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Abstract. We study the properties of operators (−∆)l ± V . We discuss a recent

result of Killip, Molchanov, and Safronov [4] which states that if the negative spectra

of these operators are discrete, then their positive spectra do not have gaps. Similar

statements are also proved for more general operators of the form α(i∇) ± V and

operators on the lattice Zd. Here, we give a more detailed description of the matter.

Notations. For an open domain Ω ⊂ Rd, the symbol Hl(Ω) denotes the Sobolev

space of functions u : Ω 7→ C satisfying the condition

||u||2Hl =

∫
Ω

l∑
n=0

∑
j1+···+jd=n

∣∣∣ ∂nu

(∂x1)j1 . . . (∂xd)jd

∣∣∣2 dx <∞.
The class of smooth functions u : Rd 7→ C, such that

sup
x∈Rd

(
(1 + |x|)m|(−∆)lu(x)|

)
<∞, ∀l,m ∈ {0, 1, 2, . . . },

is denoted by S(Rd). By B we denote the class of bounded operators on a Hilbert space

H. We use the notation S∞ for the class of compact operators. For a linear densely

defined operator T , the symbols D(T ), σ(T ) denote the domain and the spectrum of

this operator. If T is self-adjoint, then the symbol ET (·) stands for the (operator-

valued) spectral measure of T .

1. Introduction and main results

In this paper, we discuss spectral properties of the self-adjoint operator

(−∆)l + V (x), x ∈ Rd, l ∈ N+ = {1, 2, 3, . . . },

acting in the Hilbert space L2(Rd). It is easy to show that if V = 0, then the spectrum

of this operator coincides with the set [0,∞) and is absolutely continuous.

σ((−∆)l)

Fig. 1.The spectrum of (−∆)l
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However, numerous examples of such operators in quantum mechanics show that

the spectrum might look different if V 6= 0. In particular, it might have negative

eigenvalues. Typically, if V decays at infinity, then the spectrum of this operator

looks like the set displayed in the picture below.

σ((−∆)l + V )λ2λ1

Fig. 2. The spectrum of (−∆)l + V

It turns out, that there is a relation between the left and the right parts of this

picture, i.e. a relation between the continuous spectra and the sets of negative eigen-

values of such operators. However, in order to describe this relation, one needs to

consider two operators

H± = (−∆)l ± V.
We begin with the following result which is one of the theorems proved in [8].

Theorem 1.1. [cf.[3], [8]] Let l = 1. Let V be a real-valued bounded function on Rd.

Suppose that the spectra of H+ = −∆ + V and H− = −∆ − V in (−∞, 0) consist of

eigenvalues λ+
j and λ−j , satisfying∑

j

|λ+
j |1/2 <∞,

∑
j

|λ−j |1/2 <∞. (1.1)

Then the absolutely continuous spectrum of each operator H+, H− is essentially sup-

ported on the set [0,∞).

Remark. Although this theorem can be proved in any dimension d, the paper [8]

proves it only for d = 3. The arguments in d 6= 3 require a small modification. Still,

the proof in [8] is more detailed compared to the less preferable versions from [5] and

[7]. The case d = 1 was considered by Damanik and Remling in [3]. For a similar

result handling the case of finitely many negative eigenvalues see the articles [2] and

[6].

In order to formulate the result of Killip, Molchanov and Safronov, we need to recall

the relation between self-adjoint operators and quadratic forms.

Let a[·, ·] be the sesquilinear non-negative form defined by

a[u, u] =

∫
Rd

|ξ|2l|û(ξ)|2dξ, û = Φu, l ∈ N+ = {1, 2, 3, . . . }, (1.2)

where Φ is the Fourier transform operator. If we define the domain d[a] as the Sobolev

space Hl(Rd), this form will be closed in L2(Rd). The latter means that the domain

is a complete Hilbert space with the inner product

a1[u, v] = a[u, v] + (u, v), u, v ∈ d[a]. (1.3)

The form a[·, ·] generates a unique operator (−∆)l self-adjoint in L2(Rd).
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Let V be a real-valued measurable function and let v[·, ·] be the Hermitian form

v[u, u] =

∫
Rd

V (x)|u(x)|2dx, u ∈ d[a].

We will assume that

sup
n∈Zd

∫
[0,1)d+n

|V |pdx <∞, (1.4)

where {
p > d/2l, if d ≥ 2l;

p = 1, if d < 2l.
(1.5)

It follows from Sobolev’s embedding theorems that, under these conditions, the form

v satisfies

|v[u, u]| ≤ εa1[u, u] + C(ε)||u||2, ∀u ∈ d[u],∀ε > 0. (1.6)

Consider now the sesquilinear form h± = a±v on d[a]. It follows from (1.6) that h± is

semi-bounded and closed on d[a]. Let H± be the self-adjoint operator corresponding

to the form h±. Then, the domain D(H±) is a subset of d[a]. The two conditions

u ∈ D(H±), and H±u = w

are equivalent to the fact that

h±[u, v] = (w, v), ∀v ∈ d[a].

By selecting an appropriate γ > 0, one can achieve that h± + γ ≥ 1. Then the norm

corresponding to the inner product (1.3) will be equivalent to the norm corresponding

to the inner product

h±[u, v] + γ(u, v), u, v ∈ d[a].

The latter is equivalent to the relations

((−∆)l + I)1/2(H± + γI)−1/2 ∈ B,

(H± + γI)1/2((−∆)l + I)−1/2 ∈ B,
(1.7)

where B denotes the class of bounded operators.

When reading Theorem 1.1, one gets the impression that the rate of accumulation

of the eigenvalues λ±j to zero determines the properties of the positive spectra of the

operators H+, H−. In the theorem of Killip, Molchanov and Safronov [4], one considers

the case where λ±j → 0 in an arbitrary way, when no information about the rate of

accumulation of the eigenvalues to 0 is given. We formulate it in a very general setting

for an arbitrary integer l > 0.

Theorem 1.2. (see [4]) Let V be a real-valued measurable function on Rd satisfying

(1.4) with p described in (1.5). Let H+ and H− be the operators corresponding to the

forms a+v and a−v. Suppose that the spectra of H+ and H− in (−∞, 0) are discrete.

Then the spectrum of each operator H+, H− contains the interval [0,∞).
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σess((−∆)l + V )λ+
2λ+

1

=⇒

σess((−∆)l − V )λ−2λ−1

Fig. 3. The left parts of the pictures imply the right parts

Remark. Theorem 1.2 does not hold for arbitrary bounded perturbations V ,

which do not have to be multiplication operators. A counterexample is the case

V = E(−∆)l
(
[1, 2]

)
· (−∆)l.

One of the advantages of Theorem 1.2 is that one does not impose any restric-

tion on the dimension d and the integer parameter l. The case d = l = 1 should

be mentioned separately, since the relation between the negative and positive spec-

tra of one-dimensional Schrödinger operators was found a long time ago (in 2004)

by Damanik and Remling. However, the corresponding paper [3] containing one-

dimensional versions of Theorems 1.1 and 1.2 was published a little bit later in 2007.

A similar observation for a one(and two)-dimensional discrete Schrödinger operator

was made even earlier in 2003 by Damanik, Hundertmark, Killip and Simon [1].

The case d = l = 1 seems to be different from the case d > 2l. If d = l = 1, the

statement of Theorem 1.2 follows from the fact that the operator(
− d2

dx2
− z
)−1

− (H± − z)−1, z ∈ C \ R

is compact. On the other hand, the conditions of Theorem 1.2 do not imply that

((−∆)l − z)−1 − (H± − z)−1, z ∈ C \ R

is compact if d > 2l. Still, our proof does not feel any difference between the cases

corresponding to different values of the parameters d and l.

Our arguments rely on a classical result established by H. Weyl. We start with the

definition.

A sequence un is called singular for a self-adjoint operator A and λ ∈ R, if

1) un ∈ D(A), infn ||un|| > 0;

2) un converges to zero weakly;

3) (A− λ)un converges to zero strongly (in the norm topology).

Theorem 1.3. [H. Weyl] Let A be a self-adjoint operator in a separable Hilbert

space. The condition that λ ∈ R is a point of the essential spectrum of A is equivalent

to existence of a singular sequence for A and λ.
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2. Proof of Theorem 1.2

Most of the arguments are borrowed from [4]. The first statement of this section

allows one to reduce the study of spectra of the unbounded operators H+ and H− to

the study of the properties of continuous operators.

Proposition 2.1. Let −γ < inf σ(H±). A non-negative number λ ≥ 0 is a point of

the essential spectrum of H± if and only if 0 is a point of the essential spectrum of the

operator

Q± = (H± − λ)(H± + 2γI)−1. (2.1)

Proof. Indeed, denote the spectral measure of a self-adjoint operator T = T ∗ by

ET (·). A real number s is a point of the essential spectrum of T if and only if

rank
[
ET (s−ε, s+ε)

]
=∞ for all ε > 0. Choose now 0 < ε < 1/2. Then EQ±(−ε, ε) =

EH±(Ω), where Ω =
(
λ−2γε

1+ε
, λ+2γε

1−ε

)
. Consequently,

rank
[
EQ±(−ε, ε)

]
=∞, ∀ε > 0 ⇐⇒ rank

[
EH±(λ− ε, λ+ ε)

]
=∞, ∀ε > 0.

The proof is completed. �

The proof of Theorem 1.2 is based on an application of Theorem 1.3. In order

to construct singular sequences for the operators H±, we first define functions un on

Rd as follows. Let ϕ ∈ C∞(Rd) be a function with the compactly supported Fourier

transform ϕ̂ ∈ C∞0 (Rd) and the property∫
Rd

|ϕ(x)|2dx = 1.

Set

un(x) = n−d/2ϕ(x/n), ∀n ∈ N+ = {1, 2, 3, . . . } (2.2)

Let us now use the information about the negative spectra of the operators H+ and

H− to prove the following statement.

Proposition 2.2. Assume that conditions of Theorem 1.2 are fulfilled. Then

|H±|1/2un → 0, as n→∞. (2.3)

Proof. Note that the sequence un converges to 0 weakly. Consequently, any compact

operator T maps un onto a sequence Tun strongly convergent to 0. In particular,(
EH±(−∞, 0)[(H± + γI)1/2 − γ1/2I]

)
un → 0, as n→∞ (2.4)

and

EH±(−∞, 0)|H±|1/2un → 0, as n→∞. (2.5)

On the other hand,

h+[un, un] + h−[un, un] = 2a[un, un] = 2nd
∫
Rd

|ξ|2l|ϕ̂(nξ)|2dξ → 0 (2.6)
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as n→∞. Combining (2.4) with (2.6) we obtain that

||EH± [0,∞)(H± + γI)1/2un||2 − γ||EH± [0,∞)un||2 → 0, as n→∞.

The latter relation simply means that

lim
n→∞

||EH± [0,∞)|H±|1/2un|| = 0. (2.7)

Thus (2.3) follows from (2.5) and (2.7). �

Let k ∈ Rd. Our construction of a singular sequence for H± and λ = |k|2l involves

the unitary operator U defined by

(Uu)(x) = exp(ikx)u(x), u ∈ L2(Rd). (2.8)

Proposition 2.3. Let U be the operator defined in (2.8). Let u ∈ S(Rd) and let

v ∈ d[a]. Assume that V satisfies the condition (1.4) with p described in (1.5). Then

h±[Uu, v] = h±[u, U∗v] + (
[
(−∆)l, U

]
u, v), (2.9)

where [(−∆)l, U ] = (−∆)lU − U(−∆)l defined on D([(−∆)l, U ]) = S(Rd).

Proof. According to the definition of Sobolev’s derivative,

a[Uu, v] = a[u, U∗v] + (
[
(−∆)l, U

]
u, v)

for all u ∈ C∞0 (Rd). By a density argument, this relation also holds for any u ∈ S(Rd).

The latter statement implies (2.9). �

Corollary 2.4. Let λ = |k|2l where k ∈ Rd. Let U be the operator (2.8). Assume that

V satisfies the condition (1.4) with p as in (1.5). Then, for any u ∈ S(Rd),

(H± − λ)(H± + 2γ)−1Uu = (H± + 2γ)−1([(−∆)l, U ]− λU)u+(
|H±|1/2U∗(H± + 2γ)−1

)∗
S±|H±|1/2u,

(2.10)

where S± = EH± [0,∞)− EH±(−∞, 0).

Proof. It is sufficient to show that

H±(H± + 2γ)−1Uu = (H± + 2γ)−1[(−∆)l, U ]u+(
|H±|1/2U∗(H± + 2γ)−1

)∗
S±|H±|1/2u.

For that purpose, consider the inner product(
H±(H± + 2γ)−1Uu,w

)
= h±

[
Uu, (H± + 2γ)−1w

]
, ∀w ∈ L2(Rd).

According to (2.9),(
H±(H± + 2γ)−1Uu,w

)
= h±

[
u, U∗(H± + 2γ)−1w

]
+ (
[
(−∆)l, U

]
u, (H± + 2γ)−1w) =(

S±|H±|1/2u, |H±|1/2U∗(H± + 2γ)−1w
)

+ ((H± + 2γ)−1
[
(−∆)l, U

]
u,w), ∀w ∈ L2(Rd).

The last line implies (2.10). �
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Set now

ψn = Uun, n ∈ N+, (2.11)

where un is the sequence defined in (2.2).

Proposition 2.5. Let λ > 0. Assume that conditions of Theorem 1.2 are fulfilled.

Then there exists a singular sequence for the operator H± and the point λ.

Proof. Let us first find k ∈ Rd such that λ = |k|2l. According to Proposition 2.1, it

is enough to show that the sequence ψn defined in (2.11) is singular for the operator

Q± and the point 0. Since the operator Q± is bounded, ψn ∈ D(Q±) for all n. It is also

obvious that ||ψn|| = 1 and that the sequence ψn converges to 0 weakly. It remains to

show that

||Q±ψn|| → 0 as n→∞. (2.12)

For that purpose, we note that the operator

|H±|1/2U∗(H± + 2γ)−1 =(
|H±|1/2(H± + γ)−1/2

)
·
(

(H± + γ)1/2((−∆)l + I)−1/2
)
·(

((−∆)l + I)1/2U∗((−∆)l + I)−1/2
)
·
(

((−∆)l + I)1/2(H± + 2γ)−1
)

is bounded. Therefore, (2.12) follows from (2.3) and (2.10) combined with the obvious

fact that

lim
n→∞

||
([

(−∆)l, U
]
− λU

)
un|| = 0.

The proof is completed. �

Now Theorem 1.2 follows from Theorem 1.3 and Proposition 2.5.

3. Additional remarks

In this section, we state and prove three different results from [4]. One of them

is formulated for operators in an arbitrary Hilbert space, another theorem holds for

operators on Rd under more general conditions than restrictions of Theorem 1.2. The

third result pertains to the theory of operators on the lattice Zd .

1. Let a[·, ·] be a sesquilinear non-negative form in a separable Hilbert space H

defined on a linear subset d[a] dense in H. Assume that this form is closed in H. The

latter means that the domain is a complete Hilbert space with the inner product

a1[u, v] = a[u, v] + (u, v), u, v ∈ d[a].

The form a[·, ·] generates a unique operator A self-adjoint in H.

Let v[·, ·] be a Hermitian form satisfying

|v[u, u]| ≤ εa1[u, u] + C(ε)||u||2, ∀u ∈ d[u],∀ε > 0. (3.1)

Consider now the sesquilinear form h± = a±v on d[a]. It follows from (3.1) that h± is

semibounded and closed on d[a]. Therefore, h± generates a self-adjoint operator H±.
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Theorem 3.1. Let a[·, ·] be a sesquilinear non-negative closed form in a Hilbert space

H. Assume that the essential spectrum of the self-adjoint operator A corresponding to

the form a[·, ·] contains 0. Let H+ and H− be the operators corresponding to the forms

a + v and a − v, where v satisfies (3.1). Suppose that the spectra of H+ and H− in

(−∞, 0) are discrete. Then 0 is a point of the essential spectrum of each operator H+,

H−.

Proof. Indeed, let un ∈ d[a] be a sequence of vectors such that ||un|| = 1 and

||A1/2un|| → 0. We will also assume that un converges to zero weakly. Such a sequence

exists, because 0 is a point of the essential spectrum of the operator A. Since

h+[un, un] + h−[un, un] = 2||A1/2un||2,

we conclude that || |H±|1/2un|| tends to zero as n→∞. Consequently, 0 is a point of

the essential spectrum of H±. �

2. Let H = L2(Rd) again. Instead of defining the form a[·, ·] by (1.2), we set

a[u, u] =

∫
Rd

α(ξ)|û(ξ)|2dξ, û = Φu, (3.2)

where Φ is the Fourier transform operator and α is a non-negative continuous function

on Rd such that

C1(1 + |ξ|2l) ≤ 1 + α(ξ) ≤ C2(1 + |ξ|2l), l ∈ N+ = {1, 2, 3, . . . }, (3.3)

with some positive constants C1 and C2. If we define the domain d[a] as the the

Sobolev space Hl(Rd), this form will be closed in L2(Rd). The form a[·, ·] generates a

unique self-adjoint operator A = α(i∇) .

Let now V be a real-valued measurable function obeying the condition (1.4) with p

as in (1.5). Then the form

v[u, u] =

∫
Rd

V (x)|u(x)|2dx, u ∈ d[a],

satisfies (1.6) with a defined by (3.2). The theorem below is an analogue of Theo-

rem 1.2 formulated for the operators H± corresponding to the forms h± = a± v with

a described by (3.2).

Theorem 3.2. (see [4]) Assume that α ∈ C(Rd) appearing in the definition (3.2) of

the form a[·, ·] is a continuous function obeying (3.3) and such that

min
ξ∈Rd

α(ξ) = 0.

Let V be a real-valued measurable function on Rd satisfying (1.4) with p described in

(1.5). Let H+ and H− be the operators corresponding to the forms a + v and a − v.

Suppose that the spectra of H+ and H− are discrete in the interval (−∞, 0). Then the

spectrum of each operator H+, H− contains the half-line [0,∞).
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Proof. Let λ ≥ 0. We are going to construct a singular sequnce for the operator H±
and the point λ. According to the assumptions of the theorem, there exist two vectors

ξ0 ∈ Rd and ξ∗ ∈ Rd in the space Rd with the properties

α(ξ0) = 0, α(ξ∗) = λ. (3.4)

Set

un(x) = n−d/2eiξ0xϕ(x/n), ∀n ∈ N+ = {1, 2, 3, . . . },
where ϕ is a function whose Fourier transform ϕ̂ ∈ C∞0 (Rd) is compactly supported

and such that ∫
Rd

|ϕ(x)|2dx = 1.

Our arguments follow closely the arguments of the proof of Theorem 1.2. We also

define ψn by (2.11). However, in the formula (2.8) defining the operator U , we set

k = ξ∗ − ξ0. (3.5)

In this case, ΦUΦ∗ is a shift operator that turns the function û(ξ) into the function

û(ξ − k). Therefore, to prove the relation

lim
n→∞

||
([
A, U

]
− λU

)
un|| = 0,

we can use the representation

||
([
A, U

]
− λU

)
un||2 =

∫
Rd

∣∣∣((α(ξ)− α(ξ − k)
)
− λ
)
ûn(ξ − k)

∣∣∣2dξ
and the fact that |ûn(ξ)|2 converges to the Dirac delta-function δ(ξ − ξ0) in the sense

of distributions. Consequently,

||
([
A, U

]
− λU

)
un||2 →

∣∣∣(α(ξ0 + k)− α(ξ0)
)
− λ
∣∣∣2 as n→∞.

It remains to note that
∣∣(α(ξ0 + k) − α(ξ0)) − λ

∣∣2 = 0 due to (3.4) and (3.5). The

proof is completed. �

3. Let, this time, H = `2(Zd). Let Td be the torus Rd/(2πZd) and let Φ : H →
L2(Td) be the unitary operator defined by

(Φu)(ξ) = (2π)−d/2
∑
n∈Zd

e−iξnu(n).

Instead of defining the operator A by its quadratic form, we set

A = Φ∗[α]Φ, (3.6)

where [α] denotes the operator of multiplication by a continuous real-valued function

α : Td → R. Let now V be a real-valued bounded potential on Zd. The theorem below

is an analogue of Theorem 1.2 formulated for the lattice operators H± = A± V .
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Theorem 3.3. (see [4]) Assume that α ∈ C(Td) appearing in (3.6) is a continuous

function. Let V be a real-valued bounded function on Zd. Suppose that the spectra of

H+ = A+ V and H− = A− V are discrete below the point γ0 = minξ α(ξ). Then the

spectrum of each operator H+, H− contains the spectrum of A.

Proof. One should simply repeat the arguments of the proof of Theorem 3.2. No

substantial change is needed. �

As a consequence of Theorem 3.3, we obtain the following result formulated for the

Schrödinger operator A+ V , where A is defined by

(Au)(n) =
∑

|m−n|=1

u(m), n,m ∈ Zd.

Corollary 3.4. Let α appearing in the definition (3.6) of the operator A be the function

α(ξ) =
d∑
j=1

2 cos(ξj).

Let V be a real-valued bounded potential on Zd. Assume that the spectrum of H+ =

A+ V is discrete outside of the interval [−2d, 2d]. Then the spectrum of H+ contains

the interval [−2d, 2d].

σess(H+)
=⇒

−2d 2d
?( ) −2d 2d

λ−2λ−1 λ+
2 λ+

1

Fig. 4. The left picture implies the right one

Proof. It is enough to mention that the operator H− = A− V is unitary equivalent

to the operator −H+ = −A−V . The latter fact is very well known: the corresponding

unitary operator U is defined by

Uψ(n) = (−1)n1+···+ndψ(n), n ∈ Zd.

�
The latter corollary could be also viewed as a particular case of a more general

statement from [4], formulated and proved for arbitrary continuous symbols α(ξ). It

says that if the spectrum of A+V is discrete outside of α[Td], then α[Td] ⊂ σ(A+V ).
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