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Abstract. Given a nonnegative self-adjoint operator H acting
on a separable Hilbert space and an orthogonal projection P such
that HP := (H1/2P )∗(H1/2P ) is densely defined, we prove that
limn→∞(P e−itH/nP )n = e−itHPP holds in the strong operator
topology. We also derive modifications of this product formula
and its extension to the situation when P is replaced by a strongly
continuous projection-valued function satisfying P (0) = P .

1. Introduction and the main result

The main aim of this paper is to prove the following product formulæ
for short-time Schrödinger unitary groups and orthogonal projections:

Theorem 1.1. Let H be a nonnegative self-adjoint operator acting
on a separable Hilbert space H and P an orthogonal projection onto a
closed subspace of H. Suppose that H1/2P is densely defined, so that
HP := (H1/2P )∗(H1/2P ) is a self-adjoint operator. Then for any f ∈ H
and ε = ±1 the following relations hold,

lim
n→∞

(P e−εitH/nP )nf = e−εitHPPf , (1.1)

lim
n→∞

(e−εitH/nP )nf = e−εitHPPf , (1.2)

lim
n→∞

(P e−εitH/n)nf = e−εitHPPf (1.3)

in the Hilbert space norm, and moreover, the convergence is uniform
on every bounded t-interval in R.
Needless to say, the claim is nontrivial only ifH and P do not commute.

The main motivation to study such product formulæ comes from the
behavior of quantum systems exposed to frequent measurements. Tur-
ing was the first to notice [12] that if we ascertain repeatedly whether
a quantum system is in a given state, then in the limit of infinite mea-
surement frequency it becomes impossible to leave this state. The idea
was rediscovered in the context of unstable system decays – see, e.g.,
[1, 9] – but it attracted a wide attention only after Misra and Sudar-
shan [20] invented a catchy name calling such a behavior quantum Zeno
effect in an allusion to the classical Zeno aporia about a flying arrow.
More about the early history can be found in [4].
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The second breaking moment came in 1990 when Itano et al. [14]
demonstrated the existence of the effect experimentally. Since then it
became object of an extensive examination, both from the theoretical
and experimental points of view, and it led even to various practical
applications; a partial summary can be found in the review paper [7].

If the projection P describing the measurement has a dimension
larger than one, the question about the time evolution in the subspace
to which the permanent observation confines the state of the system
becomes nontrivial. It is natural to expect that such a ‘Zeno dynamics’
will be governed by the part of the original Hamiltonian H acting in
the subspace PH, and it was shown in [4, Sect. 2.4] that the genera-
tor is indeed associated with appropriate quadratic form constructed
from the operator H and the projection P . It was not easy, however,
to establish the existence of the Zeno dynamics beyond the situations
when the dimension of P is finite or the operator H is bounded; need-
less to say that this is often not the case with actual physical systems.
A prime example is a permanent ascertaining whether a free quantum
particle dwells within a prescribed region Ω of the configuration space
discussed in [8], see also [7], with the conclusion that the Zeno gener-
ator is (the multiple of) the corresponding Dirichlet Laplacian. The
argument made use of the stationary phase method but the existence
of the limit was not actually established by the authors.

Motivated by the said paper we addressed the question of the Zeno
dynamics existence in [5], where we have managed to establish the exis-
tence of the limits of the expressions appearing on the left-hand sides of
(1.1)–(1.3) in the topology of a larger space, namely, the Fréchet space
L2
loc(R;H) = L2

loc(R) ⊗ H, provided that H is semibounded and the
operator HP is densely defined; the validity of the formulæ is preserved
if the exponential in (1.1)–(1.3) is replaced by functions of a wider
class, in particular, by the resolvent (I + itH)−1 [6, 13]. We argued in
[5] that such a result can be regarded as sufficient from the viewpoint
of physics due to the fact that every measurement, in particular, that
of time is burdened with errors, and any actual experiment typically
involves averaging over a large number of system copies.
It is desirable, though, to answer the question without such a under-

pinning by demonstrating the result with the convergence in a stronger
sense, namely that of the strong operator topology. This is the aim of
the present paper. In addition to the described physical motivation,
the obtained relation are of independent mathematical interest belong-
ing to the genre of the product formulæ of Trotter and Trotter-Kato
[16, 24], see also [21]. In fact, we are going to prove a slightly more
general claim with a fixed P replaced by a projection-valued function
of t satisfying certain regularity assumptions.

Theorem 1.2. Let H be a separable Hilbert space, and H, P , and thus
also HP , be the same as in Theorem 1.1. Let further P (·) be a strongly
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continuous function the values of which are orthogonal projections in
H defined in a right neighbourhood of zero and satisfying P (0) = P .
Moreover, suppose that

lim
τ→0+

[τ−1(I − e−itτH)]1/2P (τ)v = eπi/4(tH)1/2Pv , (1.4)

for every v ∈ D[H1/2P ]. Then for any f ∈ H and ε = ±1 we have

lim
n→∞

(P (1/n) e−εitH/nP (1/n))nf = e−εitHPPf , (1.5)

lim
n→∞

(e−εitH/nP (1/n))nf = e−εitHPPf , (1.6)

lim
n→∞

(P (1/n) e−εitH/n)nf = e−εitHPPf , (1.7)

in the Hilbert space norm, where the convergence is uniform on every
bounded t-interval in R.
Remark 1.3. Note that the hypothesis made in Theorem 1.2 about the
convergence of [τ−1(I−e−τH)]1/2P (τ)v is slightly weaker in comparison
with [5, Theorem 2.1] where we assumed thatD[H1/2P (τ)] ⊃ D[H1/2P ]
and limτ→0+ ∥H1/2P (τ)v∥ = ∥H1/2Pv∥ holds for every v ∈ D[H1/2P ].
This, in fact, was not fully necessary there as a footnote in [5, p. 206]
briefly mentioned.

Note that the assumption of positivity of H is made for convenience
only, it is obvious that the result remains to be valid if H is replaced
by H+cI with a fixed c ∈ R, i.e. for any self-adjoint operator bounded
from below. On the other hand, the density hypothesis is crucial; in
[5, Rem. 2.7] we cited an example showing that in its absence the
expressions (e−itH/nP )n may not converge in any sense. It may also
happen that they converge but not strongly. Examples were found by
Matolcsi and Svidkoy [19], however, they do not contradict Theorem 1.2
because in one of them the analogue of HP is not densely defined and
in the other the operator H is not semibounded.
Let us now describe briefly our strategy to prove Theorem 1.2. The

main tool is Chernoff’s theorem [3], see also [2], which for reader’s con-
venience we reproduce in Sect. 3 below. It will yield the sought result
if we show that the τ -family {[I + τ−1(I − P (τ) e−εitτHP (τ))]−1}τ>0

converges to (I + εitHP )
−1 as τ → 0+ in the strong operator topology.

The proof might basically follow the argument used by Kato in [16] to
establish his celebrated self-adjoint Trotter-Kato product formula for
the form sum of two nonnegative self-adjoint operators, since these two
problems appear to have notable similarities. However, a straightfor-
ward analogy of Kato’s argument is not sufficient due to a difficulty one
encounters, to be specified in Sect. 3, Step IV of the proof. The point is
that the argument can be applied to a certain class of admissible func-
tions ϕ(x) which contains beside real exponentials, e.g., (1 + εix)−1,
as shown in the mentioned papers [6, 13], but unfortunately this class
fails to include e−εix corresponding to our unitary group e−itH .
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Our way to overcome this obstacle is to start from the weaker re-
sult mentioned above. What we did in [5] was to complement the
modified Kato’s argument by the Vitali theorem from complex func-
tion theory; in that way we proved that for each f ∈ H the τ -family
{[I + τ−1(I − P (τ)e−εitτHP (τ))]−1f}τ>0 converges in the the Fréchet
space L2

loc(R;H). This conclusion serves as a departing point here,
although it only implies that for some set Mf ⊂ [0,∞) of Lebesgue
measure zero, the τ -family {[I+τ−1(I−P (τ)e−εitτHP (τ))]−1f}τ>0 con-
verges in the Hilbert space norm for every t ∈ [0,∞)\Mf , not excluding
the possibility that the convergence does hold at some points of Mf .
Furthermore, using the separability hypothesis made about the Hilbert
space H, we can choose a countable dense subset D := {fl}∞l=1 in H.
Putting then M = MD := ∪∞

l=1Mfl , which is also a set of Lebesgue
measure zero, we may say that the above indicated τ -family converges
for all t ∈ R \M and for every f ∈ D, and therefore, in view of the
density, also for every f ∈ H.
To pass from the ‘almost all t’ to the ‘all t’ stage, one has to demon-

strate that the exceptional set M is in fact empty. This task may seem
a small step, but in reality it proved to be a deep and highly nontrivial
question. Our way to deal with it is to establish the equicontinuity of
the above τ -family, cf. Lemma 3.6, which would allow us to achieve our
goal by means of the Ascoli-Arzelà theorem.

A detailed description of the argument we have sketched here, given
in Sect. 3 and Sect. 4, is a core part of the paper. As a preliminary,
we characterize in the next section the limit self-adjoint operator HP

appearing in the theorems. Finally, the paper will be concluded with
a short section in which we return briefly to example of the permanent
position measurement considered in [8].

2. Concerning the limit self-adjoint operator HP

Throughout the paper H will be a nonnegative self-adjoint operator
in a separable Hilbert space H, and P will be an orthogonal projection.
As we have indicated above, the nonnegativity assumption is made for
convenience; our main result extends easily to any self-adjoint operator
H bounded from below as well as, by sign change, to one bounded from
above, i.e. to each semi-bounded self-adjoint operator in H.
Our aim here is to elucidate what is the Zeno generatorHP appearing

in Theorems 1.1 and 1.2 and to indicate some of its properties which we
will need in the sequel. Consider the quadratic form u 7→ ∥H1/2Pu∥2
with form domain D[H1/2P ], being the domain of the operator H1/2P .
While the domains ofHP andH1/2P are nontrivial only as subspaces of
PH, we consider these operators always as acting in the whole Hilbert
space H writing, if needed, HP = HP�PH⊕ 0� (I−P )H with the domain

D[HP ] = D[HP�PH]⊕ (I − P )H, D[HP�PH] = D[H] ∩ PH, (2.1)
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and similarly forH1/2P . Note that the latter is a closed linear operator,
because H1/2 is closed; from the same reason the operator HP is also
closed. We have (H1/2P )∗ ⊃ PH1/2 in general. On the other hand, the
operator PH1/2 may not be closed. This would be the case if and only
if there were c0, c1 > 0 such that ∥H1/2u∥ ≤ c0∥PH1/2u∥+c1∥u∥ holds
for all u in the domain D[H1/2] of PH1/2, however, the necessary part
of this condition may not be satisfied. The same is true for PH.

By HP we denote the unique self-adjoint operator associated with
the above mentioned quadratic form. Its (operator) domain D[HP ] is
a subspace of D[H1/2P ] consisting of all u ∈ D[H1/2P ] which satisfy
|⟨H1/2Pu,H1/2Pv⟩| ≤ C∥v∥ for all v ∈ D[H1/2P ] with a constant
C ≥ 0, cf. [15, Sect. VI.2.1], so that

HP = (H1/2P )∗(H1/2P ). (2.2)

Needless to say, the form domain of HP is the (operator) domain of

H
1/2
P , for which we have by polar decomposition, cf. [15, Sect. VI.2.7],

H
1/2
P = |H1/2P | = [(H1/2P )∗(H1/2P )]1/2 ,

D[H
1/2
P ] = D[H1/2P ] = (D[H1/2] ∩ PH)⊕ (I − P )H. (2.3)

Then it is not difficult to check the following claim:

Proposition 2.1. The operator HP in (2.2) decomposes as

HP = HP�PH ⊕ 0� (I−P )H (2.4)

having the dense domain

D[HP ] := D[HP�PH]⊕ (I − P )H ⊂ PH⊕ (I − P )H = H .

Here HP � PH is the PH-component of HP , which is the self-adjoint
operator in the subspace PH ⊂ H associated with the quadratic form
in PH with the form domain D[HP

1/2] ∩ PH,

D[HP
1/2] ∩ PH = D[H1/2P ] ∩ PH ∋ w 7→ ∥H1/2Pw∥2 = ∥H1/2

P w∥2 ,
(2.5)

and the zero operator 0 � (I−P )H is its (I−P )H-component, trivially
bounded and self-adjoint on the subspace (I−P )H orthogonal to PH.

From Proposition 2.1, we can see that HP is in general not a restric-
tion of H, and furthermore, the inclusion D[HP ] ⊂ D[H] does not hold
either. This is obvious, since H is the unique self-adjoint operator in
H associated with the quadratic form

D[H1/2] ∋ w 7→ ∥H1/2w∥2H , (2.6)

so that (I − P )H is not a subset of D[H] as long as H is unbounded.

We can make, however, a weaker claim described in the following
proposition; we note in passing that it is well illustrated by the inclusion
D[(−∆)Ω] ⊂ D[−∆] from the example treated in Sect. 5 below.
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Proposition 2.2. Let H be a nonnegative unbounded self-adjoint oper-
ator acting on a Hilbert space H and P an orthogonal projection which
may not commute with H. Assume that H1/2P is densely defined, then
the PH-component HP�PH of HP in (2.4) satisfies D[HP�PH] ⊂ D[H].

Proof: The form (2.6) restricted to D[H1/2P ] becomes (2.5), so that

∥H1/2w∥2 = ∥H1/2Pw∥2 = ∥H1/2
P w∥2 holds if w ∈ D[H

1/2
P ] proving

thus the claim. �
Remark 2.3. One can modify HP restricting it to the self-adjoint
operator Hmod

P such that Hmod
P � PH = HP � PH and, at the same time,

D[Hmod
P ] ⊂ D[H]. To this end, it is enough to replace the zero operator

in (2.4) on (I − P )H by its restriction to (I − P )D[H], so that

Hmod
P := HP�PH ⊕ 0� (I−P )D[H] , (2.7)

D[Hmod
P ] := D[HP�PH]⊕ (I − P )D[H] .

Let us stress that in general H is not an extension of Hmod
P either.

Unless H is bounded, the operator HP is generally different from
PHP . When HP is densely defined, the symmetric operator PHP
is not necessarily essentially self-adjoint on D[HP ], and consequently,
HP may not be the closure of PHP either.

On the other hand, the quadratic form u 7→ ∥H1/2Pu∥2 defined on
D[H1/2P ] is a closed extension of the form u 7→ ⟨Pu,HPu⟩ defined
on D[HP ], but in general the former is not the closure of the lat-
ter, because D[HP ] is not necessarily dense in D[H1/2P ]. Indeed, if
H is unbounded, D[H] is a proper subspace of D[H1/2]. Take u0 ∈
D[H1/2]\D[H] such that the vector H1/2u0 is nonzero, and set P to be
the orthogonal projection onto the one-dimensional subspace spanned
by u0. Taking into account that D[HP ] = {u ∈ H; Pu ∈ D[H]} which
u0 = Pu0 does not belong to, we find HPu = 0 for u ∈ D[HP ], while
H1/2Pu0 = H1/2u0 ̸= 0 by assumption.

3. Proof of Theorem 1.2

Most parts of the argument work for a general Hilbert space, how-
ever, there is a place where we have to assume H to be separable. It is
clearly sufficient to prove formula (1.5) in Theorem 1.2 because (1.6)
and (1.7) easily follow from it, and furthermore, it is enough to consider
ε = 1 and t ≥ 0. For the sake of definiteness we use here and in the
following the physicist convention about the inner product ⟨·, ·⟩ on H
supposing that it is antilinear in the first argument.

The nonnegative self-adjoint operator H we deal with can be con-
ventionally represented through its spectral family {E(λ)}λ≥0,

H =

∫ ∞

0−
λE(dλ) (3.1)
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Given κ > 0, we introduce

K(κ) : =
1

κ
[I − e−iκH ] =

I − cosκH

κ
+ i

sinκH

κ

=: G(κ) + iH(κ) , (3.2)

where G(κ) and H(κ) are bounded self-adjoint operators, and G(κ) is
nonnegative. Let H±(κ) be nonnegative bounded self-adjoint operators
which are the nonnegative/negative parts of H(κ), respectively. Then
we have

|K(κ)| = [G(κ)2 +H(κ)2]1/2 =
| sin 1

2
κH|

1
2
κ

,

|I +K(κ)| =
(
I + (1 + κ)

( sin 1
2
κH

1
2
κ

)2)1/2

, (3.3)

H(κ) = H+(κ)−H−(κ) , |H(κ)| = H+(κ) +H−(κ) .

Using the spectral family {E(λ)}λ≥0 from (3.1), we denote by E+
H(κ)

the orthogonal projection

E+
H(κ) : H →

∞⊕
m=0

E
(
[2mπ

κ
, (2m+1)π

κ
)
)
H ≡ E

( ∞∪
m=0

[2mπ
κ
, (2m+1)π

κ
)
)
H ,

and put E−
H(κ) := I − E+

H(κ). Note that E+
H(κ)

s→ I and E−
H(κ)

s→ 0
holds as κ → 0+. Of course, both the E±

H(κ) commute with H(κ).
As E+

H(κ) and E
−
H(κ) are nothing but the projections onto the closed

subspaces of H where H(κ) becomes respectively a nonnegative and
negative self-adjoint operator, we have

H+(κ) = H(κ)E+
H(κ) , H−(κ) = −H(κ)E−

H(κ) . (3.4)

We put κ = |t|τ with τ > 0, so that κ = ± tτ holds for ± t ≥ 0.
We will use the same notation as in [5], F (ζ; τ) := P (τ) e−ζτHP (τ)

and S(ζ; τ) := τ−1[I − F (ζ; τ)] with Im ζ ≥ 0. These operator families
are uniformly bounded and holomorphic for Im ζ > 0 which are the
properties we used there. In this paper, however, we need only ζ = it,
in other words

F (it; τ) = P (τ) e−itτHP (τ) , (3.5)

S(it; τ) = τ−1[I − F (it; τ)] = τ−1[I − P (τ) e−itτHP (τ)] . (3.6)

It is easy to see that F (it; τ) in (3.5) is a contraction and S(it; τ) in
(3.6) satisfies

Re (f, S(it; τ)f) = τ−1
[
(f, f)− (f, P (τ) e−itτHP (τ)f)

]
≥ τ−1

[
∥f∥2 − ∥f∥ ∥P (τ) e−itτHP (τ)f∥

]
≥ τ−1

[
∥f∥2 − ∥f∥2

]
= 0

for all f ∈ H, and consequently, S(it; τ) is an m-accretive operator
[15]. This means that I + S(it; τ) has a bounded inverse and that
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(I + S(it; τ))−1 is also a contraction. The crucial observation is that
to prove Theorem 1.2 it is sufficient to refer to Chernoff’s result cited
below, and to verify that

(I + S(it; τ))−1 s−→ (I + itHP )
−1P as τ → 0+ (3.7)

holds for t ∈ R.
Chernoff’s Theorem (cf. [3, Theorem 1.1, pp. 4–6], see also [2]):
For a t-family {F (t)}t≥0 of linear contractions on a Banach space and
the generator A of a strongly continuous contraction semigroup, the
following two conditions are equivalent:

(a) For some λ0 > 0, the family {λ0I+ I−F (ε)
ε

}ε>0 converges strongly
to (λ0I + A)−1 as ε→ 0+.

(b) As n → ∞, {F ( t
n
)}∞n=1 converges strongly to etA, uniformly on

bounded t-intervals.

Let us stress that our proof requires to demonstrate the convergence
in (3.7) pointwise for any fixed t; this will be sufficient to establish the
convergence in the product formulæ (1.5)–(1.7) as locally uniform in
t ∈ R; in fact, we have only to deal with (1.5) as mentioned at the
beginning of this section.

Remark 3.1. Since the function F (it; τ) in (3.5) differs slightly from
F (t) appearing in condition (a) of Chernoff’s Theorem, let us explain
in detail how the product formula (1.5) follows from (3.7), modifying
to that purpose Chernoff’s proof of the implication (a)⇒ (b).
Consider the first the nontrivial part referring to the subspace PH.

Note that S(it; τ) generates a strongly continuous contraction semi-
group {e−θS(it;τ)}θ≥0 on H, and the resolvent convergence (3.7) is equiv-
alent to the convergence of the corresponding semigroups [15, Theo-

rem IX.2.16], hence for any f ∈ PH we have e−θS(it;τ)f
s−→ e−iθtHP f

as τ → 0+, uniformly on bounded intervals of the variable θ ≥ 0. In
particular, choosing θ = 1 we get

e−S(it;τ)f −→ e−itHP f as τ → 0+ (3.8)

for a fixed t ≥ 0, and using the same equivalence in the opposite
direction we infer that

(I + λS(it; τ))−1f −→ (I + iλtHP )
−1Pf as τ → 0+

holds for any λ ≥ 0 and t ≥ 0. In particular, using the diagonal trick
in the last relation with τ = 1/n and λ = 1/

√
n, we obtain

(I + 1√
n
S(it; 1/n))−1f −→ Pf as n→ ∞ (3.9)

for every t ≥ 0. Next we refer to [2, Lemma 2] by which we have

∥[F (it; 1/n)ng − e−n(I−F (it;1/n))g∥ ≤
√
n ∥(I − F (it; 1/n))g∥
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for any g ∈ H. Choosing g = (I + 1√
n
S(it; 1/n))−1f and having in

mind that f = Pf , we conclude from here that∥∥[F (it; 1/n)n − e−S(it;1/n)](I + 1√
n
S(it; 1/n))−1f

∥∥
≤

∥∥(I + 1√
n
S(it; 1/n))−1f − Pf∥ ,

where by (3.9) the right-hand side tends to zero uniformly on bounded
t-intervals as n→ ∞. Using the diagonal trick once again we get

lim
n→∞

∥F (it; 1/n)nf − e−S(it;1/n)f∥ = 0

uniformly on bounded t-intervals. Then the sought conclusion (1.5)
follows immediately from relations (3.8) and (3.9), since by (3.5) we
have F (it; 1/n)n = [P (1/n)e−itH/nP (1/n)]n. Having dealt with the
subspace PH, the remaining case, f ∈ (PH)⊥, is trivial: we have

[P (1/n)e−itH/nP (1/n)]nf −→ 0 as n→ ∞
for each t ≥ 0, since P (1/n)f = P (1/n)(I − P )f tends by assumption
to P (I − P )f = 0 and e−itHPPf = 0 holds at the same time.

Let us add a remark on the conventions: here and in the following
the convergence of operator families in the strong operator topology is
denoted by

s−→, and in the weak operator topology by
w−→. A simple

arrow is reserved for the convergence with respect to the norm of the
Hilbert space H, sometimes also dubbed ‘strong’ – we will occasionally
use this term too – while for the weak convergence in H we will again
employ the symbol

w−→. Later, in Proposition 3.5, we will use still
another topology for convergence of families of Hilbert space vectors.
To proceed with the argument, we rewrite relation (3.6) as follows

S(it; τ) = τ−1
[
I − P (τ)(cos tτH − i sin tτH)P (τ)

]
= I−P (τ)

τ
+ P (τ) I−cos tτH

τ
P (τ) + i P (τ) sin tτH

τ
P (τ)

= I−P (τ)
τ

+ P (τ)tG(tτ)P (τ) + i P (τ)tH(tτ)P (τ) ,

and consequently,

I + S(it; τ) (3.10)

= I + τ−1(I − P (τ)) + P (τ)tG(tτ)P (τ) + iP (τ)tH(tτ)P (τ)

= (1 + τ−1)(I − P (τ))⊕ P (τ)(I + tG(tτ) + itH(tτ))P (τ) ,

where ⊕ denotes the direct sum corresponding to the decomposition of
the Hilbert space into P (τ)H and its orthogonal complement.

To prove the sought relation (3.7) we need first a pair of lemmata.

Lemma 3.2. The inverse of I + S(it; τ) in (3.10) is given by

(I + S(it; τ))−1 (3.11)

= (1 + τ−1)−1(I − P (τ))⊕
[
P (τ)(I + tG(tτ) + itH(tτ))P (τ)

]−1
.
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Proof. The above expression and (3.10) clearly multiply to identity. �

Lemma 3.3. Let u ∈ D[H1/2], then in the limit κ→ 0+ we have

(i) G(κ)1/2u −→ 0 ,

(ii) H+(κ)1/2u −→ H1/2u , H−(κ)1/2u −→ 0 , and |H(κ)|1/2u −→ H1/2u

Proof. Using spectral theorem together with dominated convergence
theorem we infer that as κ→ 0+,

G(κ)1/2u =

∫ ∞

0−

∣∣∣ sin κλ
2

κλ
2

∣∣∣1/2| sin κλ
2
|1/2 λ1/2E(dλ)u −→ 0 ,

|H(κ)|1/2u =

∫ ∞

0−

∣∣∣ sinκλ
κ

∣∣∣1/2E(dλ)u −→
∫ ∞

0−
λ1/2E(dλ)u = H1/2u

and

H+(κ)1/2u = |H(κ)|1/2E+
H(κ)u

=

∫ ∞

0−

∣∣∣ sinκλ
κ

∣∣∣1/2χ∪∞
m=0[

2mπ
κ

,
(2m+1)π

κ
)
(λ)E(dλ)u

−→
∫ ∞

0−
λ1/2E(dλ)u = H1/2u

This implies at the same time H−(κ)1/2u −→ 0 by (3.3). �

After these preliminaries, we are going to start the proof of (3.7). As
we said in the introduction, the core of our reasoning is the argument
used by Kato [16], see also [21, Supplements to Sect. VIII.8]. In the
same vein, with (3.6) in mind, we put for τ > 0 and t ∈ R

uτ (t) := (I + S(it; τ))−1f (3.12)

for an arbitrary but fixed f ∈ H. We see from the expression (3.11) of
(I+S(it; τ))−1 that uτ (t) is strongly continuous in t. At the same time,
the τ -family {uτ (t)} ⊂ H with uτ (t) defined by (3.12) and t ∈ R fixed
is uniformly bounded by ∥f∥, because (I +S(it; τ))−1 is a contraction.

Our next aim is to show that for each fixed t ∈ R, the family {uτ (t)}
converges in the Hilbert space norm to some u(t) ∈ H as τ → 0+
and that u(t) = (I + itHP )

−1Pf . To achieve this goal we will have to
analyze, in particular, a new uniform property of the τ -family {uτ (t)}
at the final stage of the argument.
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Using the identity (3.10) we can invert relation (3.12) explicitly as

f = (I + S(it; τ))uτ (t)

= uτ (t) + τ−1(I − P (τ))uτ (t) + P (τ)tG(tτ)P (τ)uτ (t)

+ iP (τ)tH(tτ)P (τ)uτ (t)

= (1 + τ−1)(I − P (τ))uτ (t)⊕ P (τ)[I + tG(tτ) + itH(tτ)]P (τ)uτ (t) .
(3.13)

Taking the inner product of f with (I−P (τ))uτ (t) and P (τ)uτ , we get
⟨(I − P (τ))uτ (t), f⟩ = (1 + τ−1)∥(I − P (τ))uτ (t)∥2 (3.14)

and

⟨P (τ)uτ (t), f⟩ = ⟨P (τ)uτ (t), uτ (t)⟩+ ⟨P (τ)uτ (t), tG(tτ)P (τ)uτ (t)⟩
+ i⟨P (τ)uτ (t), tH(tτ)P (τ)τ (t)⟩

= ∥P (τ)uτ (t)∥2 + ∥(|t|G(tτ))1/2P (τ)uτ (t)∥2

+ i
(
∥(|t|H+(tτ))1/2P (τ)uτ (t)∥2

− ∥(|t|H−(tτ))1/2P (τ)uτ (t)∥2
)

(3.15)

for τ > 0 ; recall that H(κ) = H+(κ)−H−(κ).
From the real part of (3.15) with (3.14), we infer, using Schwarz in-

equality, that the τ -families {P (τ)uτ (t)} and {(I−P (τ))uτ (t)}, as well
as {τ−1(I −P (τ))uτ (t)}, are uniformly bounded by ∥f∥; the last claim
naturally extends to {τ−1/2(I−P (τ))uτ (t)} as long as τ ≤ 1. Moreover,
using the real part of (3.15) again we can conclude that the same is
true for {(|t|G(τ))1/2P (τ)uτ (t)}. Let f ∈ H and t ∈ R be arbitrary but
fixed. It follows from the obtained uniform boundedness that for each
t ∈ R, there exist a (sub)sequence {τ ′}0<τ ′≤1 of the family {τ}0<τ≤1

with τ ′ → 0+ and vectors u(t), u0(t) and g(t) in H such that the se-
quences {uτ ′(t)}, {(τ ′)−1/2(I −P (τ ′))uτ ′(t)} and {t1/2G(|t|τ ′)1/2uτ ′(t)}
converge weakly to u(t), u0(t) and g(t), respectively, in H as τ ′ → 0+;
thus {P (τ ′)uτ ′(t)} converges weakly to Pu(t). We keep in mind that,
with the knowledge we have at the present stage, the limit u(t) may
depend on the chosen sequence {uτ ′(t)}0<τ ′≤1.

Lemma 3.4. One has

u(t) = Pu(t), u0(t) = 0, g(t) = 0, (3.16)

and therefore, as τ ′ → 0+,

uτ ′(t)
w−→ u(t) , (τ ′)−1/2(I − P (τ ′))uτ ′(t)

w−→ 0 , (3.17)

P (τ ′)uτ ′(t)
w−→ Pu(t) , (|t|G(tτ ′))1/2P (τ ′)uτ ′(t)

w−→ 0 .

Proof. To begin with, the second limit in (3.17) implies, in particular,
that (I − P (τ ′))uτ ′(t) → 0, hence we have (I − P )u(t) = 0 or u(t) =
Pu(t). Indeed, the uniform boundedness of ∥(τ ′)−1/2(I − P (τ ′))uτ ′(t)∥
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means that ∥(I−P (τ ′))uτ ′(t)∥ → 0 which together with the weak con-
vergence implies u(t) = Pu(t). Moreover, the same uniform bounded-
ness following from (3.14) means that τ−1(I−P (τ))uτ (t) also converges
weakly along {τ ′} which implies u0(t) = 0.

Secondly, for any fixed w ∈ D[H1/2] and t ∈ R we have the relation

⟨w, g(t)⟩ = lim
τ ′→0+

⟨w, (|t|G(tτ ′))1/2P (τ ′)uτ ′(t)⟩

= lim
τ ′→0+

⟨(|t|G(tτ ′))1/2w,P (τ ′)uτ ′(t)⟩

= ⟨0, Pu(t)⟩ = 0 ,

because by Lemma 3.3 we have (|t|G(tτ ′))1/2w → 0 as τ ′ → 0+. This
means that g(t) = 0, because D[H1/2] is dense by assumption. �

Next we want to find out what one can deduce from the imaginary
part of (3.15) about the properties of the operators H±(tτ) introduced
in (3.3) and (3.4). To this aim we have to employ a topology different
from those used up to now. Given a dense subspace K of H, the symbol
σ(H,K) denotes the weak topology on H defined by the dual pairing
⟨H,K⟩ or the K-weak topology on H – see, e.g., [18, Sect. IV.20.2] or
[21, Sect. IV.5]. In general, it is weaker (coarser) than the usual weak
topology on H, the latter being nothing else than σ(H,H) in the just
introduced notation

We see from the imaginary part of (3.15) that the difference between
the respective elements of the τ -families {∥(|t|H+(tτ))1/2P (τ)uτ (t)∥2}
and {∥(|t|H−(tτ))1/2P (τ)uτ (t)∥2} is uniformly bounded, because by
Schwarz inequality the modulus of the left-hand side in

Im ⟨Pu(t), f⟩
= lim

τ→0+

[
∥(|t|H+(tτ))1/2P (τ)uτ (t)∥2 − ∥(|t|H−(tτ))1/2P (τ)uτ (t)∥2

]
does not exceed ∥f∥2. This fact, unfortunately, does not tell us whether
the two τ -families of vectors, {(|t|H±(tτ))1/2P (τ)uτ (t)}, are separately
(uniformly) bounded, that is, whether each of them is (uniformly)
weakly bounded. We have, however, at least the following result.

Proposition 3.5. Let {uτ ′(t)} be the subsequence appearing in Lemma 3.4,
weakly convergent to u(t). Then the τ ′-families {(|t|H±(tτ ′))1/2P (τ ′)uτ ′(t)}
are Cauchy sequences in the σ(H, D[H1/2])-weak topology, and as a
result they are σ(H, D[H1/2])-weakly bounded. Furthermore, the fam-
ily {(|t|H−(tτ ′))1/2P (τ ′)uτ ′(t)} converges to zero in this topology as
τ ′ → 0+.

Proof. Take an arbitrary ϕ ∈ D[H1/2]. We use Lemma 3.3 which states,
in particular, that (|t|H+(tτ))1/2ϕ → (|t|H)1/2ϕ holds when τ → 0+.



A PRODUCT FORMULA RELATED TO QUANTUM ZENO DYNAMICS 13

In combination with (3.17), this yields

⟨ϕ, (|t|H+(tτ ′))1/2P (τ ′)uτ ′(t)⟩ = ⟨(|t|H+(tτ ′))1/2ϕ, P (τ ′)uτ ′(t)⟩
−→ ⟨(|t|H)1/2ϕ, Pu(t)⟩

as τ ′ → 0+. For the minus sign, on the other hand, Lemma 3.3 says
that (|t|H−(tτ))1/2ϕ→ 0, and this implies

⟨ϕ, (|t|H−(tτ ′))1/2P (τ ′)uτ ′(t)⟩ −→ 0, τ ′ → 0+,

because the self-adjointness of (|t|H−(tτ ′))1/2 in combination with Schwarz
inequality gives

|⟨(|t|H−(tτ ′))1/2ϕ, P (τ ′)uτ ′(t)⟩| ≤ ∥(|t|H−(tτ ′))1/2ϕ∥ ∥P (τ ′)uτ ′(t)∥
≤ ∥(|t|H−(tτ ′))1/2ϕ∥ ∥f∥ −→ 0 .

This yields the stated assertion, including the fact that the family
{(|t|H−(tτ ′))1/2P (τ ′)uτ ′(t)} is σ(H, D[H1/2])-weakly convergent to zero.

�

On the other hand, it is not clear whether Pu(t) belongs to D[H1/2],
that is, whether the plus-sign family {(|t|H+(tτ))1/2P (τ)uτ (t)} con-
verges to H1/2Pu(t) in the σ(H, D[H1/2]) topology. What is impor-
tant, the information we were able to deduce in this way about the
convergence of the families {(|t|H±(tτ ′))1/2P (τ ′)uτ ′(t)} is too limited;
it does not seem possible to apply the same procedure as we used in
Lemma 3.4 for {(|t|G(tτ ′))1/2P (τ ′)uτ ′(t)}.

This forces us to seek a different strategy for the proof of Theorem 1.2
that would allow us to identify the vector u(t) with (I + itHP )

−1Pf ,
in other words, to demonstrate relation (3.7) claiming that for every
fixed t ∈ R, the family {(I + S(it; τ))−1f}, or otherwise {uτ (t)} in
accordance with (3.12), converges to (I + itHP )

−1Pf in the Hilbert
space norm as τ → 0+.

The argument is somewhat subtle and relies on our previous work [5],
see also [6], about the Zeno product formulæ related to Theorems 1.1
and 1.2. In those papers we demonstrated that the family {uτ (t)} has
a unique limit, namely (I + itHP )

−1Pf , as τ → 0+. As we mentioned
in the introduction, however, the obtained convergence referred neither
to the norm of H nor even to the weak topology. Precisely speaking, it
is shown in [5] that (1.1)–(1.3) and (1.5)–(1.7) hold in the topology of
the Fréchet space L2

loc(R;H) = L2
loc(R) ⊗ H of the H-valued strongly

measurable functions v(·) on R such that the ∥v(·)∥ are locally square
integrable there, equipped with the topology induced by the family of

semi-norms v 7→
( ∫ b

a
∥v(t)∥2 dt

)1/2
for any bounded interval (a, b) with

a < b. This follows from [5, Lemma 3.1, p. 200] which says that for
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every bounded closed interval [a, b] ⊂ R one has∫ b

a

∥uτ (t)− (I + itHP )
−1Pf∥2 dt −→ 0 as τ → 0+ ; (3.18)

the reader may compare this result with (3.7).
Note also that (3.18) implies that for every f ∈ H, there exist a set

Mf ⊂ R of Lebesgue measure zero, possibly dependent on f , and a
(sub)sequence {τ ′}0<τ ′≤1 of {τ}0<τ≤1 along which it holds that for all
s ∈ R \Mf ,

uτ (s) −→ (I + isHP )
−1Pf in the norm of H, (3.19)

in other words, uτ ′(s) −→ (I + isHP )
−1Pf as τ ′ → 0. With the

coming argument in mind, it is useful to note that the set R \Mf at
which the convergence takes place is dense in R. Furthermore, since
H is separable by assumption, we can choose a countable dense subset
D := {fl}∞l=1 in H. Putting M = MD := ∪∞

l=1Mfl , which is also a set
of Lebesgue measure zero, we may then say that (3.19) holds for all
s ∈ R \M and for every f ∈ D, and hence, in view of the density, also
for every f ∈ H.

Moreover, we note that s = 0 does not belong to Mf for any f ∈ H,
and therefore it neither belongs to M . Indeed, using Lemma 3.2 and
(3.11) in combination with the continuity of τ 7→ P (τ) it is easy to see
that

uτ (0) = (I + S(0; τ))−1f = (I + τ−1)−1(I − P (τ))⊕ P (τ)f −→ Pf,
(3.20)

which means 0 /∈Mf .

Now let us first briefly outline our plan of how to complete the proof of
Theorem 1.2; we recall that one has to verify relation (3.7) showing that
for every t ∈ R, {uτ (t) = (I+S(it; τ))−1f} converges to (I+itHP )

−1Pf
in the Hilbert space norm for all t as τ → 0+. Let us recall here that,
as already mentioned in the text following (3.7), the use of Chernoff’s
theorem only requires to establish the convergence in (3.7) pointwise for
all t ∈ R. Here and in the following we keep in mind that {uτ (t)}0<τ≤1

is uniformly bounded in both t and 0 < τ ≤ 1, i.e.

sup
0<τ≤1

sup
t∈R

∥uτ (t)∥ ≤ ∥f∥, (3.21)

since (I + S(it; τ))−1 is a contraction. We need not strive to show its
local uniformity, however, the following reasoning will establish this
property with respect to t ∈ R \ {0}. We will proceed in four steps
demonstrating validity of the following claims:

I. The τ -family {uτ (t)}0<τ≤1 of vectors uτ : R ∋ t 7→ uτ (t) ∈ H is
equicontinuous in t ∈ R \ {0} with respect to the strong topology (i.e.,
Hilbert space norm) of H.
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II. The family {uτ (t)}0<τ≤1 converges as τ → 0+ for each fixed
t ∈ R to some u(t) ∈ H in the weak topology of H, and furthermore,
the convergence is even locally uniform with respect to t ∈ R \ {0}.
The limit function u(t) turns out to be continuous in t ∈ R in the weak
topology of H.

III. The limit satisfies

u(t) = (I + itHP )
−1Pf for all t. (3.22)

IV. Finally, the family {uτ (t)}0<τ≤1 converges as τ → 0+ for any
fixed t ∈ R to u(t) ≡ (I + itHP )

−1Pf in the strong topology of H, and
furthermore, the convergence is even locally uniform with respect to
t ∈ R \ {0}.

Step I. The claim is expressed in the following lemma about the local
equicontinuity of the τ -family {uτ (t)} in a neighbourhood of t = s in
R \ {0}. It plays a crucial role in concluding the proof of Theorem 1.2.

Lemma 3.6. Let f ∈ H. Then the τ -family {uτ (t)}0<τ≤1 of vectors
uτ : R \ {0} ∋ t 7→ uτ (t) ∈ H is equicontinuous locally in t with respect
to the strong topology on H. More explicitly, for every ε > 0 and for
every s ∈ R\{0} there exists an s-dependent constant δ = δ(f ; ε; s) > 0
such that if t, s > 0 or t, s < 0 with |t−s| < δ, then ∥uτ (t)−uτ (s)∥ < ε
holds for all 0 < τ ≤ 1.

We postpone for the moment the proof of Lemma 3.6, returning to it
in Sect. 4, and accept its claim, to finish first the proof of Theorem 1.2.

Step II. Without loss of generality we may suppose f ̸= 0. If t =
0, the family {uτ (0)}0<τ≤1 converges strongly to Pf as τ → 0+ as
mentioned above, cf. (3.20). Consider thus a nonzero t ∈ R \ {0}
and take arbitrary (sub)sequence {τ ′}0<τ ′≤1 of {τ}0<τ≤1 with τ

′ → 0+.
By Lemma 3.6, to be yet proven, we see the τ ′-family {uτ ′(t)}0<τ ′≤1

is equicontinuous in the strong topology and therefore in the weak
topology, because the ‘full’ τ -family {uτ (t)}0<τ≤1 is. We observed in
(3.21) that the vectors uτ (t) with any t ∈ R\{0} and τ ∈ (0, 1] lie in the
closed ball B̄(0; ∥f∥) ⊂ H with the center at the origin and radius ∥f∥,
which is weakly compact. To proceed, note that B̄(0; ∥f∥) is metrizable
in the weak topology, since H is separable by assumption, see e.g. [11,
Problem/Solution 18, p. 12 and 181]. Thus the equicontinuity holds
with respect to the metric on the space B̄(0; ∥f∥) equivalent to the weak
topology on it. Then, by virtue of the Ascoli–Arzelà theorem, see e.g.
[17, p. 81] or [23, Thm. 1.5.3], there exists a (sub)sequence {τ ′′}0<τ ′′≤1

of {τ ′}0<τ ′≤1 with τ ′′ → 0+, along which {uτ (t)} converges weakly to
some limit u(t), and moreover, the convergence is (locally) uniform
in t ∈ R \ {0}. This means that the numerical family {⟨ψ, uτ ′′(t)⟩}
converges for every fixed ψ ∈ H as τ ′′ → 0+, (locally) uniformly in
t ∈ R \ {0}. Putting this together with the case t = 0 mentioned
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above, we see that the limit ⟨ψ, u(t)⟩ is t-continuous everywhere in R,
in other words, that u(t) is t-continuous everywhere in R with respect
to the weak topology of H.

Step III. We have established above two ways of convergence of the
original τ -family {uτ (t)}0<τ≤1 of H-valued t-continuous functions as
τ → 0+, or more specifically, convergence with respect to two different
topologies. One is the convergence to u(t) in the weak topology of H,
(locally) uniformly for t ∈ R \ {0}, and the other is the convergence
to (I + itHP )

−1Pf in L2
loc(R;H) in the strong, and therefore also weak

sense. This allows us to conclude that these two limit vectors coincide
for all t, in other words, to establish the equality (3.22). Indeed, for
any ψ ∈ H and an arbitrary bounded interval (a, b) with a < b we have
the following elementary estimate,∫ b

a

|⟨ψ, u(t)− (I + itHP )
−1Pf⟩| dt

≤
∫ b

a

|⟨ψ, u(t)− uτ (t)⟩| dt+
∫ b

a

|⟨ψ, uτ (t)− (I + itHP )
−1Pf⟩| dt ,

the last term of which tends to zero as τ → 0+ by (3.18). At the
same time, the first term on the right-hand side also tends to zero in
view of the weak convergence and the dominated convergence theorem.
Consequently the integrated expression on the left-hand side vanishes
identically,

⟨ψ, u(t)− (I + itHP )
−1Pf⟩ = 0,

for all t and for all ψ ∈ H, which yields the desired claim (3.22). In
this way, we have obtained the relations

u(t) = Pu(t) ∈ D[HP ] = D[(H1/2P )∗(H1/2P )] ,
(3.23)

Pf = P (I + itHP )u(t) = P [I + it(H1/2P )∗(H1/2P )]u(t) ,

which show that {uτ (t)} converges to u(t) = (I + itHP )
−1Pf in the

weak topology of H along τ → 0+, and therefore also along τ → 0+.

Step IV. It remains to demonstrate that {uτ (t)} converges to u(t) =
(I + itHP )

−1Pf also in the Hilbert space norm for all t ∈ R. For the
sake of completeness we shall show that the same claim can also be
made about the τ -family {(tG(τ))1/2P (τ)uτ (t)} in (3.15); note that
the analogous question concerning {(|t|H±(tτ))1/2P (τ)uτ (t)} also ap-
pearing in (3.15) is more complicated and we are able to provide only
a partial answer to it, cf. Proposition 3.5.

Since we have already established the weak convergence of the τ -
family {uτ (t)} for all t, we need only to show that the τ -families of the
norms of these vectors converge. To this end, we observe again the real
part of (3.15), however, replacing now f by P (τ)f in the inner product;
we write also the imaginary part for purpose of a further discussion.
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Writing the left-hand side of (3.15) as ⟨uτ (t), P (τ)f⟩, we obtain for its
real and imaginary part

Re ⟨uτ (t), P (τ)f⟩ = ∥P (τ)uτ (t)∥2 + ∥(|t|G(tτ))1/2P (τ)uτ (t)∥2, (3.24)

Im ⟨uτ (t), P (τ)f⟩ = ∥(|t|H+(tτ))1/2P (τ)uτ (t)∥2

− ∥(|t|H−(tτ))1/2P (τ)uτ (t)∥2. (3.25)

In view of (3.23), the continuity of the projection family {P (τ)}, and
the weak convergence of {uτ (t)} as τ → 0+, which we have already es-
tablished, the left-hand sides of the last two relations converge, leading
to the following limits

Re ⟨uτ (t), P (τ)f⟩ −→ ⟨u(t), Pu(t)⟩ = ∥Pu(t)∥2. (3.26)

Im ⟨uτ (t), P (τ)f⟩ −→ ⟨u(t), tHPu(t)⟩ = ∥(|t|H)1/2Pu(t)∥2 (3.27)

valid for all t. Comparing now the right-hand sides of relations (3.24)
and (3.26) we get

∥Pu(t)∥2 = lim
τ→0+

[
∥P (τ)uτ (t)∥2 + ∥(|t|G(tτ))1/2P (τ)uτ (t)∥2

]
= lim inf

τ→0+

[
∥P (τ)uτ (t)∥2 + ∥(|t|G(tτ))1/2P (τ)uτ (t)∥2

]
≥ lim inf

τ→0+
∥P (τ)uτ (t)∥2 + lim inf

τ→0+
∥(|t|G(τ))1/2P (τ)uτ (t)∥2

≥ ∥Pu(t)∥2 + ∥0∥2 = ∥Pu(t)∥2,

which means that the two terms on the right-hand side of (3.24) con-
verge to ∥Pu(t)∥2 and to zero, respectively, yielding thus the sought
convergence in the Hilbert space norm along the sequence τ → 0+,

P (τ)uτ (t) −→ Pu(t) , (|t|G(tτ))1/2P (τ)uτ (t) −→ 0 . (3.28)

The first convergence in (3.28) also implies uτ (t) → u(t) = Pu(t), i.e.
convergence of τ -family{uτ (t)} to u(t) = Pu(t) in the Hilbert space
norm, because we know already that (I − P (τ ′))uτ ′(t) → 0.
This shows nothing but our sought statement of the convergence

(3.7) for the family {uτ (t)} which, with the reference to Chernoff’s
criterion [2, 3], concludes the proof of Theorem 1.2. �

The proof of Lemma 3.6 will be given in the next section.

4. Proof of Lemma 3.6

Recall first that the Hilbert space H we are handling is assumed to
be separable which is the property we needed to construct the excep-
tional set M , cf. the text following (3.19). Recall also the notation
we introduced in (3.12) for the vector obtained by application of the



18 P. EXNER AND T. ICHINOSE

operator (I + S(it; τ))−1 to an arbitrary f ∈ H,

uτ (t) = (I + S(it; τ))−1f

=
{
(1 + τ−1)−1(I − P (τ))⊕ [P (τ)(I + tG(tτ) + itH(tτ))P (τ)]−1

}
f

=
{
(1 + τ−1)−1(I − P (τ))⊕ T P (t; τ)

}
f , (4.1)

where the operator

T P (t; τ) := [P (τ)(I + tG(tτ) + itH(tτ))P (τ)]−1 (4.2)

may be also considered on the whole Hilbert space H, although in the
proper sense it is an operator with the domain and range included
in the closed subspace P (τ)H; one may regard it as vanishing on the
orthogonal complement (I − P (τ))H.
Next, for fixed t, s > 0 or t, s < 0, we put

D(t, s; τ)f : = uτ (t)− uτ (s)

= [(I + S(it; τ))−1 − (I + S(is; τ))−1]f

= (I + τ−1)−1(I − P (τ))⊕
[
T P (t; τ)− T P (s; τ)

]
f . (4.3)

With the above direct sum decomposition in mind, one may for a fixed
τ deal with the operator on the subspace P (τ)H,

T P (t, s; τ) := D(t, s; τ) �P (τ)H= T P (t; τ)− T P (s; τ) , (4.4)

however, since τ is varying, we have to consider it on the whole space
H. Note that the τ -family {D(t, s; τ)}0<τ≤1 is strongly continuous in
0 < τ ≤ 1, and uniformly bounded, i.e. ∥D(t, s; τ)∥ ≤ 2, because both
(I + S(it; τ))−1 and (I + S(is; τ))−1 are contractions. Note also that
we have D(t, s; τ) = P (τ)D(t, s; τ).

To verify the assertion of Lemma 3.6, we need to show that for any
fixed f ∈ H, the difference D(t, s; τ)f in (4.3) with t, s ∈ R \ {0}
converges to zero in the Hilbert space norm as |t − s| → 0, and that
the convergence is uniform with respect to τ ∈ (0, 1].

We use a small trick showing first that it is sufficient to establish the
claim of Lemma 3.6 under the additional assumption that one of the t
and s, say the latter, belongs to R \ (M ∪ {0}). Indeed, if this is the
case, i.e. if for any fixed s ∈ R\ (M ∪{0}) and arbitrary f ∈ H, ε > 0,
there is a δ = δ(f ; ε; s) > 0 such that

∥uτ (t)− uτ (s)∥ < ε
2

holds for all t ∈ (s− δ, s+ δ) and τ ∈ (0, 1],

the lemma is valid in the general case as well. To see that, we take
any two points t1, t2 ∈ R\{0} in the vicinity of the chosen s satisfying
|ti − s| < δ

2
for i = 1, 2, then

|t1 − t2| ≤ |t1 − s|+ |s− t2| < δ
2
+ δ

2
= δ,

∥uτ (t1)− uτ (t2)∥ ≤ ∥uτ (t1)− uτ (s)∥+ ∥uτ (s)− uτ (t2)∥ < ε
2
+ ε

2
= ε
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holds independently of τ . This yields the ‘full’ claim of Lemma 3.6 in
view of the fact that the set R \ (M ∪{0}) from which the number s is
chosen is dense in R \ {0}.

Let us thus turn to the nontrivial part of the proof which consists
of establishing the assertion of Lemma 3.6 for s ∈ R \ (M ∪ {0}) and
t ∈ R \ {0}; the aim is to complete the proof of our main result in the
forthcoming Lemma 4.5(ii). We will work out the argument assuming
that t, s > 0, the case with the opposite signs is completely analogous.

To begin with, we use functional calculus with (3.2), (3.3) to rewrite
the differences containing H(tτ) and G(tτ) in (4.3) as

tH(tτ)− sH(sτ) = sin tτH−sin sτH
τ

= 2
τ
cos( t+s

2
τH) sin( t−s

2
τH), (4.5)

tG(tτ)− sG(sτ) = − cos tτH+cos sτH
τ

= 2
τ
sin( t+s

2
τH) sin( t−s

2
τH). (4.6)

To simplify expressions in the discussion to follow, we recall the quan-
tity K(κ) introduced in (3.2) which for κ = tτ allows us to write

I + tK(tτ) = I + tG(tτ) + itH(sτ) = I + I−cos tτH
τ

+ i sin tτH
τ

, (4.7)

and similarly for k = sτ . Furthermore, for a given τ ∈ (0, 1] we intro-
duce the self-adjoint operator

Hτ := H(I + τH)−1 (4.8)

which is positive and bounded, and note that I + |s|Hτ has a bounded
inverse for any s ∈ R. The difference D(t, s; τ) in (4.3) which can
be identified with its nontrivial part T P (t, s; τ) in (4.4) can be then
rewritten as

D(t, s; τ) = T P (t, s; τ)

= [P (τ)(I + tK(tτ))P (τ)]−1 − [P (τ)(I + sK(sτ))P (τ)]−1

= [P (τ)(I + tK(tτ))P (τ)]−1

·
{
P (τ)(I + sK(sτ))P (τ)− P (τ)(I + tK(tτ))P (τ)

}
· [P (τ)(I + sK(sτ))P (τ)]−1

= [P (τ)(I + tK(tτ))P (τ)]−1[P (τ)(sK(sτ)− tK(tτ))P (τ)]

· [P (τ)(I + sK(sτ))P (τ)]−1

= [P (τ)(I + tK(tτ))P (τ)]−1

· [(sK(sτ)− tK(tτ))(I + |s|Hτ )
−1]

· (I + |s|Hτ )P (τ)[P (τ)(I + sK(sτ))P (τ)]−1

=: T1(t; τ)T2(t, s; τ)T3(s; τ), (4.9)
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where we have introduced

T1(t; τ) = T P (t; τ) = [P (τ)(I + tK(tτ))P (τ)]−1, (4.10)

T2(t, s; τ) = (sK(sτ)− tK(tτ))(I + |s|Hτ )
−1, (4.11)

T3(s; τ) = (I + |s|Hτ )P (τ)[P (τ)(I + sK(s, τ))P (τ)]−1, (4.12)

which are all bounded operators on P (τ)H as well as on H; in (4.11)
we are able to drop the projections P (τ) appearing in the last formula
since the operator (4.2) maps the subspace P (τ)H onto itself.

Next we consider the following two operator-valued functions, which
may be thought of as the τ -limits of the families {T1(t; τ)}0<τ≤1 in
(4.10), and {T3(s; τ)}0<τ≤1 in (4.12), namely

T1(t) : = [(I + itHP )
−1P ], (4.13)

T3(s) : = (I + |s|H)P [(I + isHP )
−1P ] = (I + |s|H)[(I + isHP )

−1P ],
(4.14)

where we can remove again one P from the second expression of (4.14)
since (I + isHP )

−1 maps PH to itself. We already know from (3.28)
that T1(t) is the strong limit as τ → 0+ of the family {T1(t; τ)} of
contractions, for the moment at least as long as t ∈ R \ (M ∪ {0}).

Next we are going to show that T3(s) can be extended to a bounded
operator on H. We begin with a crucial observation.

Lemma 4.1. Let H be our nonnegative self-adjoint operator acting in
H and HP the self-adjoint operator introduced in Sect. 2 referring to
the orthogonal projection P . Consider the operator

T0 := (I +H)[(I +HP )
−1P ] (4.15)

in H for which we have: (i) the domain and range of T0 are

D[T0] = P (I +HP )D[HP ] = P (I +HP )(D[H] ∩ PH)⊕ (PH)⊥,

R[T0] = (I +H)D[HP ] = (I +H)(D[H] ∩ PH), (4.16)

as T0 is the direct sum, T0 = T0 �PH ⊕ 0 , in accordance with (2.1),
(ii) and, in addition,

T0 g = g , g ∈ D[T0 �PH], (4.17)

thus T0 can be extended to a bounded operator T̃0 on H such that

the closure of T0 �PH is the identity operator IPH onPH,
and T̃0 = IPH ⊕ 0 on H = PH⊕ (PH)⊥. (4.18)

In particular, T̃0 is a contraction.

Proof. Product of linear operators A and B in H has the domain
D[AB] = B(−1)D[A] := { g ∈ D[B] : Bg ∈ D[A] }. Since P commutes
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with HP , we can rewrite (4.15) as T0 := [(I +H)P ][(I +HP )
−1P ] with

the domain

D[T0] = [P (I +HP )
−1](−1)D[(I +H)P ]

= { g ∈ D[(I +HP )
−1P ] : (I +HP )

−1Pg ∈ D[(I +H)P ]}
= { g ∈ D[HP ] : (I +HP )

−1Pg ∈ D[HP ]}
= P (I +HP )D[HP ] = P (I +HP )(D[H] ∩ PH)⊕ (PH)⊥

and the range

R[T0] = T0D[T0]

= [(I +H)P ][(I +HP )
−1P ]P (I +HP )D[HP ]

= [(I +H)P ]D[HP ] = (I +H)(D[H] ∩ PH).

Let us now turn to the claim (ii). Just as HP is the self-adjoint oper-
ator in H associated with the quadratic form u 7→ ∥H1/2Pu∥2 defined
on D[H1/2P ] = (D[H1/2] ∩ PH) ⊕ (PH)⊥, the self-adjoint operator
P (I + HP ) is associated with the form u 7→ ∥(I + H)1/2Pu∥2 defined
in view of the inequalities

1√
2
(I +H1/2) ≤ (I +H)1/2 ≤ I +H1/2.

on the same domain D[(I +H)1/2P ] = D[H1/2P ]. Consequently,

P (I +HP ) = P (I +H)P = ((I +H)1/2P )∗(I +H)1/2P . (4.19)

We are going to use it to show (4.17). The adjoint ((I +H)1/2P )∗ to
(I+H)1/2P is a closed extension of the closable (in general, non-closed)
operator P (I +H)1/2, in other words, ((I +H)1/2P )∗ ⊃ P (I +H)1/2,
which yields

((I +H)1/2P )∗(I +H)1/2P ⊃ P (I +H)1/2(I +H)1/2P = P (I +H)P,

i.e. the operator on the left-hand side is an extension of the operator
on the right. As both sides are invertible, the analogous inclusion holds
for their inverses,

[(I +HP )
−1P ] = [((I +H)1/2P )∗(I +H)1/2P ]−1 ⊃ [P (I +H)P ]−1.

It follows that for any g ∈ D[T0] specified in (4.18) we have

T0 g = (I +H)[(I +HP )
−1P ]g = (I +H)[P (I +H)P ]−1g = Pg,

which yields the desired claim (4.17), since T0 is reduced by the pro-
jection P and D[T0 �PH] ⊆ PH. Thus we see that the closure of T0 �PH
is the identity operator IPH on PH, and T̃0 as the closed extension of
T0 to the whole H has the norm not exceeding one. �

Lemma 4.2. The operator T3(s) in (4.14), acting in H with the do-
main P (I + isHP )D[HP ] = (I + isHP )(D[H] ∩ PH), can be extended
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to a bounded operator on the whole space H with the norm satisfying
∥T3(s)∥ ≤

√
2.

Proof. Note first that the claim of Lemma 4.1 remains valid when we
replace HP , H by |s|HP , |s|H, respectively, for any s ̸= 0. We rewrite
the operator T3(s) in (4.14) as

T3(s) =
{
(I + |s|H)[(I + |s|HP )]

−1P ]
}

·
{
[P (I + |s|HP )][(I + isHP )

−1P ]
}
.

By spectral theorem the norms of the first and second factors on the
right-hand side are one and

√
2, respectively, independently of s, and

Lemma 4.1 (ii) in combination with the above observation implies that
the first factor is a contraction, which gives ∥T3(s)∥ ≤

√
2. �

In the next step, we turn to investigation of the second and third
factors, (4.11) and (4.12), of the operator T P (t, s; τ) in (4.9). We begin
with proving a crucial property of the τ -family {T3(s; τ)}0<τ≤1 with
s ∈ R \ (M ∪ {0}), where the set M ⊆ R of Lebesgue measure zero
was introduced in the text following (3.19); recall that we adopted the
separability assumption. After doing that, we will focus on the τ -family
{T2(t, s; τ)}0<τ≤1 with t, s ∈ R \ {0}.

Lemma 4.3. Let the Hilbert space H be separable and consider a num-
ber s ∈ R \ (M ∪ {0}), so that for every vector f ∈ H the τ -family
{[P (τ)(I + sK(sτ))P (τ)]−1f} converges in the Hilbert space norm to
[(I + isHP )

−1P ]f as τ → 0+. Then the following claims are valid:
(i) For fixed s, the operator family {T3(s; τ)}0<τ≤1 defined by (4.12)

is uniformly bounded on H, and converges strongly to T3(s) in (4.14)
as τ → 0+.
(ii) To be specific, for a fixed s ∈ R \ (M ∪ {0}) there is a constant

CT3(s) ≥
√
2 such that

∥T3(s; τ)∥ ≤ CT3(s) for all τ ∈ (0, 1] . (4.20)

Proof. (i) Our aim is to verify that T3(s; τ)g converges for g ∈ H to
T3(s)g as τ → 0+ in the Hilbert space norm and to use this fact to
establish the uniform boundedness of {T3(s; τ)g}0<τ≤1.
To this end, let us recall the notion of convergence in the strong

graph sense: given a sequence {An}∞n=1 of operators in a Hilbert space
H we say that (ψ, φ) ∈ H×H belongs to the strong graph limit if one
can find ψn ∈ D[An], n = 1, 2, . . . , such that

ψn −→ ψ, Anψn −→ φ as n→ ∞ .

We denote the set of such pairs (ψ, φ) by Γs
∞. If Γs

∞ is the graph of an
operator A, i.e. Γs

∞ = {(ψ,Aψ) ∈ H × H; ψ ∈ D[A]}, A is also said
to be the strong graph limit of {An}. We have the following result [10,
Thm 4], see also [21, Thm VIII.26]:
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Proposition 4.4. Let {An}∞n=1 and A be self-adjoint operators in H.
Then {An} converges to A in strong resolvent sense if and only if A is
the strong graph limit of {An}.

To make use of this result, let us consider the family {Aτ}0<τ≤1 of
the following bounded and self-adjoint operators,

Aτ := I + |s|Hτ , 0 < τ ≤ 1.

By spectral theorem its elements converge in the strong operator topol-
ogy to the self-adjoint operator I+|s|H as τ → 0+, and that by Propo-
sition 4.4 means that I + |s|H is the strong graph limit of {Aτ}. Since
s ∈ R \ (M ∪ {0}) holds by assumption, we have

ψτ := [P (τ)(I + sK(sτ))P (τ)]−1g −→ ψ := [(I + isHP )
−1P ]g ,

as τ → 0+ for g ∈ H, with

[(I + isHP )
−1P ]g ∈ D[HP ] ⊂ D[(I + |s|H)P ] ⊂ D[I + |s|H] .

In this way, the pair (ψ, (I + |s|H)ψ) belongs to the set Γs
∞ result-

ing from the strong graph limit of the family {Aτ}, and consequently,
Aτψτ −→ (I + |s|H)ψ, i.e.

Aτ [P (τ)(I + sK(sτ))P (τ)]−1g −→ (I + |s|H)[(I + isHP )
−1P ]g ,

in other words, the sought convergence, T3(s; τ)g −→ T3(s)g. This
implies, by the uniform boundedness principle (or Banach-Steinhaus
theorem), the family {T3(s; τ)}0≤τ<1 is uniformly bounded in the op-
erator norm.

(ii) Consider again an arbitrary g ∈ H. In view of the convergence
established above in combination with the bound on the norm of T3(s)
from Lemma 4.2(ii), we see that for a fixed s ∈ R \ (M ∪ {0}) there is
a positive, g-dependent number τs = τs(g) ≤ 1 such that

∥T3(s; τ)g∥ ≤ ∥T3(s)g∥+ 1
2
≤ ∥T3(s)∥∥g∥+ 1

2
≤

√
2∥g∥+ 1

2
, τ ∈ (0, τs] .

This helps us to complement our knowledge of the uniform boundedness
using the estimate

sup
0<τ≤1

∥T3(s; τ)g∥ ≤ max
{√

2∥g∥+ 1
2
, sup
τs<τ≤1

∥T3(s; τ)g∥
}
.

We note that the function τ 7→ ∥T3(s; τ)g∥ is continuous on the com-
pact set [τs, 1] ⊂ R, hence the right-hand side is bounded for any
g and, applying again the uniform boundedness principle, we con-
clude that the τ -family {T3(s; τ)}0<τ≤1 is uniformly bounded by a

constant CT3(s) ≥
√
2 depending on s. This completes the proof of

Lemma 4.3. �
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It remains to deal with the middle factor T2(t, s; τ) in (4.11). We
rewrite it as

T2(t, s; τ) = i(sH(sτ)− tH(tτ))(I + |s|Hτ )
−1

+ (sG(sτ)− tG(tτ))I + |s|Hτ )
−1

=: iT2,H(t, s; τ) + T2,G(t, s; τ). (4.21)

For a fixed τ ∈ (0, 1], the operators T2,H(t, s; τ), T2,G(t, s; τ), as well
as their linear combination, are bounded operators which are in the
functional calculus sense obtained from H as its appropriate bounded
and continuous functions; in view of (4.5) and (4.6) we have

T2,H(t, s; τ) = ϕH(t, s; τ,H) := (tH(tτ)− sH(sτ))(I + |s|Hτ )
−1

=
2
τ
sin( t−s

2
τλ) cos( s+t

2
τλ)

I + |s|λ(I + τλ)−1
,

T2,G(t, s; τ) = ϕG(t, s; τ,H) := (tG(tτ)− sG(sτ))(I + |s|Hτ )
−1

=
2
τ
sin( t−s

2
τλ) sin( s+t

2
τλ)

I + |s|λ(I + τλ)−1
,

and

T2(t, s; τ) = ϕ(t, s; τ,H) := iϕH(t, s; τ,H) + ϕG(t, s; τ,H)

It is straightforward to check that

|ϕ(t, s; τ, λ)|2 =
∣∣∣ 2

τ
sin( t−s

2
τλ)

I + |s|λ(I + τλ)−1

∣∣∣2, (4.22)

which means that for any g ∈ H we have

∥T2(t, s; τ)g∥2 = ∥T2,H(t, s; τ)g∥2 + ∥T2,G(t, s; τ)g∥2

=

∫ ∞

0−

∣∣∣ 2
τ
sin( t−s

2
τλ)

I + |s|λ(I + τλ)−1

∣∣∣2∥E(dλ)g∥2 . (4.23)

The following lemma represents the second crucial element in estab-
lishing Lemma 3.6, and in this way, proving our main theorems.

Lemma 4.5. Consider t, s ∈ R \ {0} such that either t, s > 0 or
t, s < 0. Then for T2(t, s; τ) given by (4.11) and for D(t, s; τ) given by
(4.3) or (4.9) the following holds:

(i) The τ -family {T2(t, s; τ} of bounded operators in (4.21) is uniformly
bounded locally uniformly for t, s ∈ R \ {0}. Further, for every f ∈ H
and any ε > 0, there is an s-dependent number δ = δ(f ; ε; s) > 0 such
that

t ∈ R \ {0} with |t− s| < δ =⇒ ∥T2(t, s; τ)f∥ < ε, (4.24)

uniformly with respect to τ ∈ (0, 1].
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(ii) Let further s ∈ R\ (M ∪{0}), then for every f ∈ H and any ε > 0,
there is a number δ = δ(f ; ε; s) > 0 such that

t ∈ R \ {0} with |t− s| < δ =⇒ ∥D(t, s; τ)f∥ < ε, (4.25)

uniformly with respect to τ ∈ (0, 1].

Proof. (i) The τ -families of bounded operators appearing in (4.21) con-
verge in the strong operator topology for any fixed pair t, s ∈ R \ {0};
by functional calculus we find easily that

T2,H(t, s; τ)
s→ T2,H(t, s) :=

(t−s)H
I+|s|H , T2,G(t, s; τ)

s→ T2,G(t, s) := 0,

T2(t, s; τ)
s−→ T2(t, s) := iT2,H(t, s) + T2,G(t, s)

holds as τ → 0+, and therefore

|T2(t, s; τ)|2
s−→ |T2(t, s)|2 = T2,H(t, s)

2 + T2,G(t, s)
2 =

(
(t−s)H
I+|s|H

)2
.

Our way to prove the claim is to apply the uniform boundedness prin-
ciple to these operator families. From (4.23) we obtain

∥T2(t, s; τ)∥ = sup
∥g∥=1

∥T2(t, s; τ)g∥ = sup
λ≥0

|ϕ(t, s; τ, λ)| ,

and for T2(t, s) = ϕ(t, s;H) with ϕ(t, s;λ) := (t−s)λ
1+|s|λ we have similarly

∥T2(t, s)∥ = sup
λ≥0

|ϕ(t, s;λ)| = |t−s|
|s| . (4.26)

We note that ϕ(t, s; τ, λ) is continuous with respect to all the variables,
τ ∈ (0, 1], λ ∈ [0,∞), and t, s ∈ R\{0}. Our intention is now to regard
the family {T2(t, s; τ)} as depending on a broader set of parameters:
we fix a nonzero s and consider τ in (0, 1] and t in a neighborhood of
s, more specifically,

τ ∈ (0, 1], t ∈ D(s) := {t ∈ R \ {0}; |t− s| ≤ |s|
2
}. (4.27)

For each fixed f ∈ H and s ∈ R \ {0} we put

Φf,s(t; τ) :=

{ ∥T2(t, s; τ)f∥ . . . 0 < τ ≤ 1,

∥T2(t, s)f∥ . . . τ = 0,
(4.28)

which is a bounded and continuous function on the compact set D(s)×
[0, 1] ⊂ R2. Then Cf,s := maxt,τ∈D(s)×[0,1] Φf,s(t; τ) exists, depending
on f and s, but being independent of t ∈ D(s) and τ ∈ (0, 1], and from
the strong convergence of {T2(t, s; τ)} to T2(t, s) noted above we infer
that

∥T2(t, s; τ)f∥ ≤ Cf,s

holds for given f ∈ H, s ̸= 0, and all (t, τ) ∈ D(s) × (0, 1]. Applying
now the uniform boundedness principle to this operator family with
the extended set of parameters (4.27), we establish the existence of a
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constant CT2(s) > 0, depending on s but independent of t ∈ D(s) and
τ ∈ (0, 1], such that

∥T2(t, s; τ)∥ ≤ CT2(s). (4.29)

In view of the strong convergence, it cannot be smaller than the norm

of T2(t, s) in (4.26), that is, CT2(s) ≥
|t−s|
|s| .

Since E([λ,∞))
s→ 0 holds as λ→ ∞, one can find for a fixed s, any

f ∈ H, and each ε > 0 a number λ0 = λ0(f ; ε; s) > 0 such that

∥E([λ0,∞))f∥2 < 1
CT2

(s)2
· ε2

2
. (4.30)

In this case using (4.22) and (4.30), we get

∥T2(t, s; τ)f∥2 = ∥ϕ(t, s; τ,H)f∥2

=
(∫ λ0

0−
+

∫ ∞

λ0

)
|ϕ(t, s; τ, λ)|2∥E(dλ)f∥2

≤
∫ λ0

0−

∣∣∣∣ 2
τ
sin(

t−s
2

τλ)

1+(sλ)(I+τλ)−1

∣∣∣∣2∥E(dλ)f∥2 + CT2(s)
2∥E([λ0,∞))f∥2

≤ (|t− s|λ0)2∥E([0, λ0))f∥2 + ε2

2
,

where the last inequality comes from the estimate of the numerator of
the squared modulus factor in the above integral,∣∣ 2

τ
sin( t−s

2
τλ)

∣∣ ≤ |t− s|λ0, 0 ≤ λ ≤ λ0.

Since the set {(τ, λ); 0 < τ ≤ 1, 0 ≤ λ ≤ λ0} is bounded, and therefore
its closure is compact, we infer that for a fixed s ∈ R \ {0} there is a
number δ = δ(f ; ε; s) > 0 such that

t ∈ R \ {0} with |t− s| < δ =⇒ (|t− s|λ0)2(1 + ∥f∥2) < ε2

2

uniformly for 0 < τ ≤ 1. In fact, we can find it explicitly; it is enough
to choose

δ(f ; ε; s) := min
{

1√
2λ0(1+∥f∥2)1/2 ε,

|s|
2

}
.

Thus we have

∥T2(t, s; τ)f∥2 ≤ (1 + ∥f∥2)−1 ε2

2
∥E([0, λ0))f∥2 + ε2

2
< ε2,

in other words,

∥T2(t, s; τ,H)f∥ < ε,

which yields the implication (4.24).

(ii) To prove the remaining claim of the lemma, we first note that
T1(t; τ) ≡ T P (t; τ) is a contraction, ∥T1(t; τ)∥ ≤ 1, and therefore

∥D(t, s; τ)f∥ = ∥T P (t, s; τ)f∥ = ∥T1(t; τ)T2(t, s; τ)T3(s; τ)f∥
≤ ∥T2(t, s; τ)T3(s; τ)f∥.
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To deal with the last norm we repeat the argument from the part (i)
replacing f by T3(s; τ)f , obtaining for any λ0 > 0 the estimate

∥T2(t, s; τ)T3(s; τ)f∥2

=
(∫ λ0

0−
+

∫ ∞

λ0

)
|ϕ(t, s; τ, λ)|2∥E(dλ)T3(s; τ)f∥2

≤
[ ∫ λ0

0−

∣∣∣ 2
τ
sin

(t−s)
2

τλ

1+(sλ)(I+τλ)−1

∣∣∣2∥E(dλ)T3(s; τ)f∥2
+ CT2(s)

2∥E([λ0,∞))T3(s; τ)f∥2
]

(4.31)

≤ (|t− s|λ0)2∥E([0, λ0))T3(s; τ)f∥2 + CT2(s)
2∥E([λ0,∞))T3(s; τ)f∥2

with the constant CT2(s) from (4.29). The second term of the last
expression converges to zero as λ0 → ∞ for any fixed τ ∈ (0, 1].

To make use of the estimate, however, we need to find a λ0 inde-
pendent of τ in order to obtain convergence uniform with respect to
0 < τ ≤ 1. This can be achieved, however, because for fixed f ∈ H
and s ∈ R \ (M ∪ {0}), the set

Vf := {T3(s; τ)f ; 0 < τ ≤ 1} ⊂ H
is bounded by (4.20), and has a compact closure, as a consequence of
the strong continuity of T3(s; τ)f with respect to the variable τ > 0.
Then for every f ∈ H and every ε > 0 one can find an s-dependent
number λ00 = λ00(f ; ε; s) > 0 such that

sup
0<τ≤1

∥E([λ00,∞))T3(s; τ)f∥2 < 1
CT2

(s)2
· ε2

2
(4.32)

with the constant CT2(s) in (4.29). Let us be more explicit about
the last claim. Since Vf is totally bounded, there is a finite family of
vectors {yj}Nj=1 ⊂ Vf , yj = T3(s; τj)f for some τj ∈ (0, 1], and an open
ball B(0; ε√

8CT2
(s)
) with the center at the origin and radius ε√

8CT2
(s)

for

which we have Vf ⊂ ∪N
j=1

(
yj + B(0; ε√

8CT2
(s)
)
)
. Using again the fact

that E([λ,∞))
s→ 0 holds as λ → ∞ we infer that there is a family

{λj}Nj=1 of large positive numbers such that CT2(s)∥E([λj,∞))yj∥ ≤ ε√
8

holds for j = 1, 2, . . . , N and we put λ00 := maxj=1,2,...,N λj. The finite
union coverage means that any ϕ ∈ Vf satisfies ϕ ∈ yjϕ +B(0; ε√

8CT2
(s)
)

for some 1 ≤ jϕ ≤ N with 0 < τjϕ ≤ 1. Noting that ∥E([λ00,∞))∥ ≤ 1,
we have

CT2(s)
2∥E([λ00,∞))ϕ∥2

≤ CT2(s)
2
(

max
j=1,2,...,N

∥E([λ00,∞))yj∥+ ε√
8CT2

(s)

)2
≤ 2CT2(s)

2
[

max
j=1,2,...,N

∥E([λ00,∞))yj∥2 +
(

ε√
8CT2

(s)
)2
]

< ε2

4
+ ε2

4
= ε2

2
.
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Returning to the first term on the right-hand side of (4.31) where take
λ0 = λ00, and noting that ∥T3(s; τ)f∥ ≤ CT3(s)∥f∥ holds in view of
(4.20), we see that there exists a number δ = δ(f ; ε; s) > 0 such that
for a fixed s we have

t ∈ R \ {0} with |t− s| < δ =⇒ (|t− s|λ00)2(CT3(s)∥f∥)2 < ε2

2
,

uniformly for all τ ∈ (0, 1]; one can be again explicit and choose

δ(f ; ε; s) := min{ 1√
2λ00(1+(CT3

(s)∥f∥)2)1/2 ε,
|s|
2
} .

The estimate (4.31) then gives

∥T2(t, s; τ)T3(s; τ)f∥2 < ε2

2
+ ε2

2
= ε2,

or in other words

∥D(t, s; τ)f∥ ≤ ∥T2(t, s; τ)T3(s; τ)f∥ < ε,

which yields (4.25). This concludes the proof of the present lemma,
and in this way also of Lemma 3.6 as we have outlined in the opening
of this section. �

5. An example

Let us finally mention briefly a typical situation in which Zeno dy-
namics occurs as indicated, for instance, in the paper [8], namely the
perpetual position ascertaining. We consider an open domain Ω ⊂ Rd

with a smooth boundary, thought of as the detector volume, and as-
sociate with it the orthogonal projection P on L2(Rd) acting as the
multiplication operator by the indicator function χΩ of the set Ω. Sup-
pose that the dynamics of the particle undisturbed by the measurement
is free, that is, described by the Hamiltonian H = −∆, i.e. the Lapla-
cian in Rd which is a nonnegative self-adjoint operator in L2(Rd). The
assumption of density of the domain of H1/2P = (−∆)1/2χΩ is satis-
fied, since it contains C∞

0 (Ω) ∪ C∞
0 (Rd \ Ω), where Ω is the closure of

Ω, and this family of functions is dense in L2(Rd).
Consider further the Dirichlet Laplacian −∆Ω in L2(Ω) defined in

the usual way [22, Thm XIII.15] as the Friedrichs extension of the
appropriate quadratic form. It can be checked [5, Prop. 6.1] that

(−∆)P := ((−∆)1/2P )∗(−∆)1/2P

is densely defined and its restriction to the subspace L2(Ω) is nothing
but the Dirichlet Laplacian −∆Ω with the domain D[−∆Ω] = W 1

0 (Ω)∩
W 2(Ω), and

−∆Ω = (−∆)P �PL2(Rd)= (−∆)P �L2(Ω) .

Then Theorem 1.1 says that

s -lim
n→∞

(P e−it(−∆/n)P )n = e−it(−∆Ω)P
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holds in the strong operator topology of B(L2(Rd)), the Banach space
of the bounded linear operators on L2(Rd), in other words, that the
perpetual reduction of the wave function forces the particle to move
within the region Ω as if its boundary was Dirichlet, i.e. hard wall.
This is, of course, the expected conclusion indicated, e.g. in [7, 8],
however, only Theorem 1.1 allows one to state such a claim with the
proper rigor.
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