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Abstract: We investigate spectral properties of the Laplacian in L2(Q), where Q
is a tubular region in R3 of a fixed cross section, and the boundary conditions com-
bined a Dirichlet and a Neumann part. We analyze two complementary situations,
when the tube is bent but not twisted, and secondly, it is twisted but not bent.
In the first case we derive sufficient conditions for the presence and absence of the
discrete spectrum showing, roughly speaking, that they depend on the direction
in which the tube is bent. In the second case we show that a constant twist raises
the threshold of the essential spectrum and a local slowndown of it gives rise to
isolated eigenvalues. Furthermore, we prove that the spectral threshold moves up
also under a sufficiently gentle periodic twist.
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1 Introduction

Relations between spectral properties and geometry belong to trademark
topics in mathematical physics. A particularly interesting class of problems
concerns spectra of the Laplacians and related operators in tubular regions
which has various applications, among others they are used to model waveg-
uide effects in quantum systems. The turning point here was the seminal
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observation that ‘bending means binding’, that is that the Dirichlet Lapla-
cian in a tube of a fixed cross section which is bent but asymptotically straight
has a nonempty discrete spectrum. It inspired a long series of investigations,
for a survey we refer to the monograph [11] and the bibliography there.

A nontrivial geometry can be manifested not only in the shape of the tube
but also in the boundary conditions entering the definition of the Laplacian.
A simple but striking example can be found in [6]: an infinite planar strip
of constant width whose one boundary is Dirichlet and the other Neumann
exhibits a discrete spectrum provided the Dirichlet boundary is bent ‘inward’
while in the opposite case the spectral threshold remains preserved. One is
naturally interested whether this effect has three-dimensional analogue. The
geometry is substantially richer in this case, of course, nevertheless our first
main result provides an affirmative answer of a sort to this question, namely
that some bending directions are favorable from the viewpoint of the discrete
spectrum existence and some are not.

Another class of geometric deformations are tube twistings. In general,
they act in the way opposite to bendings: to produce bound states of the
Dirichlet Laplacian supported by a locally twisted tube of a non-circular
cross section, an additional attractive interaction must exceed some critical
strength [8]. On the other hand, a discrete spectrum may arise in a tube
which is constantly twisted and the twist is locally slowed down [10]. Note
that these results have a two-dimensional analogue, namely a Hardy inequal-
ity in planar strips where the Dirichlet and Neumann condition suddenly
‘switch sides’ [12] and the appearance of a nontrivial discrete spectrum when
a sufficiently long purely Neumann segment is inserted in between [7].

In the second part of the paper we examine twisted tubes with a mixed
Dirichlet-Neumann boundary. We show that the effect of twisting and its
local slowdowns is present again, now it may occur also if the tube cross
section itself exhibits a rotational symmetry but the boundary conditions
violate it. Furthermore, we consider a wider class of tubes where the twist
is not constant along the tube but only periodic and ask whether in this
case too the threshold of the essential spectrum moves up; we prove this
property for twists that are sufficiently gentle. The bending and twisting,
constant and periodic, results are presented and proved in Sections 4, 5, and
6, respectively. Before coming to it, we collect in two preliminary sections
the needed properties of the tubes and the operators involved.
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2 Preliminaries: geometry of the waveguide

Let us begin with a curve ℓ : R → R3 that will play the role of waveguide
axis supposed to be a C3-diffeomorfism of the real axis R onto ℓ(R). Without
loss of generality we may parametrize it by its arc length, that is, to assume
that ℓ̇1(z)

2 + ℓ̇2(z)
2 + ℓ̇3(z)

2 = 1, where by ℓ̇j we denote the derivative of
function ℓj with respect to the variable z. Dealing with the curve ℓ, we want
to associate with it the Frenet frame, i.e. the orthonormal triad of smooth
vector fields {t,n,b} called respectively the tangent, normal, and binormal
vectors, defined as follows

t = ℓ̇ , n = κ−1ℓ̈ , b = t× n .

where the cross denotes the vector product in R3 and κ := |ℓ̈| is the curvature
of ℓ. Put like that, the Frenet frame may not exist, in particular, because
it is necessary to assume that κ > 0 holds to make sense of the definition
of the normal and binormal. If a part of ℓ is a straight line segment, i.e.
κ = 0 holds on it identically, one can employ any fixed triad one element of
which coincides with the tangent vector. With a slight abuse of terminology
we will say that ℓ possesses a global Frenet frame if triads corresponding to
its straight and non-straight parts can glued together smoothly, modulo a
rotation of the Frenet parts on a fixed angle around the appropriate tangent
vector vector, see [8, 9] or [11, Sec. 1.3].

In such a case the Serret-Frenet formulæ give

ṫ = κn , ṅ = −κt+ τb , ḃ = −τn , (2.1)

where τ stands for the torsion of the curve ℓ. Given a function β ∈ C1(R)
we introduce further a general moving frame {Tβ,Nβ,Bβ} by

Tβ = t , Nβ = n cos β − b sin β , Bβ = n sin β + b cos β ; (2.2)

the equations (2.1) show that this triad elements satisfy the relations

Ṫβ = κ(Nβ cos β +Bβ sin β) ,

Ṅβ = −κTβ cos β + (τ − β̇)Bβ ,

Ḃβ = −κTβ sin β − (τ − β̇)Nβ .

(2.3)

A particular choice β(z) =
∫ z

−∞ τ(s)ds yields the so-called parallel transport
frame, in the physics literature often referred to as the Tang frame.
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Let next ω be a two-dimensional bounded domain with the boundary ∂ω
supposed to be C2. The waveguide we are going to consider is defined as the
tube Qℓ,β obtained by moving the cross-section ω along the reference curve
ℓ keeping its position fixed with respect to the frame (2.2). More precisely,
we set

Qℓ,β = {X ∈ R3 : X = ℓ(x3) + x1Nβ + x2Bβ, x
′ = (x1, x2) ∈ ω, z = x3 ∈ R}.

(2.4)
Denoting a := supx′∈ω |x′| and assuming that

a∥κ∥∞ < 1 (2.5)

one can check easily that the formula (2.4) induces a local C1-diffeomorfism
between Qℓ,β and the straight tube Q = ω × R. We will assume, without
repeating it every time, that this diffeomorphism is global, in other words,
that the tube Qℓ,β has no self-intersections.

With the eye on the definition of the operators in the next section we
divide the boundary ∂ω into two parts. One denoted as γD is assumed to
be a union of a finite number of arcs, each of a positive measure, while its
complement ∂ω \ γD is denoted as γN . The pair (ω, γD) is called rotationally
invariant if ω and γD are both rotationally invariant with respect to the
origin. From the viewpoint of this paper, this trivial case that can occur
only if ω is a disc, an annulus, or a family of concentric annuli, and each
connected component of ∂ω is circle belonging to only one of the sets γD, γN .
In the following we will consider only rotationally non-invariant pairs (ω, γD).

Let us now specify two types of geometric deformations which we will
consider in this paper. We say that the tube Qℓ,β is bent if the reference
curve ℓ is not a straight line, that is, the curvature κ does not vanish identi-
cally. Furthermore, the tube Qℓ,β is said to be twisted if the pair (ω, γD) is
not rotationally invariant and τ − β̇ ̸= 0. Looking at the equations (2.3) it
is obvious that these perturbations are mutually independent. For the sake
of simplicity, we will study separately the following two cases:

(i) bending without twisting: κ ̸= 0 and τ − β̇ = 0 , and

(ii) twisting without bending: κ = 0 and τ − β̇ ̸= 0 .
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3 Preliminaries: definition of the operator

Before introducing the operator of our interest, we need a couple of auxiliary
notions. We denote by λ1 the lowest eigenvalue of the problem

−∆′ψ = λψ in ω , ψ = 0 on γD , ∂nψ = 0 on γN , (3.1)

where ∆′ = ∇′ · ∇′ stands for the Laplace operator with respect to the
variables x′ and ∂n is the outward normal derivative. The corresponding
eigenfunction normalized in L2(ω) will be denote by ψ1; we note that ψ1 can
be chosen positive in ω and it satisfies the integral identity

(∇′ψ1,∇′ϕ)ω = λ1(ψ1, ϕ)ω ∀ϕ ∈ H1
0 (ω, γD) , (3.2)

where (·, ·)ω is the natural scalar product in the Lebesgue space L2(ω) and
H1

0 (ω, γD) consists of functions from the first Sobolev space that vanish on
γD. If (ω, γD) is not rotationally invariant we have

∂φψ1 ̸= 0 ⇔
∫
ω

|∂φψ1|2 dx′ ̸= 0 . (3.3)

By ∂φ we denote here the first-order differential operator x1∂2 − x2∂1 which
corresponds to differentiation with respect to the polar angle φ in the plane
(x1, x2), or up to the imaginary unit, to the angular momentum operator
generating rotations around the tangent vector to the tube axis.

The main object of our interest is the Laplace operator T̃ℓ,β on L2(Qℓ,β)
with mixed Dirichlet-Neumann boundary conditions that can be associated
with the closed quadratic form

ãℓ,β[u] =

∫
Qℓ,β

|∇Xu|2 dX, u ∈ H1
0 (Qℓ,β,Γℓ,β) ,

where Γℓ,β := {X ∈ R3 : X = ℓ(x3) + x1Nβ + x2Bβ, x
′ ∈ γD, x3 ∈ R}.

The diffeomorphism (2.4) can be used to map T̃ℓ,β in the usual way [11,
Secs. 1.3 and 1.7] to an operator on the straight tube Q in which the geometry

is encoded in the coefficients. Specifically, in case (i) the operator T̃ℓ,β is
unitarily equivalent to operator Tℓ,β associated with the quadratic form

aℓ,β[u] :=

∫
Q

[
g(|∂1u|2 + |∂2u|2) + g−1|∂3u|2

]
dx , u ∈ H1

0 (Q,Γ, g) , (3.4)
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in the weighted Lebesgue space L2(Q, g) with the scalar product

(u, v)Q,g = (ug, v)Q ,

where g(x) := 1 − (x1 cos β(x3) + x2 sin β(x3))κ(x3). In particular, when
the bending is absent, κ = 0, and the cross-section remain fixed in the
parallel transport frame, β̇ = τ , the spectrum of Tℓ,β is found by separation
of variables: it is purely continuous and equal to [λ1,+∞), where λ1 is the
eigenvalue appearing in (3.2). The question we address in the next section
is under which circumstances can a bending of such a tube give rise to a
nonempty discrete spectrum below the threshold λ1.

Similarly, in case (ii) the operator T̃ℓ,β is unitarily equivalent to the op-
erator Tβ associated with the quadratic form

aβ[u] :=

∫
Q

[
|∂1u|2 + |∂2u|2 + |(∂3 + β̇∂φ)u|2

]
dx , u ∈ H1

0 (Q,ΓD) , (3.5)

in the space L2(Q). Here the role of an unperturbed system will be played by
tubes with a constant twisting; in Sec. 5 below we will discuss what happens
if the twisting rate is modified locally.

4 The effect of bending

Let us first focus on spectral properties of Tℓ,β if the tube exhibits a bending
without twisting, i.e. the case (i) indicated in Sec. 2. To state the results,
we need to introduce two quantities,

Aj =
1

2

∫
∂ω

nj|ψ1|2 dx′ =
∫
ω

ψ1∂jψ1 dx
′ , j = 1, 2 ,

where (n1, n2) are the components of outward normal to the boundary ∂ω.
Note that while we use modulus in the first expressions as it is common in
quantum mechanics, we suppose that the function ψ1 is real-valued.

Theorem 4.1. If there exists a compact interval I ⊂ R such that∫
I

κ(x3)(A1 cos β(x3) + A2 sin β(x3)) dx3 < 0

and κ(x3)(A1 cos β(x3) + A2 sin β(x3)) ≤ 0 holds for all x3 ∈ R \ I, then

inf σ(Tℓ,β) < λ1 .
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In particular, if the curvature κ is compactly supported, the discrete spectrum
of Tℓ,β is nonempty.

Proof. It is sufficient to find a trial function u ∈ H1
0 (Qℓ,β,Γℓ,β) such that

aℓ,β[u]− λ1∥u∥2Q,g < 0 , (4.1)

where aℓ,β is the quadratic form (3.4). We will seek it in the form u(x) =
v(x3)ψ1(x

′), where v is a smooth function with compact support such that
v(x3) = 1 for x3 ∈ I and

∥∂3v∥L2(R) = δ , (4.2)

where δ is a parameter to be chosen. The assumption (2.5) in combination
with relation (4.2) imply that there is a C > 0 such that∫

Q

g−1|∂3u|2 dx ≤ Cδ2 ,

At the same time, the remaining part of the quadratic form in question is∫
Q

g(x)(|∇′u(x)|2 − λ1|u(x)|2) dx =

= −
∫
R
κ(x3) cos β(x3)|v(x3)|2 dx3

∫
ω

x1(|∇′ψ1(x
′)|2 − λ1|ψ1(x

′)|2) dx′−

−
∫
R
κ(x3) sin β(x3)|v(x3)|2 dx3

∫
ω

x2(|∇′ψ1(x
′)|2 − λ1|ψ1(x

′)|2) dx′ ,

where we have employed the explicit formula of g(x) and relation (3.2). Next
we note that

Aj = −
∫
ω

xj(|∇′ψ1(x
′)|2 − λ1|ψ1(x

′)|2) dx′ , j = 1, 2 .

Indeed, let us insert ϕ(x′) = xjψ1(x
′) into the integral identity (3.2) and

rewrite it in the following way

−
∫
ω

xj(|∇′ψ1(x
′)|2 − λ1|ψ1(x

′)|2) dx′ =
∫
ω

ψ1(x
′)∇′xj · ∇′ψ1(x

′) dx′

=

∫
ω

ψ1(x
′)∂jψ1(x

′) dx′ .
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Under the stated assumptions the whole expression is negative and choosing
δ small enough we can make relation (4.1) satisfied. We know that for the
tube without bending, κ = 0, the spectrum is purely essential and equal to
[λ1,+∞) and it easy to check that it remains preserved under a compactly
supported perturbation, hence the spectrum below λ1 must be in such a case
discrete and nonempty. �

On the other hand, we can state a condition under which the bending
does not move inf σ(Tℓ,β) down, which means, in particular, the absence of
eigenvalues for (non-twisted) tubes with a compactly supported curvature.

Theorem 4.2. If for all x3 ∈ R and x′ ∈ ω the inequality

κ(x3)(∂1ψ1(x
′) cos β(x3) + ∂2ψ1(x

′) sin β(x3)) ≥ 0 (4.3)

is valid, we have inf σ(Tℓ,β) ≥ λ1.

Proof. Fix an arbitrary function u ∈ C∞
0 (Q). Since ψ1 is positive in ω we

can write it as u(x) = ψ1(x
′)v(x) with some v ∈ H1(Q). The ‘shifted’

quadratic form entering (4.1) can be estimated from below by neglecting the
non-negative term containing the derivative with respect to the longitudinal
variable x3,

aℓ,β[u]− λ1∥u∥2Q,g ≥
∫
Q

g(x)
(
|∇′u(x)|2 − λ1|u(x)|2

)
dx. (4.4)

The above described factorization yields the formula

|∇′(ψ1v)|2 = |ψ1|2|∇′v|2 +∇′ψ1 · ∇′(ψ1v
2) ,

which allows us to split the last integral in (4.4) into two parts,

J1 =

∫
Q

g(x)|ψ1(x
′)|2|∇′v(x)|2dx ≥ 0

and

J2 =

∫
Q

g(x)
(
∇′ψ1(x

′) · ∇′(ψ1(x
′)v2(x))− λ1|ψ1(x

′)|2|v(x)|2
)
dx .

Using the explicit form of g(x) in combination with (3.2) we get
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J2 = −
∫
Q

x1 cos β(x3)κ(x3)
(
∇′ψ1(x

′)·∇′(ψ1(x
′)v2(x))−λ1|ψ1(x

′)|2|v(x)|2
)
dx

−
∫
Q

x2 sin β(x3)κ(x3)
(
∇′ψ1(x

′) · ∇′(ψ1(x
′)v2(x))− λ1|ψ1(x

′)|2|v(x)|2
)
dx.

Inserting next the function xjψ1(x
′)|v(x′, x3)|2 into the integral identity (3.2)

as a test function with x3 as parameter, we obtain∫
ω

xj∇′ψ1(x
′) · ∇′(ψ1(x

′)v2(x))dx′ − λ1

∫
ω

xj|ψ1(x
′)|2|v(x)|2dx′ =

= −
∫
ω

ψ1(x
′)v2(x)∇′xj · ∇′ψ1(x

′) dx′ = −
∫
ω

ψ1(x
′)v2(x)∂jψ1(x

′) dx′ ,

and consequently,

J2 =

∫
Q

κ(x3)(∂1ψ1(x
′) cos β(x3) + ∂2ψ1(x

′) sin β(x3))ψ1(x
′)v2(x) dx ,

which together the assumption (4.3) shows that aℓ,β[u]− λ1∥u∥2Q,g ≥ 0 holds
for any u ∈ C∞

0 (Q). To finish the proof it is enough to observe that this set
is dense in H1

0 (Q) and also, mutatis mutandis, in H1
0 (Q,Γ). �

In the particular case where the waveguide axis is a planar curve and
the Jacobian depends only on the coordinates x1 and x3, in other words,
τ(x3) = β(x3) = 0 holds for all x3 ∈ R, we have N = n, B = b and the
quadratic form expression simplifies to

aℓ,0[u] =

∫
Q

(1− x1κ(x3))
−1|∂3u(x)|2 + (1− x1κ(x3))(|∇′u(x)|2) dx ;

then the above theorems lead to the following conclusions:

Corollary 4.3. If there is a compact interval I ⊂ R such that

A1

∫
I

κ(x3) dx3 < 0

and A1κ(x3) ≤ 0 for all x3 ∈ R \ I, then inf σ(Tℓ,0) < λ1.
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Corollary 4.4. If for all x3 ∈ R and for all x′ ∈ ω the inequality

κ(x3)∂1ψ1(x
′) ≥ 0

is valid, then inf σ(Tℓ,0) ≥ λ1.

It is instructive to compare these results with the spectral properties
of a bent and asymptotically straight two-dimensional guide which has one
boundary Dirichlet and one Neumann. As mentioned in the introduction, it
is known [6] that the discrete spectrum of such a system is nonvoid if the
total bending of the strip is positive (in fact, nonnegative) and the Dirich-
let boundary faces ‘inward’, and on the other hand, the spectral threshold
remains preserved if the bend is simple, i.e. the curvature does not change
sign, and the Dirichlet condition is on the ‘outward’ side. This nicely fits
with the above corollaries if we realize that the normal, in other words, the
x1 direction points ‘’inwards’ in a bend and the outward normal derivative
of ψ1 is zero at the Neumann segment(s) of the boundary and negative at
the Dirichlet one(s). Note also that while a waveguide with a rectangular
cross-section and two flat sides does not satisfy our boundary smoothness
requirement, the above reasoning can nevertheless be carried through. If the
bent sides of such a rectangular tube are Dirichlet and Neumann and a fixed
condition is chosen on each of the flat sides, by separation of variables we
get a direct correspondence between the said two-dimensional properties and
the results obtained here.

5 Twisting without bending

Let us now turn to the second class of geometric perturbations indicated in
Sec. 2 and discuss the situation when the waveguide with a mixed Dirichlet-
Neumann boundary is twisted waveguide. Recall first how the situation
looks like for tubes with purely Dirichlet boundary. If the twisting is only
local there it does not affect the essential spectrum of the Laplacian, and
moreover, it does stabilize it against negative perturbations – see, e.g., [4, 8].
This has consequences such as the absence of weakly coupled bound states of
Schrödinger operators in twisted waveguides [8, 13]. If the twist is not local
but constant, then it even increases the threshold of the essential spectrum
of the Laplacian, and moreover, any local slowdown of the constant twisting
rate induces at least one bound state of the corresponding operator [10].
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Our aim in this section is to show that the behavior of twisted tubes
with a mixed Dirichlet-Neumann boundary is similar. We thus suppose that
β̇0(x3) = α and introduce a model eigenvalue problem on the cross section,

−∆ψα − α2∂2φψ
α = λψα in ω , ψα = 0 on γD , ∂nψ

α = 0 on γN .

We denote the smallest eigenvalue of this problem by λα1 , the correspond-
ing normalized eigenfunction in L2(ω) will be ψα

1 ; we note that ψα
1 can be

supposed to be positive without loss of generality and that it satisfies the
integral identity

(∇′ψα
1 ,∇′ϕ)ω + α2(∂φψ

α
1 , ∂φϕ)ω = λα1 (ψ

α
1 , ϕ)ω ∀ϕ ∈ H1

0 (ω, γD) .

Proposition 5.1. If β̇0 = α is constant the spectrum of the positive self-
adjoint operator Tβ0 coincides with the interval [λα1 ,+∞).

Proof. Similarly to the proof of Theorem 4.2, we consider function from a
core of Tβ0 writing them as u(x) = ψα

1 (x
′)v(x) with v ∈ H1(Q), then a direct

calculation shows that

aβ0 [u]− λα1∥u∥2Q =

∫
Q

|ψα
1 (x

′)|2
(
|∇′v(x)|2 + |(∂3 + α∂φ)v(x)|2

)
dx ≥ 0

and by the density argument we obtain the estimate inf σ(Tβ0) ≥ λα1 . To
complete the proof it is sufficient to construct in the standard way Weyl
sequences for any λ ∈ [λα1 ,+∞). �

In this way a constant twisting, β̇0 = α, changes the essential spectrum
in a way depending on α. Consider next a local slowdown of the twist. Let
θ = θ(x3) be a C1-function supported in a compact interval I and assume
that the rotation angle β is of the form

β̇(x3) = α− θ(x3) . (5.1)

From the compactness of supp θ it follows by a standard perturbation argu-
ment that

inf σess(Tβ) = inf σ(Tβ0) = λα1 .
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Proposition 5.2. Let β̇ be given by the formula (5.1) and∫
R
(|β̇(x3)|2 − α2) dx3 < 0 ,

then inf σ(Tβ) < λα1 , and consequently, σdisc(Tβ) ̸= ∅.

Proof. We employ trial functions u ∈ H1
0 (Q,ΓD) of the factorized form

u(x) = ψα
1 (x

′)v(x3), where v is a smooth function such that v(x3) = 1 if
x3 ∈ I; it is easy to check that for any δ > 0 one can choose v so that
∥∂3v∥L2(R) = δ. A straightforward calculation then yields

aβ[u]− λα1∥u∥2Q = δ2 +

∫
R
(|β̇(x3)|2 − α2) dx3

∫
ω

|∂φψα
1 (x

′)|2 dx′.

Taking into account relation (3.3) we find that for δ small enough we have
aβ[u]− λα1∥u∥2Q < 0 which completes the proof. �

6 Periodic twisting

Now we are going to consider a more general situation, bending still absent
and the twisting is non-constant but periodic leading to a band-gap structure
of the spectrum. It is natural to expect that a higher twisting rate could
increase the spectral threshold. Our aim here is to demonstrate that it is
indeed the case provided the twisting is gentle. To state the result let us
denote by β ∈ C2(R) the twisting function with a positive and 1-periodic
derivative β̇. Let λ†(β) be the spectral threshold of the Laplacian with the
mixed Dirichlet-Neumann boundary conditions in the twisted tube Qβ. The
main result of the present section is the following theorem:

Theorem 6.1. Let ϑ1, ϑ2 ∈ C2(R) with ϑ̇1, ϑ̇2 being positive 1-periodic
functions and ∫ 1

0

|ϑ̇1|2 dx3 <
∫ 1

0

|ϑ̇2|2 dx3 ,

then there exists an ε0 > 0 such that the inequality λ†(εϑ1) < λ†(εϑ2) holds
for all ε ∈ (0, ε0).

We will prove the theorem in several steps.
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6.1 Formulation of the problem

If the function β̇ is 1-periodic the spectrum of positive self-adjoint operator
Tβ is known to be purely essential having a band-gap structure,

σ(Tβ) =
∪
n

Bn(β) . (6.1)

One naturally expects it to be absolutely continuous, however, this property
has been so far established in some cases only [11, Chap. 9]. Among spectral
properties of periodic waveguides, the gap opening for Laplace operator with
various boundary conditions has been discussed in many papers – cf., e.g.,
[1, 5, 14, 16] – in particular, for the case of Dirichlet Laplacian in periodically
twisted waveguide see [3].

To study the spectrum (6.1) we use Floquet-Bloch theory and decom-
pose the operator Tβ into a direct integral of the operator family {Tβ(η)}
parametrized by the quasi-momentum η ∈ [−π, π]. The fiber operators Tβ(η)
can be defined through their quadratic forms

aβ,η[U ] =

∫
Ω

|∇′U |2 + |(∂3 + β̇∂φ)U |2 dx , U ∈ Hη ,

related as usual to the corresponding sesquilinear forms Aβ,η by aβ,η[U ] =
Aβ,η(U,U), where Ω = ω × [0, 1] is the periodicity cell and the form domain
Hη consists of functions U ∈ H1

0 (Ω, γD × [0, 1]) satisfying a quasi-periodicity
condition

U(x′, 1) = eiηU(x′, 0) , x′ ∈ ω .

The inner product in Hη is given by ⟨U, V ⟩ = (∇U,∇V )Ω. It is not difficult
to check that the quadratic form aβ,η is positive and closed, and therefore as-
sociated with a unique self-adjoint operator Tβ(η). Due to the compactness
of the periodicity cell the latter has a compact resolvent, and as a conse-
quence, the spectrum of operator Tβ(η) is purely discrete, in other words, a
sequence of eigenvalues

0 < Λ1,β(η) ≤ Λ2,β(η) ≤ Λ3,β(η) ≤ . . . (6.2)

accumulating only at infinity; as the inequalities (6.2) suggest, except the
first some on them may not be simple. We denote the corresponding eigen-
functions by Uk,β ∈ Hη, where for the sake of simplicity the dependence on
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η will usually not be shown. We can choose them so that they satisfy the
orthogonality property

(Uj,β, Uk,β)Ω = δj,k , j, k = 1, 2, 3, . . . ,

where δj,k is the Kronecker symbol. The band functions η 7→ Λj,β are known
to be continuous and 2π-periodic so the sets

Bj(β) = {Λj,β(η)| η ∈ [−π, π]} ⊂ [0,+∞) ,

the spectra bands, are closed intervals. In this notation the overall spectral
threshold can be written as

λ†(β) = inf σ(Tβ) = inf
η∈[−π,π]

Λ1,β(η) .

In the absence of twisting, β = 0, the eigenvalues and eigenfunctions of the
fiber operator are easily found explicitly,

Vj,k(x, η) = eiηx3e2πikx3ψj(x
′) , Mj,k(η) = (η + 2πk)2 + λj , k ∈ Z, j ∈ N,

(6.3)
where (ψj, λj) is the jth eigenpair of the problem (3.1). The family {ψj}∞j=1

can be chosen to be othonormal in L2(ω) and the eigenvalue sequence {λj}∞j=1

is conventionally ordered in the non-decreasing way counting multiplicities.
Rearranging the sequence {Mj,k(η)} in the ascending order we obtain (6.2)
for β = 0, in particular, Λ1,0(η) = λ1+ η

2; we note that these eigenvalues are
simple unless η = ±π.

6.2 Small twisting, simple estimates

Let us introduce a positive parameter ε ∈ (0, 1) and discuss the properties
of the spectrum σ(Tεβ) as ε → 0 for a given function β. We start with the
following simple lemma.

Lemma 6.2. There is a constant Cβ such that for all ε ∈ (0, 1), η ∈ [−π, π],
and U ∈ Hη the estimate

|aεβ,η[U ]− a0,η[U ]| ≤ Cβ ε∥∇U∥2Ω (6.4)

holds.
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Proof. In view of (3.5) we have

aεβ,η[U ]− a0,η[U ] = 2εRe(∂3U, β̇∂φU)Ω + ε2∥β̇∂φU∥2Ω ,

and since |∂φU | ≤ supx∈Ω |x| |∇U |, we get the desired estimate. �

Corollary 6.3. There is an ε(β) ∈ (0, 1) such that for all ε ∈ (0, ε(β)) and
η ∈ [−π, π] the estimate

aεβ,η[U ] ≥
1

2
∥∇U∥2Ω

holds.

Proof. Observing that ∥∇U∥2Ω = a0,η[U ] and using (6.4) we obtain∣∣aεβ,η[U ]− ∥∇U∥2Ω
∣∣ ≤ Cβ ε∥∇U∥2Ω ,

thus for all ε ∈ (0, C−1
β ) the inequality

aεβ,η[U ] ≥ (1− Cβε)
−1∥∇U∥2Ω

is valid and it is enough to take ε(β) = (2Cβ)
−1. �

This allows us to estimate the twist effect on the fiber operator eigenvalues.

Lemma 6.4. To any k there exists a constant Ck,β such that

|Λk,εβ(η)− Λk,0(η)| ≤ Ck,βε .

holds for all ε ∈ (0, ε(β)) and η ∈ [−π, π].

Proof. Due to the min-max principle, cf. [2] or [15], we have

Λk,εβ(η) = sup
E

inf
V ∈E\{0}

aεβ,η[V ]

∥V ∥2Ω
,

where E stands for any subspace in Hη of codimension k − 1. Since the
sequence {Uj,0}kj=1 is chosen orthonormal in L2(Ω) and each E is infinite-
dimensional we can within it an element U of the form

U =
k∑

j=1

αjUj,0 ,
k∑

j=1

|αj|2 = 1 .
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Consequently,

inf
V ∈E\{0}

aεβ,η[V ]

∥V ∥2Ω
≤ aεβ,η[U ] ≤ a0,η[U ] + (aεβ,η[U ]− a0,η[U ]) .

By definition of the form a0,η we have

∥∇U∥2Ω = a0,η[U ] =
k∑

j=1

|αj|2Λj,0(η) ≤ Λk,0(η) ,

and in combination with inequality (6.4) this yields the estimate

Λk,εβ(η) ≤ Λk,0(η)(1 + Cβε) . (6.5)

In a similar way one can write

Λk,0(η) = sup
E

inf
V ∈E\{0}

a0,η[V ]

∥V ∥2Ω
,

where E runs though the same family of subspaces as above. Repeating the
argument we find U ∈ E of the form U =

∑k
j=1 αjUj,εβ with

∑k
j=1 |αj|2 = 1

and infer that

inf
V ∈E\{0}

a0,η[V ]

∥V ∥2Ω
≤ Λk,εβ(η)(1 + 2Cβ ε)

and
Λk,0(η) ≤ Λk,εβ(η)(1 + 2Cβ ε) . (6.6)

The inequalities (6.5) and (6.6) imply the claim of the Lemma. �

6.3 Asymptotic procedure

Now we are going to present, in (6.7) and (6.8) below, asymptotic expansions
for the eigenvalues Λk,εβ(η) and for the eigenfunctions Uk,εβ as ε → 0. We
consider only simple eigenvalues Λk,0(η) which is sufficient for our purpose.
Regarding the eigenpair (Uk,εβ,Λk,εβ(η)) as a perturbation of (Uk,0,Λk,0(η))
it is natural to seek the asymptotic formulæ in the form

Λk,εβ(η) = Λk,0(η) + εΛ′
k(η) + ε2Λ′′

k(η) + Λ̃ε
k(η), (6.7)

Uk,εβ = Uk,0 + εU ′
k + ε2U ′′

k + Ũ ε
k , (6.8)
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where Λ′
k(η), Λ

′′
k(η), U

′
k, U

′′
k are the coefficient to be determined and Λ̃ε

k(η),

Ũ ε
k the remainders to be estimated. To begin with, we write the operator

Tεβ(η) as
Tεβ(η) = T0(η) + εT1(η) + ε2T2(η), (6.9)

where T0(η) is the operator associated with the quadratic form a0,η, while
T1(η) and T2(η) correspond to the forms

b1,η[U ] := 2Re(∂3U, β̇∂φU)Ω and b2,η[U ] := ∥β̇∂φU∥2Ω

in H(η), respectively. Substituting from (6.7)–(6.9) into the eigenvalue equa-
tion Tεβ(η)Uk,εβ = Λk,εβUk,εβ and collecting terms of order ε and ε2 we get

T0(η)U
′
k − Λk,0(η)U

′
k = Λ′

k(η)Uk,0 − T1(η)Uk,0 , (6.10)

T0(η)U
′′
k − Λk,0(η)U

′′
k = Λ′′

k(η)Uk,0 − T2(η)Uk,0 + Λ′
k(η)U

′
k − T1(η)U

′
k . (6.11)

Since the eigenvalue Λk,0 is supposed to be simple and the resolvent of T0(η)
is compact, equation (6.10) has by Fredholm alternative one solvability con-
dition, namely its right-hand side must be orthogonal to Uk,0 in L2(Ω). Due
to the normalization condition we get

Λ′
k(η) = (T1(η)Uk,0, Uk,0)Ω = 2Re(∂3Uk,0, β̇∂φUk,0)Ω = 0 , (6.12)

where we have used the representation (6.3) of the function Uk,0 and the
following simple observation,

(ψn, ∂φψn)ω = 0 ∀n ∈ N .

In view of (6.12) the equations (6.10) and (6.11) simplify to

T0(η)U
′
k − Λk,0(η)U

′
k = −T1(η)Uk,0 , (6.13)

T0(η)U
′′
k − Λk,0(η)U

′′
k = Λ′′

k(η)Uk,0 − T2(η)Uk,0 − T1(η)U
′
k . (6.14)

Note that the solution U ′
k to (6.13) is determined up to a multiple of the

eigenfunction Uk,0, hence without loss of generality we may assume that

(U ′
k, Uk,0)Ω = 0 . (6.15)

In the same way, using the solvability condition of (6.14), we obtain

Λ′′
k(η) = (T2(η)Uk,0, Uk,0)Ω + 2Re(∂3U

′
k, β̇Uk,0)Ω
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= ∥β̇∂φψn∥2Ω + Λk,0(η)∥U ′
k∥2Ω − ∥∇U ′

k∥2Ω .

Here we assume that the function Uk,0 is represented as

Uk,0(x, η) = eiηx3e2πijx3ψn(x
′)

for some j and n and as before we choose U ′′
k in such a way that

(U ′′
k , Uk,0)Ω = 0 .

Summarizing the above reasoning, we have reached the following conclusions:

Lemma 6.5. Let I ⊂ (−π, π) be a compact set such that Λk,0(η) is simple
for all η ∈ I. Then for all η ∈ I the equations (6.13) and (6.14) have
unique solutions U ′

k and U ′′
k orthogonal to Uk,0. Moreover, functions U ′

k and
U ′′
k satisfy the estimate

max{∥U ′
k∥Hη , ∥U ′′

k ∥Hη} ≤ ck,I (6.16)

with a constant ck,I independent of η.

Now we are in position to formulate the main result of this section:

Theorem 6.6. Let the eigenvalue Λk,0(η) of operator T0(η) be simple for η
from a compact set I ⊂ [−π, π], then there exists a ck,β,I such that for all
ε ∈ (0, ε(β)) and η ∈ I one has∣∣Λk,εβ(η)− Λk,0(η)− ε2Λ′′

k(η)
∣∣ ≤ ck,β,I ε

3 .

Before proceeding with the proof of the Theorem 6.6 a bit of preliminary
work is needed. Let us first introduce a new scalar product

⟨U, V ⟩ε,η := Aεβ,η[U, V ] (6.17)

in the space Hη. According to Lemma 6.2 and Corollary 6.3 the correspond-
ing norm is uniformly equivalent to the gradient norm for all ε ∈ (0, ε(β)).
The Hilbert space with the inner product (6.17) will be denoted by Hε,η.
Next we define the operator Lε,η by the formula

⟨Lε,ηU, V ⟩ε,η = (U, V )Ω ;
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it is easy to check that it is compact and self-adjoint and its discrete spectrum
consists of the eigenvalue sequence

νk,ε(η) = (Λk,εβ(η))
−1 . (6.18)

Proof of Theorem 6.6: According to Lemma 6.4 it is sufficient to prove that
there is a constant ck,β,I > 0 such that the interval

(Λk,0(η) + ε2Λ′′
k(η)− ck,β,Iε

3,Λk,0(η) + ε2Λ′′
k(η) + ck,β,Iε

3)

contains at least one member of the sequence {Λj,εβ(η)}j≥1. Equivalently,
it is enough to establish the existence of at least one eigenvalue from the
sequence (6.18) in the interval

((Λk,0(η) + ε2Λ′′
k(η))

−1 − c′k,β,Iε
3, (Λk,0(η) + ε2Λ′′

k(η))
−1 + c′k,β,Iε

3)

for some c′k,β,I > 0. To do this we construct a function W ∈ Hε,η \ {0} such
that

∥Lε,ηW − (Λk,0(η) + ε2Λ′′
k(η))

−1W∥Hε,η ≤ c′k,β,Iε
3∥W∥Hε,η ,

namely, we put W := Uk,0 + εU ′
k + ε2U ′′

k . Then

∥(Lε,η−(Λk,0(η)+ε
2Λ′′

k(η))
−1)W∥Hε,η = sup

V
⟨(Lε,η−(Λk,0(η)+ε

2Λ′′
k(η))

−1)W,V ⟩ε,η ,

where V ∈ Hε,η runs over over unit-length vectors,

∥V ∥Hε,η = 1 . (6.19)

Let us observe the following chain of equalities

τ :=⟨(Lε,η − (Λk,0(η) + ε2Λ′′
k(η))

−1)W,V ⟩ε,η
=(W,V )Ω − (Λk,0(η) + ε2Λ′′

k(η))
−1Aεβ,η[W,V ] =

=(W,V )Ω − (Λk,0(η) + ε2Λ′′
k(η))

−1((T0(η) + εT1(η) + ε2T2(η))W,V )Ω

=(Λk,0(η) + ε2Λ′′
k(η))

−1

× (ε3Λ′′(η)U ′
k + ε4Λ′′(η)U ′′

k − ε3T2U
′ − ε3T1U

′′ − ε4T2U
′′, V )Ω .

Since the expression (Λk,0(η)+ε
2Λ′′

k(η))
−1 is bounded from above on I, in view

of the estimates (6.16) and normalization condition (6.19) we can conclude
that there is a Ck,β,I such that

|τ | ≤ Ck,β,I ε
3
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holds for all ε small enough. To complete the proof it is sufficient to ob-
serve that by virtue of the estimates (6.16) combined with Lemma 6.2 and
Corollary 6.3 the expression ∥W∥Hε,η is uniformly bounded away from zero
for η ∈ I and ε ∈ (0, ε(β)). �

Corollary 6.7. There is a cβ > 0 such that for all η ∈ [−π/2, π/2] we have

|Λ1,εβ(η)− λ1 − η2| ≤ cβε
2 .

6.4 Concluding the proof

We now able to prove the main result of this section, Theorem 6.1. Let us
divide the interval [−π, π] into three parts. On the first part, I1 := {η : |η| >
π/2}, we write using Lemma 6.4

Λ1,εβ(η) ≥ Λ1,0(η)− C1,εε = λ1 + η2 − C1,εε ≥ λ1 + (π/2)2 − C1,εε .

On the second part, I2 := {η : |η| ∈ [αε, π/2]}, we use Corollary 6.7 to obtain

Λ1,εβ(η) ≥ λ1 + η2 − cβε
2 ≥ λ1 + (α2 − cβ)ε

2 ;

the parameter α will be specified below. As for the third part, I3 := {η : |η| <
αε}, applying the estimate from Theorem 6.6 we get

Λ1,εβ(η) ≥ λ1 + η2 + ε2Λ′′
1(η)− c1,β,I3ε

3 ≥ λ1 + ε2Λ′′
1(η)− c1,β,I3ε

3 ,

where Λ′′
1(η) can be calculated by the formula

Λ′′
1(η) = ∥β̇∂φψ1∥2Ω + Λ1,0(η)∥U ′

1∥2Ω − ∥∇U ′
1∥2Ω

≥
∫ 1

0

|β̇(x3)|2 dx3
∫
ω

|∂φψ1(x
′)|2 dx′ − Cα2ε2 .

The last inequality holds true, because the solution of the equation (6.13) for
k = 1 with orthogonality condition (6.15) satisfies the estimate

∥U ′
1∥Ω + ∥∇U ′

1∥Ω ≤ C∥T1(η)U1,0∥Ω

= C|η|∥β̇∥L2(0,1)∥∂φψ1∥L2(ω) .
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Now we put α2 := cβ +
∫ 1

0
|β̇(x3)|2 dx3

∫
ω
|∂φψ1(x

′)|2 dx dy and obtain for all
sufficiently small ε the estimate

λ†(εβ) ≥ λ1 + ε2
∫ 1

0

|β̇(x3)|2 dx3
∫
ω

|∂φψ1(x
′)|2 dx′ − Cβε

3 .

Together with the result of Theorem 6.6 for η = 0 and k = 1 we get in this
way the asymptotic expansion

λ†(εβ) = λ1 + ε2
∫ 1

0

|β̇(x3)|2 dx3
∫
ω

|∂φψ1(x
′)|2 dx′ +O(ε3) .

The claim of Theorem 6.1 is then a simple consequence of this formula and
relation (3.3). �
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