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Abstract

This paper is a slightly modified, abridged version of the work [8]. It deals with some questions made
to the authors during the school and conference Complex Differential and Difference Equations, held in
Bedlewo (Poland) during the first two weeks of september, 2018.

We study linear singularly perturbed Cauchy problems under the action of partial differential opera-
tors and linear fractional transforms. The asymptotic behavior of the holomorphic solutions is determined
with respect to the perturbation parameter near the origin. Moreover, two asymptotic levels are distin-
guished: Gevrey and 1+.
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1 Introduction

The main purpose of this revision is to give answer to certain questions and fruitful mathematical
discussions with participants of the school and conference Complex Differential and Difference
Equations, held in Bedlewo (Poland) during the first two weeks of september, 2018, where the
work [8] was presented. Moreover, we provide some additional motivation and future problems
in this line of research. We have decided to simplify technical difficulties for the sake of clarity,
which can be found in detail in [8].

As a first motivation of our results, we first indicate an example appearing in [2]. The authors
consider the next difference equation

(1) h(s+ 1)− a

s
h(s) =

1

s
,

for given a > 0. Then, they construct a formal power series solution ĥ(s) =
∑

n≥1 hns
−n and

exhibit sharp estimates on their coefficients:

|hn| ≤ K
(

n

log(n)

)n
An, n ≥ 2,

for some constants A,K > 0. Such estimates on the formal solutions are natural when dealing
with difference equations under the so-called 1+ phenomena, in the sense of G. Immink (see [4]).
We observe that these are finer bounds than classical Gevrey estimates of order 1 (of the kind
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K
(
n
e

)n
An, n ≥ 1). In a second step, the authors provide actual solutions of (1), expressed as

Laplace transforms

hP(s) =

∫
P

∑
n≥1

hn
(n− 1)!

tn−1

 e−stdt,

where u(t) :=
∑

n≥1
hn

(n−1)! t
n−1 is the Borel transform of the formal solution. The convolution

equation

e−tu(t)− a
∫ t

0
u(x)dx = 1,

where the path P connects the origin and infinity in C, has a unique analytic solution u(t) =
et−aeae

t
. Such solution turns out to be analytic in {t ∈ C : Re(t) ≤ 0}. Therefore, for all

directions d ∈ (π/2, 3π/2), the usual Laplace transform

(2) hLd(s) =

∫
Ld

u(t)e−stdt,

for Ld = R+e
√
−1d represent solutions of (1), holomorphic on unbounded sectors Sd,R = {s ∈

C? : −π/2 < arg(s) + d < π/2, |s| > R}, for all R > 0.
On the other hand, u(t) suffers super-exponential growth on every halfline Ld ⊆ {Re(t) > 0},

and the series is not convergent. However, the authors noticed a finer structure in u(t) of super
exponential growth and decay on certain horizontal strips: u(t) has super exponential decay on
the disjoint strips Hk = {t ∈ C : Re(t) ≥ 0, Im(t) ∈ (π/2, 3π/2) + 2kπ} and super exponential
growth on Jk = {t ∈ C : Re(t) ≥ 0, Im(t) ∈ (−π/2, π/2) + 2kπ}.

As a result, for every k ∈ Z, a piecewise linear path Pk can be chosen in such a way that the
Laplace-like transform

hk(s) =

∫
Pk
u(t)e−stdt

represents a solution of (1), holomorphic on S0,R = {s ∈ C? : arg(s) ∈ (−π/2, π/2), |s| > R},
for all R > 0. The function hk is an entire function. The functions hk and hLd both admit ĥ as
Gevrey asymptotic expansion of order 1 on their domains of holomorphy, say D, meaning there
exist K,A > 0 with ∣∣∣∣∣h?(s)−

N−1∑
n=1

hns
−n

∣∣∣∣∣ ≤ KAN
(
N

e

)N
|s|−N ,

for ? ∈ {k, Ld} and all N ≥ 1, s ∈ D.
This approach is now adapted to study the parametric Borel summability for some families

of singularly perturbed PDEs involving Moebius transforms.

2 Main Cauchy problem

We consider the Cauchy problem

(3) P (εt2∂t)∂
S
z u(t, z, ε) =

∑
k=(k0,k1,k2)∈A

ck(z, ε)
(

(t2∂t)
k0∂k1z u

)
(

t

1 + k2εt
, z, ε),

and initial data

(4) (∂jzu)(t, 0, ε) = ϕj(t, ε), 0 ≤ j ≤ S − 1.
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Here, S ≥ 1 is an integer, P (X) ∈ C[X] with all its roots belonging to C+ = {z ∈ C : Re(z) >
0}, and A is a finite subset of N3. For all k ∈ A, ck(z, ε) is a holomorphic function in a
neighborhood of (0, 0). Moreover, we assume the existence of ξ > 0 and b > 1 such that for all
k = (k0, k1, k2) ∈ A, one has

(5) S ≥ k1 + bk0 +
bk2
ξ

, S > k1.

Remark: The change of variable t = 1/s makes equation (3) turn into a singularly per-
turbed linear PDE combined with small shifts of the form Tk2,εX(s, z, ε) = X(s + k2ε, z, ε),
with u(t, z, ε) = X(1/t, z, ε).

In the context of differential equations, most results are devoted to problems of the form

ε∂tx(t, ε) = f(t, ε, x(t, ε), x(t± δ, ε)),

for some vector valued function f , a small real parameter ε > 0, and δ > 0 which may depend
on ε. Solutions of such problems are related with asymptotic expansions of the form

x(t, ε) =
n−1∑
`=0

x`(t)ε
` +Rn(t, ε), n ≥ 2,

as ε→ 0, see [3, 11]. In the framework of PDEs, some asymptotic analysis has been performed
for reaction-diffusion equations with small delay

∂tu− ε2∂2xu = f(u(t, z, ε), u(t− s, x, ε), ε),

under certain initial and boundary conditions to be determined for small enough ε, s > 0.
Actual solutions are constructed. Moreover, asymptotic relations are stated with respect to the
perturbation parameter, see [12, 9].

The construction of the initial data in (4) is as follows. We consider two sets of bounded
setors {E−k }k∈{−n,...,n} for some n ≥ 1, and {Ep}0≤p≤ι−1 and an open and bounded sector T with
bisecting direction d = 0, built in such a way that the next statements hold:

• π−arg(t)−arg(ε) ∈ (−π/2+δ, π/2−δ) for some δ > 0 and all ε ∈ E−k , for k ∈ {−n, . . . , n},
t ∈ T .

• Let Sp for 0 ≤ p ≤ ι − 1 be a family of unbounded sectors centered at 0 with bisecting
direction dp ∈ (−π/2, π/2) such that the roots of P (x) fall outside Sp, and P (0) 6= 0.

Then, for every t ∈ T and ε ∈ Ep there exists γp ∈ R with e
√
−1γp ∈ Sp, and

γp − arg(t)− arg(ε) ∈
(
−π

2
+ δ,

π

2
− δ
)
,

for some δ > 0.

• The family E = {E−k }k∈{−n,...,n} ∪ {Ep}0≤p≤ι−1 forms a good covering in C?, meaning
that their elements cover a punctured disc centered at the origin, two neighboring sectors
intersect, and every three of them have empty intersection.

The initial data ϕj(t, ε), displayed in (4), consists on a family of holomorphic functions
ϕj,k(t, ε) on T × E−k , k ∈ {−n, . . . , n} and ϕj,p(t, ε) on T × Ep, 0 ≤ p ≤ ι − 1. For the sake of
clarity, we have omitted the precise shape of these functions, which can be found in detail in [8].
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Under assumption (5), and suitable control on the growth of the initial data, a first collection
of actual solutions of (3) and (4) is built as a classical Laplace transform of a function, wp(τ, z, ε),
holomorphic on (Sp ∪D(0, r))×D(0, ρ)× (D(0, ε0) \ {0}), under exponential bounds

|wp(τ, z, ε)| ≤ Cp|τ |e
σ1
|ε| |τ |,

for some Cp, σ1 > 0. Indeed, we have

up(t, z, ε) =

∫
Lγp

wp(u, z, ε)e
− u
εt
du

u
,

along Lp = R+e
√
−1γp , defining a holomorphic function on T ×D(0, ρ)× Ep.

On the other hand, one can proceed in the way of example (1), and construct a second set
of actual solutions of (3) and (4) obtained as special Laplace transforms

(6) uk(t, z, ε) =

∫
Pk
wHJn(u, z, ε)e−

u
εt
du

u
,

defining a bounded holomorphic function on T ×D(0, ρ)× E−k , for each k ∈ {−n, . . . , n}. Here,
HJn = ∪(Hk∪Jk), where Hk and Jk are horizontal infinite strips that are consecutively overlap-
ping. The function wHJn(τ, z, ε) defines a holomorphic map on HJn×D(0, ρ)× (D(0, ε0) \ {0})
under super-exponential decay estimates:

|wHJn(τ, z, ε)| ≤ CHk |τ | exp

(
σ1
|ε|
|τ | − σ2eσ3|τ |

)
,

for some CHk , σ1, σ2, σ3 > 0, all τ ∈ Hk, z ∈ D(0, ρ) and ε ∈ D(0, ε0) \ {0}, and

|wHJn(τ, z, ε)| ≤ CJk |τ | exp

(
σ1
|ε|
|τ | − s2es3|τ |

)
,

for some CJk , s2, s3 > 0, all τ ∈ Jk, z ∈ D(0, ρ) and z ∈ D(0, ε0) \ {0}. As above, Pk stands for
a piecewise linear path (see Figure 1).

Figure 1: Path Pk, for Ak ∈ Hk
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3 Asymptotic behavior of the solution

In this section, we give some information on the asymptotic expansion of the solutions up and
uk with respect to ε near the origin.

We observe that a fine structure involving a double layer of Gevrey asymptotics arise.
Namely, the functions uk for −n ≤ k ≤ n, and up for 0 ≤ p ≤ ι − 1, can be decomposed
as a sum of two holomorphic functions

u?(t, z, ε) = u1?(t, z, ε) + u2?(t, z, ε),

for ? ∈ {k, p}, for which two formal power series

(7) ûj(t, z, ε) =
∑
`≥0

uj`(t, z)ε
` ∈ Ob(T ×D(0, ρ))[[ε]],

j = 1, 2 exist, with the property that

(8)

∣∣∣∣∣u1? −
N−1∑
`=1

u1` (t, z)ε
`

∣∣∣∣∣ ≤ KAN
(
N

e

)N
|ε|N ,

for every N ≥ 1, all ε ∈ E−k in case ? = k and all ε ∈ Ep if ? = p, z ∈ D(0, ρ), t ∈ T , for some
K,A > 0. Then, it holds that Gevrey asymptotics of order 1 are obtained.

Also, one has

(9)

∣∣∣∣∣u2? −
N−1∑
`=1

u2` (t, z)ε
`

∣∣∣∣∣ ≤ KAN
(

N

log(N)

)N
|ε|N ,

for all N ≥ 2, t ∈ T , z ∈ D(0, ρ), and all ε ∈ E−k in case ? = k and all ε ∈ Ep if ? = p. In this
case, Gevrey bounds are attained within the so-called level 1+.

Furthermore, we can provide information about the unicity of the expansions in (7) and (8).
More precisely, provided that the sector Sp0 has opening larger than π, the function u1p0(t, z, ε)
is the unique holomorphic function satisfying (8) on Ep0 and is reconstructed by means of the
classical procedure of Borel-Laplace summation. This function turns out to be the 1-sum of
û1(t, z, ε) on Ep0 in the classical sense (see [1] for a detailed definition). In addition to that,
the functions u2±n and u2p are the restriction of a common holomorphic function u2(t, z, ε) on

T ×D(0, ρ)×(E−−n∪E−n
⋃ι−1
ρ=0 Ep), which is the unique holomorphic function that admits û2(t, z, ε)

as Gevrey asymptotic expansion of level 1+. Moreover, u2(t, z, ε) can be constructed via an
analog of Borel-Laplace procedure in the framework of M−summability for the strong regular

sequence M = (Mn)n≥0 where Mn =
(

n
log(n+2)

)n
, see Section 5 or [7] for more details.

The proof of the main asymptotic result leans on a multilevel version of Ramis-Sibuya The-
orem. This is a two leveled version of the classical cohomological result, which can be found
in [10]. In this respect, we provide upper estimates for the following consecutive differences via
adequate path deformation:

(α) |up+1(t, z, ε)− up(t, z, ε)|, 0 ≤ p ≤ ι− 2,

(β) |uk+1(t, z, ε)− uk(t, z, ε)|, −n < k < n,

(γ) |u−n(t, z, ε)− u0(t, z, ε)|,
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(δ) |un(t, z, ε)− uι−1(t, z, ε)|.

In case (α), the path Lγp+1 − Lγp is deformed into three pieces: two halflines and an arc of
circle with radius r/2. (α) is upper bounded by Kp exp(−Mp/|ε|) for some Kp,Mp > 0 and
ε ∈ Ep+1 ∩ Ep. The path Pk+1 − Pk is deformed as shown in Figure 2.

Figure 2: Pk+1 − Pk (left) and its deformation (right)

This configuration yields upper bounds for (β) of the form Kk exp
(
−Mk
|ε| log

(
Lk
|ε|

))
, for some

positive constants Kk,Mk, and Lk > 1, for all ε ∈ E−k+1 ∩ E
−
k .

Finally, the case (γ) and (δ) can be considered in an analogous way. The path P−n − Ld0
can be deformed as displayed in Figure 3, giving rise to an exponential decay, i.e. (γ) and (δ)
are upper bounded by K−n,0 exp(−Mn,0/|ε|), for ε ∈ Ed0 ∩ E

−
−n.

Figure 3: P−n − Lγ0 (left) and its deformation (right)

4 Further results and future work

The set of Cauchy problems studied with this technique can be enlarged, allowing a more general
form of the coefficients ck(z, ε), and differential operators involved in (3). For this purpose, we
consider the Cauchy problem

(10) P2(t, z, ε, ∂t, ∂z)y(t, z, ε) = u(t, z, ε),

under the action of the initial data

(11) (∂jzy)(t, 0, ε) = Ψj(t, ε), 0 ≤ j ≤ SB − 1,

where P2 is the operator given by

P2y(t, z, ε) := PB(εt2∂t)∂
SB
z y(t, z, ε)−

∑
`=(`0,`1,`2)∈B

d`(z, ε)t
`0∂`1t ∂

`2
z y(t, z, ε),
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u belongs to the set of solutions uk(t, z, ε), −n ≤ k ≤ n, up(t, z, ε), 0 ≤ p ≤ ι− 1 of (3), (4). In
this problem, PB(X) ∈ C[X] shares properties with P in the previous section. B stands for a
finite subset of N3, and the coefficients d` turn out to be holomorphic and bounded functions on
D(0, ρ)×D(0, ε0); the initial data Ψj consist on holomorphic functions Ψj,k defined on T × E−k ,
−n ≤ k ≤ n in the case that u = uk, and Ψj,p holomorphic on T × Ep, for 0 ≤ p ≤ ι − 1 for
u = up. The precise expression of the initial data is omitted for the sake of clarity.

The importance of this novel problem is that one is able to construct solutions and describe
their asymptotic behavior of the coupled problem joining (10), (11) together with (3), (4). This
new situation is concerned with a singularly perturbed Cauchy problem combining Moebius
transforms and preserving the same structure as the problem considered in Section 2:

(12) P (εt2∂t)PB(εt2∂t)∂
S+SB
z y(t, z, ε) =

∑
q=(`1,`2,k2)∈C⊆N3

eq(t, z, ε)∂
`1
t ∂

`2
z y

(
t

1 + k2εt
, z, ε

)
,

under initial data

(13) (∂jzy)(t, 0, ε) = ψj(t, ε), 0 ≤ j ≤ SB − 1,

together with

(14) (∂jzP2(t, z, ε, ∂t, ∂z)y)(t, 0, ε) = ϕj(t, ε), 0 ≤ j ≤ S − 1,

where the coefficients eq(t, z, ε) are holomorphic near the origin, and polynomial with respect
to t. Two families of actual solutions to (10), (11), can be built. One of them, yp(t, z, ε) for
0 ≤ p ≤ ι − 1, is constructed by means of the usual Laplace transform, and is a holomorphic
and bounded function on T × D(0, ρ) × Ep. The second family, yk(t, z, ε) for −n ≤ k ≤ n,
is described by means of a special Laplace transform, as shown in (6). Their elements are
holomorphic functions on T ×D(0, ρ)× E−k .

The asymptotic description of the analytic solutions of this problem leads us to analogous
results as those enumerated in Section 2 in the case of the Cauchy problem (3), (4).

Several problems arise and can be considered for a future research. In this work, we have dealt
with Cauchy problems in which the equations involved are linear with nonconstant coefficients.
The nonlinear framework seems to be interesting. However, technical issues should be considered.
One of them is the definition of convolution operators acting on functions on horizontal bands
in the complex plane. Recent results on the resurgence of solutions of differential equations
(see [5], and the extended version available in [6]) may provide the right direction in order to
make progresses. A brilliant reference on this topic is also the chapter contained in this book of
proceedings by Prof. Kamimoto, where the author gives details on his course during the school
Complex Differential and Difference Equations, held in Bedlewo (Poland), 2018.

5 On the M-summability

A sequence M = (Mp)p≥0 is said to be a strongly regular sequence if M2
p ≤Mp−1Mp+1 holds for

all p ≥ 1; there exists A > 0 such that Mp+` ≤ Ap+`MpM` for all p, ` ≥ 0; there exists B > 0
such that

∑
`≥pM`/((`+ 1)M`+1) ≤ BMp/Mp+1, for all p ≥ 0.

Under the assumption that the sequence m = (mp)p≥0 given by mp = Mp+1/Mp satisfies
that

lim
p→∞

p log(mp+1/mp)
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exists (this is the case of the sequence assotiated to 1+ level), then a function M(r) defined
by supp≥0 log(rp/Mp), for r > 0 and M(0) = 0 and a positive number ω(M) are defined.

More precisely, ω(M) = (lim supn→∞
log(n)

log(Mn+1/Mn)
)−1 ∈ (0,∞). It is worth mentioning that in

the framework of the strongly regular sequence associated to the so called 1+ level, we have
ω(M) = 1.

Let d ∈ R. A formal power series f̂(z) =
∑

n≥0 fnz
n is M−summable in direction d if

there exists a bounded sector S of bisecting direction d and opening γ > πω(M) and a function
f ∈ Ob(S) with ∣∣∣∣∣∣f(z)−

n−1∑
p=0

fpz
p

∣∣∣∣∣∣ ≤ CAnMn|z|n,

for all z ∈ S, n ≥ 1, for some constant A > 0.
In case such f exists, then it is unique under the previous properties. Moreover, it can be built

from f̂(z). More precisely, the kernel function e(z) of a Laplace-like operator is constructed under
the hypotheses of being a holomorphic function on an unbounded sector with bisecting direction
d = 0, and such that for all proper subsector there exist C,K > 0 with |e(z)| ≤ Ce−M(|z|/K) for
all z in such subsector.

The moment sequence me = (me(p))p≥0, defined by me(p) =
∫ +∞
0 tp−1e(t)dt, for all p ≥ 0,

is equivalent to the initial sequence M = (Mp)p≥0 in the sense there exist L,H > 0 with
LpMp ≤ me(p) ≤ HpMp, for all p ≥ 0. Then, the formal e−Borel transform

∑
p≥0 fp/me(p)τ

p

converges in a neighborhood of the origin, and admits analytic continuation on an unbounded
sector S, with |g(τ)| ≤ CeM(|z|/K), for z ∈ S, and some C,K > 0.

The function f can be written in the form of an e−Laplace transform on a finite sector of
bisecting direction d and opening larger than πω(M),

f(z) =

∫
Lγ

g(u)e(
u

z
)
du

u
,

along any halfline Lγ = R+e
√
−1γ ⊆ S ∪ {0}.

A very interesting course held during the conference Complex Differential and Difference
Equations was given by S. Kamimoto. This course dealt with the question of M-summability
from a cohomological point of view, in one and several levels. This and other questions can be
found in a chapter in this same volume of proceedings.
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