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1. Introduction

The present work is devoted to the existence of stationary solutions of the following
system of integro-differential equations

∂um

∂t
= −Dm

(
− ∂2

∂x2

)s

um+

∫ ∞

−∞
Km(x−y)gm(u(y, t))dy+fm(x), 1 ≤ m ≤ N

(1.1)
appearing in cell population dynamics. The space variable x here corresponds to the
cell genotype, functions um(x, t) describe the cell density distributions for various
groups of cells as functions of their genotype and time,

u(x, t) = (u1(x, t), u2(x, t), ..., uN(x, t))
T .
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The right side of this system of equations describes the evolution of cell densities
due to cell proliferation, mutations and cell influx or efflux. The anomalous dif-
fusion terms with positive coefficients Dm correspond to the change of genotype
due to small random mutations, and the nonlocal production terms describe large
mutations. Functions gm(u) denote the rates of cell birth which depend on u (den-
sity dependent proliferation), and the kernels Km(x− y) express the proportions of
newly born cells changing their genotype from y to x. We assume that they depend
on the distance between the genotypes. The functions fm(x) describe the influx or
efflux of cells for different genotypes.

The operator

(
− ∂2

∂x2

)s

in system (1.1) describes a particular case of anoma-

lous diffusion actively studied in the context of different applications in plasma
physics and turbulence [11], [12], surface diffusion [13], [15], semiconductors [16]
and so on. Anomalous diffusion can be understood as a random process of par-
ticle motion characterized by the probability density distribution of jump length.
The moments of this density distribution are finite in the case of normal diffusion,
but this is not the case for superdiffusion. Asymptotic behavior at infinity of the
probability density function determines the value s of the power of the Laplacian

[14]. The operator

(
− ∂2

∂x2

)s

is defined by means of the spectral calculus. In

the present work we will consider the case of 0 < s < 1/4. A similar problem in
the case of the standard Laplace operator in the diffusion term was studied recently
in [26]. Note that the restriction on the power s here comes from the solvability
conditions of our problem.

Let us set all Dm = 1 and establish the existence of solutions of the system of
equations

−

(
− d2

dx2

)s

um+

∫ ∞

−∞
Km(x− y)gm(u(y))dy+ fm(x) = 0, 0 < s <

1

4
, (1.2)

with 1 ≤ m ≤ N . Let us consider the case where the linear part of this operator
fails to satisfy the Fredholm property. As a consequence, conventional methods of
nonlinear analysis may not be applicable. We use solvability conditions for non
Fredholm operators along with the method of contraction mappings.

Consider the equation

−∆u+ V (x)u− au = f, (1.3)

where u ∈ E = H2(Rd) and f ∈ F = L2(Rd), d ∈ N, a is a constant and the
scalar potential function V (x) is either zero identically or converges to 0 at infinity.
For a ≥ 0, the essential spectrum of the operator A : E → F corresponding to the
left side of problem (1.3) contains the origin. As a consequence, such operator fails
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to satisfy the Fredholm property. Its image is not closed, for d > 1 the dimension
of its kernel and the codimension of its image are not finite. The present work
deals with the studies of some properties of the operators of this kind. Note that
elliptic problems with non Fredholm operators were treated actively in recent years.
Approaches in weighted Sobolev and Hölder spaces were developed in [2], [3],
[4], [5], [6]. The non Fredholm Schrödinger type operators were studied with the
methods of the spectral and the scattering theory in [17], [19], [21]. The Laplace
operator with drift from the point of view of non Fredholm operators was treated
in [20] and linearized Cahn-Hilliard problems in [22] and [24]. Nonlinear non
Fredholm elliptic problems were studied in [23] and [25]. Important applications
to the theory of reaction-diffusion equations were developed in [8], [9]. Non
Fredholm operators arise also when studying wave systems with an infinite number
of localized traveling waves (see [1]). In particular, when a = 0 the operator A
is Fredholm in some properly chosen weighted spaces (see [2], [3], [4], [5], [6]).
However, the case of a ̸= 0 is significantly different and the approach developed in
these articles cannot be used. Front propagation equations with anomalous diffusion
were studied largely in recent years (see e.g. [28], [29]).

We set Km(x) = εmKm(x) with εm ≥ 0, such that

ε := max1≤m≤Nεm

and suppose that the following assumption is satisfied.

Assumption 1. Let 1 ≤ m ≤ N and consider 0 < s <
1

4
. Let fm(x) : R → R be

nontrivial for some m. Let fm(x) ∈ L1(R) ∩ L2(R) and(
− d2

dx2

) 1
2
−s

fm(x) ∈ L2(R).

Assume also that Km(x) : R → R, such that Km(x) ∈ L1(R) and(
− d2

dx2

) 1
2
−s

Km(x) ∈ L2(R).

Moreover,

K2 :=
N∑

m=1

∥Km(x)∥2L1(R) > 0

and

Q2 :=
N∑

m=1

∥∥∥∥∥
(

− d2

dx2

) 1
2
−s

Km(x)

∥∥∥∥∥
2

L2(R)

> 0.
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Let us choose the space dimension d = 1, which is related to the solvability
conditions for the linear Poisson type problem (4.1) stated in Lemma 6 below. We
use the Sobolev spaces for 0 < s ≤ 1, namely

H2s(R) :=

{
ϕ(x) : R → R | ϕ(x) ∈ L2(R),

(
− d2

dx2

)s

ϕ ∈ L2(R)

}
equipped with the norm

∥ϕ∥2H2s(R) := ∥ϕ∥2L2(R) +

∥∥∥∥∥
(

− d2

dx2

)s

ϕ

∥∥∥∥∥
2

L2(R)

. (1.4)

For a vector vector function

u(x) = (u1(x), u2(x), ..., uN(x))
T

we will use the norm

∥u∥2H1(R,RN ) := ∥u∥2L2(R,RN ) +
N∑

m=1

∥∥∥∥∥dum

dx

∥∥∥∥∥
2

L2(R)

, (1.5)

where

∥u∥2L2(R,RN ) :=
N∑

m=1

∥um∥2L2(R).

By means of the standard Sobolev inequality in one dimension (see e.g. Section 8.5
of [10]) we have

∥ϕ∥L∞(R) ≤
1√
2
∥ϕ∥H1(R). (1.6)

When all the nonnegative parameters εm vanish, we obtain the linear Poisson type
equations (

− d2

dx2

)s

um = fm(x), 1 ≤ m ≤ N. (1.7)

By virtue of Lemma 6 below along with Assumption 1 each equation (1.7) has a
unique solution

u0,m(x) ∈ H2s(R), 0 < s <
1

4
,

such that no orthogonality conditions are required. By means of Lemma 6, when
1
4
≤ s < 1, certain orthogonality relations (4.3) and (4.4) are necessary to be able

to solve problem (1.7) in H2s(R). By means of Assumption 1, since(
− d2

dx2

) 1
2

u0,m(x) =

(
− d2

dx2

) 1
2
−s

fm(x) ∈ L2(R),
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we get for the unique solution of linear problem (1.7) that u0,m(x) ∈ H1(R), such
that

u0(x) := (u0,1(x), u0,2(x), ..., u0,N(x))
T ∈ H1(R,RN).

We seek the resulting solution of nonlinear system of equations (1.2) as

u(x) = u0(x) + up(x), (1.8)

where
up(x) := (up,1(x), up,2(x), ..., up,N(x))

T .

Clearly, we arrive at the perturbative system of equations(
− d2

dx2

)s

up,m = εm

∫ ∞

−∞
Km(x− y)gm(u0(y) + up(y))dy, 0 < s <

1

4
, (1.9)

where 1 ≤ m ≤ N . Let us introduce a closed ball in the Sobolev space

Bρ := {u(x) ∈ H1(R,RN) | ∥u∥H1(R,RN ) ≤ ρ}, 0 < ρ ≤ 1. (1.10)

We seek the solution of problem (1.9) as the fixed point of the auxiliary nonlinear
system of equations(

− d2

dx2

)s

um = εm

∫ ∞

−∞
Km(x− y)gm(u0(y) + v(y))dy, 0 < s <

1

4
, (1.11)

with 1 ≤ m ≤ N in ball (1.10). For a given vector function v(y) this is a system
of equations with respect to u(x). The left side of (1.11) involves the non Fredholm
operator (

− d2

dx2

)s

: H2s(R) → L2(R).

Its essential spectrum fills the nonnegative semi-axis [0,+∞). Therefore, such op-
erator has no bounded inverse. The similar situation appeared in articles [23] and
[25] but as distinct from the present situation, the equations studied there required
orthogonality conditions. The fixed point technique was used in [18] to estimate
the perturbation to the standing solitary wave of the Nonlinear Schrödinger (NLS)
equation when either the external potential or the nonlinear term in the NLS were
perturbed but the Schrödinger operator involved in the nonlinear equation there had
the Fredholm property (see Assumption 1 of [18], also [7]). We define the closed
ball in the space of N dimensions as

I :=
{
z ∈ RN | |z| ≤ 1√

2
(∥u0∥H1(R,RN ) + 1)

}
(1.12)
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along with the closed ball in the space of C2(I,RN) functions, namely

DM := {g(z) := (g1(z), g2(z), ..., gN(z)) ∈ C2(I,RN) | ∥g∥C2(I,RN ) ≤ M},
(1.13)

where M > 0. Here the norms

∥g∥C2(I,RN ) :=
N∑

m=1

∥gm∥C2(I), (1.14)

∥gm∥C2(I) := ∥gm∥C(I) +
N∑

n=1

∥∥∥∂gm
∂zn

∥∥∥
C(I)

+
N∑

n,l=1

∥∥∥ ∂2gm
∂zn∂zl

∥∥∥
C(I)

, (1.15)

where ∥gm∥C(I) := maxz∈I |gm(z)|. Let us make the following assumption on the
nonlinear part of system (1.2).

Assumption 2. Let 1 ≤ m ≤ N . Assume that gm(z) : RN → R, such that
gm(0) = 0 and ∇gm(0) = 0. It is also assumed that g(z) ∈ DM and it does not
vanish identically in the ball I .

We introduce the operator Tg, such that u = Tgv, where u is a solution of system
(1.11). Our first main proposition is as follows.

Theorem 3. Let Assumptions 1 and 2 hold. Then for every ρ ∈ (0, 1] there exists
ε∗ > 0, such that system (1.11) defines the map Tg : Bρ → Bρ, which is a strict
contraction for all 0 < ε < ε∗. The unique fixed point up(x) of this map Tg is the
only solution of system (1.9) in Bρ.

Evidently, the resulting solution u(x) of system (1.2) will be nontrivial because
the source terms fm(x) are nontrivial for some 1 ≤ m ≤ N and all gm(0) = 0 as
assumed. We make use of the following trivial lemma.

Lemma 4. For R ∈ (0,+∞) consider the function

φ(R) := αR1−4s +
β

R4s
, 0 < s <

1

4
, α, β > 0.

It achieves the minimal value at R∗ :=
4βs

α(1− 4s)
, which is given by

φ(R∗) =
(1− 4s)4s−1

(4s)4s
α4sβ1−4s.

Our second main result is about the continuity of the fixed point of the map Tg

which existence was proved in Theorem 3 above with respect to the nonlinear vector
function g.
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Theorem 5. Let j = 1, 2, the assumptions of Theorem 3 hold, such that up,j(x)
is the unique fixed point of the map Tgj : Bρ → Bρ, which is a strict contraction for
all 0 < ε < ε∗j and δ := min(ε∗1, ε

∗
2). Then for all 0 < ε < δ the inequality

∥up,1 − up,2∥H1(R,RN ) ≤ C∥g1 − g2∥C2(I,RN ) (1.16)

holds, where C > 0 is a constant.

We proceed to the proof of our first main proposition.

2. The existence of the perturbed solution

Proof of Theorem 3. We choose arbitrarily v(x) ∈ Bρ and designate the term in-
volved in the integral expression in the right side of system (1.11) as

Gm(x) := gm(u0(x) + v(x)), 1 ≤ m ≤ N.

Let us use the standard Fourier transform

ϕ̂(p) :=
1√
2π

∫ ∞

−∞
ϕ(x)e−ipxdx. (2.1)

Obviously, we have the inequality

∥ϕ̂(p)∥L∞(R) ≤
1√
2π

∥ϕ(x)∥L1(R). (2.2)

Let us apply (2.1) to both sides of system (1.11) and obtain

ûm(p) = εm
√
2π

K̂m(p)Ĝm(p)

|p|2s
, 1 ≤ m ≤ N.

Thus we express the norm as

∥um∥2L2(R) = 2πε2m

∫ ∞

−∞

|K̂m(p)|2|Ĝm(p)|2

|p|4s
dp, 1 ≤ m ≤ N. (2.3)

As distinct from articles [23] and [25] involving the standard Laplace operator in
the diffusion term, here we do not try to control the norm∥∥∥∥∥K̂m(p)

|p|2s

∥∥∥∥∥
L∞(R)

.

Instead, we estimate the right side of (2.3) using the analog of inequality (2.2) ap-
plied to functions Km and Gm with R > 0 as

2πε2m

[ ∫
|p|≤R

|K̂m(p)|2|Ĝm(p)|2

|p|4s
dp+

∫
|p|>R

|K̂m(p)|2|Ĝm(p)|2

|p|4s
dp
]
≤
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≤ ε2m∥Km∥2L1(R)

{
1

π
∥Gm(x)∥2L1(R)

R1−4s

1− 4s
+

1

R4s
∥Gm(x)∥2L2(R)

}
. (2.4)

Due to the fact that v(x) ∈ Bρ, we easily obtain

∥u0 + v∥L2(R,RN ) ≤ ∥u0∥H1(R,RN ) + 1.

Sobolev inequality (1.6) implies that

|u0 + v| ≤ 1√
2
(∥u0∥H1(R,RN ) + 1).

Let the dot denote the scalar product of two vectors in RN . Formula

Gm(x) =

∫ 1

0

∇gm(t(u0(x) + v(x))).(u0(x) + v(x))dt, 1 ≤ m ≤ N

with the ball I defined in (1.12) yields

|Gm(x)| ≤ supz∈I |∇gm(z)||u0(x) + v(x)| ≤ M |u0(x) + v(x)|.

Thus

∥Gm(x)∥L2(R) ≤ M∥u0 + v∥L2(R,RN ) ≤ M(∥u0∥H1(R,RN ) + 1).

Apparently, for t ∈ [0, 1] and 1 ≤ m, j ≤ N , we have

∂gm
∂zj

(t(u0(x) + v(x))) =

∫ t

0

∇∂gm
∂zj

(τ(u0(x) + v(x))).(u0(x) + v(x))dτ.

This implies∣∣∣∂gm
∂zj

(t(u0(x) + v(x)))
∣∣∣ ≤ supz∈I

∣∣∣∇∂gm
∂zj

∣∣∣|u0(x) + v(x)| ≤

≤
N∑

n=1

∥∥∥ ∂2gm
∂zn∂zj

∥∥∥
C(I)

|u0(x) + v(x)|.

Therefore,

|Gm(x)| ≤ |u0(x)+v(x)|
N∑

n,j=1

∥∥∥ ∂2gm
∂zn∂zj

∥∥∥
C(I)

|u0,j(x)+vj(x)| ≤ M |u0(x)+v(x)|2.

Hence,

∥Gm(x)∥L1(R) ≤ M∥u0 + v∥2L2(R,RN ) ≤ M(∥u0∥H1(R,RN ) + 1)2. (2.5)
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This enables us to obtain the upper bound for the right side of (2.4) as

ε2mM
2∥Km∥2L1(R)(∥u0∥H1(R,RN ) + 1)2

{
(∥u0∥H1(R,RN ) + 1)2R1−4s

π(1− 4s)
+

1

R4s

}
,

with R ∈ (0,+∞). Lemma 4 gives us the minimal value of the expression above.
Thus,

∥um∥2L2(R) ≤ ε2∥Km∥2L1(R)(∥u0∥H1(R,RN ) + 1)2+8s M2

(1− 4s)(4πs)4s
,

such that

∥u∥2L2(R,RN ) ≤ ε2K2(∥u0∥H1(R,RN ) + 1)2+8s M2

(1− 4s)(4πs)4s
. (2.6)

Clearly, (1.11) yields(
− d2

dx2

) 1
2

um(x) = εm

(
− d2

dx2

) 1
2
−s ∫ ∞

−∞
Km(x− y)Gm(y)dy, 1 ≤ m ≤ N.

By means of the analog of inequality (2.2) applied to function Gm along with (2.5)
we obtain ∥∥∥dum

dx

∥∥∥2
L2(R)

≤ ε2m∥Gm∥2L1(R)

∥∥∥∥∥
(

− d2

dx2

) 1
2
−s

Km

∥∥∥∥∥
2

L2(R)

≤

≤ ε2M2(∥u0∥H1(R,RN ) + 1)4

∥∥∥∥∥
(

− d2

dx2

) 1
2
−s

Km

∥∥∥∥∥
2

L2(R)

,

such that
N∑

m=1

∥∥∥dum

dx

∥∥∥2
L2(R)

≤ ε2M2(∥u0∥H1(R,RN ) + 1)4Q2. (2.7)

Therefore, by virtue of the definition of the norm (1.5) along with inequalities (2.6)
and (2.7) we derive the estimate from above for ∥u∥H1(R,RN ) as

εM(∥u0∥H1(R,RN ) + 1)2

[
K2(∥u0∥H1(R,RN ) + 1)8s−2

(1− 4s)(4πs)4s
+Q2

] 1
2

≤ ρ (2.8)

for all ε > 0 sufficiently small. Hence, u(x) ∈ Bρ as well. If for a certain v(x) ∈ Bρ

there exist two solutions u1,2(x) ∈ Bρ of system (1.11), their difference w(x) :=
u1(x)− u2(x) ∈ L2(R,RN) solves(

− d2

dx2

)s

wm = 0, 1 ≤ m ≤ N.
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Because the operator

(
− d2

dx2

)s

considered on the whole real line does not possess

nontrivial square integrable zero modes, w(x) vanishes a.e. on R. Thus, system
(1.11) defines a map Tg : Bρ → Bρ for all ε > 0 small enough.

Our goal is to establish that this map is a strict contraction. Let us choose arbi-
trarily v1,2(x) ∈ Bρ. The argument above implies u1,2 := Tgv1,2 ∈ Bρ as well. By
means of (1.11) we have for 1 ≤ m ≤ N(

− d2

dx2

)s

u1,m = εm

∫ ∞

−∞
Km(x− y)gm(u0(y) + v1(y))dy, (2.9)

(
− d2

dx2

)s

u2,m = εm

∫ ∞

−∞
Km(x− y)gm(u0(y) + v2(y))dy, (2.10)

0 < s <
1

4
. We introduce

G1,m(x) := gm(u0(x) + v1(x)), G2,m(x) := gm(u0(x) + v2(x)), 1 ≤ m ≤ N

and apply the standard Fourier transform (2.1) to both sides of systems (2.9) and
(2.10). This yields

û1,m(p) = εm
√
2π

K̂m(p)Ĝ1,m(p)

|p|2s
, û2,m(p) = εm

√
2π

K̂m(p)Ĝ2,m(p)

|p|2s
.

Obviously,

∥u1,m − u2,m∥2L2(R) = ε2m2π

∫ ∞

−∞

|K̂m(p)|2|Ĝ1,m(p)− Ĝ2,m(p)|2

|p|4s
dp.

Evidently, it can be estimated from above by virtue of inequality (2.2) by

ε2∥Km∥2L1(R)

{
1

π
∥G1,m(x)−G2,m(x)∥2L1(R)

R1−4s

1− 4s
+
∥G1,m(x)−G2,m(x)∥2L2(R)

R4s

}
,

with R ∈ (0,+∞). We will make use of the identity for 1 ≤ m ≤ N

G1,m(x)−G2,m(x) =

∫ 1

0

∇gm(u0(x) + tv1(x) + (1− t)v2(x)).(v1(x)− v2(x))dt.

Clearly, for t ∈ [0, 1]

∥v2(x)+t(v1(x)−v2(x))∥H1(R,RN ) ≤ t∥v1(x)∥H1(R,RN )+(1−t)∥v2(x)∥H1(R,RN ) ≤

≤ ρ,
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such that v2(x) + t(v1(x)− v2(x)) ∈ Bρ. Hence,

|G1,m(x)−G2,m(x)| ≤ supz∈I |∇gm(z)||v1(x)− v2(x)| ≤ M |v1(x)− v2(x)|.

This yields

∥G1,m(x)−G2,m(x)∥L2(R) ≤ M∥v1 − v2∥L2(R,RN ) ≤ M∥v1 − v2∥H1(R,RN ).

Evidently, for 1 ≤ m, j ≤ N , we can express
∂gm
∂zj

(u0(x) + tv1(x) + (1− t)v2(x))

as∫ 1

0

∇∂gm
∂zj

(τ [u0(x) + tv1(x) + (1− t)v2(x)]).[u0(x) + tv1(x) + (1− t)v2(x)]dτ,

such that for t ∈ [0, 1]∣∣∣∂gm
∂zj

(u0(x) + tv1(x) + (1− t)v2(x))
∣∣∣ ≤

≤
N∑

n=1

∥∥∥∥∥ ∂2gm
∂zn∂zj

∥∥∥∥∥
C(I)

(|u0(x)|+ t|v1(x)|+ (1− t)|v2(x)|).

We obtain the upper bound for G1,m(x)−G2,m(x) in the absolute value as

M |v1(x)− v2(x)|
(
|u0(x)|+

1

2
|v1(x)|+

1

2
|v2(x)|

)
.

By means of the Schwarz inequality we arrive at the estimate from above for the
norm ∥G1,m(x)−G2,m(x)∥L1(R) as

M∥v1 − v2∥L2(R,RN )

(
∥u0∥L2(R,RN ) +

1

2
∥v1∥L2(R,RN ) +

1

2
∥v2∥L2(R,RN )

)
≤

≤ M∥v1 − v2∥H1(R,RN )(∥u0∥H1(R,RN ) + 1). (2.11)

Thus we arrive at the upper bound for the norm ∥u1(x)− u2(x)∥2L2(R,RN ) given by

ε2K2M2∥v1 − v2∥2H1(R,RN )

{ 1
π
(∥u0∥H1(R,RN ) + 1)2

R1−4s

1− 4s
+

1

R4s

}
.

By means of Lemma 4 we minimize the expression above over R ∈ (0,+∞) to
obtain the estimate from above for ∥u1(x)− u2(x)∥2L2(R,RN ) as

ε2K2M2∥v1 − v2∥2H1(R,RN )

(∥u0∥H1(R,RN ) + 1)8s

(1− 4s)(4πs)4s
. (2.12)
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By virtue of formulas (2.9) and (2.10), for 1 ≤ m ≤ N we have(
− d2

dx2

) 1
2

(u1,m−u2,m) = εm

(
− d2

dx2

) 1
2
−s ∫ ∞

−∞
Km(x−y)[G1,m(y)−G2,m(y)]dy.

Inequalities (2.2) and (2.11) yield∥∥∥∥∥ d

dx
(u1,m − u2,m)

∥∥∥∥∥
2

L2(R)

≤ ε2∥G1,m −G2,m∥2L1(R)

∥∥∥∥∥
(

− d2

dx2

) 1
2
−s

Km

∥∥∥∥∥
2

L2(R)

≤

≤ ε2M2∥v1 − v2∥2H1(R,RN )(∥u0∥H1(R,RN ) + 1)2

∥∥∥∥∥
(

− d2

dx2

) 1
2
−s

Km

∥∥∥∥∥
2

L2(R)

,

such that

N∑
m=1

∥∥∥∥∥ d

dx
(u1,m − u2,m)

∥∥∥∥∥
2

L2(R)

≤ ε2M2∥v1 − v2∥2H1(R,RN )(∥u0∥H1(R,RN ) + 1)2Q2.

(2.13)
By virtue of (2.12) and (2.13) the norm ∥u1 − u2∥H1(R,RN ) can be estimated from
above by the expression

εM(∥u0∥H1(R,RN ) + 1)

{
K2(∥u0∥H1(R,RN ) + 1)8s−2

(1− 4s)(4πs)4s
+Q2

} 1
2

∥v1 − v2∥H1(R,RN ).

(2.14)
This yields that the map Tg : Bρ → Bρ defined by system (1.11) is a strict contrac-
tion for all values of ε > 0 small enough. Its unique fixed point up(x) is the only
solution of system (1.9) in the ball Bρ. The resulting u(x) ∈ H1(R,RN) given by
(1.8) is a solution of system (1.2). Note that by means of (2.8) up(x) tends to zero
in the H1(R,RN) norm as ε → 0.

Then we turn our attention to the proof of the second main statement of our
article.

3. The continuity of the fixed point of the map Tg

Proof of Theorem 5. Obviously, for all 0 < ε < δ we have

up,1 = Tg1up,1, up,2 = Tg2up,2.

Hence
up,1 − up,2 = Tg1up,1 − Tg1up,2 + Tg1up,2 − Tg2up,2.
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Therefore,

∥up,1−up,2∥H1(R,RN ) ≤ ∥Tg1up,1−Tg1up,2∥H1(R,RN )+ ∥Tg1up,2−Tg2up,2∥H1(R,RN ).

Inequality (2.14) yields

∥Tg1up,1 − Tg1up,2∥H1(R,RN ) ≤ εσ∥up,1 − up,2∥H1(R,RN ),

with εσ < 1 since the map Tg1 : Bρ → Bρ under our assumptions is a strict
contraction. Here the positive constant

σ := M(∥u0∥H1(R,RN ) + 1)

{
K2(∥u0∥H1(R,RN ) + 1)8s−2

(1− 4s)(4πs)4s
+Q2

} 1
2

.

Hence, we obtain

(1− εσ)∥up,1 − up,2∥H1(R,RN ) ≤ ∥Tg1up,2 − Tg2up,2∥H1(R,RN ). (3.1)

Clearly, for our fixed point Tg2up,2 = up,2. Let us denote ξ(x) := Tg1up,2. For
1 ≤ m ≤ N , we arrive at(

− d2

dx2

)s

ξm(x) = εm

∫ ∞

−∞
Km(x− y)g1,m(u0(y) + up,2(y))dy, (3.2)

(
− d2

dx2

)s

up,2,m(x) = εm

∫ ∞

−∞
Km(x− y)g2,m(u0(y) + up,2(y))dy, (3.3)

where 0 < s <
1

4
. Let us designate here

G1,2,m(x) := g1,m(u0(x) + up,2(x)), G2,2,m(x) := g2,m(u0(x) + up,2(x)).

We apply the standard Fourier transform (2.1) to both sides of (3.2) and (3.3). This
yields

ξ̂m(p) = εm
√
2π

K̂m(p)Ĝ1,2,m(p)

|p|2s
, ûp,2,m(p) = εm

√
2π

K̂m(p)Ĝ2,2,m(p)

|p|2s
.

Evidently,

∥ξm(x)− up,2,m(x)∥2L2(R) = ε2m2π

∫ ∞

−∞

|K̂m(p)|2|Ĝ1,2,m(p)− Ĝ2,2,m(p)|2

|p|4s
dp.

Apparently, it can be bounded from above by means of (2.2) by

ε2∥Km∥2L1(R)

{
1

π
∥G1,2,m −G2,2,m∥2L1(R)

R1−4s

1− 4s
+ ∥G1,2,m −G2,2,m∥2L2(R)

1

R4s

}
,
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with R ∈ (0,+∞). We use the formula

G1,2,m(x)−G2,2,m(x) =

∫ 1

0

∇[g1,m−g2,m](t(u0(x)+up,2(x))).(u0(x)+up,2(x))dt,

such that

|G1,2,m(x)−G2,2,m(x)| ≤ ∥g1,m − g2,m∥C2(I)|u0(x) + up,2(x)|.

Therefore,

∥G1,2,m −G2,2,m∥L2(R) ≤ ∥g1,m − g2,m∥C2(I)∥u0 + up,2∥L2(R,RN ) ≤

≤ ∥g1,m − g2,m∥C2(I)(∥u0∥H1(R,RN ) + 1).

Let us apply another useful representation formula with 1 ≤ j ≤ N and t ∈ [0, 1],
namely

∂

∂zj
(g1,m − g2,m)(t(u0(x) + up,2(x))) =

=

∫ t

0

∇
[ ∂

∂zj
(g1,m − g2,m)

]
(τ(u0(x) + up,2(x))).(u0(x) + up,2(x))dτ.

Hence ∣∣∣ ∂

∂zj
(g1,m − g2,m)(t(u0(x) + up,2(x)))

∣∣∣ ≤
≤

N∑
n=1

∥∥∥∥∥∂2(g1,m − g2,m)

∂zn∂zj

∥∥∥∥∥
C(I)

|u0(x) + up,2(x)|,

such that

|G1,2,m(x)−G2,2,m(x)| ≤ ∥g1,m − g2,m∥C2(I)|u0(x) + up,2(x)|2.

Thus,

∥G1,2,m −G2,2,m∥L1(R) ≤ ∥g1,m − g2,m∥C2(I)∥u0 + up,2∥2L2(R,RN ) ≤

≤ ∥g1,m − g2,m∥C2(I)(∥u0∥H1(R,RN ) + 1)2. (3.4)

This enables us to derive the upper bound for the norm ∥ξ(x)− up,2(x)∥2L2(R,RN ) as

ε2K2(∥u0∥H1(R,RN ) + 1)2∥g1 − g2∥2C2(I,RN )

[(∥u0∥H1(R,RN ) + 1)2R1−4s

π(1− 4s)
+

1

R4s

]
.

This expression can be trivially minimized over R ∈ (0,+∞) by virtue of Lemma
4. We obtain the inequality

∥ξ(x)− up,2(x)∥2L2(R,RN ) ≤ ε2K2(∥u0∥H1(R,RN ) + 1)2+8s
∥g1 − g2∥2C2(I,RN )

(1− 4s)(4πs)4s
.
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Formulas (3.2) and (3.3) with 1 ≤ m ≤ N yield(
− d2

dx2

) 1
2

ξm(x) = εm

(
− d2

dx2

) 1
2
−s ∫ ∞

−∞
Km(x− y)G1,2,m(y)dy,

(
− d2

dx2

) 1
2

up,2,m(x) = εm

(
− d2

dx2

) 1
2
−s ∫ ∞

−∞
Km(x− y)G2,2,m(y)dy,

such that by means of (2.2) and (3.4) the norm
∥∥∥ d

dx

(
ξm(x)− up,2,m(x)

)∥∥∥2
L2(R)

can

be estimated from above by

ε2∥G1,2,m −G2,2,m∥2L1(R)

∥∥∥∥∥
(

− d2

dx2

) 1
2
−s

Km

∥∥∥∥∥
2

L2(R)

≤

≤ ε2∥g1 − g2∥2C2(I,RN )(∥u0∥H1(R,RN ) + 1)4

∥∥∥∥∥
(

− d2

dx2

) 1
2
−s

Km

∥∥∥∥∥
2

L2(R)

.

Then
N∑

m=1

∥∥∥ d

dx

(
ξm(x)− up,2,m(x)

)∥∥∥2
L2(R)

≤ ε2∥g1 − g2∥2C2(I,RN )(∥u0∥H1(R,RN ) + 1)4Q2.

Therefore, we arrive at ∥ξ(x)− up,2(x)∥H1(R,RN ) ≤

≤ ε∥g1 − g2∥C2(I,RN )(∥u0∥H1(R,RN ) + 1)2

[
K2(∥u0∥H1(R,RN ) + 1)8s−2

(1− 4s)(4πs)4s
+Q2

] 1
2

.

By virtue of inequality (3.1), the norm ∥up,1 − up,2∥H1(R,RN ) can be bounded from
above by

ε

1− εσ
(∥u0∥H1(R,RN ) + 1)2

[
K2(∥u0∥H1(R,RN ) + 1)8s−2

(1− 4s)(4πs)4s
+Q2

] 1
2

∥g1 − g2∥C2(I,RN ),

which completes the proof of the theorem.

4. Auxiliary results

Below we state the solvability conditions proven easily in [27] by applying the
standard Fourier transform (2.1) to the linear Poisson type equation with a square
integrable right side(

− d2

dx2

)s

ϕ = f(x), x ∈ R, 0 < s < 1. (4.1)
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We denote the inner product as

(f(x), g(x))L2(R) :=

∫ ∞

−∞
f(x)ḡ(x)dx, (4.2)

with a slight abuse of notations when the functions involved in (4.2) are not square
integrable, like for instance the one involved in orthogonality condition (4.3) of
Lemma 6 below. Indeed, if f(x) ∈ L1(R) and g(x) is bounded, then the integral in
the right side of (4.2) makes sense. The left side of relation (4.4) is well defined as
well under the stated conditions. We have the following technical proposition.

Lemma 6. Let f(x) : R → R and f(x) ∈ L2(R).
1) When 0 < s < 1

4
and in addition f(x) ∈ L1(R), equation (4.1) admits a

unique solution ϕ(x) ∈ H2s(R).

2) When 1
4
≤ s < 3

4
and additionally |x|f(x) ∈ L1(R), problem (4.1) possesses

a unique solution ϕ(x) ∈ H2s(R) if and only if the orthogonality relation

(f(x), 1)L2(R) = 0 (4.3)

holds.

3) When 3
4
≤ s < 1 and in addition x2f(x) ∈ L1(R), equation (4.1) has a

unique solution ϕ(x) ∈ H2s(R) if and only if orthogonality conditions (4.3) and

(f(x), x)L2(R) = 0 (4.4)

hold.

Note that for the lower values of the power of the negative second derivative

operator 0 < s <
1

4
under the conditions stated above no orthogonality relations

are required to solve the linear Poisson type equation (4.1) in H2s(R).
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priété de Fredholm, CRAS, 340 (2005), 659–664.

[9] A. Ducrot, M. Marion, V. Volpert, Reaction-diffusion problems with non
Fredholm operators, Advances Diff. Equations, 13 (2008), No. 11-12, 1151–
1192.

[10] E. Lieb, M. Loss, Analysis. Graduate Studies in Mathematics, 14, American
Mathematical Society, Providence (1997).

[11] T. Solomon, E. Weeks, H. Swinney. Observation of anomalous diffusion and
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