, (z,y) — u(x,y) in H4(RY*3) asn — oc. |

Remark. Our approach can be extended to the higher, even order ielgouations.
For example, in the case of the sixth order operateiA, + V(z) — A, + U(y)}*
we can check for the analog of Assumption 1 of Theorem 3.
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