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1. Introduction

Consider the problem
—A+V(x)u—au=f, (1.1)

whereu € F = H'RY) andf € F = L*RY), d € N, a is a constant and
the scalar potential functiolf (=) tends to0 at infinity. Fora > 0, the essential
spectrum of the operatot : £ — F which corresponds to the left side of problem
(1.1) contains the origin. Consequently, this operatds fa satisfy the Fredholm
property. Its image is not closed, fdr> 1 the dimensions of its kernel and the
codimension of its image are not finite. The present worksiedh the studies of
certain properties of the operators of this kind. Let usltebat elliptic equations
containing non Fredholm operators were treated extensivetecent years (see
[15], [16], [17], [19], [20], [21], [22], [23], [24], [25], &so [6]) along
with their potential applications to the theory of reactuiffusion problems (see
[8], [9]). Non-Fredholm operators are also important whierdging wave systems
with an infinite number of localized traveling waves (see).[1h the particular
case whem = 0 the operatord? satisfies the Fredholm property in some properly



chosen weighted spaces (see [2], [3], [4], [5], [6]). Howetee case of # 0 is
significantly different and the approach developed in thasds cannot be applied.

One of the important issues about problems with non-Fredlogerators con-
cerns their solvability. We address it in the following sedt Let f,, be a sequence
of functions in the image of the operatdr such thatf,, — f in L?(R%) asn — oo.
Denote byu,, a sequence of functions froit'(R¢) such that

Au, = f,, n € N.

Since the operatad does not satisfy the Fredholm property, the sequenaaay
not be convergent. Let us call a sequengesuch thatdw,, — f a solution in the
sense of sequences of probleln = f (see [15]). If such sequence converges to
a functionu in the norm of the spacé&, thenu, is a solution of this equation.
Solution in the sense of sequences is equivalent in thistcate usual solution.
However, in the case of the non-Fredholm operators, thigergence may not hold
or it can occur in some weaker sense. In such case, solutitreisense of se-
guences may not imply the existence of the usual solutiothdrpresent work we
will find sufficient conditions of equivalence of solutiomsthe sense of sequences
and the usual solutions. In the other words, the conditionsemuenceg, under
which the corresponding sequenagsare strongly convergent. Solvability in the
sense of sequences for the sums of Schrodinger type operathout Fredholm
property was treated in [26].

In the first part of the article we study the problem

\/—AI +V(z) = A, +UW)u —au = f(z,y), =,y€R. (1.2)

The operator

Hy v =\ ~0s + V(2) = A, + U(y) (1.3)

here is defined via the spectral calculus. Here and furthendbe Laplacian op-
eratorsA, andA, are with respect to the andy variables respectively, such that
cumulativelyA := A, + A,. Similarly, for the gradients

Vi=V,+V,

whereV, andV, act onz andy variables respectively. The square roots of sec-
ond order differential operators are actively used, fotanse in the studies of the
superdiffusion problems (see e.g. [27] and the refererta®in), in relativistic
Quantum Mechanics (see e.g. [18]). The scalar potentiaitimms involved in
(1.3) are assumed to be shallow and short-range, satisftygngssumptions analo-
gous to the ones of [19] and [21].

Assumption 1. The potential function® (x), U(y) : R® — R satisfy the bounds
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with some:s > 0 andz, y € R? a.e. such that

19 _2
8204V g IV, <1, w4
B2 um 2o Uulr, <1 15
R A T L 15)
and

V CHLSHVHL%(R?,) < 471', V CHLSHUHL%(RS) <Ar

Here and below' denotes a finite positive constant ang, s given on p.98 of [12]
is the constant in the Hardy-Littlewood-Sobolev ineqyalit

[ [ Lhw,,

|z —yl?

< curs|| fill* fi GL%(R?’).

L3 (R3)’

The norm of a functiorf; € LP(R?), 1 < p < oo, d € Nis denoted ag f | .»(ra)-
We designate the inner product of two functions as

(@), 9@ = [ f@patde (1.6)

with a slight abuse of notations when such functions are quéae integrable. In-
deed, if f(z) € L'(R?) andg(x) is bounded like, for example the functions of
the continuos spectrum of the Schrodinger operators sissrlibelow, then the in-
tegral in the right side of (1.6) is well defined. By means ofrmea 2.3 of [21],
under Assumption 1 above on the scalar potentials, ope(at8) considered as
acting in L?(R%) with domain H'(R°) is self-adjoint and is unitarily equivalent to
V-4, — A, on L*(RP) via the product of the wave operators (see [11], [14])

it(—Ap+V (z)) JitA

Q‘i; =5 — liMzo0€ et Qﬁ =5 — |imt_>¢ooe’t(_Ay+U(y))e”Ay

with the limits here understood in the stroid sense (see e.g. [13] p.34, [7]
p.90). Hence, operator (1.3) has no nontrivid[R®) eigenfunctions. Its essential
spectrum fills the nonnegative semi-afis+occ). Therefore, operator (1.3) does
not satisfy the Fredholm property. The functions of the tards spectrum of the

first operator involved in (1.3) are the solutions the Sdimger equation

[—As + V(2)lpn(z) = koi(z), k€R?,

in the integral form the Lippmann-Schwinger equation

ikx

. ] ilkllo—y]
or(z) = et I /R3 H(V%)(y)dy (1.7)
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and the orthogonality conditionsx(z), v, (z)) r2rs) = 0(k — k1), k, k1 € R®.
The integral operator involved in (1.7)

1 etlkllz—yl
Q@ = —3- [ SV, o) € L7®).

We consider) : L=(R?) — L>*(R?) and its norm|Q||.. < 1 under Assumption 1
via Lemma 2.1 of [21]. In fact, this norm is bounded above ly/Ahndependent
quantity/(V'), which is the left side of inequality (1.4). Analogouslyr fbe second
operator involved in (1.3) the functions of its continuops&rum solve

[=A, +UW)ng(y) = i®ngly), q € R’

in the integral formulation

iqy ilqlly—z]
wlo) = = g L e (19)

such that the the orthogonality relatidmg(y), 7, (v)) r2ws) = (¢—a1), ¢, @1 € R?
hold. The integral operator involved in (1.8) is

1 etlally—=|

(Pn)(y) := (Un)(z)dz, n(y) € L™(R?).

dr R3 \y—z\

For P : L*(R3) — L*(R?) its norm||P|» < 1 under Assumption 1 by virtue
of Lemma 2.1 of [21]. As before, this norm can be estimatedvablny theq-
independent quantity(U), which is the left side of inequality (1.5). Let us denote
by the double tilde sign the generalized Fourier transfoiith thhe product of these
functions of the continuous spectrum

flk,q) = (f(x,9), or()ng(y)) 2@y, Ky q € R, (1.9)
(1.9) is a unitary transform oh?(R®). We will be using the Sobolev space
HY(RY) = {u(z) : R* = C | u(x) € L*(RY), Vu € L*(R%)}
equipped with the norm
lullz gy = lullZe@a) + IVl @, d€N.
Our first main proposition is as follows.

Theorem 2.Let Assumption 1 hold anfiz, y) € L?(RS).
a) Whena = 0, let in additionf(x,y) € L*(R%). Then equation (1.2) admits a
unique solution:(z, y) € H'(R®).



b) Whena > 0, let in additionz f(z,y), vf(z,y) € L'(R®). Then problem
(1.2) possesses a unique solutidn, y) € H'(RS) if and only if

(f(x,y), Sok(x>7]¢J(y>>L2(R6) = 07 (ka Q> S SS (110)

Here and belows? stands for the sphere R of radiusa centered at the origin.
Such unit sphere will be denoted s$and its Lebesgue measure|&€|. Note that
in the case ofi = 0 in the theorem above no orthogonality conditions are ne&aled
solve equation (1.2) ift/ ' (R®).

Then we turn our attention to the issue of the solvabilityhe sense of se-
guences for our problem. The corresponding sequence ofieqseavithn € N is
given by

VA V(@) — A+ U)uy — auy = fulr,y), 2y €R (L11)
with the right sides convergent to the right side of (1.2L.#R%) asn — oo.

Theorem 3. Let Assumption 1 holdy € N and f,,(z,y) € L*(R®), such that
folz,y) — f(x,y)in L?(R%) asn — cc.

a) Wherna = 0, let in additionf,,(z,y) € L'(R®), n € N, such thatf,(z,y) —
f(z,y) in LY(R%) asn — oo. Then equations (1.2) and (1.11) have unique solu-
tionsu(z,y) € HY(R®) andu, (z,y) € H*(R®) respectively, such that,(z,y) —
u(z,y)in HY(R%) asn — co.

b) Whena > 0, let in additionz f,,(z,v), yfu(z,y) € L'(R%), n € N, such
thatz f,(z,y) — xf(x,y), yfulz,y) — yf(x,y)in LY(R®) asn — oo and the
orthogonality conditions

(fal@, ), ou(@)ng(y)) L2y = 0, (K, q) € S, (1.12)

hold for alln € N. Then problems (1.2) and (1.11) admit unique solutiops y) €
HYR%) and u,(z,y) € H'(R®) respectively, such that,(z,y) — u(z,y) in
H'(R%) asn — oc.

In the second part of the article we consider the problem

\/—Az A U —au=d(z,y), zERY, yeR (1.13)

with d € N and the scalar potential function involved in (1.13) is &waland short-
range under Assumption 1 as before. The operator

Ly = \/—Az — A, +U(y) (1.14)



here is defined by means of the spectral calculus. Similar({t{3), under our as-
sumptions operator (1.14) considered as actingfiiiR?+3) with domain/ * (R4*3)

is self-adjoint and is unitarily equivalent to/—A, — A,. Therefore, operator
(1.14) has no nontrivial.2(R4*3) eigenfunctions. Its essential spectrum fills the
nonnegative semi-axif), +00) and such that operator (1.14) fails to satisfy the
Fredholm property. Let us consider another generalizedi€otansform with the
standard Fourier harmonics and the perturbed plane waves

ikx

<2(kr,q} = (é(x,y), gnq(y)> , keRY qeR’. (1.15)
LQ(Rd+3)

(2m)
(1.15) is a unitary transform oh?(R¢*3). We have the following statement.

Theorem 4. Let the potential functiotv(y) satisfy Assumption 1 antlx, y) €
L*(R**3), d € N,

a) Whem = 0, letin addition¢(x, y) € L*(R*"3). Then equation (1.13) admits
a unique solutionu(x,y) € H'(R™3).

b) Whena > 0, let in additionz¢(z,y), yé(x,y) € L*(R3). Then problem
(1.13) has a unique solution(z, y) € H'(R*3) if and only if

(é(x,y), . im@)) =0, (k,q) €S, (1.16)
(271-) 2 L2 (RdJrS)

Note that in the case af = 0 of this theorem no orthogonality relations are
needed to solve problem (1.13) it (R4+3).

Our final main proposition deals with the issue of the solMgtin the sense of
sequences for our problem. The corresponding sequencaiafieqgs withn € N
is given by

\/—Az — Ay + U(y)tn — aun = du(z,y), z€RY, deN, yeR® (1.17)
with the right sides convergent to the right side of (1.13)#iR%*3) asn — oo.

Theorem 5. Let the potential functio/(y) satisfy Assumption Iy € N and
bn(x,y) € LA(RIT3), d € N, such thaty, (z,y) — ¢(z,y) in L>(R*™3) asn — cc.

a) Whena = 0, let in addition ¢,,(x,y) € L'(R%3), n € N, such that
bn(z,y) — o(x,y) in L1(R¥3) asn — oo. Then equations (1.13) and (1.17)
possess unique solutiongz,y) € HY(R3) and u,(z,y) € H'(R*?) respec-
tively, such that, (z, y) — u(z,y) in H*(R43) asn — oo.



b) Whena > 0, let in additionz¢, (x,y), yb,.(x,y) € LY(R*3), such that
2on(,y) — 2d(x,y), you(z,y) — yo(z,y) in L'(R*?) asn — oo and the
orthogonality relations

<¢n(ﬂs,y), gnq(y)> =0, (kq)€ S, (1.18)
LQ(Rd+3)

(27)

hold for all n € N. Then problems (1.13) and (1.17) admit unigue solutions
u(x,y) € HY(R¥3) andu,(z,y) € H'(R*3) respectively, such that,(z,y) —
u(x,y) in HY(R3) asn — oo.

Let us note that (1.10), (1.12), (1.16), (1.18) are the agytimality conditions
involving the functions of the continuous spectrum of ouni®dinger operators, as
distinct from the Limiting Absorption Principle in which erorthogonalizes to the
standard Fourier harmonics (see e.g. Lemma 2.3 and Prapo2i8 of [10]). We
proceed to the proof of our statements.

2. Solvability in the sense of sequences with two potentials

Proof of Theorem 2Let us note that it is sufficient to solve equation (1.2L#R®),
because its square integrable solution will belong/tgR®) as well. Indeed, using
definition (1.3) it can be trivially verified thatH,;, Vu||%2(R6) equals to

IVullisgo, + [ V@luo)Pdody + [ U@laey)fdady.  @19)
whereu(z,y) is a square integrable solution of (1.2), the scalar paenti (z)
andU (y) are bounded by means of Assumption 1 ditd, y) € L?(RS) by virtue
of the one of our assumptions. Then (2.19) yields(z,y) € L*(R®), such that
u(z,y) € H'(R®).

To prove the uniqueness of solutions for our problem, we gspphat equation
(1.2) has two square integrable solutianér, y) andus(x, ). Then their difference
w(z,y) = w(z,y) — us(z,y) € L*(RO) satisfies the equation

Hy vw = aw.

Since operator (1.3) has no nontrivial square integralgierdunctions in the whole
space as discussed above, we haye, y) = 0 a.e. inR°.

First of all, we consider the case of our theorem when 0. Let us apply the
generalized Fourier transform (1.9) to both sides of prob(.2). This yields

_ f(ka) L)
VR @ e} T ey g v

(k,q) (2.20)
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with k, ¢ € R3. Here and throughout the papenr will denote the characteristic
function of a setd C R?. Obviously, the second term in the right side of (2.20) can

be estimated from above in the absolute valugitly, ¢) € L?(R°) due to the one
of our assumptions. The first term in the right side of (2.20) be easily estimated
from above in the absolute value by virtue of Corollary 2.2[21] by

1 1 MEraa}
ap T T e e

Therefore,

e T Ik
21— I(V)1—I(U)" "HEy

Hm vl

which is finite as assumed in the theorem. Hence the uniquéicoh(z,y) €
L?(RY).

We conclude the proof with treating the case b) of the theoréfa apply the
generalized Fourier transform (1.9) to both sides of equatl.2) and arrive at

L2(R6)

f(k, q)
VETE—a

u(k,q) =

Let us introduce the set
As ={(k,q) ER% a— 6 < VE2+@2<a+6}, 0<d<a, (2.21)
such that 5 5
f(k,q) f(k,q)
[ S A 4+ c.
N T AR

Note that for a setl C R? we denote its complement as. Evidently, the second
term in the right side of (2.22) can be bounded from above énabsolute value

u(k, q) = (2.22)

k : .
by M € L*(R®) due to the one of our assumptions. Clearly, we have the
representation

f(k.q) = fla,o) + o

Here and below will denote the angle variables on the sphere. This enalsiés u
express the first term in the right side of (2.22) as

oy [T,

f(a.0) A
—7X _'_ X .
VEE+ ¢ —a o VE2+ ¢ —a Ao

(2.23)



Evidently, we can estimate the second term in (2.23) fromvabn the absolute
value by

(Vi + Vo) (k@) e reyxa, € L*(R),
where the gradient¥; and V,, act on variableg: and ¢ respectively. Note that

under our assumptiond/, + V,)f(k,q) € L>*(R°) by means of Lemma 11 of

[19]. Apparently, the first term in (2.23) is square intedeaband only if f(a, o)
vanishes, which is equivalent to orthogonality conditiri(). [ |

Let us turn our attention to establishing the solvabilityhia sense of sequences
for our equation in the case of two scalar potentials.

Proof of Theorem 3Suppose:(x,y) andu,(z,y), n € N are the unique solutions
of equations (1.2) and (1.11) iH'(R%) with a > 0 respectively and it is known
thatu,(z,y) — u(z,y) in L*(R®) asn — oo. Then, it will follow thatu,, (z,y) —
u(z,y)in HY(R®) asn — oo as well. Indeed, from (1.2) and (1.11) we easily derive
that

HU, V(un(xay) - u(x,y)) - a(un(xay) - u(xay)) + [fn(xay) - f(x,y)],

which clearly implies
[ Hu, v(un(z,y) — u(z, y)l2@e) < allun(z,y) —ulz,y)| @)+

+ falz, y) — f(@,9)llr2@e) = 0, n— 00
by means of our assumptions. We express

1Hy, v (un (2, y) = u(@, y)[L2@s) = IV (a2, 9) = u(@, y) | L2s) +

+ [ V@) = ooy + | U@ untar) = uta ) Pdady

with the bounded scalar potentidlSx) andU(y) due to Assumption 1. Thus, in
the identity above the left side along with the second andasieterm in the right
side tend to zero as — oo. This yields thatWu,,(z,y) — Vu(z,y) in L*(R°) as
n — oo, such thatu,(z,y) — u(x,y) in H(R%) asn — oo as well.

In the case a) problems (1.2) and (1.11) have unique soBitian y), u,(x,y)
belonging toH'(R%) respectively withn € N by virtue of the part a) of Theo-
rem 2 above. Let us apply the generalized Fourier transfar) (o both sides of
equations (1.2) and (1.11). This yields

ﬂ(k,q):%, an(k,q):\;kgjj;z, n € N.



Thusa, (k, q) — u(k, q) can be written as

/12 + ¢2 X{\/k2+q2§l} /2 + ¢2 X{\/k2+q2>1}'
Evidently, the second term in (2.24) can be easily boundzd &bove in the abso-
lute value byl f,,(k, q) — f(k,¢)|, such that

‘ Vg Ve

asn — oo due to the one of our assumptions. We estimate the first tegh24)
from above in the absolute value by means of the Corollarp®.21] by

1 1 1 M rg<}
(27’(’)3 1 — ](V) 1 — ](U) an(x,y) - f(x>y)HL1(RG)W>
fulk, @) = (k)

such that
‘ Vet g Aveea)

1 1 1 V15
S @pi= I 1= 1 M) = F@ e =

according to the one of our assumptions. Therefogér, y) — u(z,y) in L?(RS)
asn — oo in the case when the parametet 0.

Then we proceed to the proof of the part b) of the theorem. Bohe € N
equation (1.11) admits a unique solutiey(z, y) € H'(R%) by means of the result
of the part b) of Theorem 2 above. By virtue of (1.12) alongw@orollary 2.2 of
[21], we estimate fofk, ¢) € S°

(2.24)

L?(RS)

<
L2(RS)

—0, n— o0

|(f(z,y), ou(@)ng(¥) 2ol = [(f (@, 9) = fal@,9), 0r(2)16(y)) 2(r6)| <
1 1 1
<
S @QrpB1-I(V)1-1
Note that under our assumptiofi§x, y) — f(x,y) in L*(R%) via the simple argu-
ment on p.114 of [26]. Hence, we obtain

(f(x,y), Sok(x>7]¢J(y>>L2(R6) = 07 (ka Q> S SS (225)

Therefore, equation (1.2) admits a unique solutign, y) € H'(RS) due to the
result of the part b) of Theorem 2 above. We apply the gerz@kourier transform
(1.9) to both sides of problems (1.2) and (1.11). This givses u

@ | fulz,y) — f(z,y)| Lr@mey = 0, n — oo.

fn(k7Q)_f(k7Q)X + fn(k7Q>_f(k7Q)X .
VRt —a 0 Rt g—a
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with the setd; defined in (2.21). Clearly, the second term in the right sid@ @6)

q) — f(k,q)
5

can be bounded from above in the absolute valujefﬁy ’ , such that

fn(k7Q> B f(k7Q)
E2+q¢>—a

< | frl,y) — f(xay)HLQ(]R@)
L2(RS) 0

c —0, n—o0

due to the one of our assumptions. Orthogonality condit{ari?) and (2.25) yield

f(a,a) =0, fula,0)=0, neN,

such that
z v k2+q? ; ~ VE24g? o F
f(k,q) :/ 8f(s,a)d8’ fulk,q) :/ Lfn(s’a)ds, n € N.
a 0s “ 0s
This enables us to write the first term in the right side of §2 &
f\/m [8fn $,0) 8f(so :|d$
XAs- (2.27)

k2 +q¢*>—a
Obviously, (2.27) can be bounded from above in the absohites\by
(Vi + Vo) (falk, @) = F(k, @)l o= (me) XA,
This allows us to estimate the?(R°) norm of (2.27) from above by
CI(Vi+ Vo) (falk, q) — f(k,@)l|e@e) = 0, n — o0

by means of the part a) of Lemma 5 of [26] under our assumptidierefore,
un(z,y) = u(z,y) in L*(R®) asn — oco. [

In the last section of the article we treat the situation wadree Laplace oper-
ator is added to the three dimensional Schrodinger operato

3. Solvability in the sense of sequences with Laplacian andsangle potential

Proof of Theorem 4Evidently, it is sufficient to solve problem (1.13) it (R4+3),
since its square integrable solution will belongAd (R4™3) as well. Indeed, by
means of definition (1.14) it can be easily verified tmag]uy|§2(Rd+3) is equal to

IVullisgors + [ Ulutop)Pdedy, den  (328)
Rd+3

11



whereu(z, y) is a square integrable solution of (1.13), the scalar piatfoinction
U(y) is bounded due to Assumption 1 andr,y) € L?*(R%"3) by means of the
one of our assumptions. Then (3.28) implies tWat(z, y) € L*(R4™3), such that
u(r,y) € HY(RI3).

To establish the uniqueness of solutions for our equatemnus suppose that
(1.13) admits two square integrable solutienér, y) andusy(x, y). Then their dif-
ferencew(z, y) := ui(z,y) — ua(z,y) € L*(R¥3) is a solution of the equation

Lyw = aw.

Since operator (1.14) does not have nontrivial square liabdg eigenfunctions in
the whole space as mentioned above, we haie y) = 0 a.e. inR4+3,

Let us first treat the case of our theorem whes 0. We apply the generalized
Fourier transform (1.15) to both sides of equation (1.18)sVields

Vk? +q2X{\/k2+q2S1} \/mx{\/k2+q2>l}
with k € R?, ¢ € R®. Clearly, the second term in (3.29) can be bounded from above

in the abosolute value biy(k, ¢)| € L*(R*?) due to the one of our assumptions.
Corollary 2.2 of [21] yields

a(k,q) = (3.29)

1 1
(2m) 1= 1(u)

such that the first term in (3.29) can be estimated from abotles abosolute value
by

Bk, q)] < 16, )] 1 e,

X
1 1 {\/k2+q2§l}
(27r)% 1— I(u) ||¢(x7y)“L1(Rd+3)W‘

This implies that

Hm o

L2(RA+3)
Sd+3‘
d+1°

< 3 xZ, 1(Rd+3
which is finite as assumed. Thus,z,y) € L?(R*"?) in the case of the theorem
whena = 0.

Let us conclude the proof by addressing the case b) of thedhred_et us apply
the generalized Fourier transform (1.15) to both sides ablem (1.13) and derive



We introduce the set
Bs :={(k,q) ER™|a -0 <2 +¢><a+d}, 0<di<a. (3.30)

Hence

~

ﬁ(k,q) _ ¢(k7Q) Qg(kacﬁ (331)

XBs t —F— XBs-
VE+@—a" " R —a

Clearly, the second term in the right side of (3.31) can beneded from above

in the absolute value b (5 9) € L*(R*™) due to the one of our assumptions.
Evidently, we have the representation

VR difs.0

ds.
0s y

ok, q) = fla,o) + /

a

This allows us to express the first term in the right side 31Bas
Ha.0) N
’ XBs + = ——XB,-
V@ —a” Vg —a

Apparently, we have the upper bound for the second term 82j3rom above in
the absolute value by

(3.32)

(Vi + Vo) bk, @)l oo masayxs; € L*(RHD).
Note that under our assumptiofig, + Vq)gZ(k, q) € L>*(R¥*3) via Lemma 12 of
[19]. It can be easily verified that, the first term in (3.323giare integrable if and
only if gE(a, o) vanishes, which is equivalent to orthogonality relatiori@). m
We conclude the article with establishing the solvabilitythe sense of se-
qguences for our problem in the case of a free Laplacian addethree dimensional
Schrodinger operator.

Proof of Theorem 5Suppose:(x, y) andu,(z,y), n € N are the unique solutions
of problems (1.13) and (1.17) iH!(R4+3) with a > 0 respectively and it is known

thatu,(z,y) — u(z,y) in L?(R¥3) asn — oo. Then, it will can be shown that

u,(z,y) — u(z,y) in HY(R™3) asn — oo as well. Indeed, from (1.13) and (1.17)
we easily obtain that

Ly (un(z,y) — u(z,y)) = alun(z,y) — u(z,y)) + [¢n(z,y) — 6(2,9)].

Clearly, this yields
1Ly (ua(@,y) — u(@, y)l 2mersy < allun(@,y) — u(@, y)||ro@ers)+
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+on(z,y) — &z, y)|| L2@ats) — 0, n — o0
due to our assumptions. Let us express

1L (un(, ) = u(@, )| Za@ess) = IV (unl,y) — ul@, ) | Tagaen +

[ UGt 0) - ) dady,
Rd+3

where the scalar potentiél(y) is bounded via Assumption 1. Hence, in the equality
above the left side along with the second term in the righ¢ s&hd to zero as
n — oo. This implies thatVu, (z,y) — Vu(z,y) in L*(R%*3) asn — oo, such
thatu, (z,y) — u(z,y) in HY(R*3) asn — oo as well.

In the case a) (1.13) and (1.17) admit unique solutignsy), u,(z, y) belong-
ing to H*(R4*3) respectively withn € N by means of the part a) of Theorem 4
above. We apply the generalized Fourier transform (1.1B6pth sides of problems
(1.13) and (1.17). This gives us

cz(k‘,q)
NI

Hencet, (k, ¢) — a(k, ¢) can be expressed as

_ Czn(ka Q)

a(k,q) = in(k, q) neN.

~ =

k24 g2 X{\/k2+q2§1} k2 + ¢2 X{\/k2+q2>1}'
Obviously, the second term in (3.33) can be trivially estieafrom above in the
absolute value by, (k, ¢) — é(k, q)|, such that

(3.33)

~

6u(k,q) — H(k, )
NCET GRS

asn — oo via the one of our assumptions. Let us obtain the upper bautiekithe
absolute value for the first term in (3.33) via the Corollarg @f [21] by

1 1 N .
(27‘()% 1—1(U) |on(x,y) — Cb(x,y)HLl(Rdﬁ)%’

< ||¢n(z,y) — ¢($,y)l|Lz(Rd+3) — 0
LQ(Rd+3)

such that

~

oulk,q) — f(k,q) _

/12 ¥ 2 X{\/kﬂ—i—q?gl} Lo

! ! VISH
T 1o 1) 19 (@) = 0@ )l =g

<

—0, n— o0
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via the one of our assumptions. Thereforg(z,y) — wu(x,y) in L>(R?*3) as
n — oo when the parameter= 0.

Finally, let us proceed to the proof of the part b) of the tle@or For eachh € N
problem (1.17) has a unique solutiog(z, y) € H'(R*3) via the result of the part
b) of Theorem 4 above. By means of (1.16) along with Corol&ag/of [21], we
estimate for(k, q) € S4+3

ik -
'(fb(af,y), (;)%nq(y))m(m+3> = ‘(fb(az,y) — ou(2,y), (;)%%(y))m(wﬁ) <
1 1
< (27T)% 1— I(U) ||¢n($,y) - ¢(£E,y)||L1(Rd+3) — O7 n — oo.

Note that under our assumptions(z, y) — ¢(z, y) in L*(R4"3) via the elementary
argument on p.116 of [26]. Thus, we arrive at

ezkm
<¢(x, Y), nq(y)> =0, (kq)€ S, (3.34)
L2(RI+3)

Therefore, problem (1.13) has a unique solutign, y) € H'(R**3) via the result
of the part b) of Theorem 4 above. Let us apply the generakoedier transform
(1.15) to both sides of equations (1.13) and (1.17). Thiklgie

onlkq) — dlk,q)  dulk,q) — ok, q)
k?+q>—a XBs & k24+q¢2—a oy (3.35)

Q:Ln(k’, Q) - Q:L(/{?, Q) =

with the setB; defined in (3.30). Evidently, the second term in the righegildi
o (k q)|

(3.35) can be estimated from above in the absolute vaIuL(P V\i
such that

ggn(k@Q) B é(kacﬁx .
NCET T

due to the one of our assumptions. Orthogonality relati@riss) and (3.34) imply
that

< [pn(z,y) — ¢6(357 y)||L2(Rd+3)

L2 (Rd+3)

—0, n—o0

o(a,0) =0, onla,0)=0, neN,
such that

n € N.

- ViR 9d(s o) = ViR 9f (5. 0)
¢(/€>Q):/a Tdé’, ¢n(k7Q) :/a Tdé’,
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This allows us to express the first term in the right side @3%3as
\ k2+q2 |:8¢:>n(s70') B 8(2(3,0):|d$
a ds ds
XB; -
VE 2+ ¢ —a b

Apparently, (3.36) can be bounded from above in the abswuhltee by

(3.36)

~

(Vi + V) (alk, q) — Sk, @))|| oo (as) X5

which us to estimate the*(R4*3) norm of (3.36) from above by

~

Cl(Vi + V) (0n (k. q) — Sk, )| pqgarsy — 0, 1 — 00

by virtue of the part b) of Lemma 5 of [26] under the given asptioms. This
proves that,(z,y) — u(z,y) in L*(R3) asn — oo. |
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