
SOLVABILITY IN THE SENSE OF SEQUENCES
FOR SOME NON FREDHOLM OPERATORS

RELATED TO THE SUPERDIFFUSION

Vitali Vougalter1, Vitaly Volpert2

1 Department of Mathematics, University of Toronto
Toronto, Ontario, M5S 2E4, Canada

e-mail: vitali@math.toronto.edu
2 Institute Camille Jordan, UMR 5208 CNRS, University Lyon 1

Villeurbanne, 69622, France
e-mail: volpert@math.univ-lyon1.fr

Abstract: We study solvability of some linear nonhomogeneous elliptic equations
and show that under reasonable technical conditions the convergence in L2(Rd) of
their right sides yields the existence and the convergence in H1(Rd) of the solutions.
The problems involve the square roots of the second order non Fredholm differential
operators and we use the methods of spectral and scattering theory for Schrödinger
type operators similarly to our preceding work [27].

AMS Subject Classification: 35J10, 35P10, 47F05
Key words: solvability conditions, non Fredholm operators, Sobolev spaces

1. Introduction

Let us consider the problem√
−∆+ V (x)u− au = f (1.1)

with u ∈ E = H1(Rd) and f ∈ F = L2(Rd), d ∈ N, a is a constant and V (x)
is a function decaying to 0 at infinity. The operator

√
−∆+ V (x) can be defined

via the spectral calculus under the appropriate technical conditions on the scalar
potential V (x). If a ≥ 0, then the essential spectrum of the operator A : E → F
corresponding to the left side of problem (1.1) contains the origin. Consequently,
such operator fails to satisfy the Fredholm property. Its image is not closed, for
d > 1 the dimensions of its kernel and the codimension of its image are not finite. In
the present article we will study some properties of the operators of this kind. Let us
recall that elliptic equations with non-Fredholm operators were treated extensively
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in recent years (see [17], [18], [19], [20], [21], [22], [24], [25], also [5]) along
with their potential applications to the theory of reaction-diffusion equations (see
[7], [8]). In the particular case when a = 0 the operator A2 satisfies the Fredholm
property in some properly chosen weighted spaces [1], [2], [3], [4], [5]. However,
the case with a ̸= 0 is significantly different and the approach developed in these
articles cannot be adopted.

One of the important questions concerning problems with non-Fredholm oper-
ators is their solvability. Let us address it in the following setting. Let fn be a
sequence of functions in the image of the operator A, such that fn → f in L2(Rd)
as n → ∞. Denote by un a sequence of functions from H1(Rd) such that

Aun = fn, n ∈ N.

Because the operator A fails to satisfy the Fredholm property, the sequence un may
not be convergent. Let us call a sequence un such that Aun → f a solution in the
sense of sequences of problem Au = f (see [16]). If such sequence converges to
a function u0 in the norm of the space E, then u0 is a solution of this problem.
Solution in the sense of sequences is equivalent in this sense to the usual solution.
However, in the case of the operators without Fredholm property, this convergence
may not hold or it can occur in some weaker sense. In such case, solution in the
sense of sequences may not imply the existence of the usual solution. In the present
article we will find sufficient conditions of equivalence of solutions in the sense of
sequences and the usual solutions. In the other words, the conditions on sequences
fn under which the corresponding sequences un are strongly convergent. Solvability
in the sense of sequences for the sums of non Fredholm Schrödinger type operators
was treated in [26].

In the first part of the work we consider the problem
√
−∆u− au = f(x), x ∈ Rd, d ∈ N, (1.2)

where a ≥ 0 is a constant and the right side is square integrable. The operator√
−∆ here is defined via the spectral calculus and is actively used, for instance

in the studies of the superdiffusion problems (see e.g. [28] and the references
therein). Superdiffusion can be described as a random process of particle motion
characterized by the probability density distribution of jump length. The moments
of this density distribution are finite in the case of normal diffusion, but this is not the
case for superdiffusion. Asymptotic behavior at infinity of the probability density
function determines the value of the power of the Laplacian (see [13]). Another
application of the

√
−∆ operator is related to the relativistic Quantum Mechanics

(see e.g. [23]). The equation analogous to (1.2) but with the standard Laplacian in
the context of the solvability in the sense of sequences was treated in [27]. Note
that for the operator

√
−∆− a : H1(Rd) → L2(Rd) the essential spectrum fills the

semi-axis [−a, ∞) such that its inverse from L2(Rd) to H1(Rd) is unbounded.
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We write down the corresponding sequence of equations with n ∈ N as
√
−∆un − aun = fn(x), x ∈ Rd, d ∈ N, (1.3)

with the right sides convergent to the right side of (1.2) in L2(Rd) as n → ∞. The
inner product of two functions

(f(x), g(x))L2(Rd) :=

∫
Rd

f(x)ḡ(x)dx, (1.4)

with a slight abuse of notations when these functions fail to be square integrable.
Indeed, if f(x) ∈ L1(Rd) and g(x) ∈ L∞(Rd), then obviously the integral in the
right side of (1.4) makes sense, like for example in the case of functions involved
in the orthogonality conditions of Theorems 1 and 2 below. We will use the space
H1(Rd) equipped with the norm

∥u∥2H1(Rd) := ∥u∥2L2(Rd) + ∥∇u∥2L2(Rd). (1.5)

Throughout the article, the sphere of radius r > 0 in Rd centered at the origin will
be denoted by Sd

r . The notation Bd will stand for the unit ball in the space of d
dimensions with the center at the origin and |Bd| for its Lebesgue measure. First of
all, let us formulate the solvability conditions for equation (1.2).

Theorem 1. Let f(x) ∈ L2(Rd), d ∈ N.
a) When a = 0, d = 1, 2 and in addition xf(x) ∈ L1(Rd), problem (1.2) admits

a unique solution u(x) ∈ H1(Rd) if and only if

(f(x), 1)L2(Rd) = 0 (1.6)

holds.
b) When a = 0, d ≥ 3 and in addition f(x) ∈ L1(Rd), problem (1.2) possesses

a unique solution u(x) ∈ H1(Rd).
c) When a > 0, d = 1 and in addition xf(x) ∈ L1(R), equation (1.2) has a

unique solution u(x) ∈ H1(R) if and only if(
f(x),

e±iax

√
2π

)
L2(R)

= 0 (1.7)

holds.
d) When a > 0, d ≥ 2 and in addition xf(x) ∈ L1(Rd), problem (1.2) admits a

unique solution u(x) ∈ H1(Rd) if and only if(
f(x),

eipx

(2π)
d
2

)
L2(Rd)

= 0, p ∈ Sd
a a.e. (1.8)
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holds.

Then let us turn our attention to the issue of the solvability in the sense of se-
quences for our equation.

Theorem 2. Let n ∈ N and fn(x) ∈ L2(Rd), d ∈ N, such that fn(x) → f(x)
in L2(Rd) as n → ∞.

a) When a = 0, d = 1, 2, let in addition xfn(x) ∈ L1(Rd), n ∈ N, such that
xfn(x) → xf(x) in L1(Rd) as n → ∞ and the orthogonality conditions

(fn(x), 1)L2(Rd) = 0 (1.9)

hold for all n ∈ N. Then problems (1.2) and (1.3) admit unique solutions u(x) ∈
H1(Rd) and un(x) ∈ H1(Rd) respectively, such that un(x) → u(x) in H1(Rd) as
n → ∞.

b) When a = 0, d ≥ 3, let in addition fn(x) ∈ L1(Rd), n ∈ N, such that
fn(x) → f(x) in L1(Rd) as n → ∞. Then equations (1.2) and (1.3) possess unique
solutions u(x) ∈ H1(Rd) and un(x) ∈ H1(Rd) respectively, such that un(x) →
u(x) in H1(Rd) as n → ∞.

c) When a > 0, d = 1, let in addition xfn(x) ∈ L1(R), n ∈ N, such that
xfn(x) → xf(x) in L1(R) as n → ∞ and the orthogonality conditions(

fn(x),
e±iax

√
2π

)
L2(R)

= 0 (1.10)

hold for all n ∈ N. Then equations (1.2) and (1.3) have unique solutions u(x) ∈
H1(R) and un(x) ∈ H1(R) respectively, such that un(x) → u(x) in H1(R) as
n → ∞.

d) When a > 0, d ≥ 2, let in addition xfn(x) ∈ L1(Rd), n ∈ N, such that
xfn(x) → xf(x) in L1(Rd) as n → ∞ and the orthogonality conditions(

fn(x),
eipx

(2π)
d
2

)
L2(Rd)

= 0, p ∈ Sd
a a.e. (1.11)

hold for all n ∈ N. Then equations (1.2) and (1.3) admit unique solutions u(x) ∈
H1(Rd) and un(x) ∈ H1(Rd) respectively, such that un(x) → u(x) in H1(Rd) as
n → ∞.

Note that when a = 0 and the dimension of the problem is at least three, orthog-
onality relations in the theorems above are not required.

Let us use the hat symbol to designate the standard Fourier transform

f̂(p) :=
1

(2π)
d
2

∫
Rd

f(x)e−ipxdx, p ∈ Rd, d ∈ N, (1.12)
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such that
∥f̂(p)∥L∞(Rd) ≤

1

(2π)
d
2

∥f(x)∥L1(Rd). (1.13)

In the second part of the article we treat the problem√
−∆+ V (x)u− au = f(x), x ∈ R3, a ≥ 0, (1.14)

where the right side is square integrable. The correspondent sequence of equations
for n ∈ N will be√

−∆+ V (x)un − aun = fn(x), x ∈ R3, a ≥ 0, (1.15)

where the right sides converge to the right side of (1.14) in L2(R3) as n → ∞.
We make the following technical assumptions on the scalar potential involved in
equations above. Note that the conditions on V (x), which is shallow and short-
range will be analogous to those stated in Assumption 1.1 of [18] (see also [19],
[20]). The essential spectrum of such a Schrödinger operator fills the nonnegative
semi-axis (see e.g. [10]).

Assumption 3. The potential function V (x) : R3 → R satisfies the estimate

|V (x)| ≤ C

1 + |x|3.5+δ

with some δ > 0 and x = (x1, x2, x3) ∈ R3 a.e. such that

4
1
9
9

8
(4π)−

2
3∥V ∥

1
9

L∞(R3)∥V ∥
8
9

L
4
3 (R3)

< 1 and
√
cHLS∥V ∥

L
3
2 (R3)

< 4π. (1.16)

Here and below C will denote a finite positive constant and cHLS given on p.98 of
[12] is the constant in the Hardy-Littlewood-Sobolev inequality∣∣∣ ∫

R3

∫
R3

f1(x)f1(y)

|x− y|2
dxdy

∣∣∣ ≤ cHLS∥f1∥2
L

3
2 (R3)

, f1 ∈ L
3
2 (R3).

By means of Lemma 2.3 of [18], under Assumption 3 above on the potential
function, the operator −∆+V (x) on L2(R3) is self-adjoint and unitarily equivalent
to −∆ via the wave operators (see [11], [15])

Ω± := s− limt→∓∞eit(−∆+V )eit∆,

where the limit is understood in the strong L2 sense (see e.g. [14] p.34, [6] p.90).
Thus

√
−∆+ V (x) : H1(R3) → L2(R3) has only the essential spectrum

σess(
√

−∆+ V (x)− a) = [−a, ∞)
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and no nontrivial L2(R3) eigenfunctions. By virtue of the spectral theorem, its
functions of the continuous spectrum satisfying√

−∆+ V (x)φk(x) = |k|φk(x), k ∈ R3, (1.17)

in the integral formulation the Lippmann-Schwinger equation for the perturbed
plane waves (see e.g. [14] p.98)

φk(x) =
eikx

(2π)
3
2

− 1

4π

∫
R3

ei|k||x−y|

|x− y|
(V φk)(y)dy (1.18)

and the orthogonality relations

(φk(x), φq(x))L2(R3) = δ(k − q), k, q ∈ R3 (1.19)

form the complete system in L2(R3). In particular, when the vector k = 0, we
have φ0(x). We designate the generalized Fourier transform with respect to these
functions using the tilde symbol as

f̃(k) := (f(x), φk(x))L2(R3), k ∈ R3. (1.20)

The integral operator involved in (1.18) is being designated as

(Qφ)(x) := − 1

4π

∫
R3

ei|k||x−y|

|x− y|
(V φ)(y)dy, φ ∈ L∞(R3).

We consider Q : L∞(R3) → L∞(R3). Under Assumption 3, according to Lemma
2.1 of [18] the operator norm ∥Q∥∞ is bounded above by the quantity I(V ), which
is the left side of the first inequality in (1.16), such that I(V ) < 1. Corollary 2.2 of
[18] under our assumptions gives us the estimate

|f̃(k)| ≤ 1

(2π)
3
2

1

1− I(V )
∥f(x)∥L1(R3). (1.21)

We have the following statement concerning the solvability of problem (1.14).

Theorem 4. Let Assumption 3 hold and f(x) ∈ L2(R3).
a) When a = 0, let in addition f(x) ∈ L1(R3). Then equation (1.14) admits a

unique solution u(x) ∈ H1(R3).
b) When a > 0, let in addition xf(x) ∈ L1(R3). Then equation (1.14) has a

unique solution u(x) ∈ H1(R3) if and only if

(f(x), φk(x))L2(R3) = 0, k ∈ S3
a a.e. (1.22)

holds.
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Our final main proposition deals with the solvability in the sense of sequences
of equation (1.14).

Theorem 5. Let Assumption 3 hold, n ∈ N and fn(x) ∈ L2(R3), such that
fn(x) → f(x) in L2(R3) as n → ∞.

a) When a = 0 let in addition fn(x) ∈ L1(R3), n ∈ N, such that fn(x) → f(x)
in L1(R3) as n → ∞. Then problems (1.14) and (1.15) possess unique solutions
u(x) ∈ H1(R3) and un(x) ∈ H1(R3) respectively, such that un(x) → u(x) in
H1(R3) as n → ∞.

b) When a > 0 let in addition xfn(x) ∈ L1(R3), n ∈ N, such that xfn(x) →
xf(x) in L1(R3) as n → ∞ and the orthogonality conditions

(fn(x), φk(x))L2(R3) = 0, k ∈ S3
a a.e. (1.23)

hold for all n ∈ N. Then problems (1.14) and (1.15) possess unique solutions
u(x) ∈ H1(R3) and un(x) ∈ H1(R3) respectively, such that un(x) → u(x) in
H1(R3) as n → ∞.

Note that (1.22) and (1.23) are the orthogonality conditions to the functions of
the continuous spectrum of our Schrödinger operator, as distinct from the Limiting
Absorption Principle in which one needs to orthogonalize to the standard Fourier
harmonics (see e.g. Lemma 2.3 and Proposition 2.4 of [9]).

2. Solvability in the sense of sequences in the no potential case

Proof of Theorem 1. Note that the statements a) and b) of the theorem are the results
of Lemma 3.1 of [28].

Evidently, if u(x) ∈ L2(Rd) is a solution of (1.2) with a square integrable right
side, it belongs to H1(Rd) as well. Indeed, directly from (1.2) we have

√
−∆u(x) ∈

L2(Rd), such that due to the fact that

∥
√
−∆u∥L2(Rd) = ∥∇u∥L2(Rd),

we have ∇u(x) ∈ L2(Rd), which yields u(x) ∈ H1(Rd) as well.
To show the uniqueness of solutions for our problem, let us suppose that (1.2)

admits two square integrable solutions u1(x) and u2(x). Then their difference
w(x) := u1(x)− u2(x) ∈ L2(Rd) as well. Clearly, it satisfies the equation

√
−∆w = aw.

Since the operator
√
−∆ has no nontrivial square integrable eigenfunctions in the

whole space, we have w(x) = 0 a.e. in Rd.
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Let us apply the standard Fourier transform (1.12) to both sides of equation
(1.2). This yields

û(p) =
f̂(p)

|p| − a
.

Let us first treat the case c) of the theorem, such that the dimension of the problem
d = 1. We define the following sets on the real line

I+δ := [a− δ, a+ δ], I−δ := [−a− δ,−a+ δ], 0 < δ < a, (2.24)

such that
Iδ := I+δ ∪ I−δ , R = Iδ ∪ Icδ .

Here and further down Ac ⊆ Rd denotes the complement of the set A ⊆ Rd. This
enables us to express û(p) as the sum

f̂(p)

|p| − a
χIcδ

+
f̂(p)

|p| − a
χI+δ

+
f̂(p)

|p| − a
χI−δ

.

Obviously, we have Icδ = Ic+δ ∪ Ic−δ , where

Ic+δ := Icδ ∩ R+, Ic−δ := Icδ ∩ R−. (2.25)

Here R+ and R− are the nonnegative and the negative semi-axes of the real line
respectively. Apparently, ∣∣∣∣∣ f̂(p)p− a

χIc+δ

∣∣∣∣∣ ≤ |f̂(p)|
δ

∈ L2(R).

Similarly, ∣∣∣∣∣ f̂(p)

−p− a
χIc−δ

∣∣∣∣∣ ≤ |f̂(p)|
δ

∈ L2(R).

Let us use the representation

f̂(p) = f̂(a) +

∫ p

a

df̂(s)

ds
ds.

From the definition (1.12) of the Fourier transform we easily obtain the bound by
the finite quantity due to the one of our assumptions, namely∣∣∣∣∣df̂(p)dp

∣∣∣∣∣ ≤ 1√
2π

∥xf(x)∥L1(R).

This easily yields the upper bound∣∣∣∣∣
∫ p

a
df̂(s)
ds

ds

p− a
χI+δ

∣∣∣∣∣ ≤ 1√
2π

∥xf(x)∥L1(R)χI+δ
∈ L2(R).
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Apparently,
f̂(a)

p− a
χI+δ

∈ L2(R)

if and only if f̂(a) = 0, which is equivalent to the orthogonality condition(
f(x),

eiax√
2π

)
L2(R)

= 0.

To treat the singularity of the problem on the negative semi-axis, we use the formula

f̂(p) = f̂(−a) +

∫ p

−a

df̂(s)

ds
ds.

This gives us the upper bound∣∣∣∣∣
∫ p

−a
df̂(s)
ds

ds

−p− a
χI−δ

∣∣∣∣∣ ≤ 1√
2π

∥xf(x)∥L1(R)χI−δ
∈ L2(R).

Evidently,
f̂(−a)

−p− a
χI−δ

∈ L2(R)

if and only if f̂(−a) = 0, which is equivalent to the orthogonality relation(
f(x),

e−iax

√
2π

)
L2(R)

= 0.

Let us complete the proof of the theorem with establishing the part d). When the
dimension d ≥ 2, we introduce the set

Aδ := {p ∈ Rd | a− δ ≤ |p| ≤ a+ δ}, 0 < δ < a (2.26)

and express

û(p) =
f̂(p)

|p| − a
χAδ

+
f̂(p)

|p| − a
χAc

δ
. (2.27)

Clearly, we have the upper bound∣∣∣∣∣ f̂(p)

|p| − a
χAc

δ

∣∣∣∣∣ ≤ |f̂(p)|
δ

∈ L2(Rd).

To study the first term in the right side of (2.27), we will use the representation
formula

f̂(p) = f̂(a, σ) +

∫ |p|

a

∂f̂(s, σ)

∂s
ds.
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Here and further down σ will stand for the angle variables on the sphere. By means
for the definition of the Fourier transform (1.12), we have the upper bound∣∣∣∣∣∂f̂(p)∂|p|

∣∣∣∣∣ ≤ ∥xf(x)∥L1(Rd)

(2π)
d
2

.

The right side of this inequality is finite due to the one of our assumptions. This
allows us to estimate∣∣∣∣∣

∫ |p|
a

∂f̂(s,σ)
∂s

ds

|p| − a
χAδ

∣∣∣∣∣ ≤ ∥xf(x)∥L1(Rd)

(2π)
d
2

χAδ
∈ L2(Rd).

The remaining term
f̂(a, σ)

|p| − a
χAδ

∈ L2(Rd)

if and only if f̂(a, σ) vanishes, which is equivalent to orthogonality condition (1.8)
for the dimensions d ≥ 2.

Then we turn our attention to establishing the solvability in the sense of se-
quences for our problem in the no potential case.

Proof of Theorem 2. Suppose u(x) and un(x), n ∈ N are the unique solutions
of equations (1.2) and (1.3) in H1(Rd), d ∈ N with a ≥ 0 respectively and it is
known that un(x) → u(x) in L2(Rd) as n → ∞. Then un(x) → u(x) in H1(Rd) as
n → ∞ as well. Indeed,

√
−∆(un(x)− u(x)) = a(un(x)− u(x)) + (fn(x)− f(x)),

which clearly yields

∥
√
−∆(un(x)−u(x))∥L2(Rd) ≤ a∥un(x)−u(x)∥L2(Rd)+∥fn(x)−f(x)∥L2(Rd) → 0

as n → ∞ due to our assumptions. It can be easily verified that the left side of the
inequality above equals to

∥∇(un(x)− u(x))∥L2(Rd) → 0, n → ∞.

If u(x) and un(x), n ∈ N are the unique solutions of problems (1.2) and (1.3) in
H1(Rd), d ∈ N respectively with a = 0 as in the cases a) and b) of the theorem, by
applying the standard Fourier transform (1.12) we easily obtain

ûn(p)− û(p) =
f̂n(p)− f̂(p)

|p|
χ{|p|≤1} +

f̂n(p)− f̂(p)

|p|
χ{|p|>1}. (2.28)
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Clearly, the second term in the right side of identity (2.28) can be bounded from
above in the absolute value by |f̂n(p)− f̂(p)|, such that∥∥∥∥∥ f̂n(p)− f̂(p)

|p|
χ{|p|>1}

∥∥∥∥∥
L2(Rd)

≤ ∥fn(x)− f(x)∥L2(Rd) → 0, n → ∞

by means of the one of our assumptions. Let us first address the case a) of the
theorem when the dimension d = 1. Then via the part a) of Theorem 1, each
equation (1.3) admits a unique solution un(x) ∈ H1(R), n ∈ N. Apparently,

|(f(x), 1)L2(R)| = |(f(x)− fn(x), 1)L2(R)| ≤ ∥fn(x)− f(x)∥L1(R) → 0

as n → ∞ due to the result of Lemma 6 below. Hence,

(f(x), 1)L2(R) = 0 (2.29)

holds. By virtue of the part a) of Theorem 1, equation (1.2) has a unique solution
u(x) ∈ H1(R) when the dimension d = 1 and a = 0. Orthogonality conditions
(2.29) and (1.9) give us

f̂(0) = 0, f̂n(0) = 0, n ∈ N

in such case. This enables us to use the representations

f̂(p) =

∫ p

0

df̂(s)

ds
ds, f̂n(p) =

∫ p

0

df̂n(s)

ds
ds, n ∈ N,

which allows us to write the first term in the right side of identity (2.28) as∫ p

0

(
df̂n(s)
ds

− df̂(s)
ds

)
ds

|p|
χ{|p|≤1}. (2.30)

Using definition (1.12) of the standard Fourier transform, we easily estimate∣∣∣∣∣df̂n(p)dp
− df̂(p)

dp

∣∣∣∣∣ ≤ 1√
2π

∥xfn(x)− xf(x)∥L1(R), (2.31)

such that expression (2.30) can be bounded from above in the absolute value by

1√
2π

∥xfn(x)− xf(x)∥L1(R)χ{|p|≤1}.

Therefore,∥∥∥∥∥
∫ p

0

(
df̂n(s)
ds

− df̂(s)
ds

)
ds

|p|
χ{|p|≤1}

∥∥∥∥∥
L2(R)

≤ 1√
π
∥xfn(x)− xf(x)∥L1(R) → 0
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as n → ∞ due to the one of our assumptions. This implies that

un(x) → u(x) in L2(R), n → ∞

when the dimension d = 1 and a = 0. In the case of the dimension d = 2 and
a = 0, orthogonality condition

(f(x), 1)L2(R2) = 0 (2.32)

can be obtained via the trivial limiting argument, analogously to (2.29). By means
of the part a) of Theorem 1, equations (1.2) and (1.3) admit unique solutions u(x) ∈
H1(R2) and un(x) ∈ H1(R2), n ∈ N respectively. Orthogonality relations (2.32)
and (1.9) yield

f̂(0) = 0, f̂n(0) = 0, n ∈ N

when the dimension d = 2 and a = 0 as well. This allows us to express

f̂(p) =

∫ |p|

0

∂f̂(s, σ)

∂s
ds, f̂n(p) =

∫ |p|

0

∂f̂n(s, σ)

∂s
ds, n ∈ N.

Then the first term in the right side of identity (2.28) can be written as∫ |p|
0

(
∂f̂n(s,σ)

∂s
− ∂f̂(s,σ)

∂s

)
ds

|p|
χ{|p|≤1}. (2.33)

By means of definition (1.12) of the standard Fourier transform, we easily arrive at∣∣∣∣∣∂f̂n(p)∂|p|
− ∂f̂(p)

∂|p|

∣∣∣∣∣ ≤ 1

2π
∥xfn(x)− xf(x)∥L1(R2). (2.34)

Hence, expression (2.33) can be estimated from above in the absolute value by

1

2π
∥xfn(x)− xf(x)∥L1(R2)χ{|p|≤1},

such that∥∥∥∥∥
∫ |p|
0

(
∂f̂n(s,σ)

∂s
− ∂f̂(s,σ)

∂s

)
ds

|p|
χ{|p|≤1}

∥∥∥∥∥
L2(R2)

≤ 1

2
√
π
∥xfn(x)− xf(x)∥L1(R2) → 0

as n → ∞ due to the one of our assumptions. Thus,

un(x) → u(x) in L2(R2), n → ∞

in the case of the dimension d = 2 and a = 0.

12



Then we proceed to the proof of the part b) of the theorem, when the dimension
d ≥ 3 and a = 0. In this case, by means of the part b) of Theorem 1, equations (1.2)
and (1.3) possess unique solutions u(x) and un(x), n ∈ N respectively, belonging
to H1(Rd). Let us estimate the first term in the right side of (2.28) in the absolute
value from above using (1.13) by

∥fn(x)− f(x)∥L1(Rd)

(2π)
d
2 |p|

χ{|p|≤1}, d ≥ 3,

such that its L2(Rd) norm can be bounded from above by

C∥fn(x)− f(x)∥L1(Rd) → 0, n → ∞

due to the one of our assumptions. Therefore,

un(x) → u(x) in L2(Rd), n → ∞

in the case of the dimension d ≥ 3 and a = 0.
Then we turn our attention to the case c) of the theorem, when the dimension

d = 1 and a > 0. Hence, due to the result of the part c) of Theorem 1, equation (1.3)
admits a unique solution un(x) ∈ H1(R), n ∈ N. We have fn(x) ∈ L1(R), n ∈ N,
such that fn(x) → f(x) in L1(R) as n → ∞ as a result of Lemma 6 below. By
virtue of the limiting argument, similarly to the proof of (2.29) we arrive at the
orthogonality conditions (

f(x),
e±iax

√
2π

)
L2(R)

= 0. (2.35)

Then by means of the result of the part c) of Theorem 1, equation (1.2) has a unique
solution u(x) ∈ H1(R). By applying the standard Fourier transform (1.12) to both
sides of (1.2) and (1.3), we arrive at

û(p) =
f̂(p)

|p| − a
, ûn(p) =

f̂n(p)

|p| − a
, n ∈ N. (2.36)

This enables us to express ûn(p)− û(p) as

f̂n(p)− f̂(p)

p− a
χI+δ

+
f̂n(p)− f̂(p)

p− a
χIc+δ

+

+
f̂n(p)− f̂(p)

−p− a
χI−δ

+
f̂n(p)− f̂(p)

−p− a
χIc−δ

, (2.37)

13



where I+δ , I−δ are given by (2.24) and Ic+δ , Ic−δ are defined in (2.25). Clearly,
the second term in (2.37) can be bounded from above in the absolute value by
|f̂n(p)− f̂(p)|

δ
, such that∥∥∥∥∥ f̂n(p)− f̂(p)

p− a
χIc+δ

∥∥∥∥∥
L2(R)

≤
∥fn(x)− f(x)∥L2(R)

δ
→ 0, n → ∞

due to the one of our assumptions. Similarly, the last term in (2.37) can be estimated

from above in the absolute value by
|f̂n(p)− f̂(p)|

δ
. Hence∥∥∥∥∥ f̂n(p)− f̂(p)

−p− a
χIc−δ

∥∥∥∥∥
L2(R)

≤
∥fn(x)− f(x)∥L2(R)

δ
→ 0, n → ∞

as assumed. Orthogonality conditions (2.35) and (1.10) yield

f̂(a) = 0, f̂n(a) = 0, n ∈ N,

such that

f̂(p) =

∫ p

a

df̂(s)

ds
ds, f̂n(p) =

∫ p

a

df̂n(s)

ds
ds, n ∈ N,

which allows us to write the first term in (2.37) as∫ p

a

[
df̂n(s)
ds

− df̂(s)
ds

]
ds

p− a
χI+δ

. (2.38)

Using (2.31), we estimate expression (2.38) from above in the absolute value by

1√
2π

∥xfn(x)− xf(x)∥L1(R)χI+δ
.

Therefore, the L2(R) norm of (2.38) can be bounded from above by√
δ

π
∥xfn(x)− xf(x)∥L1(R) → 0, n → ∞

due to the one of our assumptions. Orthogonality relations (2.35) and (1.10) give us

f̂(−a) = 0, f̂n(−a) = 0, n ∈ N.

Hence, at the negative singularity

f̂(p) =

∫ p

−a

df̂(s)

ds
ds, f̂n(p) =

∫ p

−a

df̂n(s)

ds
ds, n ∈ N.

14



This enables us to estimate the third term in (2.37) from above in the absolute value
by

1√
2π

∥xfn(x)− xf(x)∥L1(R)χI−δ
.

Thus, its L2(R) norm can be bounded from above by√
δ

π
∥xfn(x)− xf(x)∥L1(R) → 0, n → ∞

by means of the one of our assumptions. This proves that in dimension d = 1, when
a > 0 we have

un(x) → u(x) in L2(R), n → ∞.

Let us conclude the proof of the theorem with addressing the case d) when the
dimension d ≥ 2 and a > 0. Then under the given assumptions, by means of the part
d) of Theorem 1, equation (1.3) admits a unique solution un(x) ∈ H1(Rd), n ∈ N.
An easy limiting argument similar to the proof of (2.35) yields(

f(x),
eipx

(2π)
d
2

)
L2(Rd)

= 0, p ∈ Sd
a a.e. (2.39)

Then by virtue of the part d) of Theorem 1, equation (1.2) has a unique solution
u(x) ∈ H1(Rd). Using the Fourier transform (1.12), we easily obtain

ûn(p)− û(p) =
f̂n(p)− f̂(p)

|p| − a
χAδ

+
f̂n(p)− f̂(p)

|p| − a
χAc

δ
, (2.40)

where the set Aδ is defined in (2.26). Clearly, the second term in the right side of

(2.40) can be bounded from above in the absolute value by
|f̂n(p)− f̂(p)|

δ
. Thus,∥∥∥∥∥ f̂n(p)− f̂(p)

|p| − a
χAc

δ

∥∥∥∥∥
L2(Rd)

≤
∥fn(x)− f(x)∥L2(Rd)

δ
→ 0

as n → ∞ due to the one of our assumptions. Orthogonality conditions (2.39) and
(1.11) give us

f̂(a, σ) = 0, f̂n(a, σ) = 0, n ∈ N,
such that

f̂(p) =

∫ |p|

a

∂f̂(s, σ)

∂s
ds, f̂n(p) =

∫ |p|

a

∂f̂n(s, σ)

∂s
ds, n ∈ N.

By virtue of the definition of the Fourier transform (1.12), similarly to inequalities
(2.31) and (2.34) in lower dimensions, we easily derive∣∣∣∣∣∂f̂n(p)∂|p|

− ∂f̂(p)

∂|p|

∣∣∣∣∣ ≤ 1

(2π)
d
2

∥xfn(x)− xf(x)∥L1(Rd).
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Let us estimate the first term in the right side of (2.40) from above in the absolute
value by

1

(2π)
d
2

∥xfn(x)− xf(x)∥L1(Rd)χAδ
.

Therefore,∥∥∥∥∥ f̂n(p)− f̂(p)

|p| − a
χAδ

∥∥∥∥∥
L2(Rd)

≤ C∥xfn(x)− xf(x)∥L1(Rd) → 0, n → ∞

as assumed. This implies that in dimensions d ≥ 2, when a > 0 we have

un(x) → u(x) in L2(Rd)

as n → ∞.

3. Solvability in the sense of sequences with a scalar potential

Proof of Theorem 4. Note that the case a) of the theorem is the result of Lemma 3.3
of [28]. Then we proceed to proving the case of a > 0.

Let us note that it is sufficient to solve equation (1.14) in L2(R3), since its square
integrable solution will belong to H1(R3) as well. Indeed, it can be easily verified
that

∥
√
−∆+ V (x)u∥2L2(R3) = ∥∇u∥2L2(R3) +

∫
R3

V (x)|u(x)|2dx, (3.41)

where u(x) is a square integrable solutions of (1.14), the scalar potential V (x) is
bounded due to Assumption 3 and f(x) ∈ L2(R3) as assumed. Then by means of
indentity (3.41) we have ∇u(x) ∈ L2(R3) and therefore, u(x) ∈ H1(R3).

To address the uniqueness of solutions of our problem, let us suppose that there
exist both u1(x) and u2(x) which are square integrable in R3 and satisfy (1.14).
Then their difference w(x) := u1(x)−u2(x) ∈ L2(R3) is a solution of the equation√

−∆+ V (x)w = aw.

Since the operator
√
−∆+ V (x) has no nontrivial L2(R3) eigenfunctions as dis-

cussed above, w(x) vanishes a.e. in R3.
We apply the generalized Fourier transform (1.20) with respect to the functions

of the continuous spectrum of the Schrödinger operator to both sides of equation
(1.14), which gives us

ũ(k) =
f̃(k)

|k| − a
.

Let us introduce the spherical layer in the space of three dimensions as

Bδ := {k ∈ R3 | a− δ ≤ |k| ≤ a+ δ}, 0 < δ < a. (3.42)

16



This allows us to express

ũ(k) =
f̃(k)

|k| − a
χBδ

+
f̃(k)

|k| − a
χBc

δ
. (3.43)

The second term in the right side of (3.43) can be easily estimated from above in
the absolute value by

|f̃(k)|
δ

∈ L2(R3),

since f(x) is square integrable as assumed. Let us use the representation

f̃(k) = f̃(a, σ) +

∫ |k|

a

∂f̃(s, σ)

∂s
ds.

Hence, the first term in the right side of (3.43) can be written as

f̃(a, σ)

|k| − a
χBδ

+

∫ |k|
a

∂f̃(s,σ)
∂s

ds

|k| − a
χBδ

. (3.44)

The second term in sum (3.44) can be easily bounded above in the absolute value
by

∥∇kf̃(k)∥L∞(R3)χBδ
∈ L2(R3).

Note that under our assumptions ∇kf̃(k) ∈ L∞(R3) by virtue of Lemma 2.4 of
[18]. The first term in (3.44) belongs to L2(R3) if and only if f̃(a, σ) vanishes,
which gives orthogonality condition (1.22).

Then we proceed to the proof of our last main proposition concerning the solv-
ability in the sense of sequences.

Proof of Theorem 5. First of all, let us show that if u(x) and un(x), n ∈ N are
the unique H1(R3) solutions of (1.14) and (1.15) respectively and un(x) → u(x) in
L2(R3) as n → ∞, then we have un(x) → u(x) in H1(R3) as n → ∞ as well.

Indeed, from (1.14) and (1.15) we easily deduce that for a ≥ 0√
−∆+ V (x)(un(x)− u(x)) = a(un(x)− u(x)) + (fn(x)− f(x)), n ∈ N.

Hence

∥
√

−∆+ V (x)(un(x)− u(x))∥L2(R3) ≤ a∥un(x)− u(x)∥L2(R3)+

+∥fn(x)− f(x)∥L2(R3) → 0, n → ∞

as assumed. Let us express

∥
√
−∆+ V (x)(un(x)− u(x))∥2L2(R3) = ∥∇(un(x)− u(x))∥2L2(R3)+
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+

∫
R3

V (x)|un(x)− u(x)|2dx,

where the scalar potential V (x) is bounded due to Assumption 3. Hence, in the
identity above the left side and the second term in the right side tend to zero as
n → ∞. This implies that ∇un(x) → ∇u(x) in L2(R3) as n → ∞. Therefore,
un(x) → u(x) in H1(R3) as n → ∞ as well.

In the case a) equations (1.14) and (1.15) admit unique solutions u(x), un(x) ∈
H1(R3), n ∈ N respectively by means of the part a) of Theorem 4 above. By
applying the generalized Fourier transform (1.20) to both sides of problems (1.14)
and (1.15), we arrive at

ũ(k) =
f̃(k)

|k|
, ũn(k) =

f̃n(k)

|k|
, n ∈ N.

Hence

ũn(k)− ũ(k) =
f̃n(k)− f̃(k)

|k|
χ{|k|≤1} +

f̃n(k)− f̃(k)

|k|
χ{|k|>1}. (3.45)

Clearly, the second term in the right side of (3.45) can be easily bounded from above
in the absolute value by |f̃n(k)− f̃(k)|, such that∥∥∥∥∥ f̃n(k)− f̃(k)

|k|
χ{|k|>1}

∥∥∥∥∥
L2(R3)

≤ ∥fn(x)− f(x)∥L2(R3) → 0, n → ∞

due to the one of our assumptions. Let us estimate the first term in the right side of
(3.45) from above in the absolute value using (1.21) by

1

(2π)
3
2

1

1− I(V )
∥fn(x)− f(x)∥L1(R3)

χ{|k|≤1}

|k|
.

Evidently, this implies that∥∥∥∥∥ f̃n(k)− f̃(k)

|k|
χ{|k|≤1}

∥∥∥∥∥
L2(R3)

≤ 1√
2π

1

1− I(V )
∥fn(x)− f(x)∥L1(R3) → 0

as n → ∞ by means of the one of our assumptions. Therefore, un(x) → u(x) in
L2(R3) as n → ∞ in the case when the parameter a = 0.

Then we turn our attention to the proof of the part b) of the theorem. By means
of the result the part b) of Theorem 4, each equation (1.15) admits a unique solution
un(x) ∈ H1(R3), n ∈ N. Then for k ∈ S3

a a.e. via (1.21), we have

|(f(x), φk(x))L2(R3)| = |(f(x)− fn(x), φk(x))L2(R3)| ≤

18



≤ 1

(2π)
3
2

1

1− I(V )
∥fn(x)− f(x)∥L1(R3) → 0, n → ∞

by virtue of our assumptions along with Lemma 6 below. Therefore,

(f(x), φk(x))L2(R3) = 0, k ∈ S3
a a.e. (3.46)

holds. Then by virtue of the result the part b) of Theorem 4, equation (1.14) pos-
sesses a unique solution u(x) ∈ H1(R3). Let us apply the generalized Fourier
transform (1.20) to both sides of equations (1.14) and (1.15). Thus, we arrive at

ũn(k)− ũ(k) =
f̃n(k)− f̃(k)

|k| − a
χBδ

+
f̃n(k)− f̃(k)

|k| − a
χBc

δ
(3.47)

with Bδ defined in (3.42). Clearly, the second term in the right side of (3.47) can be

bounded from above in the absolute value by
|f̃n(k)− f̃(k)|

δ
, such that∥∥∥∥∥ f̃n(k)− f̃(k)

|k| − a
χBc

δ

∥∥∥∥∥
L2(R3)

≤
∥fn(x)− f(x)∥L2(R3)

δ
→ 0, n → ∞

according to the one of our assumptions. By means of orthogonality conditions
(1.23) and (3.46), we have

f̃(a, σ) = 0, f̃n(a, σ) = 0, n ∈ N.

This yields the representations

f̃(k) =

∫ |k|

a

∂f̃(s, σ)

∂s
ds, f̃n(k) =

∫ |k|

a

∂f̃n(s, σ)

∂s
ds, n ∈ N,

such that the first term in the right side of (3.47) can be written as∫ |k|
a

[
∂f̃n(s,σ)

∂s
− ∂f̃(s,σ)

∂s

]
ds

|k| − a
χBδ

. (3.48)

Expression (3.48) can be easily bounded from above in the absolute value by

∥∇k[f̃n(k)− f̃(k)]∥L∞(R3)χBδ
.

Hence the L2(R3) norm of (3.48) can be estimated from above by

C∥∇k[f̃n(k)− f̃(k)]∥L∞(R3) → 0, n → ∞

by means of Lemma 3.4 of [27] under our assumptions. This proves that un(x) →
u(x) in L2(R3) as n → ∞ when a > 0.
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4. Auxiliary results

The following elementary lemma is used when establishing the solvability in the
sense of sequences in the theorems above, with and without a scalar potential.

Lemma 6. a) Let f(x) ∈ L2(Rd), d ∈ N and xf(x) ∈ L1(Rd). Then f(x) ∈
L1(Rd).

b) Let n ∈ N, fn(x) ∈ L2(Rd), d ∈ N, such that fn(x) → f(x) in L2(Rd) as
n → ∞. Let xfn(x) ∈ L1(Rd), such that xfn(x) → xf(x) in L1(Rd) as n → ∞.
Then fn(x) → f(x) in L1(Rd) as n → ∞.

Proof. To prove the part a), we express the norm ∥f(x)∥L1(Rd) as∫
|x|≤1

|f(x)|dx+

∫
|x|>1

|f(x)|dx.

By applying the Schwarz inequality, this can be bounded from above by√∫
|x|≤1

|f(x)|2dx
√∫

|x|≤1

1dx+

∫
|x|>1

|x||f(x)|dx ≤

≤ ∥f(x)∥L2(Rd)

√
|Bd|+ ∥xf(x)∥L1(Rd) < ∞

due to our assumptions.
To show that the part b) holds, we trivially estimate the norm using the Schwarz

inequality as
∥fn(x)− f(x)∥L1(Rd) ≤

≤
√∫

|x|≤1

|fn(x)− f(x)|2dx
√∫

|x|≤1

1dx+

∫
|x|>1

|x||fn(x)− f(x)|dx ≤

≤ ∥fn(x)− f(x)∥L2(Rd)

√
|Bd|+ ∥xfn(x)− xf(x)∥L1(Rd) → 0, n → ∞

by means of our assumptions.
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