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Abstract. Existence of solutions of reaction-diffusion systems of equations in unbounded
domains is studied by the Leray-Schauder (LS) method based on the topological degree for
elliptic operators in unbounded domains and on a priori estimates of solutions in weighted
spaces. We identify some reaction-diffusion systems for which there exist two sub-classes of
solutions separated in the function space, monotone and non-monotone solutions. A priori
estimates and existence of solutions are obtained for monotone solutions allowing to prove
their existence by the LS method. Various applications of this method are given.
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1 Introduction

In this work we present a method to study the existence of solutions of reaction-diffusion
equations in unbounded domains. Consider the system of equations

∂u

∂t
= D

∂2u

∂x2
+ F (u), (1.1)

where u = (u1, ..., un), F = (F1, ..., Fn), D is a diagonal matrix with positive diagonal
elements di. A travelling wave solution of this system is a solution u(x, t) = w(x− ct), which
satisfies the second-order equation

Dw′′ + cw′ + F (w) = 0, (1.2)

where c is an unknown constant, the wave speed, and x ∈ R. We will look for solutions with
some limits at infinity,

w(±∞) = w±, (1.3)
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where F (w±) = 0. If c = 0, then we have a stationary solution of equation (1.1) sometimes
also called a standing wave. If, in addition, w+ = w−, then such solution is called a stationary
pulse assuming that it is not identically constant.

In studying the existence of solutions of problem (1.2), (1.3) we will use a modification
of the Leray-Schauder (LS) method. In its classical formulation [34], the LS method uses
the topological degree for elliptic problems in bounded domains and a priori estimates of
solutions. If we consider unbounded domains, then the degree construction and a priori
estimates of solutions become different. We use the degree for Fredholm and proper operators
with the zero index considered in some special weighted space. A priori estimates of solutions
in these spaces are essentially different in comparison with the classical estimates, and in
general they do not hold. We will identify some classes of elliptic problems for which there
are two types of solutions. A priori estimates are obtained only for one of these types. In
order to apply the LS method for these solutions we show that they are separated from
another type of solutions. Thus, this construction implies several steps presented below.

Fredholm property for linear elliptic problems. Classical results on linear elliptic
problems in bounded domains with a sufficiently smooth boundary affirm that they satisfy
the Fredholm property if and only if the ellipticity condition, proper ellipticity and the
Lopatinsky condition are satisfied [1, 2, 50, 51]. In the case of unbounded domains, one more
condition on the invertibility of limiting operators should be imposed [40, 41, 43, 61, 54]. It
ensures that the essential spectrum does not cross the origin. In some cases, the index of
the operator can be calculated [17, 54]. The degree construction implies that the essential
spectrum lies in the left-half plane of the complex plane [65]. In this case the index of the
operator equals zero.

Solvability conditions can be obtained for some linear elliptic operators in unbounded
domains without Fredholm property [66, 67]. However, they can be applied to study only
some special types of nonlinear operators [68], and the degree theory does not exist in this
case.

Some applications of the method of monotone solutions presented in this work concern
nonlocal and delay reaction-diffusion equations. Their investigation is based on the Fredholm
property of the corresponding elliptic problems [3, 4]. Solvability conditions for various
elliptic functional differential equations are studied in [38, 39, 44, 45, 46, 48].

Properness of elliptic problems in unbounded domains. Let us recall that the op-
erator is called proper on closed bounded sets if the intersection of the inverse image of
any compact set with any bounded closed set is compact. An important property of proper
operators is that the set of solutions of the operator equation (an inverse image of the set
0) is compact. Compactness of the set of solutions plays an important role in the degree
construction.

It appears that elliptic problems in unbounded domains do not satisfy, in general, this
property. We illustrate this situation with the following example. Consider the equation
w′′ + F (w) = 0 on the whole axis, where F (w) = −w + w2. It can be easily verified that
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it has a positive solution w(x) with zero limits at infinity. Since the solution is invariant
with respect to translation in space, the shifted functions w(x+ h) are also solutions of this
equation for any h ∈ R. Therefore, the set of solutions is not compact in conventional Hölder
or Sobolev spaces, and the corresponding operator is not proper.

If the invariance of solutions (at infinity) is excluded, then the operators become proper
[42]. However, for many elliptic problems, including those considered in this work, invariance
with respect to translation is their intrinsic property, and it cannot be excluded. It appears
that elliptic operators in unbounded domains become proper in appropriate weighted spaces
[65, 54]. Consider the previous example and the weighted Hölder space C2+α

µ (R), where
the weight function µ(x) = 1 + x2 grows at infinity, and the norm is given by the equality
∥w(·+ h)∥C2+α

µ (R) = ∥w(·+ h)µ∥C2+α(R). Then in any bounded closed set D of the weighted

space, there is only a finite interval of values h for which solutions w(x + h) belong to this
set (since the norm tends to infinity as |h| grows). Therefore, the set of solutions becomes
compact in D. This examples illustrates why the introduction of weighted spaces makes the
operators proper. As a consequence, topological degree can be constructed in the weighted
spaces.

Topological degree for elliptic problems in unbounded domains. The Leray-Schau-
der degree [34] is applicable for elliptic problems in bounded domains. Since the inverse of
the Laplace operator is compact, in this case elliptic operators are reduced to the identity
operator plus a compact operator. This construction cannot be used for elliptic operators in
unbounded domains since the inverse of the Laplace operator is not compact any more.

Degree construction for Fredholm and proper operators with the zero index is appropriate
for elliptic problems in unbounded domains. The first degree construction for Fredholm and
proper operators is due to Caccioppoli (see the bibliography in [37]) who defined the degree
modulus 2.The important development of this theory was due to the work by Smale [47] who
generalized Sard’s lemma for Fredholm operators and defined the degree as the number of
solutions of the operator equation f(x) = y modulus 2. For almost all y these solutions are
regular and their number is finite. Based on the results by Smale, Elworthy and Tromba
[20], [21] defined the oriented degree for Fredholm and proper operators of the zero index
which homotopy invariant modulus 2.

Degree construction for Fredholm and proper mappings in [16], [10], [11], [26]-[30] is
based on the notions of orientation. Another approach to define the orientation is suggested
in [23], [18], [33]. Assuming that the operator L + λI satisfies the Fredholm property for
all real λ ≥ 0 and that it has only a finite number ν of positive eigenvalues (together
with their multiplicities), we can define the orientation as (−1)ν . This construction is well
adapted for elliptic boundary value problems because it is naturally related to the spectrum
of the linearized operator. Similar to other degree constructions, this one requires a precise
specification of operators and function spaces [64], [65].

Thus, the topological degree is constructed for general elliptic problems in unbounded
domains in weighted spaces [54, 65]. The application of the LS method requires a priori
estimates of solutions in these spaces.
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Method of monotone solutions. A priori estimates of solutions in weighted spaces
are quite different in comparison with conventional spaces without weight. The latter are
provided by certain regularity of solutions in the case of Hölder spaces and by their decay
rate at infinity in the case of Sobolev space. The family of solutions w(x+h) in the example
considered above is uniformly bounded in such spaces but not in the weighted spaces. Hence,
the introduction of weighted spaces allows the construction of topological degree but it
imposes some additional requirements in order to obtain a priori estimates of solutions.

Let us illustrate the situation with the estimates of solutions in the weighted spaces with
the following example. Consider the problem (1.2), (1.3) and the corresponding first-order
system of equations

w′ = p, Dp′ = −cp− Fτ (w) (1.4)

which depends on parameter τ . We look for a trajectory γ connecting the stationary points
(w−, 0) and (w+, 0). If these points are hyperbolic, then in some their small neighborhoods
V± the trajectory approaches these stationary points exponentially. Hence, the solution
w(x) admits a priori estimates in weighted spaces with a polynomial weight µ(x). In order
to estimate the solution on the whole axis uniformly in τ , we need to estimate the length of
the interval Lτ where the trajectory is located outside the neighborhoods V+ and V−. It is
possible that Lτ → ∞ as τ → τ0 for some τ0 resulting in the loss of a priori estimates. In
general, Lτ is not necessarily bounded, so that a trajectory connecting two stationary points
may not exist.

It appears that there are some classes of problems for which it is possible to obtain
uniform estimates of Lτ . These estimates can be obtained only for some types of solutions
and not for all solutions. This means that there are two types of solutions, type 1 and type 2
such that if a solution belongs to a certain type, then it cannot change it during a continuous
deformation. A priori estimates of the type 1 solutions (but not of the type 2) allow us to
apply the LS method and to prove the existence of solutions.

The two types of solutions are monotone and non-monotone solutions (as functions of
x). There are some classes of problems for which they are separated in the sense specified
above, and monotone solutions admit a priori estimates. In a more general setting, the type
1 solutions are not necessarily monotone but they possess some monotonicity properties (for
example, a single maximum).

The fact that solutions can preserve their monotonicity in the process of continuous
deformation was first noticed in [32]. This method was more systematically developed in
[58, 62]. Some recent applications determine its further development. In this work we present
the method and the existence results obtained with it.
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2 Operators and spaces

For the functional setting let us introduce the Hölder space Ck+α(R) consisting of vector-
functions of class Ck, which are continuous and bounded on the axis R together with their
derivatives of order k, and such that the derivatives of order k satisfy the Hölder condition
with the exponent α ∈ (0, 1). The norm in this space is the usual Hölder norm. Set
E1 = C2+α(R), E2 = Cα(R). Next, we introduce the weighted spaces E1

µ and E2
µ with

µ(x) =
√
1 + x2. These spaces are equipped with the norms:

∥w∥Ei
µ
= ∥wµ∥Ei , i = 1, 2.

Following [58, 62] we introduce the operators which will allow us to study travelling waves,
that is solutions of problem (1.2), (1.3). Consider an infinitely differentiable vector-function
η(x) such that

η(x) =

{
w− , x ≤ −1
w+ , x ≥ 1

,

where w± = (v±, c±). Set w = u+ η and consider the operator

A(u) = D(u+ η)′′ + c(u+ η)′ + F (u+ η), (2.1)

acting from E1
µ into E2

µ.

Functionalization of the parameter. Solution w(x) of equation (1.2) is invariant with
respect to translation in space. Along with any solution w(x), the functions w(x + h) also
satisfy this equation for any real h. This property of solutions of autonomous problems
on the whole axis implies the existence of a zero eigenvalue of the linearized operator A′.
Consequently, we cannot find the index of the solution (the index is understood here as the
value of the degree with respect to a small ball containing the solution). Moreover, this
family of solutions is not bounded in the weighted norm. Therefore, we cannot apply the
Leray-Schauder method to study the existence of solutions.

In order to overcome these difficulties we introduce functionalization of the parameter c
[62] (Chapter 2). This means that instead of the unknown constant c we introduce some
given functional c(w) such that c(w(·+h)) is a monotone function of h with the values from
−∞ to ∞. Hence, equation c(w(· + h)) = c has a unique solution h for any wave speed c.
Therefore, we obtain an equivalent problem without invariance of solutions with respect to
translation in space. The linearized operator A′ does not have zero eigenvalue.

Homotopy. We consider the operator Aτ (u)

Aτ (u) = D(u+ η)′′ + c(u+ η)′ + Fτ (u+ η), (2.2)

acting from E1
µ into E2

µ and depending on parameter τ ∈ [0, 1]. We suppose that for τ = 0
we have the original operator (2.1) and for τ = 1 some model operator for which the degree
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is different from 0. The function Fτ (w) is bounded and continuous together with its second
derivatives with respect to the variables w and τ .

According to the Leray-Schauder (LS) method, we need to obtain a priori estimates of
solutions of the equation Aτ (u) = 0 independent of τ . We will use a modification of the LS
for some subclasses of solutions.

Topological degree. The operator linearized about any function in E1
µ satisfies the Fred-

holm property and has the zero index. The nonlinear operator is proper on closed bounded
sets. This means that the inverse image of a compact set is compact in any closed bounded
set in E1

µ. The topological degree can be defined for this operator. All these properties can
be found in [62, 63, 64, 65, 54].

3 Leray-Schauder method on subclasses of solutions

We consider the operator equation

Aτ (u) = 0, (3.1)

where the operator Aτ (u) : E
1
µ → E2

µ is defined in Section 2. The homotopy is constructed
in such a way that A0(u) corresponds to the original problem (1.2), (1.3) and A1(u) to
the model problem. In order to apply the Leray-Schauder method, we need to verify two
conditions: a priori estimates of solutions of equation (3.1) hold in the space E1

µ and the
value of the topological degree for the model operator is different from 0.

Suppose that the set of solutions K of equation (3.1) in the space E1
µ can be represented

as a union of two subsets K1 and K2 such that the following two conditions are satisfied:

(i) for any u ∈ K1 and v ∈ K2, the following estimate holds

∥u− v∥E1
µ
≥ r (3.2)

with some positive constant r independent of u and v. We call this property separation of
solutions.

(ii) for any u ∈ K1

∥u∥E1
µ
≤ R (3.3)

with some positive constant R independent of u. This is a priori estimate of solutions from
the first subset.

Thus, we have a priori estimates of solutions which belong to the class K1. but not of all
possible solutions. Therefore, we need to modify the Leray-Schauder method in the following
way. Denote by B a ball in the space E1

µ which contains all solutions from the class K1. Since
the operator Aτ (u) is proper [54], that is the inverse image of the compact set is compact in
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any bounded closed set, then the set of solutions in B is compact. For each solution u ∈ K1,
consider a ball br(u) of radius r and center u. Set

Ωr = ∪u∈Kbr(u).

Let us choose r small enough such that Ωr contains all solutions from K1 and does not
contain other solutions. Consider the topological degree γ(Aτ ,Ωr). It is well defined since
Aτ (u) ̸= 0 for u ∈ ∂Ωr. We suppose that the degree is different from 0 for the model problem,
γ(A1,Ωr) ̸= 0. Therefore, γ(A0,Ωr) ̸= 0, and equation A0(u) = 0 has a solution in Ωr.

This approach is applicable if the conditions (i) and (ii) hold. We will present some
classes of problems for which these properties are satisfied. Namely, we will illustrate this
approach with locally monotone systems [62], [65]-[55] and then we will show other examples.

3.1 Separation of solutions

The two subclasses of solutions separated in the function space are monotone and non-
monotone solutions. We will identify some classes of equations for which the properties (i)
and (ii) hold.

Definition 3.1. System (1.2) is called locally monotone if for any i and w, equality Fi(w) = 0
implies the inequality

∂Fi

∂wj

> 0 , j = 1, ..., n, j ̸= i. (3.4)

If this inequality holds for all w, then this system is called monotone.

Suppose that (i) is not valid. Then there are two sequences, ui ∈ K1 (monotone solutions)
and vi ∈ K2 (non-monotone solutions) such that ∥ui − vi∥E1

µ
→ 0 as i → ∞. We will show

that this assumption leads to a contradiction.
If condition (ii) is satisfied, then the sequence ui is bounded. From the properness of the

operator Aτ on closed bounded sets [65, 54] it follows that it has a convergent subsequence.
Without loss of generality we can assume that ∥ui − w∥E1

µ
→ 0 for some function w ∈ E1

µ.
Therefore, w′(x) ≤ 0 for all x ∈ R (component-wise). We show that this inequality is strict.

Lemma 3.2. Let w(x) be a solution of a locally monotone system (1.2). If w′(x) ≤ 0 for
all x ∈ R (component-wise) and w(x) ̸≡ const, then w′(x) < 0.

Proof. Suppose that w′
i(x0) = 0 for some i = 1, ..., n and x0. Then w′′

i (x0) = 0. Hence,
by virtue of the ith equation of system (1.2), Fi(w(x0)) = 0. We set ui(x) = −w′

i(x) and
differentiate the ith equation of system (1.2). Then we get

diu
′′
i + cu′i +

∂Fi

∂wi

ui −
∑
j ̸=i

∂Fi

∂wj

w′
j = 0. (3.5)

Since ∂Fi

∂wj
> 0 (see (3.4)) and w′

j(x) ≤ 0, then
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S(x0) ≡ −
∑
j ̸=i

∂Fi

∂wj

w′
j(x0) ≥ 0.

Assume, first, w′
i(x) ̸≡ 0 in any small interval I(x0) around x0. If we take it sufficiently

small, then S(x) ≥ 0 in I(x0) by virtue of (3.4) and the inequalities wj(x)
′ ≤ 0. Hence we

obtain a contradiction with the maximum principle for equation (3.5) in I(x0) since ui(x) ≥ 0
in I(x0), ui(x0) = 0 and ui(x) ̸≡ 0.

If w′
i(x) ≡ 0 in some interval I0, then we repeat the previous construction in a slightly

larger interval I and obtain a similar contradiction.
�

Next, we consider the sequence of non-monotone solutions vi. For each such solution
there is at least one point xi where the derivative of one of the components of the solution
vanish. Suppose, first, that this sequence is bounded. From the convergence ∥vi−w∥E1

µ
→ 0

as i→ ∞ it follows that the derivative of the limiting function w′(x) also vanish (for one of
the components). We obtain a contradiction with Lemma 3.2. Therefore, the sequence xi is
not bounded. Without loss of generality we can assume that xi → ∞ as i→ ∞. This gives
a contradiction with the following lemma.

Lemma 3.3. Let v(x) be a solution of system (1.2) such that v(x) → 0 as x→ ∞. Moreover,
the matrix F ′(0) has positive off-diagonal elements and negative principal eigenvalue (i.e.
with the maximal real part). If v′(x0) < 0 (component-wise) for some x0 sufficiently large,
then v′(x) < 0 for all x ≥ x0.

Proof. Set u(x) = −v′(x) and differentiate equation (1.2):

Du′′ + cu′ +B(x)u = 0, (3.6)

where B(x) = F ′(v(x)), u(x0) > 0, u(x) → 0 as x→ ∞. Since the matrix F ′(0) has positive
off-diagonal elements and negative principal eigenvalue, then F ′(0)p < 0, where p is the
principal eigenvector. Therefore, we can choose x0 sufficiently large such that B(x)p < 0 for
all x ≥ x0.

We need to prove that u(x) > 0 for x ≥ x0. Suppose that this is not true. If u(x) ≥ 0
for all x ≥ x0 and uj(x1) = 0 for some j and x1, then we obtain a contradiction with
the maximum principle. Therefore, we consider the case where one of the components of
the function u(x) becomes negative. Hence there exists a positive number t such that the
function û(x) = u(x) + tp satisfies the following conditions: û ≥ 0 for all x ≥ x0, û(x0) > 0,
ûj(x2) = 0 for some j and x2 > x0. It satisfies the following equation:

Dû′′ + cû′ +B(x)û+ f(x) = 0, (3.7)

where f(x) = −tB(x)p > 0. Therefore, we obtain again a contradiction with the maximum
principle. This contradiction proves the lemma.

�
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Thus, we have proved the following theorem.

Theorem 3.4. Let the system

Dw′′ + cτw
′ + Fτ (w) = 0 (3.8)

be locally monotone, Fτ (w±) = 0 for some w±, w+ < w− (component-wise), and the matri-
ces F ′

τ (w±) have all eigenvalues in the left-half plane. Suppose that for any monotonically
decreasing solution wm of system (3.8) with the limits

w(±∞) = w± (3.9)

the estimate

∥wm − η∥E1
µ
≤ R (3.10)

holds with some positive constant R independent of the solution and of the value of τ ∈ [0, 1].
Then there exists a positive constant r such that

∥wm − wn∥E1
µ
≥ r, (3.11)

where wn is any non-monotone solution of problem (3.8), (3.9) possibly for a different value
of τ , r does not depend on solutions and on τ .

Remarks 3.5. From the condition of local monotonicity it follows that the matrices F ′(w±)
have positive off-diagonal elements. Therefore, Perron-Frobenius theorem affirms that their
principal eigenvalues are real and simple, the corresponding eigenvectors are positive. These
properties were used in Lemma 3.3.

It is important to note that monotone systems satisfy the maximum principle but locally
monotone systems do not satisfy it. However, the property of separation of solutions remains
valid for them. Inequality (3.4) in the definition of local monotonicity can be non-strict.

3.2 Estimates of solutions

In this section we will obtain a priori estimates of monotone solutions in weighted Hölder
spaces. Since the principal eigenvalues of the matrices F ′

τ (w±) are negative, then the solutions
converge to their limiting values at infinity exponentially. In the other words, the following
estimates hold:

|wm(x)− η(x)| ≤ K1e
−µ0x, x ≥ N+, |wm(x)− η(x)| ≤ K1e

µ0x, x ≤ N− (3.12)

with some positive constants K1 and µ0 independent of a monotone solution wm and the
value of τ . On the contrary, the values N+ and N− can depend on the solution. They are
chosen in such a way that

|wm(x)− η(x)| ≤ ϵ, x ≥ N+, |wm(x)− η(x)| ≤ ϵ, x ≤ N−
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for some small positive ϵ. This means that estimates (3.12) hold in some neighborhoods of
the points w± in Rn (w-space). This property follows from the classical results on behavior
of solutions of the corresponding first-order ordinary differential system of equations in the
vicinity of stationary points.

Since the weight function µ(x) has polynomial growth at infinity, then we obtain the
estimate

|(wm(x)− η(x))µ(x)| ≤ K2 (3.13)

for x ≥ N+ and x ≤ N−. If N+ and N− are uniformly bounded for all solutions, then the
last estimate obviously holds for all x ∈ R.

Let us consider the case where these values are not uniformly bounded. Suppose that
N i

+ → ∞ for some sequence of solutions wi, and N i
− remains bounded. Consider the shifted

functions vi(x) = wi(x − N i
+). We have the equality |vi(0) − ν(0)| = ϵ. We can choose a

subsequence of the sequence vi(x) locally converging to some limiting function v0(x). It is
a solution of system (3.8) for some τ , it is monotonically decreasing, and |v0(0)− ν(0)| = ϵ.
Hence v0(x) → w+ as x → ∞, and there exists a limit v∗ = v0(−∞). Clearly, F (v∗) = 0.
Since N i

+ − N i
i → ∞, then |v∗ − w−| ≥ ϵ. Thus, we have constructed a solutions with the

limits

v0(−∞) = v∗, v0(∞) = w+, v∗ ̸= w±. (3.14)

Similarly, for the shifted functions ui(x) = wi(x − N i
−) we obtain a limiting solution u0(x)

with the limits

u0(−∞) = w−, u0(∞) = v∗, v∗ ̸= w±. (3.15)

We can now prove the following theorem.

Theorem 3.6. Let the system (3.8) be locally monotone, Fτ (w±) = 0 for some w±, w+ <
w−, and the matrices F ′

τ (w±) have all eigenvalues in the left-half plane. Suppose that for
any other zero w0 of the function F (w) such that w+ ≤ w0 ≤ w−, the principal eigenvalue
of the matrix F ′(w0) is positive. Then the estimate

sup
x

|(wm(x)− η(x))µ(x)| ≤ K (3.16)

holds for any monotonically decreasing solution wm(x) of problem (3.8), (3.9) with a constant
K independent of solution.

Proof. Suppose that the assertion of the theorem does not hold. Then, as it is shown
above, the values N± in (3.12) are not uniformly bounded. Suppose that there is a sequence
of solutions wi for which N i

+ → ∞ as i → ∞, and N i
− remain bounded. Then there are

solutions v0(x) with limits (3.14) and u0(x) with limits (3.15). The existence of the former
implies that c < 0 and of the latter that c > 0 ([58, 62], Lemma 2.8, Chapter 3, p. 165).
This contradiction proves that the assumption on N± cannot hold.
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Similarly, we can consider the case where N i
− tends to −∞ and N i

+ remains bounded, or
both of them are unbounded. Since the solutions are invariant with respect to translation
in space, all these cases can be reduced to the case where the values N i

− are bounded. The
shift remains bounded due to a priori estimates of the wave speed [58, 62].

�
Corollary 3.7. Let u = wm − η, where wm is a monotone solution of problem (3.8), (3.9).
Then ∥u∥E1

µ
≤ K, where a positive constant K does no depend on the solution.

Thus, we obtain a priori estimates of monotone solutions.

4 Existence of pulses and waves

In this section we will review the results on the existence of solutions obtained by the method
presented above. We begin with the scalar equation for which the existence of solutions
can be studied by elementary methods and which allows us to explain the interconnection
between the existence of wave and pulses. Some of these results can be generalized by the
method of monotone solutions for the systems of equations.

4.1 Pulses and waves for the scalar equation

Consider the problem

w′′ + cw′ + F (w) = 0, w(±∞) = w±, (4.1)

where w(x) is the scalar function, c is a constant, the wave speed, the function F (w) is
bounded and continuous together with its second derivatives, F (w±) = 0, F ′(w±) < 0.
Solutions of this problem are called travelling waves.

Theorem 4.1. Suppose that F (w) < 0 for w+ < w < w0 and F (w) > 0 for w0 < w <
w−. Then problem (4.1) has a solution w(x) for a unique value of c. It is monotonically

decreasing, and c T 0 if and only if
∫ w−
w+

F (w)dw T 0.

The proof of the existence of solutions follows from the elementary phase plane analysis of
the first-order system of equations

w′ = p, p′ = −cp− F (w)

equivalent to equation (4.1) (see, e.g., [62]). The sign of the wave speed can be determined
if we multiply equation (4.1) and integrate over the whole axis.

Next, consider the problem

w′′ + F (w) = 0, w(±∞) = w+, (4.2)

similar to (4.1) with c = 0 and with the equal limits at infinity. Nontrivial solutions of this
problem are called pulses.
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Theorem 4.2. Suppose that F (w) < 0 for w+ < w < w0 and F (w) > 0 for w0 < w < w−.
Then problem (4.2) has a pulse solution w(x) > w+ if and only if

∫ w−
w+

F (w)dw > 0.

The proof of this theorem can be done by an explicit construction of solution of the corre-
sponding first-order system.

Corollary 4.3. The pulse, that is the solution of problem (4.2) with w > w+, exists if and
only if the wave, that is the solution of problem (4.1), has a positive speed.

4.2 Monotone and locally monotone systems

The existence results formulated above for the scalar equation can be generalized (with some
restrictions) for locally monotone systems.

Theorem 4.4. Let system (1.2) be locally monotone, F (w±) = 0 for some w±, w+ < w−,
and the matrices F ′(w±) have all eigenvalues in the left-half plane. Suppose that for any
other zero w0 of the function F (w) such that w+ ≤ w0 ≤ w−, the principal eigenvalue of the
matrix F ′(w0) is positive. Then there exists a monotonically decreasing solution of problem
(1.2), (1.3) for some values of c. If the system is monotone, then such value of c is unique.

The proof of this theorem is based on the method of monotone solutions presented above.
The model system and the homotopy can be found in [58, 62]. Theorem 4.2 on the existence
of pulses is generalized for monotone systems of two equations [35, 36]:

Theorem 4.5. Let the system

Dw′′ + F (w) = 0, (4.3)

where w = (w1, w2), F = (F1, F2), be monotone, F (w±) = 0, and the principal eigenvalues
of the matrices F ′(w±) be negative. There is a single zero w0 of the function F such that
w+ ≤ w0 ≤ w−, and the principal eigenvalues of the matrices F ′(w±) is positive. Moreover,
suppose that F1(w) = 0 (F2(w) = 0) if and only if w1 = f1(w2) (w2 = f2(w1)), where
f ′
i(s) > 0, i = 1, 2. Then there exists a solution w(x) of system (4.3) with the limits
w(±∞) = w+, w(x) > w+ for x ∈ R if and only if the wave speed (Theorem 4.4) is positive.

Thus, the existence of pulses is proved only for the system of two equations under some
additional conditions. The difficulty in proving a similar result for general monotone systems,
and also for locally monotone systems, consists in the choice of model problem and in the
construction of the homotopy with a priori estimates of solutions. Existence of pulses is also
proved for a non-autonomous scalar equation [22] and for the system of equations describing
blood coagulation [31].

The system of competition of species. The system of competition of species is a system
of two equations where

F1(w1, w2) = w1(1− w1 − aw2), F2(w1, w2) = w2(1− bw1 − w2).
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It provides a good example for the illustration of the existence of waves and pulses. The
function F (w) has up to four non-negative zeros, P0 = (0, 0), P1 = (1, 0), P2 = (0, 1), P3 =
(w0

1, w
0
2), where the values w0

1, w
0
2 are determined as a solution of the system of equations

w1 + aw2 = 1, bw1 + w2 = 1. The point P0 is unstable, the points P1 and P2 are stable if
a > 1, b > 1. In this case the point P3 is unstable. We set w+ = P1, w− = P2.

The off-diagonal elements of the matrix F ′(w) are negative. The system can be reduced
to the monotone system by the change of variables u1 = w1, u2 = 1−w2. Existence of waves
and pulses follows from Theorems 4.4, 4.5 with some additional technical details which can
be found in [58, 62].

If we consider a more general nonlinearity

F1(w1, w2) = w1ϕ1(w1, w2)(1− w1 − aw2), F2(w1, w2) = w2ϕ2(w1, w2)(1− bw1 − w2)

with some positive and sufficiently smooth functions ϕi(w1, w2), i = 1, 2, then this system
remains locally monotone after the change of variables, but it is not a monotone system. We
still have the existence of waves from Theorem 4.4 but Theorem 4.5 is not applicable, and
the existence of pulses is not proved.

A similar system of three or more equations can be reduced to a monotone system under
some additional conditions. Consider, as example, the system of three equations with the
nonlinearity

F1(w) = w1(1− w1 − a2w2 + a3w3), F2(w) = w2(1− b1w1 − w2 − b3w3) (4.4)

F3(w) = w3(1 + c1w1 − c2w2 − w3),

where w = (w1, w2, w3), and ai, bi, ci are some positive constants. After the change of vari-
ables u1 = w1, u2 = 1− w2, u3 = w3 we get the system

Du′′ + cu′ +G(u) = 0, (4.5)

where

G1(u) = u1(1− u1 − a2(1− u2) + a3u3), G2(u) = (1− u2)(b1u1 − u2 + b3u3),

G3(u) = u3(1 + c1u1 − c2(1− u2)− u3).

This system satisfies the monotonicity condition for u1, u3 > 0, u2 < 1. We consider the
points w+ = (0, 0, 0) and w− = (w0

1, w
0
2, w

0
3), where w

0
1, w

0
2, w

0
3 is a solution of the linear

algebraic system of equations Au = q , where

A =

 −1 a2 a3
b1 −1 b3
c1 c2 −1

 , q =

 1− a2
0

1− c2

 .

It can be verified that the point w+ is stable if a2 > 1, c2 > 1. If the principal eigenvalue of
the matrix A is negative, then w− is positive and also stable. In this case, existence of waves
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follows from Theorem 4.4. However, we cannot state the existence of pulses since Theorem
4.5 is applicable only for two equations. The form of nonlinearity (4.4) implies that the first
and the third species are in cooperation, and each of them is in competition with the second
species.

4.3 Multi-dimensional equations and systems

If we consider wave propagation in unbounded cylinders, then instead of equation (1.2) we
have the equation

D∆w + c
∂w

∂x1
+ F (w, x′) = 0, (4.6)

where x1 is the variable along the axis of the cylinder, x′ is the variable in the cross-section.
This equation is completed by Dirichlet or Neumann conditions at the boundary of the
cylinder. The problem in the cross-section of the cylinder,

D∆′w + F (w, x′) = 0 (4.7)

is supposed to have two solutions w±(x
′) for which the corresponding linearized operator

has all eigenvalues in the left-half plane. Then we have the bistable case and we look for a
solution of equation (4.6) with the limits

lim
x1→±∞

w(x) = w±(x
′). (4.8)

In the multi-dimensional case separation of solutions can be done for the monotone systems
but not for the locally monotone systems. Therefore, existence of waves is proved for the
scalar equations and for the monotone systems [59]. The problems with nonlinear boundary
conditions arising in some biomedical applications are studied in [5, 8, 9].

4.4 Nonlocal and delay equations

In this section we present the existence results for nonlocal and delay reaction-diffusion
equations obtained by the method of monotone solutions. It is similar to the approach
described above for the locally monotone systems though some technical details can be
different.

4.4.1 Nonlocal equations

In order to introduce nonlocal equations, let us consider the scalar equation (1.1) with a
particular form of the nonlinearity

F (u) = u2(1− au)− σu. (4.9)
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In population dynamics, the first term in the right-hand side corresponds to sexual reproduc-
tion of the population and the second term to its mortality. The function F (u) can have from
one to three non-negative zeros. In the latter case, the results of Section 4.1 are applicable
to it. The reproduction term is proportional to available resources (1−au), where the linear
term describes consumption of resources. In the case of nonlocal or global consumption of
resources, instead of (4.9) we have

F (u, I(u)) = u2(1− aI(u))− σu, (4.10)

where

I(u) =

∫ ∞

−∞
ϕ(x− u)u(y, t)dy,

ϕ(x) has a finite support (nonlocal consumption) or ϕ(x) ≡ 1 (global consumption) [14].
Consider, as example, ϕ(x) = ψ(x)/(2N), where

ψ(x) =

{
1 , |x| ≤ N
0 , |x| > N

.

In the limit of small N , nonlocal consumption (4.10) is formally reduced to the local con-
sumption (4.9). Existence of waves and pulses can be proved for small N by perturbation
methods [69]. If ϕ(x) ≡ ψ(x), then in the limit of large N (ϕ(x) ≡ 1), the waves do not
exist, and the existence of pulses can be easily verified analytically. This allows us to prove
their existence for sufficiently large N . Transition between waves for small N and pulses for
large N occurs through the periodic waves and nonlocal bifurcations [56].

System with global consumption. The system of two equations with global consump-
tion in the stationary case writes

d1u
′′ + uv(1− aI(u)− bI(v)) = 0, d2v

′′ + uv(1− cI(u)− dI(v)) = 0. (4.11)

The existence of pulses, that is positive solutions of this system with zero limits at infinity
is proved by the method of monotone solutions [57]. If the coefficients in the two equations
are equal to each other, then system (4.11) can be reduced to the single equation (cf. (4.10))
where the existence of pulses is obvious. If the coefficients are different, the proof of the
existence becomes much more involved and requires some sophisticated a priori estimates.

Scalar equation with nonlocal reproduction. Let us now consider another general-
ization of (4.9),

F (u, I(u)) = uI(u)(1− au)− σu, (4.12)

where the kernel of the integrala I(u) is a non-negative function with a finite support. In this
case the method of monotone solutions is applicable, and the existence of waves is proved in
[7, 19].
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4.4.2 Delay equation

Delay reaction-diffusion equation

∂u

∂t
= D

∂2u

∂x2
+ F (u, uτ ), (4.13)

where uτ (x, t) = u(x, t− τ),

F (u, uτ ) = u(1− u)− f(uτ )u

describes the propagation of viral infection in the tissue [15]. The first term in the nonlinear-
ity describes its reproduction and the second one its mortality due to the immune response.
The density of immune cells f(uτ ) is determined by virus concentration at time t− τ .

The travelling wave solution, u(x, t) = w(x−ct), satisfies the second-order delay equation

Dw′′ + cw′ + w(1− w − f(w(x+ cτ))) = 0. (4.14)

The unknown constant c, the wave speed, enters here the nonlinearity due to time delay in
the equation. If f(u) is a monotonically decreasing function, then the maximum principle is
applicable to this equation, and it can be used in the proof of wave existence. However, if
this function is not decreasing, and this is the case of the model of immune response, then
this approach cannot be used. The existence of waves is proved by the method of monotone
solutions [49].

5 Discussion

Bistability and essential spectrum. The construction of the topological degree implies
that the essential spectrum lies in the left-half plane of the complex plane. Therefore, we
need to assume that the matrices F ′(w±) have all eigenvalues with negative real parts. This
is the so-called bistable case. In the monostable case, one of them has eigenvalues with
a positive real part. The essential spectrum is partially in the right-half plane, and the
same degree construction cannot be employed. The degree can be defined in the monostable
case by the introduction of an exponential weight that moves the essential spectrum to the
left-half plane. This approach was not used to investigate the existence of waves.

Let us also note that in the bistable case the wave is unique or they form a discrete set of
solutions. In the monostable case, there are continuous families of solutions. This is related
to the index of the corresponding operators.

Other approaches to prove the existence of waves. The method presented here uses
the topological degree for elliptic operators in unbounded domains. It implies the degree
construction and a priori estimates of solutions in appropriate weighted spaces. Another
approach to prove the existence of travelling waves for the scalar reaction-diffusion equation
is developed in [12, 13]. In order to prove the existence of solutions in an unbounded cylinder,
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first, it is proved for a bounded part of the cylinder using the LS degree. Uniform estimates
of solutions allow the passage to the limit as this bounded part of the cylinder tends to
infinity.

Systems of waves. The results on the existence of waves presented above are obtained
under the assumption that all zeros of the vector-function F (w) in the rectangle w+ ≤ w ≤
w− are unstable, except for w+ and w−. Suppose now that there is a stable zero w0, w+ <
w0 < w−. Then, according to Theorem 4.4, there exists a [w+, w

0]-wave and a [w0, w−]-wave,
that is the waves with the limits w(∞) = w+, w(−∞) = w0 and w(∞) = w0, w(−∞) = w−,
respectively. Denote their speeds by c+ and c−. Then the [w+, w−]-wave exists if and only
if c− > c+. This result is obtained for the scalar equation [24, 25, 52, 53] and for monotone
systems [55]. If c− ≤ c+, then this common wave does not exist, and there are two waves
propagating one after another with different speeds.

Limitations and further developments. The method of monotone solutions is based
on two properties: separation of monotone and non-monotone solutions and on a priori
estimates of monotone solutions. These properties can be proved for some particular classes
of problems, and they do not hold in general. Other methods to prove the existence of waves
and pulses are also developed only for some particular models. The method of monotone
solutions is applicable in particular for monotone and locally monotone systems which have
numerous applications. Some of them are presented in this work, some other can be found
in [55, 62]. There are some recent applications for the delay equation without the maximum
principle [49].

Acknowledgements

The first author was partially supported by the Ministry of Education and Science of the
Russian Federation (the agreement number 02.a03.21.0008) and by the program PICS CNRS
6583 Matbio.

References

[1] S. Agmon, A. Douglis, L. Nirenberg. Estimates near the boundary for solutions of elliptic
partial diffrential equations satisfying general boundary conditions. Comm. Pure Appl. Math.,
12 (1959), 623-727.

[2] S. Agmon, A. Douglis, L. Nirenberg. Estimates near the boundary for solutions of elliptic
partial differential equations satisfying general boundary conditions II. Comm. Pure Appl.
Math., 17 (1964), 35–92.

[3] N. Apreutesei, A. Ducrot, V. Volpert. Travelling waves for integro-differential equations in
population dynamics. DCDS B, 11 (2009), No. 3, 541-561.

17



[4] A. Apreutesei, A. Ducrot, V. Volpert. Competition of species with intra-specific competition.
Math. Model. Nat. Phenom., 3 (2008), No. 4, 1-27.

[5] N. Apreutesei, A. Tosenberger, V. Volpert. Existence of Reaction-Diffusion Waves with Non-
linear Boundary Conditions. Math. Model. Nat. Phenom., 8 (2013), no. 4, 2-17.

[6] N. Apreutesei, V. Volpert. Properness and topological degree for nonlocal reaction-diffusion
operators. Abstract and Applied Analysis, 2011, 1-21.

[7] N. Apreutesei, V. Volpert. Existence of travelling waves for a class of integro-differential equa-
tions from population dynamics. International Electronic Journal of Pure and Applied Math-
ematics, Volume 5 No. 2 2012, 53-67.

[8] N. Apreutesei, V. Volpert. Reaction-diffusion waves with nonlinear boundary conditions. Non-
linear and heterogeneous medium, 8 (2013), no. 1, 23-35.

[9] N. Apreutesei, V. Volpert. Travelling waves for reaction-diffusion problems with nonlinear
boundary conditions. Application to a model of atherosclerosis. PAFA, 2017, in press.

[10] P. Benevieri, M. Furi. A simple notion of orientability for Fredholm maps of index zero between
Banach manifolds and degree theory. Annales des Sciences Mathématiques de Québec, 22
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