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We present in this note an alternative yet simple approach to obtain the Devaney-Nitecki horse-
shoe region for the Hénon maps. Our approach is based on the anti-integrable limit and the
implicit function theorem. We also highlight an application to the logistic maps.
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1. Introduction

For the celebrated Hénon map [Hénon, 1976]

Ha,b : (x, y) 7→ (−a+ y + x2,−bx) (1)

of R2, with a, b real parameters, Devaney and
Nitecki [1979] proved the following explicit param-
eter region

b 6= 0 and a >
5 + 2

√
5

4
(1 + |b|)2 (2)

for which the set consisting of all non-wandering
points forms a hyperbolic horseshoe. This means
that the restriction of Hénon map to its non-
wandering set is topologically conjugate to the two-
sided Bernoulli shift with two symbols. Their proof
is based on a technique that is now referred as the
“Conley-Moser conditions” (see for example [Moser,
1973]).

In the enlightening paper [Aubry, 1995], the
anti-integrable limit for the Hénon map as a → ∞
was established. It manifests a vivid picture on how
the map is conjugate to the shift dynamics when a
is large. By utilizing the concept of anti-integrable
limit of Aubry [Aubry & Abramovici, 1990], Ster-
ling and Meiss [1998] also obtained the same param-
eter region as described in (2). In contrast to the ge-
ometrical argument involved in [Devaney & Nitecki,
1979], the method used in [Sterling & Meiss, 1998]
is more analytical.

The primary objective of this paper is intended
to present a new yet simple approach to obtain-
ing the Devaney-Nitecki parameter region. More
precisely, we show that in the framework of anti-
integrable limit, instead of the contraction mapping
theorem argument used by [Sterling & Meiss, 1998],
the Devaney-Nitecki region can also be obtained by
using the implicit function theorem argument.

A noteworthy fact is that the Hénon map re-
duces to a one-dimensional quadratic map when
b = 0. Our approach also allows us to offer a new
and simple proof of a well-known fact that the re-
striction of the logistic map

xi+1 = fµ(xi) = µxi(1− xi), µ ≥ 0,

of R to its non-wandering set is topologically conju-
gate to the one-sided Bernoulli shift on two symbols
when µ > 2 +

√
5.

2. The anti-integrability

We recall briefly the anti-integrability. A dynamical
systems is, in Aubry’s sense [Aubry & Abramovici,

1990], at the anti-integrable limit if it becomes
non-deterministic and reduces to a subshift of fi-
nite type. The following definition originates from
[Aubry, 1995] and was re-written in [Chen, 2006] to
fit the current situation.

Definition 2.1. A family of C1-diffeomorphisms fε
of Rn, parametrized by ε,

zi+1 = fε(zi), i ∈ Z, (3)

is called anti-integrable when ε→ 0 if

(i) there exists a family of functions Lε : Rn × Rn →
Rn, parametrized by ε, such that the recurrence
relation defined by Lε(zi, zi+1) = 0 is equivalent
to (3) for nonzero ε and such that the limit

lim
ε→0

Lε(zi, zi+1) = L0(zi, zi+1)

exists and is independent of zi+1;
(ii) the set Σ of solutions {zi}i∈Z of L0(zi, zi+1) = 0 for

all i can be characterized bijectively by a subset of
SZ of infinite sequences with S a certain finite set.

The limit ε → 0 is called the anti-integrable
limit of fε. We call a sequence {zi}i∈Z comprising
the solutions of L0(zi, zi+1) = 0 for all i an anti-
integrable orbit or anti-integrable solution of the
map fε when ε→ 0.

A remarkable significance of the anti-integrable
limit is as follows. Endow the set S with the discrete
topology and the set SZ with the product topology.
Then, at the anti-integrable limit, the system is vir-
tually a subshift with #(S) symbols, where #(S)
is the cardinality of the set S.

For maps satisfying some non-degeneracy con-
dition, the theory of anti-integrable limit says
that the embedded symbolic dynamics at the limit
persists to perturbations. Let l∞ := {z| z =
{zi}i∈Z, zi ∈ Rn, bounded} endowed with the sup
norm be the Banach space of bounded sequences in
Rn. Define a map F : l∞ × R→ l∞ by

F (z, ε) = {Fi(z, ε)}i∈Z
with

Fi(z, ε) = Lε(zi, zi+1),

then the theory can be formulated rigorously by sev-
eral steps (see for example [Aubry & Abramovici,
1990; Chen, 2006; MacKay & Meiss, 1992]).

(i) A bounded anti-integrable orbit z† is precisely
such that F (z†, 0) = 0.

(ii) Let Σ ⊂ (Rn)Z be the set constituting all such
z†’s in step (i).
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(iii) Assume F (z, ε) is C1 in a neighbourhood of
(z†, 0). If the linear map

DzF (z†, 0) : l∞ → l∞,

which is the partial derivative of F at (z†, 0) with
respect to z, is invertible, then the implicit func-
tion theorem implies there exists ε0 and a unique
C1-function

z∗(·; z†) : R→ l∞,

ε 7→ z∗(ε; z†) = {z∗i (ε; z†)}i∈Z (4)

such that F (z∗(ε; z†), ε) = 0 and z∗(0; z†) = z†

for 0 ≤ |ε| < ε0.
(iv) Suppose the assumptions in step (iii) are fulfilled

for every z† ∈ Σ and ε0 is independent of z†. Let
the projection z = (z0, z1, · · · ) 7→ z0 ∈ Rn be
denoted by π. The composition of mappings

z†
Φε7−→ z∗(ε; z†)

π7−→ z∗0(ε; z†)

is a continuous bijection with the product topol-
ogy.

(v) Let the set Aε be defined by

Aε :=
⋃
z†∈Σ

π(z∗(ε; z†))

=
⋃
z†∈Σ

z∗0(ε; z†).

Under the assumption σ(Σ) = Σ, the following
diagram commutes when 0 < |ε| < ε0.

Σ
σ−→ Σ

π◦Φε

y yπ◦Φε

Aε
fε−→ Aε

Remark 2.1. An anti-integrable orbit z† is called
non-degenerate if the differential map DzF (z†, 0)
in the step (iii) above is invertible.

The following proposition provides a useful
method to estimate a lower bound of |ε0| in step
(iii). Its proof is easy (see for example [Kolmogorov
& Fomin, 1970]), thus we omit it.

Proposition 1. Assume z† is a non-degenerate
anti-integrable solution of F (z, 0) = 0, and z∗(ε; z†),
ε0 are such that as in step (iii). If ε satisfies

‖DzF (z∗(ε; z†), ε)−DzF (z†, 0)‖ < 1

‖DzF (z†, 0)−1‖
,

then |ε| < ε0.

3. Proof of the Devaney-Nitecki
region for the Hénon family

To start with, we need a bounded domain with
which the bounded orbits of the Hénon map are
confined. The following result is first proved in [De-
vaney & Nitecki, 1979].

Proposition 2. Suppose b 6= 0 and a > 2(1 + |b|)2.
Let {(xi, yi)}i∈Z be a bounded orbit of the Hénon
map (1), then R∗ < supi∈Z |xi| ≤ R, where R∗ sat-
isfies

R2
∗ = a− (1 + |b|)R (5)

and

R =
1 + |b|+

√
(1 + |b|)2 + 4a

2

Proof. Our proof for the upper bound is adapted
from [Mummert, 2008]. Let M = supi∈Z |xi|. Then,
for any δ > 0 there exists t ∈ Z such that |xt| >
M − δ and so M ≥ |xt+1| ≥ −a− |b|M + (M − δ)2.
Consequently,M2−(1+|b|)M−a ≤ 0, which implies
supi∈Z |xi| ≤ R.

For the lower bound, because (xi, yi) must be-
long to the intersection H−1

a,b([−R,R] ×
[−|b|R, |b|R])∩Ha,b([−R,R]× [−|b|R, |b|R]) for ev-
ery i ∈ Z, we infer that |xi| > R∗, where R∗ satis-
fies Ha,b(−R∗, |b|R) = (−R, bR∗). (See also Fig. 1 of
this paper and Fig. 4 of [Devaney & Nitecki, 1979].)
And, the last equality gives rise to (5). �

Remark 3.1. Note that R∗ > 0 if a > 2(1 + |b|)2 and
R∗ = 0 if a = 2(1 + |b|)2.

It is convenient to consider the Hénon map in
the following form

Ha,b(x, y) = (
√
a(1− x2) + by,−x). (6)

The two maps (1) and (6) are equivalent by the
transformation (x, y) 7→ (−

√
ax,−

√
aby). We em-

phasize that they are equivalent only if both a and
b are non-zero and of finite value. Fig. 1 depicts the
image and pre-image of domain

S = {(x, y)| − r ≤ x ≤ r, − r ≤ y ≤ r}

for an area-preserving Hénon map of the form (6)
for a = 10 and depicts the position of the point r∗,
where

r∗ =
R∗√
a

=

√
1− (1 + |b|)

2a

√
(1 + |b|)2 + 4a− (1 + |b|)2

2a
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and

r =
R√
a

=

√
1 +

(1 + |b|)
2a

√
(1 + |b|)2 + 4a+

(1 + |b|)2

2a

=
1

2
√
a

{
(1 + |b|) +

√
(1 + |b|)2 + 4a

}
.

In the figure, the image of the horizontal line
segment (red colour) connecting the two points
(−r,−r) and (r,−r) is the red parabola, while
the image of the line segment (blue colour) con-
necting (−r, r) and (r, r) is the blue parabola.
The pre-image of the vertical line segment (green
colour) connecting (−r,−r) and (−r, r) is the green
parabola, while the pre-image of the line segment
(black colour) connecting (r,−r) and (r, r) is the
black parabola.

-2 -r -1 -r* r* 1 r 2
x

-2

-r

-1

1

r

2

y

Fig. 1. The image and pre-image of the domain S for the
orientation-preserving Hénon map Ha,1 with a = 10. Notice
that the intersection of the image and pre-image consists of
four disjoint sets.

Rescale the parameter by letting

ε = 1/
√
a,

then {(xi, yi)}i∈Z is an orbit of Ha,b if and only if
{xi}i∈Z satisfies the following recurrence relation

ε(xi+1 + bxi−1) + x2
i − 1 = 0

for each integer i. Let x = {xi}i∈Z be an element
of the Banach space l∞ of bounded sequences in R.

Define F (x, ε) = {Fi(x, ε)}i∈Z by

Fi(x, ε) = ε(xi+1 + bxi−1) + x2
i − 1, (7)

then {(xi, yi)}i∈Z is a bounded orbit of Ha,b if and
only if F (x, ε) = 0.

The following result provides an alternative
proof of the Devaney-Nitecki locus. (Notice that the
inequality (8) below is equivalent to inequality (2).)

Theorem 1. Let F : l∞×R→ l∞ be defined as (7).
Providing

b 6= 0 and ε <
2√

5 + 2
√

5(1 + |b|)
, (8)

there corresponds a unique C1-family of points
x∗(ε; x†) = {x∗i (ε; x†)}i∈Z in l∞ parametrized by ε
for any anti-integrable orbit x† such that x∗(0; x†) =
x† and F (x∗(ε; x†), ε) = 0.

Proof. Certainly F is a C1-map. Its partial deriva-
tive at (x, ε) with respect to x is a linear map which
in matrix form is

DxF (x, ε) =


. . .

. . .
. . .

ε 2x−1 εb
ε 2x0 εb

ε 2x1 εb
. . .

. . .
. . .

 .

It is easy to see that F (x, 0) = 0 if and only if
x ∈ {±1}Z. Consequently, DxF (x†, 0) is invertible
because it is a diagonal matrix with entries ±2. We
then have

‖DxF (x†, 0)−1‖ =
1

2
.

We also have

DxF (x∗(ε; x†), ε)−DxF (x†, 0) =

. . .
. . .

. . .

ε 2x∗−1 − 2x†−1 εb

ε 2x∗0 − 2x†0 εb

ε 2x∗1 − 2x†1 εb
. . .

. . .
. . .

 ,

a tri-diagonal matrix. (In the above equation, we
have used x∗i = x∗i (ε; x

†) for all i ∈ Z for simplicity
sake.) Thus,

‖DxF (x∗(ε; x†), ε)−DxF (x†, 0)‖
= ε+ 2 sup

i∈Z
|x∗i (ε; x†)− x

†
i |+ ε|b|.
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According to Proposition 2, the fact that x∗(ε; x†)
is a bounded orbit implies that

x∗i (ε; x
†) ∈ [−r,−r∗) ∪ (r∗, r]

for all i ∈ Z. Because x∗i (ε; x
†) is a continuation of

x†i ∈ {±1}, we have

|x∗i (ε; x†)− x
†
i | ≤ 1− r∗ ∀i ∈ Z.

(It is not difficult to verify that r − 1 < 1 − r∗.)
Then, the inequality

r∗ >
ε

2
(1 + |b|) (9)

guarantees the following condition

‖DxF (x∗(ε; x†), ε)−DxF (x†, 0)‖ < 1

‖DxF (x†, 0)−1‖
.

Consequently, we conclude from (9) that ε < ε0 if

ε < 2
(√

5 + 2
√

5(1 + |b|)
)−1

. �

4. Estimating shift locus for the
logistic maps

We proceed to investigate the family of logistic
maps x 7→ µx(1 − x). The logistic map is anti-
integrable at the limit µ → ∞ [Chen, 2007]. To
see this, let

ε = 1/µ,

and rewrite the logistic map as another map F (·, ε)
in the space l∞ := {x| x = {x0, x1, x2, . . .}, xi ∈
R, bounded} of bounded sequences with the sup
norm:

F : l∞ × R→ l∞,

(x, ε) 7→ F (x, ε) = {F0(x, ε), F1(x, ε), . . .}

with Fi(x, ε) = −εxi+1 + xi(1− xi). It is readily to
see that x is a bounded orbit of the logistic map
if and only if it solves F (x, ε) = 0. Let Σ denote
the space of sequences of 0’s and 1’s, Σ = {a| a =
{ai}∞i=0, ai = 0 or 1}. As a consequence,

F (x†, 0) = 0 ⇐⇒ x† ∈ Σ.

Theorem 2. Providing ε < 1/(2 +
√

5), there cor-
responds a unique C1-family of points x∗(ε; x†) =
{x∗i (ε; x†)}i∈N in l∞ parametrized by ε for any anti-
integrable orbit x† such that x∗(0; x†) = x† and
F (x∗(ε; x†), ε) = 0.

Proof. The proof follows the same line as that of
Theorem 1. Obviously, F is a C1-map with its par-
tial derivative with respect to x a linear map, which
can be realized in matrix form as

DxF (x, ε) =


1− 2x0 −ε 0 · · ·

0 1− 2x1 −ε · · ·
0 0 1− 2x2 · · ·
...

...
...

. . .

 .

Accordingly, DxF (x†, 0) is invertible because it is a
diagonal matrix with entries ±1. We have

‖DxF (x†, 0)−1‖ = 1.

Then, as claimed in (4), there is ε0 and a
unique C1-function x∗(·; x†) : R → l∞ such that
F (x∗(ε; x†), ε) = 0 provided 0 ≤ ε < ε0. We have

DxF (x∗(ε; x†), ε)−DxF (x†, 0) =
−2x∗0 + 2x†0 −ε 0 · · ·

0 −2x∗1 + 2x†1 −ε · · ·
0 0 −2x∗2 + 2x†2 · · ·
...

...
...

. . .

 .

(In the above equation, we have used x∗i = x∗i (ε; x
†)

for all i ∈ N for simplicity sake.) Evidently,

x∗i (ε; x
†) ∈ [0, xL] ∪ [xR, 1]

for all i ∈ N, where (see Fig. 2)

xL =
1−
√

1− 4ε

2

and

xR =
1 +
√

1− 4ε

2
.

And, because x∗i (ε; x
†) is a continuation of x†i ∈

{0, 1}, we obtain

‖DxF (x∗(ε; x†), ε)−DxF (x†, 0)‖
= 2 sup

i∈N
|x∗i − x

†
i |+ ε

≤ 2xL + ε

= 1−
√

1− 4ε+ ε.

In the light of Proposition 1, we infer that ε0 <
−2 +

√
5 (or equivalently µ > 2 +

√
5). �
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Fig. 2. The graph of 5x(1 − x) and corresponding xL and
xR.

5. Discussion

We close this paper with two remarks regarding ob-
taining better estimates of the horseshoe loci for the
Hénon and logistic maps by taking advantage of the
complex analysis.

Remark 5.1. When a > 2(1 + |b|)2 and b 6= 0, De-
vaney and Nitecki [1979] also proved that the set
Λ =

⋂
n∈ZH

n
a,b(S) is a topological horseshoe and

that the Hénon map restricted to its non-wandering
set Ω ⊆ Λ is topologically semi-conjugate to the
two-sided shift with two symbols. By means of com-
plex analysis techniques, it has been shown that the
semi-conjugacy is in fact a conjugacy and Ω = Λ
(see [Hubbard & Oberste-Vorth, 1995; Morosawa et
al., 2000; Mummert, 2008]). In particular, Mum-
mert’s proof is based on the idea of Sterling and
Meiss [1998] but in the complex variable setting.

Remark 5.2. It is well-known that the logistic map
restricted to the invariant set

⋂∞
n=0 f

−n
µ ([0, 1]) is

topologically conjugate to the Bernoulli shift with
two symbols not only when µ > 2 +

√
5 but also

µ > 4. For approach by complex analysis, we refer
the reader to [Robinson, 1995], where the Poincaré
metric and the Schwarz lemma are employed. (For
approach by making use of repelling hyperbolicity
of the invariant set, see comments in [Chen, 2007,
2008] and the references therein.)
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