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We present in this note an alternative yet simple approach to obtain the Devaney-Nitecki horse-
shoe region for the Hénon maps. Our approach is based on the anti-integrable limit and the
implicit function theorem. We also highlight an application to the logistic maps.
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1. Introduction
For the celebrated Hénon map [Hénon, 1976]

Ha,b : (-T,y) = (—a+y+x2,—bx) (1)
of R?, with a, b real parameters, Devaney and
Nitecki [1979] proved the following explicit param-
eter region

5+ 25
4

b#0 and a> (14 [b))? (2)

for which the set consisting of all non-wandering
points forms a hyperbolic horseshoe. This means
that the restriction of Hénon map to its non-
wandering set is topologically conjugate to the two-
sided Bernoulli shift with two symbols. Their proof
is based on a technique that is now referred as the
“Conley-Moser conditions” (see for example [Moser,
1973]).

In the enlightening paper [Aubry, 1995], the
anti-integrable limit for the Hénon map as a — oo
was established. It manifests a vivid picture on how
the map is conjugate to the shift dynamics when a
is large. By utilizing the concept of anti-integrable
limit of Aubry [Aubry & Abramovici, 1990], Ster-
ling and Meiss [1998] also obtained the same param-
eter region as described in (2). In contrast to the ge-
ometrical argument involved in [Devaney & Nitecki,
1979], the method used in [Sterling & Meiss, 1998]
is more analytical.

The primary objective of this paper is intended
to present a new yet simple approach to obtain-
ing the Devaney-Nitecki parameter region. More
precisely, we show that in the framework of anti-
integrable limit, instead of the contraction mapping
theorem argument used by [Sterling & Meiss, 1998],
the Devaney-Nitecki region can also be obtained by
using the implicit function theorem argument.

A noteworthy fact is that the Hénon map re-
duces to a one-dimensional quadratic map when
b = 0. Our approach also allows us to offer a new
and simple proof of a well-known fact that the re-
striction of the logistic map

Tiv1 = fu(@i) = pei(l — x3), p =0,

of R to its non-wandering set is topologically conju-
gate to the one-sided Bernoulli shift on two symbols
when g > 2+ /5.

2. The anti-integrability

We recall briefly the anti-integrability. A dynamical
systems is, in Aubry’s sense [Aubry & Abramovici,

—~

1990], at the anti-integrable limit if it becomes
non-deterministic and reduces to a subshift of fi-
nite type. The following definition originates from
[Aubry, 1995] and was re-written in [Chen, 2006] to
fit the current situation.

Definition 2.1. A family of C!-diffeomorphisms f.

of R™, parametrized by e,
ziy1 = fe(z), i€Z, (3)

is called anti-integrable when € — 0 if

(i) there exists a family of functions L. : R™ x R" —

R™, parametrized by €, such that the recurrence
relation defined by L(z;, zi+1) = 0 is equivalent
to (3) for nonzero € and such that the limit

li_lg% Le(2i, ziv1) = Lo(2i, zi4+1)

exists and is independent of z;11;

ii) the set X of solutions {z; }iez of Lo(z;, zi+1) = 0 for

all 4 can be characterized bijectively by a subset of
&% of infinite sequences with & a certain finite set.

The limit ¢ — 0 is called the anti-integrable
limit of f.. We call a sequence {z;}icz comprising
the solutions of Ly(z;,zi+1) = 0 for all i an anti-
integrable orbit or anti-integrable solution of the
map f. when ¢ — 0.

A remarkable significance of the anti-integrable
limit is as follows. Endow the set & with the discrete
topology and the set &% with the product topology.
Then, at the anti-integrable limit, the system is vir-
tually a subshift with #(&) symbols, where # (&)
is the cardinality of the set &.

For maps satisfying some non-degeneracy con-
dition, the theory of anti-integrable limit says
that the embedded symbolic dynamics at the limit
persists to perturbations. Let o = {z| z =
{zi}iez, zi € R™, bounded} endowed with the sup
norm be the Banach space of bounded sequences in
R™. Define a map F : loo X R = [ by

F(z,e) = {Fi(z,¢€) }icz
with
Fi(Z> 6) = L€(zi7 ZiJrl)?
then the theory can be formulated rigorously by sev-

eral steps (see for example [Aubry & Abramovici,
1990; Chen, 2006; MacKay & Meiss, 1992]).

(i) A bounded anti-integrable orbit z is precisely
such that F(z',0) = 0.

(i) Let ¥ C (R™)Z be the set constituting all such
zl’s in step (i).



(iii) Assume F(z,€) is C' in a neighbourhood of
(z',0). If the linear map

DZF(ZT,O) oo = oo,

which is the partial derivative of F' at (zf, 0) with
respect to z, is invertible, then the implicit func-
tion theorem implies there exists ¢y and a unique
C!-function

z*(-;zT) R — s,
€ z*(e;zT) ={z/(¢ ZT)}ieZ (4)

such that F(z*(¢;z"),¢) = 0 and z*(0;2") = 2!
for 0 < |¢| < €p.

(iv) Suppose the assumptions in step (iii) are fulfilled
for every z' € ¥ and € is independent of zf. Let
the projection z = (zp,21,--+) +— 20 € R" be
denoted by 7. The composition of mappings

2 25 z*(e;21) V= zi(e:z")

is a continuous bijection with the product topol-

ogy.
(v) Let the set A be defined by

A= | n(a(eah)
ztex
= U z(e;27).

ztex

Under the assumption o(X) = X, the following
diagram commutes when 0 < || < €p.

POy
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Remark 2.1. An anti-integrable orbit z! is called
non-degenerate if the differential map D,F(zf,0)
in the step (iii) above is invertible.

The following proposition provides a useful
method to estimate a lower bound of |e| in step
(iii). Its proof is easy (see for example [Kolmogorov
& Fomin, 1970]), thus we omit it.

Proposition 1. Assume zl is a non-degenerate
anti-integrable solution of F(z,0) = 0, and z*(e; z'),
€0 are such that as in step (iii). If € satisfies

1
1D, F(=t,0)~ 1’

|D,F(z*(¢;2),€)— D, F(z',0)|| <

then |e| < eg.
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3. Proof of the Devaney-Nitecki
region for the Hénon family

To start with, we need a bounded domain with
which the bounded orbits of the Hénon map are
confined. The following result is first proved in [De-
vaney & Nitecki, 1979].

Proposition 2. Suppose b # 0 and a > 2(1 + |b|)?.
Let {(x4,yi) }iez be a bounded orbit of the Hénon
map (1), then R, < sup;cz |zi| < R, where R, sat-
isfies

R2=a—(1+|bDR (5)

and

R 1+ bl + /(14 |b])? + 4a
- 2

Proof. Our proof for the upper bound is adapted
from [Mummert, 2008]. Let M = sup;cz |z;|. Then,
for any 6 > 0 there exists ¢t € Z such that |z >
M —6and so M > |z¢y1| > —a — |b|M + (M — §)%.
Consequently, M2—(1+|b|)M —a < 0, which implies
Sy |oi] < .

For the lower bound, because (x;,y;) must be-
long to the intersection ”H;,l)([—R, R] x
[~ [blR, [b[R]) N Hap ([~ R, R] x [~[b|R, [o|R]) for ev-
ery i € Z, we infer that |x;| > R, where R, satis-
fies Hqp(—Rx, |b|R) = (—R,bR,). (See also Fig. 1 of
this paper and Fig. 4 of [Devaney & Nitecki, 1979].)
And, the last equality gives rise to (5). W

Remark 3.1. Note that R, > 0 if a > 2(1+ |b])? and
R.=0if a =2(1 + [b])2.

It is convenient to consider the Hénon map in
the following form

Hop(,y) = (Va(l = 2?) + by, —2).  (6)

The two maps (1) and (6) are equivalent by the
transformation (z,y) — (—+v/ax,—+/aby). We em-
phasize that they are equivalent only if both a and
b are non-zero and of finite value. Fig. 1 depicts the
image and pre-image of domain

S={(z,y)] —r<z<r, —r<y<r}

for an area-preserving Hénon map of the form (6)
for a = 10 and depicts the position of the point r,,
where

&

Te =

B

(1 + b))

2a

(1 +[b])?
2a

[
=

(14 |b))? +4a —
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and

r =

)

ﬂ
NG
\/1+ (1+ b))

2f{<1+|b|>

In the figure, the image of the horizontal line
segment (red colour) connecting the two points
(=r,—r) and (r,—r) is the red parabola, while
the image of the line segment (blue colour) con-
necting (—r,r) and (r,r) is the blue parabola.
The pre-image of the vertical line segment (green
colour) connecting (—r, —r) and (—r,r) is the green
parabola, while the pre-image of the line segment
(black colour) connecting (r,—r) and (r,r) is the
black parabola.

(1+ [o)?

14 6)2+4
(L4 1[0])° + 4a + o

(1+10])* + 4&} .

Fig. 1. The image and pre-image of the domain S for the
orientation-preserving Hénon map H, 1 with a = 10. Notice
that the intersection of the image and pre-image consists of
four disjoint sets.

Rescale the parameter by letting

c=1/Va,

then {(z;,yi)}icz is an orbit of H, if and only if
{zi}iez satisfies the following recurrence relation

e(xiy1 +bxi—1) + l’? —1=0

for each integer i. Let x = {x;};cz be an element
of the Banach space [, of bounded sequences in R.

Define F(x,€) = {Fi(x,€)},cz by
F,‘(X, 6) = 6(1‘1‘4.1 + b:ri_l) + xf — 1, (7)

then {(z,v;)}iez is a bounded orbit of H,y if and
only if F(x,€) = 0.

The following result provides an alternative
proof of the Devaney-Nitecki locus. (Notice that the
inequality (8) below is equivalent to inequality (2).)

Theorem 1. Let F : loo XR — I be defined as (7).
Providing
2
b#0 and €< 8)

V5 +2V5(1+ b))’

there corresponds a unique C'-family of points
x*(e;x1) = {z¥(e;x") }iez in loo parametrized by e
for any anti-integrable orbit x' such that x*(0;x) =
xI and F(x*(e;xt),€) = 0.

Proof. Certainly F is a C''-map. Its partial deriva-

tive at (x, €) with respect to x is a linear map which
in matrix form is

€ 2x_1 €b

Dy F(x,¢€) = € 2xg eb
€ 2x1 €b

It is easy to see that F(x,0) = 0 if and only if
x € {#+1}%. Consequently, Dy F(x',0) is invertible
because it is a diagonal matrix with entries +2. We
then have

_ 1
IDF (et 0) 7 = 5

We also have

DxF(X*(G;XT)a E) - DXF(XTa 0) =
€ 2x*, — 2$T_1 eb
€ 2z — 295:5 eb
€ 2x] — 2;101 eb

a tri-diagonal matrix. (In the above equation, we
have used x} = x}(e;x') for all i € Z for simplicity
sake.) Thus,

IDxF(x*(e;xT), €) = DxF(x', 0)]]

=€+ 2sup |z} (e;x )—a:T]—i-e\b\
1€EZL



According to Proposition 2, the fact that x*(e;x')
is a bounded orbit implies that

xf(e;xT) € [—r, —ry) U (ry, 7]

for all i € Z. Because z}(e;x') is a continuation of
azj € {£1}, we have

|27 (e;xT) — xi\ <l-r, VieZ

(It is not difficult to verify that r — 1 < 1 —r,.)
Then, the inequality

re > S(1+ b)) (9)

guarantees the following condition

1

| Dy F(x*(€;x1), €)= Dy F(xF,0)|| <

Consequently, we conclude from (9) that € < ¢ if

€< 2 <\/5 F2v5(1+ ]b|)>71. n

4. Estimating shift locus for the

logistic maps
We proceed to investigate the family of logistic
maps x — px(l — ). The logistic map is anti-
integrable at the limit y — oo [Chen, 2007]. To
see this, let

e=1/p,
and rewrite the logistic map as another map F'(-,€)
in the space lo = {x| x = {0, 21, 22,...}, x; €

R, bounded} of bounded sequences with the sup
norm:

F:lo XR =y,
(x,€) = F(x,€) = {Fo(x,€), F1(x,€),...}

with Fj(x,€) = —exi11 + x;(1 — ;). It is readily to
see that x is a bounded orbit of the logistic map
if and only if it solves F(x,e¢) = 0. Let ¥ denote
the space of sequences of 0’s and 1’s, ¥ = {a] a =
{a;}2y, ai =0 or 1}. As a consequence,

Fx',0)=0 < xlex.

Theorem 2. Providing ¢ < 1/(2 4+ +/5), there cor-
responds a unique C-family of points x*(e;x') =
{x}(e;x") }ien in loo parametrized by € for any anti-
integrable orbit x' such that x*(0;x7) = x! and
F(x*(e;x1),e) = 0.

[ DxF (T, 0) =
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Proof. The proof follows the same line as that of
Theorem 1. Obviously, F is a C'-map with its par-
tial derivative with respect to x a linear map, which
can be realized in matrix form as

1 -2z —e 0
0 1—2%1 —€ B
DxF(x,€) = 0 0 1-—2zg--

Accordingly, D, F(x',0) is invertible because it is a
diagonal matrix with entries 1. We have

| D F(x",0)7 = 1.
Then, as claimed in (4), there is e and a
unique C'-function x*(-;x') : R — I, such that

F(x*(e;x1),€) = 0 provided 0 < € < ¢5. We have

DxF(X*(E;XT)7€) - DXF(XTaO) =

-2z + 2:1:8 —€ 0
0 —2t +22]  —e
0 0 —2x% + 2} - -

(In the above equation, we have used z} = z}(e;x")
for all ¢ € N for simplicity sake.) Evidently,

x:(ev XT) € [Oa QZ’L] U [va 1]
for all i € N, where (see Fig. 2)

1 —+1—4e

Ty — 9

and

_1+\/1—4e

TR B

And, because z}(e;x') is a continuation of x;r €
{0,1}, we obtain

|DF (s (6xT),€) — DeF(xT,0)
= 2sup |z} — xj| +e
1€N
<2z +e

=1—+1—4e+e.

In the light of Proposition 1, we infer that ¢y <
—2+4++5 (or equivalently p > 2 + \/5) [ |
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The graph of 5z(1 — z) and corresponding zj, and

5. Discussion

We close this paper with two remarks regarding ob-
taining better estimates of the horseshoe loci for the
Hénon and logistic maps by taking advantage of the
complex analysis.

Remark 5.1. When a > 2(1 + |b|)? and b # 0, De-
vaney and Nitecki [1979] also proved that the set
A = N,ez Hyy(S) is a topological horseshoe and
that the Hénon map restricted to its non-wandering
set 2 C A is topologically semi-conjugate to the
two-sided shift with two symbols. By means of com-
plex analysis techniques, it has been shown that the
semi-conjugacy is in fact a conjugacy and 2 = A
(see [Hubbard & Oberste-Vorth, 1995; Morosawa et
al., 2000; Mummert, 2008]). In particular, Mum-
mert’s proof is based on the idea of Sterling and
Meiss [1998] but in the complex variable setting.

Remark 5.2. 1t is well-known that the logistic map
restricted to the invariant set ()2, f,"([0,1]) is
topologically conjugate to the Bernoulli shift with
two symbols not only when g > 2 + /5 but also
u > 4. For approach by complex analysis, we refer
the reader to [Robinson, 1995|, where the Poincaré
metric and the Schwarz lemma are employed. (For
approach by making use of repelling hyperbolicity
of the invariant set, see comments in [Chen, 2007,
2008] and the references therein.)
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