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1. Introduction

Consider the problem,

∂u

∂t
=
∂2u

∂x2
+ au2(1− u)− σ(x)u, x ∈ R, t ≥ 0, (1.1)

wherea > 0 is a constant. Equations of this kind are crucial in the studyof pop-
ulation dynamics (see e.g. [7]). In this context,u(x, t) denotes the density of a
population at timet in locationx, the diffusion term describes its migration, the
second term in the right side is the reproduction rate, and the last term is the mortal-
ity rate. In the case of sexual reproduction, the reproduction rate is proportional to
the second power of the population density and to the available resources(1 − u),
given by the difference of the rate of production of resources and the rate of their
consumption. Stationary solutions of equation (1.1) are solutions to

d2u

dx2
+ au2(1− u)− σ(x)u = 0, x ∈ R. (1.2)
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Stationary solutions of reaction-diffusion equations decaying at infinities are called
pulses. Their existence along with stability and other related issues have been ac-
tively studied for both local and nonlocal models in recent years, for instance, in [1],
[2], [3], [4], [5], [6], [8], [12], [13]. In the present article, we only focus on the
persistence of pulses and their asymptotic approximationsto the leading order of the
small parameter when a perturbation is applied to equation (1.1). Similar studies in
the context of standing solitary waves of the nonlinear Schrödinger equation, when
a perturbation is applied to either a scalar potential involved in it or to the nonlinear
term, were exploited in [9].

The unperturbed stationary problem in our case is given by

d2w0

dx2
+ aw2

0(1− w0)− σ0(x)w0 = 0, x ∈ R. (1.3)

In the article we will consider the spaceH2(R) equipped with the norm

‖u‖2H2(R) := ‖u‖2L2(R) +

∥

∥

∥

∥

∥

d2u

dx2

∥

∥

∥

∥

∥

2

L2(R)

. (1.4)

By virtue of the standard Sobolev embedding, we have

‖u‖L∞(R) ≤ ce‖u‖H2(R), (1.5)

wherece > 0 is the constant of the embedding. We first make the following as-
sumption on the parameters of our unperturbed problem alongwith its solution that
we are going to consider.

Assumption 1.Let the constanta > 0 and the function

σ0(x) ∈ C∞(R), limx→±∞σ0(x) = δ > 0.

We also assume that equation (1.3) admits a pulse solutionw0(x) > 0, x ∈ R,
satisfying

w0(x) ∈ C∞(R) ∩H2(R), limx→±∞w0(x) = 0.

When a perturbation is applied to our stationary problem (1.3), we arrive at

d2w

dx2
+ aw2(1− w)− [σ0(x) + εσ1(x)]w = 0, x ∈ R. (1.6)

Assumption 2.Let the parameterε ≥ 0 and the nontrivial function

σ1(x) ∈ C∞(R), limx→±∞σ1(x) = 0. (1.7)
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We seek solutions of equation (1.6) in the form

w(x) = w0(x) + wp(x). (1.8)

Then, by means of (1.6) along with (1.3), we get

L0wp(x) = a(1− 3w0(x))w
2
p(x)− aw3

p(x)− εσ1(x)(w0(x) + wp(x)), (1.9)

where

L0 = −
d2

dx2
+ a(3w2

0(x)− 2w0(x)) + σ0(x) : H
2(R) → L2(R). (1.10)

Under Assumption 1, it is easy to see that the essential spectrum ofL0 is

σess(L0) = [δ,+∞). (1.11)

If σ0(x) were a constant function on the real line, then the operatorL0 would have

a zero mode
dw0

dx
, which easily follows by differentiating both sides of equation

(1.3). However, in the present article we assume the function σ0(x) to be generic
such that operator (1.10) would have a trivial kernel.

Assumption 3.The kernelker(L0) = {0}.

By means of (1.11) along with Assumption 3, the operatorL−1
0 : L2(R) →

H2(R) is bounded, that is,
‖L−1

0 ‖ <∞. (1.12)

Let us denote a closed ball in the Sobolev spaceH2(R) as

Bρ := {u ∈ H2(R) | ‖u‖H2(R) ≤ ρ}, ρ > 0. (1.13)

We look for solutions of problem (1.9) as fixed points of the auxiliary nonlinear
equation

L0u(x) = a(1− 3w0(x))v
2(x)− av3(x)− εσ1(x)(w0(x) + v(x)). (1.14)

For a given functionv(x) this is an equation with respect tou(x). We mention that
similar ideas for problems involving non-Fredholm operators in their left sides have
been exploited in [10] and [11]. We introduce the operatorT such thatu = Tv,
whereu is a solution of equation (1.14). Our main result is as follows.

Theorem 4.Let Assumptions 1, 2 and 3 hold. Then equation (1.14) defines the map
T : Bρ → Bρ, which is a strict contraction for all0 < ρ < ρ∗ and0 < ε < ε∗ for
someρ∗ > 0 andε∗ > 0. The unique fixed pointwp(x) of this mapT is the only
solution of problem (1.9) inBρ such that

wp(x) = −εL−1
0 [σ1(x)w0(x)] +O(ε2). (1.15)
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Note thatO(ε2) in the right side of formula (1.15) denotes the terms of the orderε2

and higher in theH2(R) norm. The proof of Theorem 4 is given in the next section.

2. Proof of Theorem 4

First of all, we establish the uniqueness of solutions of problem (1.14). Suppose
that there is av ∈ Bρ such that (1.14) has two different solutionsu1, u2 ∈ Bρ. Then
their differenceψ(x) := u1(x)− u2(x) ∈ H2(R) solves the homogeneous problem

L0ψ = 0. (2.16)

By means of Assumption 3, equation (2.16) admits only a trivial solution, a contra-
diction. This proves the uniqueness of solutions of (1.14).

Next, for arbitraryv(x) ∈ Bρ, we estimate the right side of problem (1.14) in
the absolute value from above by

[a(1 + 3‖w0‖L∞(R))‖v‖L∞(R)+

+a‖v‖2L∞(R) + ε‖σ1‖L∞(R)]|v(x)|+ ε‖σ1‖L∞(R)|w0(x)|. (2.17)

Note thatσ1(x) ∈ L∞(R) due to Assumption 2. By means of the Sobolev embed-
ding (1.5), expression (2.17) can be bounded from above by

[a(1 + 3ce‖w0‖H2(R))ce‖v‖H2(R)+

+ac2e‖v‖
2
H2(R) + ε‖σ1‖L∞(R)]|v(x)|+ ε‖σ1‖L∞(R)|w0(x)|. (2.18)

The fact thatv(x) ∈ Bρ yields the upper bound for (2.18) given by

[a(1 + 3ce‖w0‖H2(R))ceρ+

+ac2eρ
2 + ε‖σ1‖L∞(R)]|v(x)|+ ε‖σ1‖L∞(R)|w0(x)|. (2.19)

Therefore, from (1.14) we easily deduce that

‖u‖H2(R) ≤ ‖L−1
0 ‖{[a(1 + 3ce‖w0‖H2(R))ceρ+

+ac2eρ
2 + ε‖σ1‖L∞(R)]ρ+ ε‖σ1‖L∞(R)‖w0‖H2(R)}. (2.20)

Apparently, the estimate

‖L−1
0 ‖{ace(1 + 3ce‖w0‖H2(R))ρ

2+

+ac2eρ
3 + ε‖σ1‖L∞(R)(ρ+ ‖w0‖H2(R))} ≤ ρ (2.21)

can be achieved for allρ > 0 andε > 0 small enough. Note that the upper bound
on the values ofε > 0 here will depend onρ. This means that

‖u‖H2(R) ≤ ρ, (2.22)
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that is,u ∈ Bρ as well. Hence the problem (1.14) defines the mapT : Bρ → Bρ for
all ρ > 0 andε > 0 sufficiently small.

Our goal is to establish that this map is a strict contraction. In fact, let v1,
v2 ∈ Bρ. The argument above gives usu1 = Tv1, u2 = Tv2 ∈ Bρ as well. By
means of equation (1.14) we obtain

L0u1(x) = a(1− 3w0(x))v
2
1(x)− av31(x)− εσ1(x)(w0(x) + v1(x)), (2.23)

L0u2(x) = a(1− 3w0(x))v
2
2(x)− av32(x)− εσ1(x)(w0(x) + v2(x)). (2.24)

Formulas (2.23) and (2.24) give us

L0(u1(x)− u2(x)) = (v1(x)− v2(x))×

×{a(1−3w0(x))(v1(x)+v2(x))−a(v
2
1(x)+v1(x)v2(x)+v

2
2(x))−εσ1(x)}. (2.25)

We estimate the right side of equality (2.25) from above in the absolute value by

|v1(x)− v2(x)|{a(1 + 3‖w0‖L∞(R))(‖v1‖L∞(R) + ‖v2‖L∞(R))+

+a(‖v1‖
2
L∞(R) + ‖v1‖L∞(R)‖v2‖L∞(R) + ‖v2‖

2
L∞(R)) + ε‖σ1‖L∞(R)}. (2.26)

With the help of the Sobolev embedding (1.5), expression (2.26) can be bounded
from above by

|v1(x)− v2(x)|{ace(1 + 3ce‖w0‖H2(R))(‖v1‖H2(R) + ‖v2‖H2(R))+

+ac2e(‖v1‖
2
H2(R) + ‖v1‖H2(R)‖v2‖H2(R) + ‖v2‖

2
H2(R)) + ε‖σ1‖L∞(R)}. (2.27)

The fact thatv1, v2 ∈ Bρ gives us the upper bound for (2.27) as

|v1(x)− v2(x)|{2ace(1 + 3ce‖w0‖H2(R))ρ+ 3ac2eρ
2 + ε‖σ1‖L∞(R)}. (2.28)

Therefore, by means of (2.25) we arrive at

‖u1 − u2‖H2(R)

≤‖L−1
0 ‖{2ace(1 + 3ce‖w0‖H2(R))ρ+ 3ac2eρ

2 + ε‖σ1‖L∞(R)}‖v1 − v2‖H2(R).
(2.29)

Evidently, the bound

‖L−1
0 ‖{2ace(1 + 3ce‖w0‖H2(R))ρ+ 3ac2eρ

2 + ε‖σ1‖L∞(R)} < 1 (2.30)

can be attained for allρ > 0 andε > 0 sufficiently small. Therefore, the mapT :
Bρ → Bρ defined by equation (1.14) is a strict contraction. Its unique fixed point
wp(x) is the only solution of problem (1.9) in the ballBρ. Note that the function
wp(x) is nontrivial for ε > 0, which easily follows from equation (1.9), since by
means of Assumptions 1 and 2 the intersection of supports suppσ1(x) ∩ suppw0(x)
is a set of nonzero Lebesgue measure on the real line. Clearly, the resulting solution
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w(x) of problem (1.6) given by formula (1.8) belongs toH2(R). Let the radius of
the ballBρ be small enough, namely,

ρ < ‖w0‖H2(R). (2.31)

Then by means of (1.8) along with (2.31) via the triangle inequality we have

‖w‖H2(R) ≥ ‖w0‖H2(R) − ‖wp‖H2(R) ≥ ‖w0‖H2(R) − ρ > 0 (2.32)

and hencew(x) is nontrivial as well.
Finally, we finish the proof by obtaining the asymptotics forthe functionwp(x)

to the leading order in the parameterε. Clearly, (1.9) yields

wp(x) = L0
−1[a(1− 3w0(x))w

2
p(x)−

−aw3
p(x)− εσ1(x)wp(x)]− εL0

−1[σ1(x)w0(x)]. (2.33)

Apparently, the leading term in the small parameterε in the right side of (2.33) is
given by

−εL0
−1[σ1(x)w0(x)]. (2.34)

Clearly, (2.34) can be estimated from above in theH2(R) norm by

ε‖L−1
0 ‖‖σ1(x)‖L∞(R)‖w0(x)‖H2(R) <∞ (2.35)

under Assumptions 1 and 2 along with (1.12). Evidently, we have the upper bound

|a(1− 3w0(x))w
2
p(x)− aw3

p(x)− εσ1(x)wp(x)| ≤ a(1 + 3‖w0‖L∞(R))×

×‖wp‖L∞(R)|wp(x)|+ a‖wp‖
2
L∞(R)|wp(x)|+ ε‖σ1‖L∞(R)|wp(x)|. (2.36)

By means of the Sobolev embedding (1.5), the right side of inequality (2.36) can be
estimated from above by

[ace(1 + 3ce‖w0‖H2(R))‖wp‖H2(R) + ac2e‖wp‖
2
H2(R) + ε‖σ1‖L∞(R)]|wp(x)|. (2.37)

Therefore, the remaining term in the right side of (2.33) canbe bounded from above
in theH2(R) norm by

‖L−1
0 ‖[ace(1 + 3ce‖w0‖H2(R))‖wp‖H2(R)+

+ac2e‖wp‖
2
H2(R) + ε‖σ1‖L∞(R)]‖wp‖H2(R) = O(ε2), (2.38)

namely, the identity (1.15) holds.
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