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Abstract. We prove the existence and the linear stability of Cantor families of small amplitude time
quasi-periodic standing wave solutions (i.e. periodic and even in the space variable x) of a 2-dimensional

ocean with infinite depth under the action of gravity and surface tension.
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1 Introduction and main result

In this paper we prove the existence of non trivial, small amplitude, quasi-periodic in time, linearly stable
gravity-capillary standing water waves of a 2-d perfect, incompressible, irrotational fluid with infinite
depth, under periodic boundary conditions, and which occupies the free boundary region

D,:={(z,y) e TxR:y<ntz), T:=R/(27Z)}.

More precisely we find quasi-periodic in time solutions of the system

6t®+%|V©\2+gn:ﬁW at y = n(x)
AD =0 in D, @
Ve —0 as y — —00
O = 0y® — 0y - 0, P at y = n(x)

where g is the acceleration of gravity, k € [k1, ko], k1 > 0, is the surface tension coefficient and

(M +n2)32 T\ 1+n2

is the mean curvature of the free surface. The unknowns of the problem are the free surface y = n(x)
and the velocity potential ® : D, — R, i.e. the irrotational velocity field v = V, ,® of the fluid. The
first equation in is the Bernoulli condition according to which the jump of pressure across the free
surface is proportional to the mean curvature. The last equation in expresses that the velocity of
the free surface coincides with the one of the fluid particles.

In the sequel we shall assume (with no loss of generality) that the gravity constant g = 1.

Following Zakharov [44] and Craig-Sulem [20], the evolution problem may be written as an
infinite dimensional Hamiltonian system. At each time ¢ € R the profile n(¢, z) of the fluid and the value

%/J(t» :,C) = Cb(t, T, 77(15; x))

of the velocity potential ® restricted to the free boundary uniquely determine the velocity potential ® in
the whole D,,, solving (at each t) the elliptic problem (see e.g. [2], [33])

AP =0 inD,, &(z+2my) =(z,y), Ply—,=19, VO(r,y) —0asy— —oo. (1.2)
As proved in [44], [20], system ([1.1]) is then equivalent to the system

O = G,
L (G +mata)” Now (1.3)

2 1+n2 NTEToRE

1
O +n+ 97 =
where G(n) is the so-called Dirichlet—Neumann operator defined by

G (x) = V1413 0n®@ly—n(x) = (0y®)(x, n(2)) — 12 () (02 ®) (2, 1(2)) (1.4)

(we denote by 7, the space derivative 9,7n.) The operator G(n) is linear in v, self-adjoint with respect
to the L? scalar product and semi positive definite, actually its Kernel are only the constants. It is



well known since Calderon that the Dirichlet-Neumann operator is a pseudo-differential operator with
principal symbol |D|, actually G(n) — |D| € OPS~°°, see section

Furthermore the equations (1.3) are the Hamiltonian system (see [44], [20])

81577 = VwH(Th '(/)) P &ﬂ? = _VUH(U? ¢)

Ou=JV,H(u), u:= (Z) , Ji= (_(}d 1(;1) : (1.5)

where V denotes the L?-gradient, and the Hamiltonian

1 n?
HO.0) = 56, GO,y + [ ot [ VTR ds (16)

is the sum of the kinetic energy

1

1
K = 5 (0.G)oey = 3 [ VO oy,

the potential energy and the energy of the capillary forces (area surface integral) expressed in terms of
the variables (1, ).
The symplectic structure induced by (1.5)) is the standard Darboux 2-form

Wiuy, ug) := (u1, Jug)r2cr,y = (M1, %2)r2(r,) — (¥1,m2) L2(T.) (1.7)

for all uy = (n1,1), u2 = (92, ¥2).
The water-waves system ([1.3)-(L.5]) exhibits several symmetries. First of all, the mass [;ndz is a
prime integral of (|1.3]). Moreover

Bt/wdx:—/ndm—/Vanx:—/ndx
T T T T

because [V, K dz = 0. This follows because R 3 ¢ +— K(c+n,v) is constant (the bottom of the ocean
is at —oo) and so 0 = d, K (n,v)[1] = (V,K,1)r2(r). As a consequence the subspace

Andx:A¢d$:0 (1.8)

is invariant under the evolution of (|1.3|) and we shall restrict to solutions satisfying ((1.8)).
In addition, the subspace of functions which are even in x,

n(@) =n(-z), ¢(x)=1(-z), (1.9)

is invariant under (|1.3)). Thanks to this property and (|1.8)), we shall restrict (1,) to the phase space of
27-periodic functions which admit the Fourier expansion

w) = 3 myeos(ie), w(e) =30 wycos(ja). (1.10)

In this case also the velocity potential ®(z,y) is even and 2w-periodic in 2 and so the xz-component of
the velocity field v = (@4, ®,) vanishes at x = kr, Vk € Z. Hence there is no flux of fluid through the
lines ¢ = km, k € Z, and a solution of satisfying describes the motion of a liquid confined
between two walls.

Another important symmetry of the capillary water waves system is reversibility, namely the equa-
tions - are reversible with respect to the involution p : (n,%) — (1, —v), or, equivalently, the
Hamiltonian is even in :



As a consequence it is natural to look for solutions of (1.3 satisfying

u(—t) = pu(t), id.e. n(—t,z)=n(tx), v(-t,z)=—v(tx), Vt,x €R, (1.12)

namely 7 is even in time and ¢ is odd in time. Solutions of the water waves equations satisfying
and are called gravity-capillary standing water waves.

This is a small divisors problem. Existence of small amplitude time periodic pure gravity (without
surface tension) standing wave solutions has been proved by Iooss, Plotnikov, Toland in [32], see also
[28], [29], and in [39] in finite depth. Existence of time periodic gravity-capillary standing wave solutions
has been recently proved by Alazard-Baldi [I]. The above results are proved via a Lyapunov Schmidt
decomposition combined with a Nash-Moser iterative scheme.

In this paper we extend the latter result proving the existence of time quasi-periodic gravity-capillary
standing wave solutions of , see Theorem as well as their linear stability. The reducibility of the
linearized equations at the quasi-periodic solutions is not only an interesting dynamical information but
it is also the key for the existence proof in Theorem

We also mention that existence of small amplitude 2-d travelling gravity water wave solutions dates
back to Levi-Civita [34] (standing waves are not traveling because they are even in space, see (1.9)).
Existence of small amplitude 3-d traveling gravity-capillary water wave solutions with space periodic
boundary conditions has been proved by Craig-Nicholls [T9] (it is not a small divisor problem) and by
Tooss-Plotinikov [30]-[31] in the case of zero surface tension (in such a case it is a small divisor problem).

Existence of quasi-periodic solutions of PDEs (that we shall call in a broad sense KAM theory) with
unbounded perturbations (i.e. the nonlinearity contains derivatives) has been developed by Kuksin [37]
for KdV, see also Kappeler-Poschel [30], by Liu-Yuan [35], Zhang-Gao-Yuan [45] for derivative NLS,
by Berti-Biasco-Procesi [12]-[I3] for derivative NLW. All these previous results still refer to semilinear
perturbations, i.e. the order of the derivatives in the nonlinearity is strictly lower than the order of the
constant coefficient (integrable) linear differential operator.

For quasi-linear (either fully nonlinear) nonlinearities the first KAM results have been recently proved
by Baldi-Berti-Montalto in [7], [§], [9] for perturbations of Airy, KdV and mKdV equations. These tech-
niques have been extended by Feola-Procesi [20] for quasi-linear perturbations of Schrédinger equations.

The gravity-capillary water waves system is indeed a quasi-linear PDE. In suitable complex
coordinates it can be written in the symmetric form v, = iT(D)u + N(u,3), u € C, where T(D) :=
[D|'2(1 — KBya)'/? is the Fourier multiplier which describes the linear dispersion relation of the water
waves equations linearized at (7, v see 1.17)), and the nonlinearity N(u,T) depends on the
highest order term |D|3/?u as Well see sectlon(]E for the complex form of the linearized system.

We have not the space to report the huge literature concerning KAM theory for semilinear PDEs in
one and also higher space dimension, for which we refer to [37], [I8], [24], [16], [T7].

Let us present rigorously our main result. As already said we look for small amplitude quasi-periodic
solutions of (1.3). It is therefore of main importance the dynamics of the system obtained linearizing
(1.3) at the equilibrium (n, ) = (0,0) (flat ocean and fluid at rest), namely

om = G(0)v,
7] (0)y (1.13)
Op +1m = K
where G(0) = |D,| is the Dirichlet-Neumann operator for the flat surface n = 0, namely
|Dz|cos(jz) = |jlcos(jz), |Da|sin(jz) = |j|sin(jz), Vj € Z.
In compact Hamiltonian form, the system (|1.13)) reads
1 — k0 0
Ou=JQu, Q:= ( 0 G(O)> , (1.14)
which is the Hamiltonian system generated by the quadratic Hamiltonian (see (1.6[))
1 1 1
Hy = 50,20y = 5 GO+ [ 0F + k) do. (115)
T



The standing wave solutions of the linear system (1.13)), i.e. (1.14]), are

n(t,z) = Zj21aj cos(wjt) cos(jz), (t,x) = —Z

j>1ajj*1wj sin(w;t) cos(jz), (1.16)

a; € R, with linear frequencies of oscillations

w; =wj(k) =+Jjl+kj2), j>1. (1.17)

The main result of the paper proves that most of the standing wave solutions of the linear system
(1.13)) can be continued to standing wave solutions of the nonlinear water-waves Hamiltonian system
for most values of the surface tension parameter x € [k1, k2]. More precisely, fix an arbitrary finite subset
St c Nt :={1,2,...} (tangential sites) and consider the linear standing wave solutions (of (L.13))

n(t, ) =Y V& cos(wit)cos(jz), v(t,x)=— Y /§i  wssin(wst)cos(jz), & >0,  (1.18)
JEST JEST

which are Fourier supported in ST. In Theorem below we prove the existence of quasi-periodic
solutions u(&t, z) = (n, ¥)(&t, z) of (L.3)), with frequency @ := (@;);es+ (to be determined), close to the
solutions of , for most values of the surface tension parameter x € [k1, ka].

Let v := |S*| denote the cardinality of ST. The function u(yp,z) = (n,v)(¢,x), ¢ € T", belongs to
the Sobolev spaces of (27)”*!-periodic real functions

HS(TVJrlsz) = {u = (7771/}) : 7737!) € HS}
H = (MR = {f = 3 Jyd®evm . f2i= 3 P < 4o} (119)
(4,5)ezv+1 (0,j)ezv+1

where (¢, j) := max{1, ||, |j|} with || := max;=1,_, |{;|. For

sZsm:[zgi}+leN (1.20)

the Sobolev spaces H* C L>°(T"*!) are an algebra with respect to the product of functions.

Theorem 1.1. (KAM for capillary-gravity water waves) For every choice of finitely many tangen-
tial sites ST C N, there exists 5 > sq, €9 € (0,1) such that for every || < €2, & := (&) es+, there exists
a Cantor like set G C [k1, k2] with asymptotically full measure as & — 0, i.e.

lim |g| = KRy — K1,
§—=0

such that, for any surface tension coefficient k € G, the capillary-gravity system (1.3) has a time quasi-
periodic standing wave solution uw(0t,x) = (n(&t,z), (Wt x)), with Sobolev regularity (n,v)(p,z) €
H5(T” x T,R?), of the form

n(wt,x) = Zjes+ &; cos(w;t) cos(jx) + o(v/[€]),

(1.21)
V(@ @) = =) V&G wsin(@;t) cos(jz) + o(v/I€])

with a diophantine frequency vector @ := &(k, &) € R” satisfying @; —wj(k) — 0, j € ST, as £ — 0. The
terms o(+/|€]) are small in H3(T" x T,R?). In addition these quasi-periodic solutions are linearly stable.

Theorem [I.1] follows by Theorems [£.1] and Let us make some comments.

1. No global in time existence results concerning the initial value problem of the water waves equations
(1.3) under periodic boundary conditions are known so far. The present Nash-Moser-KAM iterative
procedure selects many values of the surface tension parameter xk € [k1, k2] which give rise to the



quasi-periodic solutions , which are defined for all times. Clearly, by a Fubini-type argument
it also results that, for most values of k € [k1, k2], there exist quasi-periodic solutions of for
most values of the amplitudes |¢| < e2. The fact that we find quasi-periodic solutions restricting to
a proper subset of parameters is not a technical issue. The gravity-capillary water-waves equations
are not expected to be integrable (albeit a rigorous proof is still lacking): yet the third order
Birkhoff normal form possesses multiple resonant triads (Wilton ripples), see Craig-Sulem [21].

. In the proof of Theorem [I.1] all the estimates depend on the surface tension coefficient £ > 0 and
the result does not hold at the limit of zero surface tension k — 0. Because of capillarity the linear
frequencies grow asymptotically ~ \/Ej?’/ 2 as j — +oo. Without surface tension the linear
frequencies grow asymptotically as ~ j'/2 and a different proof is required.

. The quasi-periodic solutions (|1.21]) are mainly supported in Fourier space on the tangential sites
S*. The dynamics of the water waves equations (1.3)) restricted to the symplectic subspaces

Hgi = {v = (ZJJ) cos(jx)}, HE = {z -

jest JEN\S+

(Z?) cos(ja) € HY(Ta)},  (1.22)

is quite different. We call v € Hg+ the tangential variable and z € HSJ; the normal one. On the
finite dimensional subspace Hg+ we describe the dynamics by introducing the action-angle variables
(0,1) e T x R, see (4.7).

This is a difference with respect to the previous papers [39], [28], [29], [30], [31], [32], [1], that follow
the Lyapunov-Schmidt decomposition. The present formulation enables, among other advantages,
to prove the stability of the quasi-periodic solutions.

. Linear stability. The quasi-periodic solutions u(wt) = (n(@t), ¥ (ot)) found in Theorem are
linearly stable. This is not only a dynamically relevant information but also an essential ingredient
of the existence proof (it is not necessary for time periodic solutions as in [1], [28], [29], [32]). Let
us state precisely the result. Around each invariant torus there exist symplectic coordinates

(¢, y,w) = (¢,y,m,%) € TV x RY x Hgz:

(see (5.27) and [15]) in which the water waves Hamiltonian reads

w-y+ %Kzo(d))y Y+ (K11(¢)ya w)m(m) + %(KOQ(@“” w>L2(1rm) + K>3(0,y,w) (1.23)

where K>3 collects the terms at least cubic in the variables (y,w) (see and note that at a
solution 0y Koo = 0, K190 = w, Ko1 = 0 by Lemma . In these coordinates the quasi-periodic
solution reads t — (wt, 0,0) (for simplicity we denote the frequency @ of the quasi-periodic solution
by w) and the corresponding linearized water waves equations are

¢ = Kao(wt)[y] + Ky (i) [w]
y=0 (1.24)
W = JKoa(wt)[w] + JK11(wt)[y] .

Thus the actions y(t) = y(0) do not evolve in time and the third equation reduces to the PDE

The self-adjoint operator Koz (wt) (defined in (5.29))) turns out to be the restriction to Hg; of the lin-
earized water-waves operator 9,V H (u(wt)), explicitly computed in , up to a finite dimensional
remainder, see Lemma [6.1



Denote HS := HS$(T,) := H*(T,) N Hg (real or complex valued). sections |§| and |7| prove the
existence of bounded and invertible “symmetrizer” maps, see ([7.96)), such that Vo € TV, m = 1,2

Wonoo(9) + (H*(Ta,©) x H*(T,,©)) 1 H, — (H*(T,,R) x B3 (T, R)) N HE, , - (1.26)
Wl (9) : (HS(’]I‘x,]R) x HS*%(TQC,RD nHg, — (HS(’]I‘x,(C) x HS(Tx,(C)) NHE, (1.27)
and, under the change of variables
w=(N19) = Wi oo(Wt)Woo, Woo = (Woo,Woo) ;

the equation (|1.25]) transforms into the diagonal system

DWoo = —ID soWog + foo(wt),  foo(wl) := W oo (@) (wt) " T K1 1 (wt)[y(0)]

I
7N
|
g 8
o o
£ &
G
S—
N————
_
[N}
oo
S~—

where, denoting Sy :=S; U (=S;)U {0} C Z,

Do, 0 . o .
Dy = < 0 _Doo> s Do = dlag]’GSg{p’j } y My €R, (129)
is a Fourier multiplier operator of the form (see (8.40))

12 = u /[ + kg2 + a2+, G ESE, 1 =1, (1.30)

where, for some a > 0,

mz® =1+ 0(e?), mp” = O(e®), sup [r°| = O(e*), VIk| < ko,

JES§

see (4.23)-(4.24), (4.27) and ko € N is a constant fixed in section [3 once for all along the whole
paper and which depends only on the linear frequencies w;(x) defined in . The p3° are the
Floquet exponents of the quasi-periodic solution. The second equation of system is actually
the complex conjugated of the first one, and reduces to the infinitely many decoupled scalar
equations

3twoo7j = 7i,ujo-OW007j + foo,j(wt) , Vj S S(c) .
By variation of constants the solutions are

E s elw 0t

] . 1.31
it OO), Vi € S§ (1.31)

Woo,j(t) = Cje_miot + Voo, (2) where Voo, ( Z
ez
Note that the first Melnikov conditions (4.25)) hold at a solution so that v ;(t) in (L.31)) is well

defined. Moreover (1.26) implies || foo (wt)|| s x s < Cly(0)|. As a consequence the Sobolev norm
of the solution of (1.28)) with initial condition w.(0) € H*(T,), s < s (in a suitable range of
values), satisfies

Hwoo( )HH50><H50 < C()([y(0)] + l[woo ()| 20 x 20 ) »
and, for all ¢ € R, using , -, we get
1 <
”WW“H;oxH;m < | 0), $O))]

HZ20x HZO’%

which proves the linear stability of the torus. Note that the profile n € H*(T,) is more regular
than the velocity potential ¢ € H s0—3 (T,), as it is expected in presence of surface tension, see [2].
Clearly a crucial point is the diagonalization of (1.25) into ((1.29)). With respect to [I] this requires to
analyze more in detail the pseudo-differential nature of the operators obtained after each conjugation
and to implement a KAM scheme with second order Melnikov non-resonance conditions, as we shall
explain in detail below.



5. Hamiltonian and reversible structure. It is well known that the existence of quasi-periodic motions
is possible just for systems with some algebraic structure which excludes “secular motions” and
friction phenomena. The most common ones are the Hamiltonian and the reversible structure. The
water-waves system exhibits both of them and we shall use both. The Hamiltonian structure
is used in particular in section [5|to introduce the symplectic coordinates (¢, y, w) in adapted
to an approximately-invariant torus. On the other hand, for solving the second equation of the
linear system ([5.50)) we use reversibility (we could exploit just the Hamiltonian structure as done in
[8]-[9], [I5]-[16]). Moreover the transformations W1 o, Wa o which reduce the linearized operator
to constant coefficients preserve the reversible structure (it is slightly simpler than to preserve the
Hamiltonian one). Reversibility implies that several averaged vector fields are zero, for example a
constant coefficient operator of the form h — ad,h, a € R, is not compatible with the reversible
structure of the water waves, and therefore it is zero. This leads to the asymptotic expansion
of the Floquet exponents , in particular to the fact that they are purely imaginary. The
linear stability of the quasi-periodic standing wave solutions of Theorem [I.1]is a consequence of the
reversible structure of the water waves equations.

We prove the existence of quasi-periodic solutions by a Nash-Moser iterative scheme in Sobolev spaces
formulated as a ‘Théoréme de conjugaison hypothétique” 4 la Herman (section [4.1f). In order to perform
effective measure estimates in the surface tension parameter x € [k1, ko) (sectio we use degenerate
KAM theory for PDEs (section. For the convergence of the Nash-Moser scheme (section it is sufficient
to have an “almost approximate” inverse of the linearized operators at each step of the iteration. We
follow (section[5) the scheme proposed in [15]-[16], and implemented in [8]-[9], which reduces the problem
to “almost approximately” invert the linearized operator restricted to the normal directions. The crucial
PDE analysis is the reduction in sections [6][7] of the linearized operator to constant coefficients.

Let us present more in details some key ideas of the paper.

1. Bifurcation analysis and Degenerate KAM theory. A first key observation is that, for most
values of the surface tension parameter k € [k, k2], the unperturbed linear frequencies
are diophantine and satisfy also first and second order Melnikov non-resonance conditions. More
precisely the unperturbed tangential frequency vector &(x) := (w;(k));jes+ satisfies

(k) - €] >~ ()", Ve e Z" \ {0},
and it is non-resonant with the normal frequencies () := () (k) jent\s+ = (Wj(K))jent\s+, i-e.

|G(k) - £+ (k)| > 7§ 2 (0)"T, WL e Z¥, j e NT\ ST,
B(k) - €+ Qi(r) £ Qi (k)| > |52 £52(0)" ", WL € 27, j,j' e Nt \ ST,

This is a problem of diophantine approximation on submanifolds. It can be solved by degenerate
KAM theory (explained below) exploiting that the linear frequencies k — w; (k) are analytic, simple,
grow asymptotically as j3/2 and are non-degenerate in the sense of Bambusi-Berti-Magistrelli [10]
(another proof can be given by the tools of subanalytic geometry in Delort-Szeftel [23]). For such
values of kK € [k1, k2], the solutions of the linear equation are already sufficiently
good approximate quasi-periodic solutions of the nonlinear water waves system . Since the
parameter space [k1, ko] is fixed, the small divisor constant v can be taken v = o(e%) with a > 0
small as needed, see (4.27)). As a consequence for proving the continuation of to solutions of
the nonlinear water waves system , all the terms which are at least quadratic in are yet
perturbative (in it is sufficient to regard the vector field eXp_ as a perturbation of the linear
vector field JQ).

Actually along the Nash-Moser-KAM iteration we need to verify that the perturbed frequencies are
diophantine and satisfy first and second order Melnikov non-resonance conditions. It is actually for
that we find convenient to develop degenerate KAM theory as in [I0] and we formulate the problem
as a Théoréme de conjugaison hypothétique a la Nash-Moser as we explain below.



2. A Nash-Moser Théoréme de conjugaison hypothétique. The expected quasi-periodic solutions of
the autonomous Hamiltonian system will have shifted frequencies @; -to be found- close to
the linear frequencies w;(k) in , which depend on the nonlinearity and the amplitudes &;.
Since the Melnikov non-resonance conditions are naturally imposed on w, it is convenient to use
the functional setting formulation of Theorem where the parameters are the frequencies w € R”
and the surface tension k € [k1,k2] and we introduce a counterterm o € R” in the family of

Hamiltonians H,, defined in (4.16).

Then the goal is to prove that, for e small enough, for “most” parameters (w, k) € CX, there exists
a value of the constants a 1= as(w,s,€) = w + O(ey~*) and a v-dimensional embedded torus
T = i(T") close to T" x {0} x {0}, invariant for the Hamiltonian vector field X (o (w,x,e),.) and
supporting quasi-periodic solutions with frequency w. This is equivalent to look for a zero of the
nonlinear operator F(i, o, w, K, €) = 0 defined in . This equation is solved in Theorem by
a Nash-Moser iterative scheme. The value of a := aoo(w, k,€) is adjusted along the iteration in
order to control the average of the first component of the Hamilton equation , in particular

for solving the linearized equation ([5.44]), (5.54).

The set of parameters (w, k) € CX for which the invariant torus exists is the explicit Cantor set
(4.25). We require that w satisfies the diophantine property

w- €] >0, Ve z\ {0}, (1.32)

and, in addition, the first and second Melnikov non-resonance conditions.

Note that the Cantor like set CX, is defined in terms of the “final torus” i, (see (4.22))) and the
“final eigenvalues” in which are defined for all the values of the frequency w by a Whitney-
type extension argument, see the sentences after . This formulation completely decouples the
Nash-Moser iteration (which provides the torus i (w, k,€) and the constant ae (w, &, €) € RY) from
the discussion about the measure of the set of parameters where all the non-resonance conditions
are indeed verified. This simplifies the measure estimates which are no longer imposed at each
step but only once, see section This formulation follows that of [14] (in a Lyapunov-Schmidt
context) and [II] (in a KAM theorem) and [I7] (in a Nash-Moser context). The measure estimates
are done in section

In order to prove the existence of quasi-periodic solutions of the water waves equation (1.3)), and
not only of the system with modified Hamiltonian H, with o := o (w, K, €), we have then to prove
that the curve of the unperturbed linear frequencies

(K1, ko] D K= d(k) == (VJ(1 + Kj?))jest € RY

intersects the image ao(CL), under the map o of the Cantor set CX, for “most” values of
Kk € [k1, ko). This is proved in Theorem by degenerate KAM theory. For such values of x we
have found a quasi-periodic solution of (1.3) with diophantine frequency w. (k) := a . (&d(k), k).

The above functional setting perspective is in the spirit of the Théoréme de conjugaison hy-
pothétique of Herman proved by Fejoz [25] for finite dimensional Hamiltonian systems, see also
the discussion in [I5]. A relevant difference is that in [25], in addition to «, also the normal frequen-
cies are introduced as independent parameters, unlike in Theorem [{:1] Actually for PDEs it seems
more convenient the present formulation: it is a major point of the work to know the asymptotic
expansion of the Floquet exponents.

3. Degenerate KAM theory and measure estimates. In Theorem [£.2] we prove that for all the values of
K € [k1, ko] except a set of small measure O(y/*0) (the value of ko € N is fixed once for all in section
the frequency vector &(x) belongs to the Cantor set coo (CL,), see the set G in (4.28). As already
said, we use in an essential way that the unperturbed frequencies k — w; (k) are analytic, are simple
(on the subspace of the even functions), grow asymptotically as j3/2 and are non-degenerate in the
sense of [I0]. This is verified in Lemma as in [I0] by a Van der Monde determinant. Then
we develop degenerate KAM theory which reduces this qualitative non-degeneracy condition into a



quantitative one, which is sufficient to estimate effectively the measure of the Cantor like set G. by
the classical Riissmann lemma. We deduce in Proposition that kg > 0, pg > 0 such that, for
all k € [k, Ka),

e [0E(@() -+ 500 — ()| 2 poll), V(E3.5) £ (0.5.9), 4.7 ENFAST,  (133)
and similarly for the 0-th, 1-th and the 2-th order Melnikov non-resonance condition with the sign
+. Note that the restriction to the subspace , see also , of functions with zero average
in z eliminates the zero frequency wy = 0, which is trivially resonant (this is used also in [22]).
Property implies that for “most” parameters x € [k1, ko] the unperturbed linear frequencies
(@(k), (r)) satisfy the Melnikov conditions of 0, 1,2 order (but we do not use it explicitly). Actu-
ally, the condition is stable under perturbations which are small in C*0-norm, see Lemma
Since the perturbed Floquet exponents in (4.31)) are small perturbations of the unperturbed linear
frequencies \/j(1 + 32) in Cko-norm (see (4.30) and (£.33)) the property still holds for the
perturbed frequencies w.(x) defined in (4.29). As a consequence, by applying the classical Riiss-
mann lemma (Theorem 17.1 in [4I]) we prove that the Cantor like set of non-resonant parameters
G. has a large measure, see Lemma [£.5 and the end of the proof of Theorem [£.2}

Analysis of the linearized operators. The other crucial analysis for the Nash-Moser iterative scheme is
to prove that the linearized operator obtained at any approximate solution is, for most values of the
parameters, invertible, and that its inverse satisfies tame estimates in Sobolev spaces. We implement
in section |5| the procedure developed in Berti-Bolle [I5] and [§]-[9] for autonomous PDEs. It consists
in introducing a convenient set of symplectic variables (see (5.27)) near the approximate torus such
that the linearized equations become (approximately) decoupled in the action-angle components and the
normal ones, see . As a consequence, the problem is reduced to “almost-approximately” invert
the linearized operator L, defined in (5.40). Actually, since the symplectic change of variables
modifies, up to a translation, only the finite dimensional action component, the linear operator L, is
nothing but the linearized water-waves operator £ computed in -in the original coordinates- up
to a finite dimensional remainder and restricted to the normal directions. Thus the key part of the
analysis consists in (almost) reducing the quasi-periodic linear operator £ to constant coefficients, via
linear changes of variables close to the identity, which map Sobolev spaces into itself and satisfy tame
estimates, see Proposition [7.12]

This is achieved in sections [6] and [7] by making full use of pseudo-differential operator theory that we
present in section [2.1]in a formulation convenient to our purposes.

Pseudo-differential operators. We underline that all the coefficients of the linearized operator £ in
are C*™ in (¢, ) because each approximate solution (n(p, ), (p,z)) at which we linearize along the
Nash-Moser iteration is a trigonometric polynomial in (¢, ) (at each step we apply the projector II,
defined in ) and the water waves vector field is analytic. This allows to work in the usual framework
of C*° pseudo-differential symbols.

In this paper we only use the class S™ of (classical) symbols introduced in Definition We do
not explicitly make use of pseudo-differential operators in the class OPS?,% used by Alazard-Baldi in
[1] (called semi-Fourier integral operators). Actually we shall produce similar transformations as flows
of pseudo-PDEs (see ) The advantage is that the invertibility of such transformations, as well as
the fact that they satisfy tame estimates in Sobolev spaces together with its inverses, follows easily by
proving energy estimates for the flow, see Appendix [9]

For the Nash-Moser convergence we clearly need to perform quantitative estimates in Sobolev spaces.
Then, given a pseudo-differential operator A = Op(a(y, z,§)) € OPS™, we introduce the norm |A|,, s .o
defined in (more generally |A|fr$;g)a in Definition 7 which is inspired to the para-differential
norm in Metivier [38], chapter 5. Note that |Al,, s controls the regularity in (¢, z) of the symbol
a(p,x,&) € S™ only up to a limited smoothness.

We now explain the main steps for the reduction of the quasi-periodic linear operator £ in .

1. Reduction of L to constant coefficients in decreasing symbols. The goal of section |§| (Proposition
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is to reduce L to a quasi-periodic linear operator of the form
(h,h) — (w-8, + m3T(D) + imy|D|2)h + Rh+ Qh, heC, (1.34)
where m3,m; € R are constants satisfying ms ~ 1, m; = 0, the principal symbol operator is
T(D) := |D|Y2(1 — kdys)"/?,

and the remainders R := R(p), Q := Q(p) are small bounded operators acting in the Sobolev
spaces H®, which satisfy tame estimates. More precisely, in view of the KAM reducibility scheme
of section (7| we need that all the operators in (L.38)), together with its derivatives QﬁmR, 8£7KQ,
k| < ko, satisfy tame estimates, see ([6.248)). We neglect in smoothing operators which are
supported on high Fourier frequencies (ultra-violet cut-off) and therefore satisfy —.
Note that is an operator which acts on (h,h). We shall deal in a quite different way the
operator h — (w-0, + im3T'(D) + im |D|2)h + Rh and h — Qh. We shall call the first operator,
“diagonal”, and the latter, ‘off-diagonal”, with respect to the variables (h, h).

. Symmetrization and space-time reduction of L at the highest order. The first part of the analysis
(sections 6.2)) is similar to Alazard-Baldi [I]. A difference is that we reduce the linear operator
Lin to constant coefficients up to OPS° remainders (Lemma [6.7), while in [I] the remainders

are O(0z 3/ 2). The reason of this difference is that we will not invert the linearized operator in
(1.34) simply by a Neumann-argument, as done for the periodic solutions in [1], [32], [28], [29], [39].
This approach does not work in the quasi-periodic case. The key difference is that, in the periodic
problem, a sufficiently regularizing operator in the space variable is also regularizing in the time
variable, on the characteristic Fourier indices which correspond to the small divisors. This is clearly
not true for quasi-periodic solutions.

Our strategy will be to diagonalize (actually it is sufficient to “almost diagonalize”) the linearized
operator in by the KAM scheme of section This requires to analyze more in detail the
pseudo-differential nature of the remainders after all the conjugation steps -a key difference concerns
the nature of the block-off diagonal operators in (h, h) with respect to the diagonal ones- and to be
able to impose the second Melnikov non-resonance conditions.

In section we introduce complex coordinates (h,ﬁ), which are convenient to reduce the off-
diagonal blocks of the linear system to a very negative order (section. We could have introduced
the complex variables (h, ) right after section performing the symmetrization procedure and
the space reduction of the highest order (section [6.2) in the variables (h,h). This way, however,
would require to use an Egorov type argument to estimate the remainders unlike in section we
use (as in [I]) only the simple change of variables (6.22).

Then in section using a time-reparametrization as in [I], we obtain a quasi-periodic linear
operator of the form (see (6.74))

(h,h) — (w-0p + im3T(D) + a11 (¢, ©) 0y + ialg(go,x)'H|D|%)h + ib(<p7x)H|D|%B +.... (1.35)
From this point we have to proceed quite differently with respect to [I].

. Block-decoupling. In view of the transformations used in the next Egorov-step and the KAM
reducibility scheme of section [7} we first reduce the order of the off-diagonal term ib(¢p, m)H|D|%B
to a very negative order OPS~M . In section we conjugate to a quasi-periodic linear
operator of the form (Proposition

(hyh) = w-O,h + imgT(D)h + a11 (@, )8y h + iara (o, 2)H|D|2h + Rash + Qarh

where Ry € OPS® and Qy € OPS™™ for some M large enough which is fixed by the KAM
reducibility scheme, see ((7.9)).
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4. Egorov analysis. Space reduction of the order d,. The goal of section [6.0]is to eliminate the first
order vector field aj1(p, x)0,. For that Alazard-Baldi [I] used a semi-Fourier integral operator like

Op(ei“(‘p"”)\/m) € OPSY ,. We shall use instead the flow ®(p) := ®(p,w, x) of the pseudo-PDE

1-
’2

N|=

uy = ia(p, x,w, k)| DY ?u. (1.36)

The proof that ®, as well as its inverse ® !, is well posed in Sobolev spaces H® and satisfies tame
estimates, follow by the energy estimates of Appendix@ (the vector field ia(p, z,w, &)|D|*/? is skew-
adjoint at the highest order). We think that this is conceptually simpler than proving directly the

invertibility and the tame estimates of Op(ei“(w’w)\/ﬁ) as in [IJ.

However the main advantage in order to use the present flow approach consists in the Egorov
analysis of the pseudo-differential nature of the conjugated operator. The flow has a very different
effect on the operator h — (iay2(, #)H|D|2 + Rys)h and the off-diagonal one h — Qp/h: the first
remains a classical pseudo-differential operator in OPS® (Egorov analysis), but the off-diagonal one
becomes a pseudo-differential operator in the class OPS;Z‘%/[ .
3

Let us roughly explain why this is a relevant information. The flow ®(p) ~ Op(ei“(‘/”g”)\/m) maps
Sobolev spaces in itself. However each derivative

0,8 (ip) ~ Op (VI 19, a (i, ) /[€])

is an unbounded operator which loses \D|1/ 2 derivatives. In the Appendix we actually prove that
Ok 00 ®(p) satisfies tame estimates with a loss of |D| PEEL Jerivatives.

The main idea of the Egorov analysis in section[6.6]is that, given a scalar classical pseudo-differential
operator Py € OPS™, the conjugated operator

Py (p) := @(p)Po®(p) "' = Op(clp,2,€)), clp,x,6) € 5™, (1.37)

remains as well a classical pseudo-differential operator. Therefore, the differentiated operator
O0,Py () = Op(0yc(p,,§)) € OPS™ is a pseudo-differential operator of the same order of Py
with a symbol 0,c which is just less regular in ¢. Then the loss of regularity for 0,c is compensated
by the usual Nash-Moser smoothing procedure in ¢. The property is due to the fact that P,
is “transported” under the flow of according to the Heisenberg equation .

This is the reason why we require that the diagonal remainder R € OPS? is just of order zero.

On the other hand, the off-diagonal term Qu; € OPS~™ evolves, under the flow of (1.36]), ac-
cording to the “skew-Heisenberg” equation obtained replacing in (6.135]) the commutator with the
skew-commutator. As a consequence the symbol of Qf, := ®(p)QuP(¢)~! assumes the form

ei“("”x)mq(gp,x,f) where q(p,x,£) € S is a classical symbol (actually we do not prove it ex-
plicitly because it is not needed). Thus the action of each J, on QL produces an operator which

loses |D|% derivatives in space more than Q,;. This is why we perform in section a large number
M of regularizing steps for the off-diagonal components Q. The constant M is fixed later in (7.9)).
The precise tame estimates of Bg QL are given in Proposition for M > 8+ ko + 4. In section

We take 3 ~ b, see (7.9).

5. Space reduction of the order |D|'/2. In section we reduce to constant coeflicients also the
diagonal operator term of order |D|'/2. This concludes (section the conjugation of L, to a
quasi-periodic linear operator like (1.34]).

6. KAM-reducibility scheme. We apply the KAM diagonalization scheme of section [7] to a linear

operator as in (1.34]) where
S S So+b So+b _
R, [R,0:], 03 R, 92 [R, 0], OXT°R, 02 7°[R,0:], m=1,...,v, (1.38)
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and similarly Q, satisfy tame estimates for some b := b(, ko) € N large enough, fixed in (7.6)), see
, , . Such condition is proved in Lemma having assumed that M (= number of
regularizing steps for the off-diagonal operators performed in section is taken large as in
(essentially M = O(b)). It is the property which compensates, along the KAM iteration, the loss
of derivatives in ¢ produced by the small divisors (this condition is strictly weaker than assuming
a polynomial off-diagonal decay of R, Q, as in [7]-[q]).

The core of the KAM reducibility scheme of section [7] is to prove that the class of operators which
are D*o-modulo-tame (Definition is closed under the operations involved by a KAM iteration,
namely

(a) composition (Lemma ,
(b) solution of the homological equation (Lemma [7.7),
(¢) projections (Lemma [2.18)).

We recall that we have to control that the KAM transformations (and all the operators) are ko-
times differentiable with respect to the parameters (w, k) € R” X [k1, k| to prove that the Floquet
exponents (w, k) = p3°(w, k) in (4.23) are small perturbations of the linear frequencies /(1 + x;2)
in C*o-norm.

The reason why we implement the KAM reducibility scheme for D*°-modulo-tame operators and
not only for D*o-tame operators is that for a D*o-tame operator the second estimate in Lemma
for the projector ITx does not hold (majorant like norms have been used also in [12]-[13]). The
fact that the initial majorant operators |R|, |Q| (see Definition fulfill tame estimates (which is
stronger that requiring tame estimates just for R and Q) is verified in Lemma thanks to the
assumption that [9,, R] and 93° R, as well as all the operators in , satisfy tame estimates,
see Lemma[7.2] Note that the commutator [0, 7(z, D)] = r,(x, D) is a pseudo-differential operator
with the same order of r(z, D) (this is used in particular in Proposition . This is another
reason for which it is sufficient that the pseudo-differential remainder which acts on the diagonal
(i.e. on h) is just in OPSO.

The key (quadratic + super-exponentially small) inductive estimates required for the convergence
of the iteration are provided by Lemma More precisely and allow to prove the
convergence of the scheme up to the Sobolev index s, by choosing b := b(7) large enough as fixed
in (7.6). The inductive relation provides an a priori bound for the divergence of the modulo-
tame constants 9% (s,b) of the operators (9,)°R,41 and (9,)°Q, 1 along the iteration. Then
([7-74) shows that 9% (s) converges very rapidly to 0 as v — 400, see (7.22).

Note that the iterative KAM Theorem [7.3|requires only the smallness condition which involves
just the low norm || ||s,+b but implies also tame estimates up to the Sobolev scale s, see (7.22).
The important consequence is that, in Theorem only the condition in low norm, implies
the tame estimates for the transformations up to any s € [sg, S]. The smallness condition
will be verified inductively along the nonlinear Nash-Moser scheme of section |8l The tame
property (at any scale) is used in the convergence of the Nash-Moser iteration of section

After the above analysis of the linearized operator, in section [8] we implement a differentiable Nash-
Moser iterative scheme to find better and better approximate quasi-periodic solutions up to the scales
K, =KX , x:=3/2, (1.39)

which lead, at the limit, to an embedded torus invariant under the flow of the Hamiltonian PDE, see
Theorem [R.2] and section Rl

We conclude the introduction with some other comment.

1. Whitney extension. At each iterative step of the Nash-Moser iteration -and correspondingly for the
reduction of the linearized operator in sections [5] [6} [T} we only require that the frequency vector
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w € RY satisfies finitely many non-resonance diophantine conditions. More precisely we assume at
the n-th step that w belongs to

DCh, = {w EQCRY : |w-€] > 4()7T, V|| < K.} (1.40)

and similarly we require finitely many first and second order Melnikov non-resonance conditions,
see and (the set Q is the neighborhood of the curve &([k1, k2]) described by the
unperturbed linear frequencies ). This allows to perform a constructive Whitney extension of the
solution, with respect to the parameters (w, k) in a way similar to [T4]. We find this construction
convenient in order to estimate the k-derivatives Qlfm of the approximate solutions (and of the
eigenvalues) which, on an open subset (like DCj ) are well defined in the usual sense (instead of
introducing the notion of Whitney derivatives on closed subsets). The quantitative estimates that

we shall obtain (see for example (4.22)) and (4.33])) are similar to those which are satisfied by the

solution o
o . -1, _ il-p - il-p
hi=(w-9,)" g > ¢ 9 > geet?,
ez \{0} cezv\{0}

of the basic linear equation of KAM theory w - d,h = g, namely

||3f;h”s < C’Y_UC‘ ||g||s+7'+\k|~r .

We note that each derivative d,, produces a factor y~! and a loss of 7-derivatives in the Sobolev
index. This is the phenomenon described by Poschel in [40] as “anisotropic differentiability” of the
Cantor families of KAM tori with respect to w. Actually when solving the homological equations,
see ([7.58)-(7.59), we also have denominators which depend on both (w, ) and we have to estimate
the regularity of the solution also with respect to r, see Lemma [7.7]

2. Dirichlet-Neumann operator. In section we use a self-contained proof of the representation
of the Dirichlet-Neumann operator G(n) as a pseudo-differential operator, due to Baldi [5]. The
conformal change of variables — transforms the elliptic problem , which is defined
in the variable fluid domain {y < n(x)}, into the elliptic problem which is defined on the
straight strip {Y < 0} and can be solved by an explicit integration. By conjugating back such
solution, it turns out that (Lemma the principal symbol of G(n) is just |D| (see (2.118)) up
to a small remainder Rg(n) € OPS™° (recall that the profile € C*°). Actually ¢ — R (n)[¢] is
a regularizing linear operator which satisfies tame estimates (with loss of derivatives) in 7, see e.g.
(2.132). For obtaining such quantitative estimates it is convenient to represent R as an integral
operator (see and Lemma and to use the fact an integral operator transforms into
another integral operator under changes of variable, see Lemma [2.25)

Acknowledgements. We thank P. Baldi, L. Biasco, W. Craig and J. M. Delort, for many useful discussions.
This research was supported by PRIN 2012 “Variational and perturbative aspects of nonlinear differential
problems”.
Notations. We denote by N := {0,1,2,...} the natural numbers including {0} and N* := {1,2,...}.
We use the multi-index notation k = (k1,...,k,+1) € N7 with |k| := |k1| + ... + |k, 11| and we denote
the derivative 0% = 6’;1 e 81;”11 The parameter A = (w, k) € R” X [k1, ka].

Given a set A we denote N (A4, 7n) the open neighborhood of A of width 5 (which is empty if A is
empty) in R” X [k1, ko], namely

N(A,n) = {X € R x [k, ko] : dist(A,\) <n}. (1.41)
We denote the tangential sites by
ST cN' and weset S:=StTuU(-ST), Sp:=S,U(-S;)u{0}CZ. (1.42)

In the paper we shall use for a linear pseudo-differential operator the norms | Hf,‘;g . introduced in Definition

indexed by ko € N, v € (0,1), m € R, s > sg, @ € N. In order to help the reading we recall here their
meaning:
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1. The index ko € N is fized in section 3| It depends only on properties of the linear frequencies w; (k)
in (1.17) and it does not vary along the whole paper. It denotes that the operators, functions,
frequencies, etc. are ko-times differentiable with respect to the parameters A\ = (w, k).

2. The parameter v € (0, 1) is the diophantine constant of the frequencies |w-£| > v(¢)~7, V¢ € Z*\{0},
and similarly for the first and second order Melnikov non-resonance conditions. Along the paper
v = 0(eg%) with a > 0 as small as wanted (actually we could take just v = o(1) as ¢ — 0).

3. The parameter m € R denotes the order of a pseudo-differential operator A € OPS™.

4. The index s denotes the Sobolev index. It will vary in a finite scale s € [so, S| where s is fixed in
(1.20]). The largest possible value of S is fixed in the Nash-Moser iteration in section (8] see (8.12)).

5. The constant « € N is the number of ¢ derivatives that we estimate of a symbol a(z, &), see .
In section [6] we take a ~ M where M is the number of decoupling steps performed in section [6.5
The constant M is fixed in (7.9). The important point is that the largest values of a, M used along
the paper do not depend on the Sobolev index s.

The notation a < o a b means that a < C(s,a, M)b for some constant C(s,a, M) > 0 depending on
the Sobolev index s, and the constants o, M. The notation a < b means that a < Cb for some absolute
constant which depends only on the data of the problem. Sometimes, along the paper, we omit to write
the dependence <, , with respect to so, ko, because so (defined in ) and ko (fixed in section
are considered as fixed constants.

For scalar valued functions p : Ay C R¥*! — R (for example the Floquet exponents) we denote

ko 1= |p|FoY o= Kl sup |08 (N .
1l ™ 2= 3,7 S0 10K

We will often not specify the domain Ay C R¥*! which is understood from the context.

2 Functional setting

We regard a function u(yp,x) € L?(T" x T, C) of space-time also as a p-dependent family of functions
u(p,-) € L*(T,, C) that we expand in Fourier series as

u(p,z) = Y up(@)e "= 3" g et (2.1)
J'EL ez j eL

Along the paper we denote the Fourier coefficients uy j, u;(¢) of the function u(y,x) (with respect to
the space variables (¢, x) or x, respectively) also as uy ;, Uj(¢). We also consider real valued functions
u(p,z) € R. When no confusion appears we will denote simply by L2, L?(T” x T), L2 := L*(T,) either
the spaces of real or complex valued L2-functions.

The Sobolev norm || || defined in is equivalent to

[ulls ~ ||UHH5,L§ + HU”LH?DH; : (2.2)

Definition 2.1. Given a function u € L*(T” x T) as in ([2.1)), we define the majorant function

lul(o,2) = D Juele! e (2:3)
LeZv jEL

Note that the Sobolev norms of u and |u| are the same, i.e.
[[lls = [lfullls - (2.4)

We consider also family of Sobolev functions A — wu(\) € H® which are ko-times differentiable with
respect to a parameter
A= (w,Kk) € Ag C RV,
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For v € (0,1) we define the weighted Sobolev norm
fulfor =37, o Msupaca, 05uls (25)

For a function u(),-) : T¢ — C, we define the C*-weighted norm

ko,y .__ |k| k

&= D e S, 102 (V)

(we use it in section [2.3| to functions K (A, -) with d = v +1). We also introduce the smoothing operators

[[ul cs (2.6)

(Mgu)(p,2) = Y uge e T = 1d - Tk, (2.7)
(h)I<K

which satisfy the usual smoothing properties

ko, b1, ko, 1. 11ko, —b)|, 11kos
M|y, < KPlull?, [Mgul? < K\lullsyy s Vs,0>0. (2.8)

We have the following interpolation lemma.

Lemma 2.1. Let ag,bp > 0 and p,q > 0. For all € > 0 there exists a constant C(¢) := C(e,p,q) > 0,
which satisfies C(1) < 1, such that

[ellag+pllvlln+q < €llullag+prqllvllo, + Cle)l[llas [vllog+p+q (2.9)
lullagZpllollbo+g < ellwllagiprqllolivg + Cleulles v llbgrpq - (2.10)

Proof. By interpolation

1— q 1—
[ullag+p < llullly lullagtptq s # = i a [0llbo+q < 10llg 10llpgtpq s 1=

_P
p+q
Hence, noting that 7+ = 1, we have

[tllag+pllllbo+q < (lullagtprallvllon)” (lullagl[v]be-+p+q)" -

By the asymmetric Young inequality we get, for any € > 0,

[wllag+pl[vllbo+a < €llullag+prallvlive + Cle;ps @)l|ullao v lloo+p+q

where C(e, p, q) = pu(n/e)i = ﬁ( P )p/q. Note that for € = 1 the constant C(1,p,q) < 1.

(p+q)
The estimate (2.10]) follows by (2.9)) recalling ([2.5)). O

Linear operators. Let A : T" — L(L?(T,)), ¢ — A(p), be a p-dependent family of linear operators
acting on L?(T,). We regard A also as an operator (that for simplicity we denote by A as well) which
acts on functions u(ip, z) of space-time, i.e. we consider the operator A € L(L*(T” x T)) defined by

(Au)(p, z) == (Alp)ulp, ) (z).

We say that an operator A is real if it maps real valued functions into real valued functions.
We represent a real operator acting on (n,%) € L?(T**1 R?) by a matrix

% (Z) N (é g) (Z) (2.11)

where A, B, C, D are real operators acting on the scalar valued components n,v € L?(T**1 R).
The action of an operator A € L(L?(T” x T)) on a function u as in (2.1)) is

Au(p,a) =30 AT(@up(@)e" = 3 3 AT (U= Yup eI (2.12)

ez I
LELY JEL L' ELY 5’ €L
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. . . . 7’ ,
We shall identify an operator A with the matrix (Aj (£—¢ ))j,j’ez,e,efezv‘

Note that the differentiated operator d,,, A(¢), m = 1,...,v, is represented by the matrix elements
il — E’m)Ag (¢ — ¢, and the commutator [0, A] := 9, 0 A — Ao, is represented by the matrix with
entries i(j — j’)Agl(é —).

Definition 2.2. Given a linear operator A as in (2.12)) we define the operator

1. |A] (majorant operator) whose matriz elements are |A§/(€ -],

2. IxyA, N € N (smoothed operator) whose matriz elements are

y ip oy s _p
We also denote I :=1d — Iy,
3. (0,)PA, b € R, whose matriz elements are (£ — (’}bAgl(Z =),
Lemma 2.2. Given linear operators A, B we have
1A+ Blulls < [I[A[lullls + [[[Bllullls,  [[|ABulls < [[[A[|B] |ull]s - (2.14)

Proof. The first inequality in (2.14]) follows by

2 " y 2 9
1A+ Blull < ) _{¢.5)° (ZlAﬁ- (= O)luer | +1Bj (6—6’)|wa,ij) = [[lAlllul) + 1B]{lf]|; -

4,5 e’

The second inequality in (2.14) follows by

1ABlul2 < Y463y (S 1ABY (€~ )l )

Z,j Z/7j/
. . 2
_ Z<£,j>28(z ‘ N AR - 0)BI (0~ 1) |u£,7j/|)
4,5 5" L,ga
. . 2
< St (S 1A= ) Y 1B (6 = ) e,y )
N 01,71 2y
. —_— 2
=S40 (0142 ¢~ )| (BIW),, ;) = IAIBITD)]3
4,j £1,51
The lemma is proved. O

Definition 2.3. (Even operator) A linear operator A as in (2.12) is EVEN if each A(yp), ¢ € T”,
leaves invariant the space of functions even in x.

Since the Fourier coefficients of an even function satisfy u_; = u;, Vj € Z, we have that
Ais even = VoeT’, Al (p)=AT) (), Vjj €. (2.15)
Definition 2.4. (Reversibility) An operator R as in (2.11)) is

1. REVERSIBLE if R(—¢) o p=—poR(p), Yo € T”, where the involution p is defined in (1.11)),

2. REVERSIBILITY PRESERVING if R(—¢)op =poR(p), Vo € T".
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Conjugating the linear operator £ := w - 0, + A(¢p) by a family of invertible linear maps ®(¢) we get
the transformed operator

Li=0"YQ)LP(p) =w-Dyp+ As(p), As(p) = (p)(w-0,D()) + D7 (0)A()P(p) .

It results that the conjugation of an even and reversible operator with an operator ®(¢) which is even
and reversibility preserving is even and reversible. An operator R as in (2.11]) is

1. reversible if and only if ¢ — A(y), D(¢) are odd and ¢ — B(p), C(p) are even.
2. reversibility preserving if and only if ¢ — A(p), D(p) are even and ¢ — B(p), C(p) are odd.

From section on, it is convenient to consider a real operator R as in (2.11), which acts on the real
variables (1,7) € R?, as a linear operator which acts on the complex variables

wi=n+ip, w:=n-—ip, ie. n=(u+uw)/2, v=(w—1a)/2). (2.16)

We get that a real operator acting in the complex coordinates (u, %) has the form

R1 Ra 1 . 1 :
R := (R2 R1>, Rlszi{(AJrD)fl(BfC)}, RQ::§{(A—D)+1(B+C’)} (2.17)

where the operator A is defined by

Alu) == Ala) . (2.18)

It holds AB = A B.
The composition of real operators is another real operator.

A real operator R as in (2.17)) is even if the operators Ry, Ro are even.
In the complex coordinates (2.16)) the involution p defined in (1.11)) is the map w +— @. Thus

Lemma 2.3. The real operator R in (2.17)) is
1. reversible if and only if Ri(—¢) = —R1(p), Ra(—¢) = —Ra(p), Ve € T,

2. reversibility preserving if and only if R1(—¢) = Ri(¢), Ra(—¢) = Ra(p), Vi € TV.

2.1 Pseudo-differential operators and norms

Pseudo-differential operators on the torus may be seen as a particular case (see Definition of pseudo-
differential operators on R™, as developed for example in [27]. It is also convenient to define them also
through Fourier series, see Definition for which we refer to [42].

Given a function a : Z — C we denote the discrete derivative by (Aja)(j) := a(j + 1) — a(j). For
8 € N we denote by Af :=Ajo...0A; the composition of S-discrete derivatives.

Definition 2.5. (¥YDO1) Let u= 3}, u;e”. A linear operator A defined by

(Au)(z) := Z a(z, j)u;ed” (2.19)

jEL

is called pseudo-differential of order < m if its symbol a(x,j) is 2w-periodic and C*-smooth in x, and

satisfies the inequalities
02 Aa(x,5)| < Cap(i)™™?, Va,BEN. (2.20)

We also remark that, given an operator A, we recover its symbol by
a(z,j) = e I7(A[e7]). (2.21)

When the symbol a(z) is independent of j, the operator A = Op(a) is the multiplication operator for the
function a(x), i.e A : u(z) — a(z)u(x). In such a case we shall also denote A = Op(a) = a(z).
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Definition 2.6. (¥DO2) A linear operator A is called pseudo-differential of order < m if its symbol
a(x, j) is the restriction to R X Z of a function a(x,&) which is C*°-smooth on R X R, 2m-periodic in x,
and satisfies the inequalities

020 a(x,€)] < Capl€)™ ", Va,BeN. (2.22)

We call a(x, &) the symbol of the operator A, that we denote
A=0p(a)=a(z,D), D:=D,;:=-0,.

We denote by S™ the class of all the symbols a(x,§) satisfying (2.22), and by OPS™ the set of pseudo-
differential operators of order m. We set OPS™° := N;,,erOPS™.

Definitions and are equivalent because any discrete symbol a : R x Z — C satisfying (2.20)
can be extended to a C*®-symbol @ : R x R — C satisfying (2.22)), see section 7.2 in [42]. It is sufficient
to proceed as follows. Given a function ¢ : Z — C we define the C*-extension

GiR—=C, 5(&:=)  oli)(E-j), ¥ER, (2.23)

where ¢ := 0 € S(R) (Schwartz class) is the Fourier transform of a function § € D(R) (test functions)
such that supp(0) C [-2/3,2/3], 0(x) + 0(z — 1) = 1, Vo € [0,1], and } ., 0(x + j) = 1. It results that
C(k) = bok, Vk € Z, namely ¢(0) = 1 and ((k) =0, Vk # 0, so that o(k) = o(k), Vk € Z. Moreover there
are positive constants cj; > 0, independent of o, such that (see Lemma 7.1.1 in [42])

M) < eali)™ P = |905(E)] < cpesle)™ . (2.24)

Definition [2.6] is more convenient to get basic results concerning composition, asymptotic expansions,
... of pseudo-differential operators, that we recall below. We underline that, in the sequel, also when
we use of the continuous symbol a(z, ), we think Op(a) to act only on 27-periodic functions u(z) as in
(12.19).

We shall use the following notation, used also in [I]. For any m € R\ {0}, we set

[D|™ := Op(x(§)I¢[™) , (2.25)

where x € C*(R,R) is an even and positive cut-off function such that

x@):{o i el <

12
L & g Dex(£) > 0 vge( ) (2.26)

3’3

WIN Wl

)

Lemma 2.4. The pseudo-differential operator A := Op(a) is
1. even if and only if the symbol a(—x, —&) = a(x, &) is even,
2. real if and only if the symbol a(x, —€) = a(x, ).
3. The operator A defined in is pseudo-differential with symbol a(x, —€).

We first recall some fundamental properties of pseudo-differential operators.

Composition of pseudo-differential operators. If A = a(z,D) € OPS™, B = b(z, D) € oPS™
m, m’ € R, are pseudo-differential operators with symbols a € S™, b € S™ then the composition operator
AB := Ao B =o0ap(x,D) is a pseudo-differential operator with symbol

oap(@,€) =Y a(z, &+ )b, €)™ = D" Al — 5, &+ j)b(j, &)e " (2.27)

JEL J,3' €L
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where ~ denotes the Fourier coefficients of the symbols a(z, &) and b(x, ) with respect to z. The symbol
o 4p has the following asymptotic expansion

ran(e. ) ~ Y rm0la@ O0Lb(a.6). (2:29)

that is, VN > 1,
N—1
1 /
oap(z, &) = Z W@?a(m,f) OPb(x, &) +ry(z, ) where rn =ryap € ST TN (2.29)
p=0 """

The remainder ry has the explicit formula

rn(z,§) = ﬁ/ (1—m)Nt Z(@ga)(x,g + )N (), €)el (2.30)

0 jez

Adjoint of a pseudo-differential operator. If A = a(z, D) € OPS™ is a pseudo-differential operator
with symbol a € S™, then its L?-adjoint is the pseudo-differential operator

A* = Op(a®) with symbol a*(z,€) := Z EZa(j,f —j)elir. (2.31)
J

Families of pseudo-differential operators. We consider ¢-dependent families of pseudo-differential
operators

(Au)(p, z) = Zjeza(% @, )u; () (2.32)

where the symbol a(p, z, ) is C*°-smooth also in ¢. We still denote A := A(p) = Op(a(yp,-)) = Op(a).
By (2.27) and a Fourier expansion also in ¢ € T, the symbol of the composition operator AB is

oaB(,7,€) =Y a(e, 2,6+ )b(p,5,8)e7" = > Al — b1, = j, €+ §)b(0r, 5, e (2.33)

JEL J' €L
N/
Similarly by (2.31]) the symbol of the adjoint operator A(p)* = Op(a*(p,-)) is
a*(p,2,8) =Y alp, 5,6 —f)ei = Y AL, 4,& — j)eitetin), (2.34)
JEL ez jez

Along the paper we also consider families of pseudo-differential operators A(\) := Op(a(A, ¢, x,€)) which
are ko-times differentiable with respect to a parameter A := (w,k) € Ag = Qo X [K1, k2] C RY X [K1, Ko,
where the regularity constant kg € N is fixed once for all in section [3] Note that for any

ONA =0p(da), VEe N1 |kl <ko.

We now introduce a norm (inspired to Metivier [38], chapter 5) which controls the regularity in (¢, z),
and the decay in £, of the symbol a(p, x, &) € S™, together with its derivatives G?a €SP 0<p<a,
in the Sobolev norm || |-

Definition 2.7. (Weighted VDO norm) Let A(\) := a(\, ¢, z,D) € OPS™ be a family of pseudo-
differential operators with symbol a(\, ¢, x,£) € S™, m € R, which are ko-times differentiable with respect
to A € Ag C R Fory € (0,1), a €N, s >0, we define the weighted norm

JAL Y =Y A Hlsupren JOVAN) s 0 (2.35)
|k|<ko
where we use the multi-index notation k = (ky,..., k,11) € N“*L with |k := |ky| + ...+ |kuy1|, and
Ml = maxogssa sup 0£a(r, .-, ) (6) " (2.36)
€
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For each kg, ~, m fixed, the norm ({2.35) is non-decreasing both in s and «, namely

ko, ko,
Vs<sha<a, | wda <Ihwdas 1ede <1 heda- (2.37)

m,s,a — | lm,s’ o> m,s,a — | lm,s,a’

Note also that the norm (2.35) is non-increasing in m, i.e.

Fo koy . (2.38)

m/’ sa—""ms,a

m<m’ = |

Given a function a(\, ¢, z) € C* which is ko-times differentiable with respect to A, the weighted norm of
the corresponding multiplication operator is

|Op(a)

where the weighted Sobolev norm ||a/|%0:7 is defined in (2.5)).
For a Fourier multiplier g(D) with symbol g € §™, we simply have

6o, = llaf|®7, Va €N, (2.39)

l9(D)lm,s.0 < C(m,r,9), Vs 20. (2.40)

The norm | |o,s,0 controls the action of a pseudo-differential operator on the Sobolev spaces H® as we
shall prove in Lemma [2.13

Remark 2.5. The norm of Definition 2.7 is introduced in view of section [6.6] where we have to estimate
the norm |RM|k0’7 0 0 (6.192). The remainder Rj; depends on |Op(qM)|llc‘1"%,s’O. The terms q1, ..., qnm
are obtained 1terat1vely, and each g1 depends on Ogqr. Thus we need to control the Sobolev norm in

(p,x) of Géwqo. This is made precise by estimating the norm |Op(q0)|]i"%’75)M. O

The norm | |¥0-Y  is closed under composition and satisfies tame estimates.
s,

Lemma 2.6. (Composition) Let A = a(\, p,x, D), B = b(\, p,x, D) be pseudo-differential operators
with symbols a(X, @, z,€) € S™, b\, ¢,z,&) € S™, m,m’ € R. Then A()\) o B(X\) € OPS™™ satisfies,
for alla € N, s > sq,

|AB|: ook C(3)|ART Bl o+ C(s0)| AT Bl o (2.41)

m+m/,s,a = m,s, ol = m/ so+a+|m|, ™m,s0, m’,s+a+|m|,

Moreover, for any integer N > 1, the remainder Ry := Op(ry) in (2.29)) satisfies

ko, ko,
|RN|n2+'Ym/—N,s,o¢ gm,N,a,koﬁ (C(s)lA”ﬂg,;{,N—i—alBlm ,80+2N+|m|+a,a

ko,
+ C(SO)“Alng,;,,N—i-alB“m’ s+2N+|m|+a, a) . (242)
Both (2.41)-(2.42)) hold with the constant C(sg) interchanged with C(s).
Proof. As a first step we prove the estimates with no dependence on A:
|AB|m+m’,S7a Sm,a C(S)‘|A|m7s,a|B‘|m’,50+a+|m\,oc + C(SO)|A‘|m,80,a"B”m’,eraHml,a (2'43)

1
|RN”m+m’7N,s,a Sm,N,s,a ﬁ (‘|A|m,s,N+a ||B”m’,so+2N+|m‘+a,o¢ + ”A“m,so,N+O¢"B”m’,s+2N+|m|+a,o¢) . (244)

We first prove (2.43) for & = 0. Denote by o := 04p the symbol in (2.33). For all £ € R we have

o2 = S0 St — 00,5 — €+ (.3, O] (72 < 5145, (2.45)

J'e 34

Sm3( S ==t ) S ITN Y g2emem)

s _ ! S
30 (0,57)<28/% (L1,5) (o, )2 (= g" = )

N g ‘ sy £y, 5)%(L, 5")° 2 —2(mim’

=X (0 Y g 56 DI, = 5 ) BTy gy,
<€1a.]>60<€_€1)j _]>S

(€.3")>21/=(t1,5)
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Now, by Cauchy-Schwartz inequality and denoting ((so) 1= > scz0 jez W, we get
~ . . . . ENCTYEN . 14 7j 52 2 —2(m+m’
S S G DI 1.7 = 5.6 IR ) g2t
=N\ , (6= Ly, 5" = j)so
3Nl (€,57)<2Y/5(€1,5)

< 4¢(30) YOS (Al — 1,5 = Go€ + )R — 1,7 — 0 B(En, 5, O, )2 (€)~2mEm)

7' 01,5
< 4C(s0) D [b(tr, 4. )12 (tr, 4)* ()7 Zw 01,5 = 5, €+ )P — 1,5 — §)*0(€) 7™ . (2.46)

£1,j

For each j, ¢; fixed, we apply Peetre’s inequality
(E+m™ < Cnl)™m™, VmeR, neR,EER (2.47)

(where C,, = 4/™!) with 5 = j, and we estimate, for any s > s,

sup Y _[@(0 — by, = §,§+ )P — 01,5 = 5) (&) = sup la(, &+ DI
7'l

:<sgp||a<~,s+j>u§<§+j> M ELLE < cala, o (2.45)

and therefore we get, by (2.46]) and ( - ) for s = s,

S1 < AC(30)CEIAR, o0 > [b(6r, 5,62 (01, 5)% ()™ (€)™ < AC(30)CEIAR, 0 0/ B2 gy - (249)
01,5

For the estimate of Sy note that, since the indices satisfy (£, j') > 21/5(¢y,5) we have (£,5") < (¢1,5) +
(0 —ty,5 —3) <27Y30, 4"y 4+ (£ — £1,5" — j) and therefore

)< (=27 e—tr,5 —j).

As a consequence, arguing as above, we deduce that, for some constant C(s) > 0, we have

Sz <im C(8)IAR 5, 01Bl s+ im0 - (2.50)
By (2.45)) and (2.49), (2.50) we deduce the estimate (2.43) for a = 0, i.e.
IAB‘|m+m’,s,0 <m C(S)|A|m,s,0|B‘|m’,50+|m\,0 + C(SO)|A||m,80,0|B|m/,s+\ml,0 . (2-51)
Now we prove (2.43)) for « > 1. By differentiating (2.33)) we get, for all 1 < 8 < a,
Hoaplp,w.&)= D C(B1,62) Y 0 alp,x,+ )0 b0, 4, )"
B1+B2=8 JEZ
Therefore, since 8?25(4;),3', &) = 8?2b(<p,j, ) and, again by (2.33)), we get
Op(dfoap) = 251%250(517 £)0p (95" a) o Op(9F*b) . (2.52)
Since agla € gm—h 8?26 € S™' P2 B, 4 3, = 3, the estimate (2.51) implies
10D (97" @)OP(DZ2b) -+ 3,50 <m, C(5)|OD( @)l 1,5.0OP(O*b) s, 50451 + 1m0
+ C(50)I0P(0g" )l 50.010P (O D)l —z s +pml0 - (2:53)
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Therefore, for all 1 < 8 < a, by (2.52), (2.53)) and the definition (2.36) we get

|Op(a?UAB)|m+m/—ﬁ,S,0 Sm,ﬁ O(S)uAlm,S,a|B"m’7so+a+|m|,a + 0(50)|A||m,80704|Blm’,s+o¢+\m|7a

which proves (2.43)).
Now we prove (2.44)). Recalling (2.30) it is sufficient to estimate each

o N N\ONT e ija
TN,T(QDvx,g) e Zjez(af a)(cp,:r7£+7'j)8g]cvb(g0,j,§)€] y TE [Oﬂ]‘] (254)
Arguing as above (to prove (2.51])) we get

7y (5 (N ™) <y C()IOP(BE @)lim—,5,0/OP(OY D)t s+ N+l 0
+ C(SO)HOP(aéVa”mfN,sO,0||Op(ag]cvb)|m/,s+N+|m\,0
<m,N C(S)l()p(aéva)“m—N,s,OlOp(b)||m’,so+2N+\ml,o
+ C(50)|Op(9E @)lm—N,50,010P (D)l s 425 4 ] 0

which gives (recall (2.30) and (2.36]))

1
[R50 <m,v 757 (C(5) (50)|Alm,s0.N| Bl s-4+28+{ml,0) (255

namely (2.44) for « = 0. We now prove (2.44]) for o« > 1. By differentiating (2.54) we get, V1 < 8 < a,
8 TN,T (p,2,8) = Z C ﬂlaﬁQ Z(aé\”rﬁla)((p,m,f+Tj)aéva?2b(<p,j,f)eij$
B1+p2=pB JEZ

and so, arguing as for (2.53)),

1987 () (N0 <y o3 (C)IOD(OE ™ @m0
B1+pP2=pB

+ C(SO)|\OP(3éV+B1a)||m—N—ﬁ1,SO,OIOP(agz3ivb)\|m’—ﬁ2,s+zv+|m|+al,o)

(8?2 O V)i — 8,50+ N-+m|+51,0

(12.36))
< m,N,«a C(S)‘|A|m7s,N+a"B”m’,50+2N+|m\+a,a + C(SO)”AIT‘MSO,N+a‘|B|‘m’,s+2N+|m\+a,o¢

and (2.44)) is proved.

Finally we prove (2.41), (2.42) including the dependence on . For all k € N**1 |k| < ko, the
derivative
k _ k k
I{AN) o BN} = Zkl,kzeNu+1,kl+k2:kC(kl’ k)OS A(N) 0 D82 B(N).

Then (we have |k| = |ki| + |k2|)

')’Ikluaf{A()‘) o B(A) Himtm’ 5,0 ko Z 'YlklIPY‘kz‘la];A()‘) ° al,\QB()‘)‘|m+m’,S,a
ki1+ko=k

12.43)
Sko,m,a Z (C(s)'ylkll“aflAlm,S,a”Ylk?I|‘8’;ZB"m’,so+a+|m|,aJFC(50)7|k1I||a])flAlM,So,a”Ylkzlual)fzB||m’,s+a+|m|,a)
ki+tko=k

and (2.41) follows by the definition (2.35]). The estimate (2.42) follows since for all |k| < kg

7|k|‘|a§OP(TN,T)|m+m’—N,s,a <ko,m, N, Z (C(S)’Ylkl‘HaflAlm,S,N—&-a’Y‘kQ"af?B|m',so+2N+|m|+a,a
k1+ko=k

+ C(s0)y*1

N+a7‘k2|‘|a§2B‘|m’7s+2N+\m\+a,a) :

The proof is complete. O
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When B = g(D) is a Fourier multiplier, then Op(a) o g(D) = Op(a(z,£)g(§)) and we have a simpler
estimate.

Lemma 2.7. Let A = a(\, ¢, x,6) € OPS™, m € R, and let g(D) € OPS™ be a Fourier multiplier
(independent of \). Then |A o g(D)|*:? |A|k°’7

m+m/, sa—ma m,s,o”

By (2.29) the commutator between two pseudo-differential operators A = a(z,D) € OPS™ and
B = b(z, D) € OPS™ is a pseudo-differential operator [4, B] € OPS™ ™ ~1 with symbol axb (sometimes
called the Moyal parenthesis of a and b), namely

[A,B] = Op(axb). (2.56)
By (2.29) the symbol axb € Smtm’ =1 admits the expansion
a*b=—i{a,b} +ra(a,b) where {a,b} := 0:a 0,0 — 0,a O¢b (2.57)

is the Poisson bracket between a(x,&) and b(z,§), and ry(a,b) ;=12 4B — 72,84 € gmtm’ =2

Lemma 2.8. (Commutators) Let A = a(\, o, z, D), B =0b(\, p,z,D) be pseudo-differential operators
with symbols a(\, p,x,&) € S™, b\, p,z,£) € 8™, m,m’ € R. Then the commutator [A, B] := AB —
BA € OPS™t™ 1 satisfies

ko, ko, ko,
“[A B”n?ﬁm/ 1,8, <m ;m/ ko (C(S)||A|n;),g+2+|m/\+a o¢+1‘|B”Tr‘z ’yso+2+|m|+a,a+1

+C(so)l Al

m,so+2+|m/|+a, a—‘—l” |m/ ,5+2+|m|+a, a+1) (258)

Moreover the Poisson bracket {a,b} € S™t™ =1 satisfies
ko, ko, ko, ko,
0P ({a, b1 —1s0 ko CONAL T 1 it Bl Lo 101 + Co) ALY S 11 astl Bl byt o - (2:59)

Proof. The estimate (2.58) follows by (2.29), (2.42)) for N = 1, and (2.37). The estimate (2.59) follows
by (2.57)), Definition the tame estimates for the product of two functions (2.72)) and (2.37). O

Note that in (2.59) the loss of regularity in s is smaller than in ([2.58)).
The adjoint A* of a pseudo-differential operator A = Op(a) € OPS™ is a pseudo-differential operator
of the same order A* = Op(a*) € OPS™ and the symbol a* is defined in (2.31)).

Lemma 2.9. (Adjoint) Let A = a(\, ¢, x, D) be a pseudo-differential operator with symbol a(\, v, x, ) €
S™,m € R. Then the adjoint A* € OPS™ satisfies

|A*\|k””y |A‘|ko7’y

m,s,0 — m,s+so+|m|,0 *

Proof. Recalling Definition and ([2.34) we have to estimate

|A*s0 = Sup la (-, N2 ™2™ = > (6, 4)*[a(t, 3, £ — HI*() ™ (2.60)
4,4
Since
|A||3n ,s+so+|m|, 0= Zup ||a( ) 7£)||s+50+|m\ - supz E .] E e ]>2(s+50+\m|)<£> am

we derive the bound, for all e R, € Z¥, j € Z,

~ . . |A|m,s s m|,0 \m
e, € =)l < S e ) (2:61)
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Then by (2.60)), (2.61) and Peetre’s inequality (2.47)) we get

“A m,s,0 < Z <€’j>2(so+\m|) <§>2m | ”nz ,$+so0+|m|,0

<m |AL (2.62)

m E f ] 2(50+|m\)| Hm ,s+so+|m|,0 m,s+so+|m/|,0 *

The estimate for the derivatives with respect to A follows analogously, since 5‘§A* = Op(a’)fa*). O

Lemma 2.10. (Invertibility) Let ® := Id + A where A := Op(a(\, ¢,7,j)) € OPS®. There erist
constants C(so, a, ko), C(s,a, ko) > 1, s > so, such that, if
C(s0, 0 ko)A aa < 1/2 (2.63)

0,s0+a,a —

then, for all w, the operator ® is invertible, ®~1 € OPS° and, for all s > s,
0,s,«x

27!~ Td5 < Os 0 ko)A -

Proof. Tterating (2.41)) (for m = 0) we deduce that there exist constants C(so, o, ko), C(s, a, ko) > 1 such
that, Vn € Ny,

471624 o < (Cls0, @, k0))" ™ (A o)

0,sp9,a0 — 0,0+,
k ko, n—1, ko,
|"4n|0O . < TlC(S o ko) (0(507 «, ko)lA”O?ngra,a) "AlO?sla,a : (264)

By (2.63) the operator ® is invertible and the inverse ®~! may be expressed by the Neumann series
¢! =Id+ B with B:= " _,(—1)"A™. Moreover, since

la(; 3)[[L= < C(so)lla(:, 5)llse < C(s0)

,80,0 5 VJEZa

the symbol of ® satisfies 1 + a(\, ¢, z,j) > 1/2, Vj € Z, VA, i.e it is elliptic. Hence the inverse operator
B is pseudo-differential by the parametrix theorem (see [27]-Theorem 18.1.9). Moreover by (2.64))

|Blocurs < A" |5 < (C(So,a,ko)IIAIIS?S’ZM,OZ)”*1 C(s, @ ko)lAl6T oo
n>1

k
< Cl(sa a, kO)”AlO?;:iy—a,a

by the smallness condition ([2.63)). O

2.2 DM-tame and D*-modulo-tame operators
Let A := A()\) be a linear operator ko-times differentiable with respect to the parameter A € Ag C RV 1,

Definition 2.8. (DFo-g-tame) A linear operator A := A()) is DFo-o-tame if the following weighted
tame estimates hold: there exists o > 0 such that, for all so < s < S, with possibly S = 400, Yu € H517,

sup sup 7 [(OYAN))ulls < Ma(so)l[ullsro + Mals)|wllsoro (2.65)
|k|<ko AEA0

where the functions s — M4 (s) > 0 are non-decreasing in s. We call M4 (s) the TAME CONSTANT of the
operator A. The constant M4 (s) := Ma(ko,0,s) depends also on kg, o but, since ko, o are considered in
this paper absolute constants, we shall often omit to write them.

When the “loss of derivatives” o = 0 we simply call a D¥°-0-tame operator to be D -tame.

Remark 2.11. In sections @ I 7| we work with D*o-g-tame operators with a finite S < 400, whose tame

constants M4 (s) may depend also on C(5), for instance M4 (s) < C(S)(1+ ||J0H§3_Z) Vso<s<§. 0O
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An immediate consequence of (2.65) (with k =0, s = s¢) is that
Al 2(zrso+e ms0y < 20 a(S0) - (2.66)

Note also that representing the operator A by its matrix elements (A§,(€ — E’))é vez jien 8 in (2.12))
we have, for all |k| < ko, j' € Z, V' € Z",

Py, (€, )25108 AT (€ — )2 < 2(Mals0))* (¢, 72+ 4 2(Mals))*(¢, )20 (2.67)

The class of Dko—o—tame operators is closed under composition.

Lemma 2.12. (Composition) Let A, B be respectively D" -0 4-tame and D*o - g-tame operators with
tame constants respectively Ma(s) and Mp(s). Then the composed operator Ao B is D¥o-(g 4 +0op)-tame
with tame constant

Map(s) < Cko)(Ma(s)Mp(so+0a) + Ma(so)Mp(s+04)).
Proof. As for the analogous inequality (2.75)) below. O

Pseudo-differential operators are tame operators. We shall use in particular the following lemma.

Lemma 2.13. Let A = a(\, ¢,x, D) € OPS° be a family of pseudo-differential operators which are ko-
times differentiable with respect to \. If \|A|§f’8’70 < 400, 5 > s, then A is DR -tame with tame constant

Ma(s) < ClALS - (2.68)
Proof. By expanding (2.32)) in Fourier, we have

Au(p, x Z (Z C—0,5-73,7 ) up, ,) i(Eptie)

(€7V jEL ¥

Hence
2
JaalZ= > (X al—e. i) (€0)*
(€T JEL WETY 5 ET
2
< > (X @ -g e (6)°) =S+ S
eV JET U €LV 5 €L
where

. o o ) 0, 5)* 2
= é—él _q / gigl __ sI\so ;o El I\ s < I
Sl Z ( Z |a( )J ]"7)‘< ] .7> |u€ 5] |< ’~7> <€—€/7j_jl>50<£/7j/>s)

LELY JEL  (L,5) (€ ,j')~1<21/5
(0, 5)°

S= 3 (X A== = e WS )

€LY GEL  (£,5)(,5')~1>21/5

By Cauchy Schwartz inequality, and denoting ((sp) := ZL’EZV,jeZ W (which is < 400), we have
~ . . 2 2
Si< > ( > @t —,5— 3" 3We—2,5—= 3yl |, 5)° m)
CELY JEL  (€,5)(€',5)~1<21/s )=

<dl(s0) S0 S -G — 3 NP~ = Y lue P 5

LELY JEL U ELY j' EL

<4C(s0) D ueg PN Y =g =g e G- )

Very,j eL LeZV JEL

=4C(s0) > lue g5 D (a4, 5P §)%
ez .,j' e LeZv JEL

=4C(s0) > ue g P50 D0 a5 53, < 4¢(s0) (2.69)
vezy i’ en Lenv jEL
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For the estimate of Sy note that, since the indices satisfy (¢,7) > 2V/5(¢,j') we have (£,5) < (¢',5") +
W0 —0,5 —35) <27V, 5) + (£ — ¢, j — j') and therefore

iy < Q=27 == ).
As a consequence, repeating the same argument used for estimating S, we get

Sz < C()AJ 4 o

ull?, . (2.70)
By (2.69), (2.70), we deduce that

| Aulls < 2(¢(50))"*[Alo,s0.0 llulls + (C(5)) /%1

0,5,0/lullso

and therefore A is a tame operator with tame constant 4 (s) < C(s)|A]o,s,0 (for a different C(s)).
Since 0§ A = Op(8%a) for any k € N**1| |k| < ko, the general case of (2.68) follows. O

We now discuss the action of a D*0-g-tame operator A(w) on Sobolev functions u()\) € H® which are
ko-times differentiable with respect to A € Ag C R¥T!. Recall the weighted norm || ||¥o-7 in (2.5)).

Lemma 2.14. Let A := A()\) be a D*-o-tame operator. Then, ¥s > sq, for any family of Sobolev

functions u = uw(\) € HT which is ko-times differentiable with respect to X, the following tame estimate
holds

[Aull5 <gy Malso)|lullsyy +Mals)|ullsy T, -
Proof. For all |k| < ko, A € Ag, we have, by (2.65]), (2.5)
k
AN <0
S SR L[ YN SR YT S T

ko 7 (O A (s0) lull 357 + M) [ull 57,

103 A B3 u(M)]s

and the lemma follows by the definition of the norm || ||¥o-7 in (2.5). O

Lemma (2.39) and (2.68) imply tame estimates for the product of two functions in weighted
Sobolev norm: for all s > s,

[uv]ls < C()llullslvllsy + Clso)llullsol[v]ls (2.71)

k k k k k
[uv[|$*" <k Cs)llull 7 lvllsg™ + Clso)ullsg vl (2.72)

as well as the algebra estimate ||uv||%o7 <p C(s)||ul/*o"7|lv||*-7. In view of the KAM reducibility scheme
of section @ we also consider the stronger notion of D*o-modulo-tame operator, that we need only for
operators with loss of derivatives o = 0.

Definition 2.9. (D*o-modulo-tame) A linear operator A := A()\) is D*-modulo-tame if, for all
k € N**L |k| < ko, the majorant operators |05 A| (Definition satisfy the following weighted tame
estimates: for all s > sg, u € H?,

Sup Y105 Alulls < 97 (s0) [ulls + D%, (s) | ulls (2.73)
R0

where the functions s — ﬁﬁuA(s) > 0 are non-decreasing in s. The constant 9)??4(3) is called the MODULO-
TAME CONSTANT of the operator A.

Lemma 2.15. An operator A which is D*0-modulo-tame is also D**-tame and Ma(s) < 931?4(5)
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Proof. For all |k| < kg one has
.\ 25 i’ 2
195 A)ulZ = ZZ {€,9)° |Z£,’j,3§A§ (L= )ue 5
s i’ 2
< Z (€,5)° Zz,,j,lafAﬁ- (€= Ol go1)” = N1OXA[lulllI3

where |u| is the function defined in (2.3). Then the lemma follows by (2.73)), (2.4) and Definition O

The class of operators which are D*°-modulo-tame is closed under sum and composition.

Lemma 2.16. (Sum and composition) Let A, B be D*-modulo-tame operators with modulo-tame
constants respectively smﬁ, (s) and i)ﬁﬁB(s). Then A + B is Do -modulo-tame with modulo-tame constant

M, 5(s) < () + M (s) (2.74)
The composed operator A o B is D* -modulo-tame with modulo-tame constant
MV 5 (5) < O(ko) (% ()M (s0) + 9y (50) M5 (5)) - (2.75)

Assume in addition that (0,)*A, (9,)°B are D* -modulo-tame with modulo-tame constant respectively
Sﬁgaw)bA(s) and Em%abi(s), then (9,)°(AB) is Do -modulo-tame with modulo-tame constant satisfsying

My o (5) < CB)C (ko) (mQWA(s)anﬁB(so) + 9, 14 (50) My (s)
+ 9 ()%, 145 (50) + mg(so)mgwlg(s)) . (2.76)

The constants C(ko), C(b) > 1.

Proof. The bound follows by ([2.14)) and ( .

PRroor or For all |k| < ko we have

P10} (AB)ulls < Clkoy D7 (@5 A) (@3Bl
(2.14)
— Ctho)Y, " l05 Al 042 Bl
(2.73)

(ko) D (07 2 108 B[]+ 90 ()21 1032 B el

C' (ko) (I (50)M% (s0) [|ulls + (9%, ()% (s0) + M, (50)9 () [l s, )

and (2.75)) follows by recalling Definition
PROOF OF ([2.76)). For all |k| < ko we have (use the first inequality in (2.14))

1105)° 04 (AB)] [u], < c<ko>z,ﬂ+k2=k|\| 0,)° (95 4)(2% B . (2.77)
Next, recalling the Definition of the operator (9,,)® and ., we have
2
[0, (0% 405 B)] |nunH S (e~ (@8 )@ B (¢~ )] uer ) (2.78)
4,3 2.5

<X - ORI A (- @R B~ Ol )
4.j

2,37 81,01
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Since (¢ — ') < C(b)({£ — £1)® + ({1 — ¢')?), we deduce that

ET) < 0P Y™ (X e @5 A (€~ )l B (6 — ) e )

4,3 2,37 81,51
+C(b >22<f (X 1@ AR - )l — EPER B (6~ Ol )
2,3 81,51
(H} yo(05 A)| |05 Blul] H + H|6’“A| )2(0%2 B) |Jul] H ) (2.79)

Hence (2.77)-[2.79), (2.73) and (2.4) imply
11(0)°[5(AB)] |ul|, < C(0)C (ko)y™ ! (M5, )0 4 (50)E (50) + 9, (50)9Fy, 1o s (50)) [l
+ C(O)C (ko)™ M (0,4 (5)90 (s0) + My o4 (50) MW ()
+ 2mﬂA(S)Emlgawbjs’(50) + fm%(SO)fmw@bB(S)) [l s
which proves . O

As a consequence of ([2.75)), if A is D*0-modulo-tame, then, for all n > 1, each A™ is D*0-modulo-tame
and

My (5) < (2C (o)AMY (50)) " 900 (s) (2.80)

Moreover, by (2.76), if (0,)°A is D*0-modulo-tame, then, for all n > 2, each (9,,)°A™ is D**-modulo-tame
with

M oo (5) < (AC(D)C (o))" (T 10y (5) [0 (50)] "+ I, oy (s0) 00 () [My (50)] " 7) - (2.81)

Lemma 2.17 (Invertibility). Let ® :=Id+ A where A := A()) is D*0-modulo-tame with modulo-tame
constant Dﬁi\(s) Assume the smallness condition

n—1

4C (b)C (ko)DM (s0) < 1/2. (2.82)
Then the operator ® is invertible, A := &= —1d is D* -modulo-tame with modulo-tame constant
M (5) < 2000% (s) . (2.83)
Moreover (9,)* A is Do -modulo-tame with tame-constant
smgw 4(8) 29, 1 (5) +8C(0)C (ko) MY, 1. 4 (50) M (5) - (2.84)

Proof. By (2.66) and 1} the operatorial norm || Az (gs0) < 200 % (s0) <1/2. Then ® is invertible and
the inverse operator ® ! = Id + A with 4 := > n>1(—1)"A” satisfy the estimate (2.83) by (2.74)), (2. 80[)

- Similarly - ) follows by (2.74), ([2.81)) and (2.82]).

Lemma 2.18. (Smoothing) Suppose that (0,)°A, b > 0, is D*-modulo-tame. Then the operator I3 A
is D*o-modulo-tame with tame constant

zmﬁHLA( )< N*bfm?a@m(s), mf‘[lA

Proof. For all |k| < ko one has, recalling ,
, 2
Ik ALul2 = >0 (Y0 10547 (€ = O)lfuey )
5 31, 0—'|>N
_ 25 2
SNTEYD DT, M 0)P08AT (€= ) fury])
= N"2[1(9,)°(8XA)| [lul]|I2

and, using (2.73), [2.4), we deduce the first inequality in (2.85). Similarly we get [||[TIx0%A[ul? <
0% A Ju] ||? which implies the second inequality in ([2.85).

(s) < M (s). (2.85)
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The next two lemmata will be used in the proof of Theorem (S3),.
Lemma 2.19. Let A and B be linear operators such that |A|,|(0,)°Al, |B|,|(0,)°B| € L(H®®). Then

1 |[|A+ Bllleaeoy < MAlllzcmsoy + I1Blllccasoy,  IABllleaeoy < Al 2oyl Blllz(ao) ;
2. 1K0¢)°(AB)|ll c(r20) <v I(0e)° Alll2(zr20) I Bl ciareoy + I Alll2(zr20) 11(0)° Bl 2 (a0
3. M Allleaoy < NP0 Alll careoy s ITINAll2arsoy < IJAlll 2 (rreo)-

Proof. Ttem 1 is a direct consequence of (2.14)) and (2.4]). Items 2-3 are proved arguing as in Lemmata
216 and 218 O

Lemma 2.20. Let &, :=1d+ ¥;, i = 1,2, satisfy,
Wil cezrsoy < 1/2, i=1,2. (2.86)
Then ;' =1d + Uy, i = 1,2, satisfy ||| ¥1 — V||| c(meoy < 4]|[T1 — V||| (mr=0y and
1000101 = Walll £ (rr00) <o [1(0)°1 W1 — W[l £(s100)
+ (1 + (0> W1l o0y + 11(00) ™ Walll £ a0y ) W1 — Yol [l £ s00) -
Proof. Use ¥y — Uy = 7! — ®;% = &7 (W, — )@, and apply Lemma [2.19/1-2, using (2-86). O
The composition operator u(y) — u(y + p(y)) induced by a diffeomorphism of the torus T¢ is tame.

Lemma 2.21. (Change of variable) Let p := p(),-) : R — R? be a family of 2w-periodic functions
which is ko-times differentiable with respect to X € Ag C R¥T1, satisfying

[pllcso+s <1/2,  [pllso” < 1. (2.87)
Let g(y) ==y +p(y), y € T¢. Then the composition operator

Az u(y) = (uog)(y) = uly +p(y))
satisfies the tame estimates
[Aullsy oo llullsy,  [[Aulls < C(s)l[ulls + Clso)llpllsllullsg+1, Vs = s0+1, (2.88)
and for any |k| < ko,
15 A ullse ook ¥ ™M [[ullsos 181 (2.89)
1% A)ulls <o v~ (lullsgipg + D1 ullsg 4 ppre1) s Vs > 50 +1. (2.90)

The map g is invertible with inverse g~1(z) = z + q(2). Suppose %p(\,-) € C=(T*L) for all |k| < ko.
There exists a constant § := 8(sg, ko) € (0,1) such that, if ||p||’2€g(’:fHCOH <4, then

ki
lglls® <so PSSR, » Vs > s0. (2.91)

The composition operators A and A~' are D*-(ko + 1)-tame with tame constants satisfying for any
S > S0,
k
Ma(s) <spo L+ P17, Ma-i(s) s L4 PSSR, . Vso <s< S (2.92)
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Proof. PROOF OF (2.88). By Lemma B.4-(i¢) in [0] and (2.87), we have
[Aullso <so llullsy + [P]

cso qu SSO ”uHSo and ||Au||80+1 S50 ||u||50+1 . (293)

Thus the the first inequality in (2.88)), and the second one for s = sq + 1, are proved. Now we prove the
second inequality in , arguing by induction on s. We assume that it holds for s > sp + 1 and we
prove it for s + 1. As a notation we denote by Vu := (ug,,...,us,) the gradient of the function v and
A(Vu) := (Aug,, ..., Auy,). By the definition of the || ||s+1 norm and we have

lAulls41 < || Aullz2 + max |05 (Au)l,

lex|

< [[Aullzz + C(s)[[A(Vu)[[s + C)IANV)[sllpllso+1 + C(s0) [AVW) s, llplls41 -
Hence, by the inductive hyphothesis and using (2.87)), (2.93), we get
[[Aulls+1 < Cr(s)[|ullst1 4+ Crls)llpllsllullsor2 + Colso)llplls+llellso+a (2.94)

for some constants C1(s),Co(sg) > 0. Applying (2.9) with ag = bg =so+1, ¢ =1,p = s—s9 — 1,
e =1/C1(s), we estimate

Ci()llpllslullsor2 < Ipllstallullso+1 + Co(s)llpllso+allullssr
and, by (2.94)), using again that ||p||s,+1 < 1, we get
[Aulls41 < Cs + Dlulls+1 + Cso) [Pl stallwllsorr

with C(s + 1) = C1(s) + Ca(s) and C(sg) = 1 + Cy(se). This is for the Sobolev index s + 1.
PROOF OF —. We prove the estimate . We argue by induction on |k| < kg. For k = 0,
the estimate (2.90) follows by (2.88). Now we assume that holds for any |k| < n < k¢ and we prove
it for n + 1. Let o« € N*! such that |a| = 1. One has

(05 Ayu = 95 (A(Vu) - 95p) = > k1, k2) (03 A) (V) - 95+ p. (2.95)

ky+ko=k
For any ki, ke € N¥T1 with k; + ks = k, we have, using (2.71)),
105 A)(Vu) - 932 plls <o 103 A) (V) 1032l sy + 103 A) (V) 15 1032 Pl s

e Ed Ikt Ly
Sokr Y (Jullsriy o1+ 1PN Nl s ey 1+2)
e B 1 [P Tl ) el

(2.87)
<

78,]{21

—(k2]+1) Hp”\skzlﬂﬁ
0]

,y—(\kl-‘rl)( \Skl-‘rl

el o1 + DIl g4 18 42)

and recalling (2.95) we get the estimate (2.90) for |k| + 1.
5.97)

PROOF OF . Since y + p(\,y) = 2z <= z+ q(\, z) = y the function ¢(\, z) satisfies
q(A2)+p(A z+ g\ 2)) =0. (2.96)

If p € C! with respect to (),y), then, by the standard implicit function theorem, ¢ is C! with respect to
(A, z) and by differentiating the identity (2.96) one gets, denoting by Dy, Dy, D, the Fréchet derivatives
with respect to the variables A, y, z,

Dag(\,2) = —(Id + Dyp(\, 2 + ¢(A, 2))) " Dap(\, 2 + g(\, 2))
D.q(), 2) = —(Id + Dyp(A, z + q(A, 2))) "~ Dap(A, 2 + (A, 2))

It then follows by usual bootstrap arguments that if p is ko-times differentiable with respect to A and
Okp(A,-) € C* for any |k| < ko, then g is ko-times differentiable with respect to A and 8%q(X, ) € C* for
any |k| < ko. We now prove

10%qlls <o v MM vk e N R < ko (2.97)
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which, recalling (2.5), implies (2.91)). Denote by A, the composition operator
Ay h(z) — h(z + q(x))
so that ¢ = —A,[p]. By differentiating the equation g(X, z) +p(\, z+¢(A, z)) = 0, (so + 1)-times, one gets

that ||g|lcso+r < C(30)||pllcso+r < 1/2, provided ||p||¢so+1 is small enough and ||q||’“fw < C(so)Hprgfko <

1/2, provided || p||]:°ﬂk small enough. Therefore, we can apply the estimates - ) to the operator

A,. By (2.88] -7 one has
lalls = [[Aq(p)lls < C(s)liplls + Clso)llallslpllso+r

which, for C(so)|pllso+1 < 1/2, implies (2.97)) for £ = 0. Now we assume that (2.97) holds up to k| =n
and we prove it for n + 1. Let o € N*T! such that |a| = 1. We have

N = =08 (Ay(p) = —0X (Ay(Vp) - 05q + A, (05p))
= —4,(Vp) - g~ > Cry s O3 (A4(V)) - 8327 q — 05 (A4(95p)) -
k1+k2:k‘,|k‘2|<|k|
Using (2.71) we get
103 alls < Cs0)|A¢(VP)llso 105 alls + C ()| Ag (VD) 1105 allso + 105 (A4 (O5D)) s

+Ckys) D I (A(VRD IO alls, + 105 (Ag (Vo)) IIs 33> alls,
k‘1+k}2=k,‘k2‘<|k“

E39).@9D). lIpllsg+2<1 _
< Cr(s0)Ipllso+1l03 " alls + Cr()[plls+1l103 allse + 7~ Ag (B3PI

_ ko|+1, +1,
+ MO (B, 5) > [A(UR) I Il el + AL (TR ) 2
k1+ko=k
|k2| < k|
« «@ k|41,
< Ci(50) [pllso 11105 alls + Ca()lIplls1 105 gl + Cals, k)y ™ FHD LT (2.98)
using (2.89), (2.90)), (2.97), Lemma (2.14) and ||p||§gfk0+1 < 1. Then, for s = sg, one has
— k|+1,
105 gllso < 2C1(s0)lIPllso+1 1195 allsy + Caso, Ky~ KD [l L0 (2.99)

implying (2.97)) for k + « and s = sg, by taking 2C1(so)||pllse+1 < 1/2. Then the estimate for s > s,
follows by (2.95), (2.99), [2.87). Finally (2.92) follows by (2.88)-(2-90), (2.91). O

We finally state the following generalized Moser tame estimates for the composition operator
u(p, ) — £(u)(p, ) := f(p, 2, u(p,x))

which can be proved arguing as in the previous lemma. Since the variables (y,x) := y have the same
role, we present it for a generic Sobolev space H*(T).

Lemma 2.22. (Composition operator) Let f € C*®(T¢ x R,R). If uw(\) € H*(T?) is a family of
Sobolev functions satisfying ||ul|*7 < 1, then, Vs > so := (d 4+ 1)/2, ||[£(u)|ls < C(s, f)(1 + [Julls) and
[£(u)]|g7 < C(s, ko, £)(1 + [Jull&*7).

2.3 Integral operators and Hilbert transform

We now consider integral operators with a C*>° Kernel.
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Lemma 2.23. (Integral operators) Let K := K(\,-) € C*°(T” x T x T). Then the integral operator

(Ru)(p, ) == / K\ ¢, z,y)u(p,y) dy (2.100)
T
is in OPS™° and, for all m,s,a € N,
IRI"T . o < Clm, s, 0, ko) | K|[52 v - (2.101)

Proof. By (2.21]) the symbol associated to the integral operator R is
o) = [ KO pa)d0idy, viez. (2.102)
T

The function a is C* in (p,x) and ko-times differentiable with respect to A. For all m,8,p € N,
n € N”, k € N*T! one has

hanor A a(\, gz, €)™ = 3 Cpr o7 /T (B8R0 ) (M, p, 2, ) OB (0= ) gy

p1+p2=p
= kan +m+0 B i(y—x)j
= Zp1+p2:pCP1,p2,m,ﬁ /ﬂ‘(a,\awagl 852 I()()\7 ©, x,y)Aj (6 Y J) dy

integrating by parts. Using that |A?(e”j)| = |e#B(el* —1)P)| < 28, VB € N, x € R, and recalling (2.6),
we deduce that, for all |k| < ko,

(050502 A a(A, @, 2, )] < Clp,m, By MKl T ()77 (2.103)
Now we construct an extension a(\, ¢, x, &) of the symbol a(X, ¢, z,j) as in (2.23)), namely we define
a2, €) =) e )€~ ), VEER, (2.104)

Since a(-,j) = a(-,7) for all j € Z one has that Op(a) = Op(a) = R. By (2.24) and (2.103])) it results that
for all m, 8,p € N, n € N”, k € N**! with |k| < ko, there exist constants C’(p,m, ) > 0 such that

080p080¢a(N, 0,2, )] < C'(pm, B)y HIK g T ()7 (2.105)
By (2.2) and (2.105)) we get: for all m,s, 8 € N, |k| < ko,
102050, - lls()™ 7 = (10205a(N, - &)l z21z + 10:0005G(N, )l z2 12

ko,
Cs+m+8

+ s 0200080 )z ez ) (O™ Smpy MK

nezv |nl=s

that, recalling (2.36) and (2.35)), proves (2.101)). O

Remark 2.24. The extended symbol @ in (2.104)) can be explicitly written, using (2.102)) and the Poisson
summation formula, as a(\, ¢, z,&) = fR K(\, ¢,2,9)0(y)ei*Ydy where the test function § € D(R) is

defined after ([2.23)). This expression can be used as well to prove the estimate (2.101)). O
An integral operator transforms into another integral operator under a changes of variables
Pu(p,z) = u(p,z + p(p,z)) . (2.106)
Lemma 2.25. Let K(A,:) € C®(T” xT xT) and p(A,-) € C®(TY x T,R). There exists § := §(sg, ko) > 0
such that if Hp||§201k0+1 < 6, then the integral operator R as in (2.100)) transforms into the integral
operator
(PT'RP)u(p,z) = / K\ @, y)ulp,y) dy (2.107)
T
with a C>* Kernel Iz’()\, -+ +) which satisfies
- ko, ko, ko,

IE (57 < C(s, ko) (N SR, + 1P 4 1K ge o 1) V52 50 (2.108)
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Proof. We denote by z +— z —|— q( L, 2 ) the inverse diffeomorphism of z — x + p(A, p,x), for all p € T,
A € Ag. We have (RP)u fT A @,z y)u(e, y + o\ ¢, y)) dy and making the change of variable
z=y+pA p,y) we get with Kernel

K\ ¢, 2,2) = (1+ 0.0\ 9,2) K\, 0,2+ a(\ 9, 7), 2+ g\, ¢, 2)) .

Since p € C*°, by Lemma also ¢ € C, therefore K is C>°. The estimate (2.108)) for K then follows
by (2.72)), (2.89), (2.90), (2.91) and by Lemma O

We now study the properties of the Hilbert transform H. It can be defined through Fourier series by
Hcos(jz) := sign(j) sin(jz), Hsin(jz):= —sign(j)cos(jz), Vj € Z\{0}, H(1):=0, (2.109)

or in exponential basis -
Hel” .= —isign(j)e¥®, Vj #0, H(1):=0. (2.110)

The Hilbert transform admits also an integral representation. Given a 2m-periodic function u its Hilbert
transform is

S v L) B — un— )
Hu(z) := 5 P '/tan(é(m—y)) dy := L 5 / / — % @ —2)) dy. (2.111)

The commutator between the Hilbert transform H and the multiplication operator for a smooth function
a is a regularizing operator in OPS ™.

Lemma 2.26. Let a(),-,-) € C®(TY x T,R). Then the commutator [a,H] € OPS™ and, for all
m,s,a € N, . .
e, H07 o < Cloms 5,00 k)l s (2.112)

Proof. By (2.111]) the commutator
1 - 1
(Ha _ CLH)U _ 7p.v./ (a(y) a(if))u(y) dy — % / K(x,y)u(y) dy
T

21 tan(3 (z —y))

is an integral operator with C* Kernel (note that the integral is no longer a principal value)

a(\, ¢,y) — a(\, @, )

1
y—z
K\ g z,y) = :(/ ar(N, o,z +1 dt)—.
Dm0 = e 0)/2) ) ! R N e
Then (2.112) follows by Lemma ko’” <s HKH{:%{O < Ha||§?i_’zo+1 forall s >0. O

We now conjugate the Hilbert transform by a family of changes of variables as in (2.106)), see also the
Appendices H and I in [32] and [6]-Lemma B.5.

Lemma 2.27. Let p = p(),-) € C®(T"*). There ewists §(so,ko) > 0 such that, if Hp||§‘;(’)7+k0+1 <
§(s0, ko), then the operator P~YHP — H is an integral operator of the form

(P~YHP —H)u /K 0,1, 2)u(p, 2) dz (2.113)

where K = K(X,-) € C°(TY x T x T) satisfies

IK || < C (s, ko) IplI% Vs > s0. (2.114)

S+I€0 +2
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Proof. The inverse diffeomorphism of  — x+p(¢, x) has the form z — z2+¢(g, z). Changing the variable
z=y+p(p,y) in the integral (2.111]) gives

1 _ u(ep, 2)(1 + 0:9(\, 9, 2)) ;
P YHPu(p,x) = 5 P ./tan(é[x_z+q()\’¢7x)_q()\’%z)])d .

As a consequence we get (2.113)) (which is no longer a principal value) with Kernel

va) = L 1+09:9(\ ¢, 2) B 1
K\ ¢, z,2): gw(tan(%[;c—z+q(A,gp,x)—q(,\,%z)]) tan(%[x_Z]Q

(sin(%[w — 2449\ ¢, 2) —a(\ g, Z)]))

1

1
——20.1
7 208 sin(L[z — 2])

_%62 log (1+ g(\, ¢, x,2)) (2.115)

(note that ¢ is small) where the family of C* functions

a(A e, 7) —q(A Z)> — 1+ cos (x - Z> sin(zla(\, ¢ 2) — a(X, ¢, 2)])

2 2 sin(3 [z — 2])

satisfies the estimate || g% <, x, ||q||’;°+17 <sko Hp||fi’,zo+1 using (2.91]). Lemmaimplies (2.114). O

g\, p,x, 2) := cos (

2.4 Dirichlet-Neumann operator

We now present some fundamental properties of the Dirichlet-Neumann operator G defined in that
are used in the paper. There is a huge literature about it for which we refer to the recent work of Alazard-
Delort [3]-[4] and the book of Lannes [33], and references therein. We remark that for our purposes it is
sufficient to work in the class of smooth C* profiles n(z) because at each step of the Nash-Moser iteration
we perform a C*°-regularization.

The mapping (n,v) — G(n)y is linear with respect to ¢ and nonlinear with respect to 1. The
derivative with respect to n (“shape derivative”) is given by (see e.g. [33])

Gl = lim (G + =) — Gy} = ~Glo)(Bi) — 2u(V) (2116)
where o
B:=B(n,v) = W . Vi=V(n,) =1, — Bn,. (2.117)

The vector (V, B) = V, ,® is the velocity potential evaluated at the free surface (x,n(x)).
Note also that G(n) is an even operator according to Definition

The Dirichlet-Neumann operator is a pseudo-differential operator of the form
G(n) = D[+ Rea(n) (2.118)

where G(0) = |D| and the remainder Rg(n) € OPS~*°. The explicit representation of the integral

Kernel of Rg(n) given by (2.129), (2.113), (2.115]), has been taught to us by Baldi [5]. We use it to
estimate the pseudo-differential norm |RG(77)|]3053,5,04~ Note that the free profile n(x) := n(w, k, ¢, z) as

well as the potential ¢ (w, K, ¢, ) may depend also on the angles ¢ € T¥ and the parameters A := (w, k) €
R” X [K1, ke]. For simplicity of notations we sometimes omit to write the dependence on ¢, w, k.

Proposition 2.28. Assume that 05n(),-,-) is C*° for all |k| < ko. There ezists § := §(so, ko) > 0 such
that, if
ko,
”77”2201%0-&-1 <94, (2.119)
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then the Dirichlet-Neumann operator G(n) may be written as in (2.118) where Rg(n) is an integral
operator with C* Kernel K¢ (see (2.100)) ) which satisfies, for all m,s,a € N, the estimate

[R5 .0 < Cls,m, . ko)| Ke|

—m,s,a —

ko, ko,
Cg+’ym+a < 0(57 m, &, kO) ‘|77H53_30+2k0+m+a+3 . (2'120)

Let s1 > 2sg + 1. There exists §(s1) > 0 such that, the map {||n|ls;+6 < 0(s1)} — H*(TY x T x T),
n— Ka(n), is C*.

Remark 2.29. Note that the assumption (2.119) in low norm || Hggoﬁl%o

, implies the estimate (]?
for any s € N. The estimate ||0,Kc[7]lls; <s, |7]]si+6 is used in section@ (in particular in section 6.2
with a Sobolev index s; which has to be considered fixed, see . A sharper tame version of this
estimate could be proved, but it is not needed. Note also that it does not involve the || [|*Y norm. O

The rest of this section is devoted to the proof of Proposition [2.28
In order to analyze the Dirichlet-Neumann operator it is convenient to transform the boundary value
problem defined in the free domain {(z,y) : ¥ < n(x)} into an elliptic problem in the lower half-
plane ¥y := {(X,Y) : Y < 0} via a conformal diffeomorphism

r=U(X,Y), y=V(XY). (2.121)

The following conformal transformation (2.122), the formulation of the problem as the fixed point equation

(2.125), Lemma and (2.129) is due to Baldi [5].

THE CONFORMAL TRANSFORMATION. Let p: R — R be a smooth 27-periodic function with zero average
and [|0%plr2(1) < o :=1/(2v27). We define the functions

UX,)Y):= XJerk elFlY ik X V(X,Y) = Y+Zi sign(k) py, el*1Y e*X 4 ¢ (2.122)

k0 k0
with ¢ € R. The functions U and V are both harmonic on ¥ and satisfy the Cauchy-Riemann equations
Ux = Vy, Uy = —Vx so that U 41V is holomorphic on Xy. The gradient (Ux,Uy) — (1,0) as Y — —cc.

Since, VY < 0, [|[Uxx(X,Y)[z2(m) < |lpxx|z2(r) < co, it results Ux > 1/2 on ¥, and, by Vy =
Ux > 1/2, we also get V(X,Y) < V(X,0) for Y < 0. The Jacobian

Ux Uy Ux Uy 2 o 1
— — >
det( Ve VA ) det( U U ) Ux + Uy 1 V(X,Y) e X,

so that U 41V is a global diffeomorphism from ¥, onto its image. Since U(X,Y) — X is 2w-periodic in
X (see (2.122)) the map U + iV is the lift of a diffeomorphism from T x (—o0,0] onto its image. The
image of the map U + iV is the subset of C ~ R? that is below the profile described parametrically by

(U(X,0),V(X,0)) = (X + p(X), —Hp(X) + ¢) (2.123)
where H is the Hilbert transform in (2.110). The profile (2.123) coincides with the graph Y = n(X) if
—Hp(X) +c=n(X +p(X)), VYXER. (2.124)

Since, by (2.110)), the range of the Hilbert transform H is the space of functions with zero average and
H? = —II where II[f] := f — fo, the equation (2.124) is equivalent to

2w

c (X +p(X)) dX

:% ;

and
p(X) =H[n(X + p(X))]. (2.125)
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Lemma 2.30. Let n satisfy Okn(),-) € C°(T**1), for all |k| < ko. There exists § := &(so, ko) > 0, such
that, if H77||§°(’]1k0+1 < §, then there exists a unique solution p = p(\,-) of (2.125)) satisfying the estimates

S

ko,
lolls <s lmlls, IRl <s lnll%%, . Ys = so. (2.126)

Let s1 > 250 + 1. There exists 6(s1) > 0 such that the map {||n||s,+2 < d(s1)} — H*', n— p(n), is C .
Proof. We find a solution of (2.125)) as a fixed point of the map

p(p, X) = 2(p)(p, X) == H[n(p, X + pp, X))] .

For any n € N, we consider the finite dimensional subspace E,, := span{e'(“#17%) . |(¢, j)| < n} and the
regularized map ®,, :=I1,® : E, — E,, where II,, denotes the L2-orthogonal projector on E,. We show
that there is r > 0 small, such that, for any n € N, the map

1 Bosy+1(r) N En — Bosy41(r) N Eyn,  Bagy1(r) = {p € H*oth: Ip]l250+1 < 7‘} )

is a contraction. We fix » > 0 such that ||p|lgso+1 < C(s0)lIpllase+1 < 1/2, for all p € Bags,+1(r), ie
r := 1/(2C(s0)), so that the hyphothesis (2.87) of Lemma [2.21] is fulfilled. Then, using that M is an
isometry on the Sobolev spaces H® (see (2.110)), that ||IL,h||s < ||h||s, and applying (2.88)), we get

[@n(P)ll2s0+1 < lIn(- +P())ll2so+1 < Cr(so)[nllase+r <7

taking ||9|l2so+1 < 7/C1(s0). Moreover for any py, pa € Basy+1(r) N E,, we have

[@5(p1) — Pn(p2)ll2so+1 < C(s0)1l|2s0+2llP1 — P2ll2se+1 < [[p1 — Pall2sy+1/2,

by taking C(so)||nll2sg+2 < 1/2. Then, by the contraction mapping theorem there exists a unique fixed
point solution p, € Bas,+1(r) N E, solving ®,,(p,) = p,. Note that p, € E, C C>°(T"*1). Using again
that the Hilbert transform is a unitary operator, and the estimate (2.88)), we get, for all s > s

1Pnlls = [[®n(@a)lls = T HA (- + pu()] < C(s)lInlls + Cso)lpallslinllso+s (2.127)

which implies ||pn|ls < 2C(s)||n|ls taking C(so)||nllsg+1 < 1/2. Since H® — H*~! compactly, for any

s > s, the sequence p,, converges strongly in H® (up to subsequence) to a function p € C*°(T*!) which
satisfies ||p||s < 2C(s)||n||s for any s > sp. The function p solves the equation (2.125) because

[@(P) = @nlpn)llso < IHnHn(-+ p()) = TnHn (- + pn()llso + [[(Id = Tn)Hn (- 4 p(-))]s
1 1
Sso [1Mllso+1llp = Pallso + —lnllso+1 (L + [Pllso+1) Sso [P = Palls +— =0

as n — —+oo. This implies that ®(p) = p. Arguing as in Lemma one can prove that if 9¥n(,-) € C>®
for all |k| < ko, then also %p(A,-) € C°(T**1), for all |k| < ko. The second estimate in (2.126]) can
be proved as the estimate (2.91) in Lemma using the condition ||77||f§fk0+1 < d(s0, ko) for some
5(s0, ko) > 0 small enough.

The differentiability of 7 +— p(n) follows by the implicit function theorem using the C' map

F:H*" "2 x H — H* | F(n,p)(¢,X) :=p(p, X) — H[n(e, X + p(e, X))] .

Since F(0,0) = 0 and 9,F(0,0) = Id, by the implicit function theorem there exists 6(s;) > 0 and a C!
map {[[n]ls,+2 < d(s1)} 0 p(n) € H, such that F(n, p(n)) = 0. [

We transform via the conformal diffeomorphism (2.122). Denote
Pu(X) :=u(X + p(X)).
The potential ¢(X,Y) := ®(U(X,Y), V(X,Y)) satisfies, using also (2.123)-(2.124),
Ap=0in{Y <0}, &(X,0)=(PyY)(X), V¢—(0,0)asY — —c0. (2.128)

Recall that the Dirichlet-Neumann operator at the flat surface Y = 0 is OxH.
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Lemma 2.31. G(n) = 0, P~ 'HP.
Proof. Since n(U(X,0)) = V(X,0) (see (2.124))) we derive —Uy = Vx = n,Ux on Y = 0. Moreover, by

_ oxUx + oy Uy ~ ¢oyUx — ¢xUy
o, = POXTOTY g = DX T OV

Ui +U% 7 Yo U402

and the definition (1.4)) of the Dirichlet-Neumann operator we get
1 1
€ — oy (0x(=Uy = .U Ux = mUy)) = 5o 6y (X,0
(m(z) 0T 02 ¢x(~Uy = n2Ux) + ¢y (Ux — naUy) Ux(X.0) oy (X,0)
e 1 1 .
R OH(P)(X) = { OXHPY(x + ila
e PO = { o axHPY G 4 ()

where X = x + p(z) is the inverse diffeomorphism of z = X + p(X). In operatorial notation we have

1 1

G(n) =P OxHP = ———— P '9xPP '"HP
(n) T+px 1+ Pipy X
=——— 14+ P px)0,P *HP=0,P'HP
1+ P~ lpx 1+ P"px) " "
by the rule P~10x P = (1 + P~ !px) 8, for the changes of coordinates. O
Lemma provides the representation (2.118]) of the Dirichlet-Neumann operator with

Re(n) =0, (P""HP —H). (2.129)

By Lemma [2.27] in particular by formula (2.115]), the operator Rg(n) is an integral operator with kernel
1
K = Ka(n) = =0 log (1+ g(p,,2)) (2.130)

where

(2.131)

g\ o, ) — g\ @, Z)) 14 cos (m - z) sin(zla(\, @, 2) — a(A, ¢, 2)])

g(p,x,2) = COS( 2 2 sin(1[z — 2])

and x — x + ¢(p, ) is the inverse diffeomorphism of X — X + p(p, X) (the functions p, ¢ depend on 7).

PROOF OF PROPOSITION [2.28] CONCLUDED. By (2.119) we apply Lemma and then (2.126)) implies

||p||§§(’)1k0+1 <so ||n||§27 oky+1- Hence, by (2.119)), the smallness assumption of Lemma is verified.
Hence the estimate follows by (2.101)), (2.114), (2.126).

We now prove that the function {||n||s,+6 < d(s1)} — H* (T” x T x T), n — Kg(n) is C1. Indeed, by
applying Lemma [2.30] (with s; + 4 instead of s1), the map {[|nls,+6 < d(s1)} — H=, 5 p(n) is CL.
Then, since g(p, ) = —p(p,  + q(v, x)), by the implicit function theorem, for p small in || - ||5, +4-norm,
also the map p — q(p) € H*1*2 is C'. By composition, the claim follows by recalling , . O

To conclude we provide the following tame estimates for the Dirichlet Neumann operator:

Lemma 2.32. There is 6(so, ko) > 0 such that, if ”77”]262;1%04-5 < 0(s0, ko), then, for all s > sg
ko, R ko, ,
(G) = IDDUIET ko 1113570 s 2k0+sl1P1S Y + Nll52 2k sl I (2.132)
~ ko, v 1 ~1ko, ko,y 1 ko, ko, ~1ko, ko,
IG" AN <o 1013 WAl sy + 1l a2 NS + IS o ra Tl N0, (2:133)
PP ko, ~1ko,y \2 ko, v [1a01ko, 121 Ko,
IG" (7, AN <sro 18153 (Illa0772) ™ + 10l 2s 11253 17l eg 7
ko, Koy (11~1kosy \2
+ ||n||s?|»zo+2ko+5||w”sg-i?3(Hang-{-Y?) . (2134)

Proof. The estimate (2.132)) follows by the formula (2.118]), the bound (2.120) (for m = o« = 0) and

Lemmata [2.13} 2.14, The estimate (2.133) follows by the shape derivative formula (2.116), applying
(2.132)), (2.72) and the fact that the functions B,V defined in (2.117) satisfy

k k Ko, Ko, ko,
IBIS 7 VIS <o IS8T + Inlld e rorors ¥ s -

The estimate (2.134) follows by differentiating the shape derivative formula (2.116)) and by applying the
same kind of arguments. O
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3 Degenerate KAM theory

In this section we verify that it is possible to develop degenerate KAM theory as in [10].

Definition 3.1. A function f := (f1,..., fn) : [k1, ko] — RY is called non-degenerate if, for any vector
c:=(c1,...,cn) € RV N\ {0} the function f-c = fici + ...+ fyen is not identically zero on the whole
interval [K1, Ka).

From a geometric point of view, f non-degenerate means that the image of the curve f([x1, x2]) C RY
is not contained in any hyperplane of RY. For such reason a curve f which satisfies the non-degeneracy
property of Definition [3:1] is also referred as an essentially non-planar curve, or a curve with full torsion.
For a smooth degenerate function f, differentiating (N — 1) times the identity f(k) ¢ = 0, we see that

f(k) degenerate = f(k), (8uf)(K),...,(ON"1f)(k) are linearly dependent Vr € [k1,k2]. (3.1)
Given ST C Nt we denote the unperturbed tangential and normal frequency vectors by
B(r) = Wi(r)jest »  Qr) = ((K)jenr\sr = (Wi (K))jenngt - (32)
Lemma 3.1. The frequency vectors &(k) € RY, (v/k,d(k)) € RVT! and
(@(r), Q(x)) € R™TE 5 € NFAST,  (@(r), Q(x), () € R, VG, j" € NTAST, j # 57,
are non-degenerate.

Proof. Set A\o(k) := /k and A;(k) := \/j(1 4+ kj2), 7 > 1. The lemma follows by proving that, for any
N, for any A, (k),...,Ajy(K), with ji,...,58 > 0, j; # jg for all i # k, the function [k1,k2] 3 Kk +—
Ay (K), ..., Ajy (5)) € RY is non-degenerate according to Deﬁnition By (3.1) it is sufficient to prove
that the N x N-matrix

6>\§\1 (fz) : 8)\1\2 (/‘(i) ) e aAiN (fz) :
A= | 7 o Y
aévilAjl (KJ) 8571)‘3'2 (’{) 8)]1\]71/\JIN (K:)

is non-singular at some value of k € [k1, ko|. Actually, it turns out to be non-singular for all k € [k1, ka].
Arguing by induction we get the following formula for the derivatives of \;(k): for all r > 1

—1)r+1 —
L(?r — 3)!!&72 =

27‘

O Mo(k) = = (=)™ (2r =3\ (k)2h, T0:= — (3.3)

n—1
where (—1)!':=1, 1!l :=1 and if n > 1 is odd n!! :=[[,2,(n — 2k). For all j,r >1

AN (k) = ‘/J; L) 2 3L %) = (1) 2 3N (k)L 2 = m (3.4)

Using the previous formulas (3.3))-(3.4) and the multi-linearity of the determinant we get

N N-1
det(A(k)) = H Aj (K) (=)™ (2r — 3)!'det(B(k))
k=1 r=1
where the N x N matrix
1 1 1
B(K}) = le sz :L.JN
N-1 N-1 N-1
Ty L, Tjn
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is the Vandermonde matrix. Its determinant is

detBr) = ] (s — ). (3.5)

1<i<k<N
By the definition of z; in (3.3)-(3.4]), we have that, for all k € [k1, k2],

1 jQ*j/Z 1
== 0,Vj#5.4,i'>1, @ —20=——
2 (1+I€j2)(1+:‘$]/2) 7£ , V)] 3&] 1) =2 ) I] To 21%(1_’_,{]2)

#£0,Vj>1.

Tj — Ty

Thus, by (3.5) the determinant det(B(k)) # 0 and so det(A(k)) # 0, Vi € [k1, ko], proving the lemma. O

In the next Proposition we deduce, by the qualitative non-degeneracy condition proved in Lemma
the analyticity and the asymptotics of the linear frequencies £ — w;(k) = \/j(1 + kj2), the quanti-
tative bounds (3.6)-(3.9). The proof is similar to [10]. It does not follow immediately [I0] because the
linear frequencies w;(x) depend on the parameter « also at the highest order O(y/k5%/?).

Proposition 3.2. There exist kg € N, pg > 0 such that, for any k € [k1, k2],

maxg <k, |07 {G(K) - €} > pol€), VL€ Z”\ {0}, (3.6)
maxy<p, |0 {D(K) - £+ Qj(K)} > poll), VL€Z¥, jeNF\SH, (3.7)

max <k, |05 {G(K) - £+ Q(K) — Qi (k) > poll),  V(0,4.5") #(0,4,5), 4, i € NT\ ST, (3.8)
maxg<p, |OF{G(K) - £+ Qj(k) + Qs (k) } > poll), VL€Z¥ 4,7 e NT\ST. (3.9)

We call (following [{1)]) po the “amount of non-degeneracy” and ko the “index of nondegeneracy”.

Proof. All the inequalities (3.6)-(3.9) are proved by contradiction.

PrROOF OF (3.6). Suppose that Vkg € N, Vpy > 0 there exist £ € Z" \ {0}, k € [k1, k2] such that
maxy<, |05{G(k)-£}| < po(€). This implies that for all m € N, taking pg = =, there exist £,, € Z"\ {0},

T+m>
Km € [K1, ko] such that
. 1
manngE{W(/%) A} < 1+ m<€m>
and therefore ’ )
L >k k- m) - _m . 1
VkeN, m>k, |05(km) o) <1—|—m (3.10)

The sequences (Km)men C [k1, k2] and (£y,/{(€m))men C R” \ {0} are bounded. By compactness there
exists a sequence myp, — +oo such that k,,, — & € [k1, k2], €m, /(¢m,) — € # 0. Passing to the limit in
for mj — 400 we deduce that 0%& (k) - ¢ = 0, Vk € N. We conclude that the analytic function
Kk +— (k) - € is identically zero. Since € # 0, this is in contradiction with Lemma

PROOF OF (3.7). Recalling that Q;(k) = 1/j(1 + xj2), we have the expansion

S gL [y
Q(k) =Vkj2 + N cj(k) = 2, (1+ sz) dt (3.11)
where
VkeN, |0 () | < C(k) (3.12)

VA
uniformly in j € S¢, k € [k1, ka].

First of all note that V& € [k1, k2], we have |&(k)-£+Q; (k)| > Q;(rk) —|G(k) - €] > \/R17>/2—C|l] > |¢|
if §3/2 > Cy|¢| for some Cy > 0. Therefore in we can restrict to the indices (¢,5) € Z* x (NT\ ST)
satisfying ,

i < ool (3.13)
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Arguing by contradiction (as for proving (3.6)), we suppose that for all m € N there exist ¢, € Z",
Jjm € NT\'ST and &, € [k1, k2], such that

max‘@fj{gj(,{m). b, Qjm(fﬂm)}‘ _ 1

and therefore ; Q. (Km) 1
> R G0k ). m dm i : 14
VkeN, m>k, Gm{w(/fm) <€m>—|— o }‘<1+m (3.14)

Since the sequences (Km)men C [K1, k2] and (4, /{(€m))men € RY are bounded, there exist mp — +oo
such that

¢
Km, — R € [k1, k], <€mh> —ceR”. (3.15)
mp

We now distinguish two cases:
CASE 1: (€,) C Z¥ 18 BOUNDED. In this case, up to subsequence, £,,, — ¢ € Z", and since |j,,| <
Cl|l)3 for all m (see (3.13)), we have Jm,, — J- Passing to the limit for m;, — +oo in (3.14) we deduce,
by (B.15), that )

O{B(R)-c+ Q(R)(0) '} =0, VkeN.

Therefore the analytic function x — @(k) - ¢+ (£)  Q;(k) is identically zero. Since (¢, (¢)~') # 0 this is
in contradiction with Lemma [3.1]

CASE 2: ({,,,) Is UNBOUNDED. Up to subsequence |{,,,| — +o0o. In this case the constant ¢ # 0 in
(3.15). Moreover, by (3.13)), we also have that, up to subsequences,

3 —

G (bmn) "t — d ER. (3.16)
By (3.11), (3.12), (B.15), (B.16), we get
Qj (K‘mh) jrgn; Cj (’imh) = Qj (Hmh) -
A = R s+ —dVE, Of——"t —dOiVR (3.17
) U o g o) ) )

as mj, — +00. Passing to the limit in (3.14), by (3.17), (3.15) we deduce that Of{&(%) - ¢+ dv/&E} = 0,
Vk € N. Therefore the analytic function x — &(k) - ¢ + dy/k = 0 is identically zero. Since (¢, d) # 0 this
is in contradiction with Lemma [3.1]

PROOF OF (3.8). Notice that, for all k € [x1, k2],

|G(k) - £+ Qj(k) = Qe (8)] = 19;(r) = Qe (k)] — [G(R)]]€]
EnED VrLlit =73 —C—Cle = (@

provided |2 — j/2| > C1(£), for some C; > 0. Therefore in we can restrict to the indices such that

7% =73 < Cul). (3.18)

Moreover in (3.8]) we can also assume that j # j’ otherwise (3.8)) reduces to (3.6]), which is already proved.
Now if, by contradiction, (3.8) is false, we deduce, arguing as in the previous cases, that for all m € N,
there exist £, € 2", jm, jh, € NV\ ST, jo # jl., km € [K1, k2], such that for all

keN, Vm>k, (3.19)

14 Qi (km)  Qr (Km) 1

O { @) - 4 s T
@) oy T D ) <1 Tm
As in the previous cases, since the sequences (Km )men, (bm/{(€m))men are bounded, there exists mp, — +00
such that

Km, — R € [k1,Ka), Lm,/m,) — CER". (3.20)
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We distinguish again two cases:
CASE 1 : ({,,) 1s BOUNDED. In this case, up to subsequence, £,,, — £ € Z". Using that

3 43 . - - - . .,

52 =2 21 =7V VI 2V Vi
by (3.18) we deduce that also jy,, j,,, are bounded sequences and therefore, up to subsequence,
Jrmn =7, J#7. (3.21)
Hence passing to the limit in (3.19) for m;, — 400, we deduce by (3.20)), (3.21) that

M{&(R) e+ QR)() ™ = Qp(R)()"'} =0, VkeN.

-7, Imp

Therefore the analytic function x — &(k) - ¢ + Q;(k) (€)= — Qz (k) ()71 is identically zero. This in
contradiction with Lemma [3.11
CASE 2 : (€mh IS UNBOUNDED Up to subsequence |¢,,,| — +oo. In this case the constant ¢ # 0 in

- Using (3.11] , for all k € N,

o Q. (Fmy,) = Qj;nh(fimh) j2 —j"3 1 o Cimy, (Ko, L ¢t (Fomy,)

= 8,]: vV Em + B K - -
<£mh> <£mh> vV ]mh <€mh> K’mh jinh <€mh> K’mh

and

<

’ 1 ok Cjmy, (Fm) 1 ok Jm,,( )

¢R)|_ C'(R)
by R Tl e ok

" Ve

<€mh> Supj€N+\S+,H€[I€1,I{2]

3 3 -
as my, — +oo. Moreover, by (3.18), up to subsequences, |ji, — j'2, |(¢m,)” " — d € R. Therefore, for

all k € N,
& ijnh (K“mh) Qjﬁnh (Kmh)
" (i)

Passing to the limit in (3.19) for mj — 400 we deduce that OF {&(%)-c+dv/k} = 0, Vk € N. In conclusion
the analytic function k — (k) - €+ dv/k is identically zero. Since (¢, d) # 0, this is a contradiction with
Lemma 311

PROOF OF (3.9). The proof is similar to the previous ones and we omit it. O

— do*VE.

4 Nash-Moser theorem and measure estimates

Instead of working in a shrinking neighborhood of the origin, it is a convenient devise to rescale the
variable u — eu with u = O(1), writing (1.3)-(1.5) as

Ou = JQu + eXp_(u) (4.1)
where JQ is the linearized Hamiltonian vector field in (1.14)) and

e~ (G(en) = G(0))y

2
Glen)p+ensta)

Xp. (u) = Xp.(k,u) := , 3 _
A o+ ) o (04 n?) ™ - 1)

(4.2)
Note that the dependence of the vector field X p, with respect to « is linear. System (4.1]) is the Hamil-

tonian system generated by the Hamiltonian

He(u) := e 2H(eu) = Hp(u) + eP.(u) (4.3)
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where H is the water-waves Hamiltonian (1.6), Hy, is defined in (1.15)) and

Pu(u) = Peloyn) = - (0, (Glem) = GOO)))zage,y +7°% [

T

( 1+ (eng)2 —1— (57’;)2) dr. (4.4)

We decompose the phase space

H even = {1 = (0,) € HY(T2) x HY(T,),  u(@) = u(—a) } (4.5)

as the direct sum of the symplectic subspaces

H§ von = Hg+ @ Hg: where Hg+ = {v = Z (Z}?) cos(jx)} (4.6)
JEST

and Hg; denotes the L2-orthogonal.
We now introduce action-angle variables on the tangential sites by setting

2 19 2 _1/2
n; = ;A;/ V& + Ijcos(0;), ;= \/;A / V& + I sin(é =il +rj2)~1, jeSt,
(4.7)
where §; > 0, j = 1,...,v, are positive constants, the variables |I;| < &;, and we leave unchanged the

normal component z. The symplectic 2-form in (1.7]) then reads (for simplicity of notation we denote it
in the same way)

W= (Zjewdoj A dlj) & W, = dA (4.8)
where A is the Liouville 1-form
A1) 5 = Z I0 - = Jz z) (4.9)
JEST

Hence the Hamiltonian system (4.1)) transforms into the new Hamiltonian system
0=08;H.(0,1,2), I =—0pH.(0,1,2), 2z =JV.H.(0,1,2) (4.10)

generated by the Hamiltonian
H.:=H.oA=e¢2HocA (4.11)
where
1/2 V& + 1 cos(8))
A0,1,2) :=v(0,I)+ Z 1/2 J 77 cos(jz) + 2. (4.12)
et V& + 1 sin(6;)

We denote by
)(LQ.:::(81}]é7‘_6%}3é7<]‘7zl15)

the Hamiltonian vector field in the variables (6,1, z) € T x R x Hgﬁ The involution p in (1.11)) becomes
p:(0,1,2)— (—0,1,pz). (4.13)
By (1.6)) and (4.11]) the Hamiltonian H. reads (up to a constant)

%(z,Qz)Li , P:=P.oA, (4.14)

where d(k) is defined in (3.2) and © in (1.14). We look for an embedded invariant torus

H.=N+eP, N:=HpoA=4d(k) - I+

i T =TV xR x Hy, o —i(p) := (0(p), I(¢), 2()) (4.15)

of the Hamiltonian vector field X, filled by quasi-periodic solutions with diophantine frequency w € R”
(and which satisfies also first and second order Melnikov-non-resonance conditions as in ([4.25)).
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4.1 Nash-Moser Théoréme de conjugaison hypothétique

The Hamiltonian H. in (4.14) is a perturbation of the isochronous Hamiltonian A. The expected quasi-
periodic solutions of the Hamiltonian system (4.10) will have a shifted frequency which depends on the
nonlinear term P. In view of that we introduce the family of Hamiltonians

1
Hy:=N,+¢eP, N, ::O"I—’_Q(Z’QZ)L?C’ aeRY, (4.16)

which depend on the constant vector aw € R”. For the value @ = &(k) we have H, = H.. Then we look
for a zero (i, ) of the nonlinear operator

F(i,a) := F(i,o,w, K, €) := w-0,1(¢) — Xp, = w-0,i(p) — (Xn, +Xp)(i(p)) (4.17)

w-0,0(p) —a— 0rP(i(p))
w-0,1(p) + 0o P(i(p))
w-0,2(p) — J(Qz+ eV, P(i(p)))

for some diophantine vector w € R”. Thus ¢ — i(y) is an embedded torus, invariant for the Hamiltonian
vector field Xz, filled by quasi-periodic solutions with frequency w.

Each Hamiltonian H, in is reversible, i.e. H, o p = H, where the involution p is defined in
(4.13)). We look for reversible solutions of F(i,a) = 0, namely satisfying gi(¢) = i(—p) (see (4.13))), i.e.

0(=p) ==0(p), I(=p)=1(p), 2(=¢)=(02)(¥). (4.18)
The Sobolev norm of the periodic component of the embedded torus
I(p) :=1i(p) — (¢,0,0) := (O(p),1(¢),2(¢)), O(p) :=0(p) — o, (4.19)

is
1315 == [1®ll g + [Tl s + Izl
where [l2]ls = 2l . = [nlls + 6], see (TT9).

For the next theorem, we recall that ko is the index of non-degeneracy provided by Proposition [3.2]
and it depends only on the linear unperturbed frequencies. Therefore it is considered as an absolute
constant and we will often omit to write explicitly the dependence of the constants with respect to kg.
We look for quasi periodic solutions with frequency w belonging to a d-neighborhood (independent of ¢)

Q:= {w e R : dist(w,&i[m,mg]) <d, 0> O} ) (4.20)

of the unperturbed linear frequencies &[k1, ko] defined in (3.2)).

Theorem 4.1. (Nash-Moser) Fiz finitely many tangential sites ST C N* and let v := |[ST|. Let 7 > 1.
There exist constants eg > 0, ag := ao(v, 7, ko) > 0 and ky := k1 (v, ko, 7) > 0 such that, for all v = &%,
0<a<ag,ec€(0,e), there exist a ko-times differentiable function

Qoo 1 QX [K1, k2] = RY, oW, k) = w +Te(w, k), with |re|F7 < Cey=(Fk0) (4.21)

a family of embedded tori i defined for all w € Q and Kk € [k1, k2] satisfying the reversibility property
(4.18) and

y ko, —(14Fky

line () — (,0,0)[£07 < Cey=(H), (1.22)

a sequence of ko-times differentiable functions pu$° : Q X [rk1, k2] = R, j € NT\S*, of the form

5° (w, k) =mn5° (w, n)j%(l + ij)% + m§°(w, m)j% +r7° (w, k) (4.23)
(defined in (8.40)) satisfying
Im$® — 1|07 4 |m$°|*07 < Ce, sélgp \7'3?°|k°"’ < Cey™ (4.24)
] C
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such that for all (w, k) in the Cantor like set

cL = {(w, K) € QX [k, ko ¢ |w- €] =0T, W0 e Z¥\ {0}, (4.25)
lw- £+ p3°(w, k)] > 47]'%(@_7, Ve ez, j€NT\ST (1-Melnikov conditions)
4y]5% — ¢j'2|

0r

the function ioo (@) 1= ioo(w, K, €)(¢) is a solution of F(ioo, oo(w, k), w, k,e) = 0. As a consequence the
embedded torus ¢ v i (p) is invariant for the Hamiltonian vector field Xp, and it is filled by
quasi-periodic solutions with frequency w.

w4 p5° (w, k) — cui7 (w, k)| > Ve Z, 4, i e NT\ST ¢=41, (2-Melnikov)}

(w,r)

Note that the Cantor-like set CX in for which a solution exists is defined only in terms of the
“final” solution is; and the “final” normal perturbed frequencies 5°, j € N\ S*. In Theorem we
are not concerned about the measure of CX, in particular in investigating if it is not empty (note that
(oo, Too and each p3° are anyway defined for all (w, ) € Q X [r1, K2]).

4.2 Measure estimates
The aim is now to deduce Theorem [[.1] from Theorem .11

By (4.21)), for any s € [k1, k2], the function a (-, k) from Q into the image aoo(Q x {k}) is invertible:

B = an(wik) —w 7o k) = w=as (B,8) = B+ 7(BoR) with [T < Cey (R
(4.26)
PROOF OF (4.26]). The inverse map 3 — a3 (3, k) = B+ 7-(8, k) satisfies the identities 7. (3, k) + 7-(8 +
7e(B,k),k) = 0. By the implicit function theorem 7. is C! with respect to (3,x) and it satisfies the
identities

Dy (B, k) = —(1d + Dyre(B+ 72 (B, k), ) Dore (B + 7 (B, k), K) ,
0o (8, K) = —(1d + Dyro (B +7=(B, k), &)~ Ore (B + 7= (B, ), k)

where D,,, Dg denote the Fréchet derivatives with respect to the variables w and 3. Arguing by induction
on |k| < kg, T is ko-times differentiable and the estimate follows as the estimate .

Then, for any 8 € ax(CL), Theorem [4.1| proves the existence of an embedded invariant torus filled by
quasi-periodic solutions with diophantine frequency w = a2 }(3, k) for the Hamiltonian

1
Consider the curve of the unperturbed linear frequencies

k1, k2] 3 k= &(k) = (Vi(1 4 Kj?))jes+ € RY.

such values of k¥ we have found an embedded invariant torus for the Hamiltonian H. in ), filled by

We now prove that for “most” k € [k1, k2] the vector 3 = J(k) € aso(CL), see Theorem &Hence, for
@1z
quasi-periodic solutions with diophantine frequency w = a2 !}(&(k), k). This implies Theorem E

Theorem 4.2. (Measure estimates) Let
y=¢%, 0<a<min{ap,1/(1+ko+Fki)}, T>ko(v+4). (4.27)
Then the measure of the set
G i= {n € [m, ksl 1 3(w) € a(CL)} = {r € [ma, ma] : a3} (@(R), ¥) € CL} (4.28)

satisfies |G=| > (ko — k1) — Ce®*0 as e — 0.
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Theorems prove Theorem 1| with the Cantor-like set G := G, defined in and frequency
vector @ = we (k) deﬁned in below

The rest of this section is devoted to the proof of Theorem [4.2] By (4.26)) the vector
we (k) = aJ(@(r), k) = 3(k) + 1e(r),  Te(r) =7 (3(K), k), (4.29)

satisfies
0% r. (k)| < Cey™UHR+h) o < | < k. (4.30)

We also denote, with a small abuse of notations,

1

P (K) = p(we (k) k) = w3 (k)j2 (1 + K52)% +mi(k)j2 +72(k), VjeNF\St, (4.31)

where
m3° (k) == m3°(we(K), k), m(k):=n(we(K),~K), r;?o(n) = r;-’o(ws(n), K). (4.32)
By (#.24), ([#32) and (4.29), using that ey~ (1+*1+ko) < 1 (that by (@.27) is satisfied for £ small), we get
|0k 3 (k) = 1], 108 (8)] < Cen ™, supjese|Ohr° (k)] < Coy ™M) WO <k <ko.  (4.33)

By (4.25), (4.29), (4.31) the Cantor set G, in (4.28]) writes

G. = {H € [k1, ko] : |we (k) - €] > ()7, W0 € Z \ {0},
lwe (k) - €+ p° (k)] > 4y52 (0) ", WL € 2", j € NF\SH,
wel) - €4 5 () = <P (R)] > 49152 = B0, WL € 2,5 j € NT\ST € {+,—} .

We estimate the measure of the complementary set
G = Im,ma) \ G- = (U R U (URZJ) J(UrU(U ) @3
L £,3,5 £,3,3"

where the “resonant sets” are

R = {1 € [k, ma] + [we() - € < 49(0) 7} (4.35)
R = (k€ k1, ko) : |we(8) - €+ 132 (0)] < 43 (0)77) (4.36)
RYUD = {k € [wn,ma] ¢ |we() - £+ 1 (6) — w3 (0] < 413% — 55 [0)7) (4.37)
Q7 = {5 € [, ] : we (k) - €+ i (k) + ()] < 5% +5731(0) 77} (4.38)

Lemma 4.3. If R # 0 then j3 < C(0). If RYT) £ 0 then |j3 — j'3| < C(0). If QT # 0 then
jE 445 < C).

Proof. We prove the lemma for jol,) . The other cases follow similarly. If x € joj,) then
00 00 R 3 43
|uj (ff)—/ij/ ()] <4932 = 52077 + |we (][] < 49152 — 52|+ Cle]. (4.39)

Moreover and (4.33)) imply
1

1 o\ L gLl . 1 gL
13— u3P] > w3 (#)]17% (1 + wj%)F — 53 (1 + k§™) 2| — [m§® (“)HJQ — "% | = 2sup;ege|ri° (k)]
> C1]j% — j'%| - Celj? — j'2| - Cey™™ > C4|j% — j'3|/2 (4.40)

for 2Cey~*1 < (01/2, which is fulfilled taking ¢ small enough by - The lemma follows by -7
([@.40), for C1/4 > 4.
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The perturbed frequencies satisfy estimates similar to (3.6)-(3.9) in Proposition

Lemma 4.4. For e small enough, for all k € [k1, k2],

maxg<p, |08 {w. (k) - £} > po(l)/2, VL€ 7"\ {0}, (4.41)
maxk§k0|8,’§{wg(/f) A+ pie(K)} = poll)/2, VLEZ, je Nt\S*, (4.42)
maxg< g, |0 {we (k) - €+ p° (1) = pF(8)} > po(€)/2,  V(£,5,5") # (0,4,5), 4,5 € NF\S*,  (4.43)
maxg<p, |0 {we (k) - £+ p$e (k) + p$f (k) = po(€)/2, VLeZ¥ j,j" e NY\ST. (4.44)

Proof. We prove (4.43). The other estimates follow analogously. First of all, by Lemma we may
restrict to the set of indices satisfying s s
2 =421 < C(0). (4.45)

Split u5° (k) = Q;(k) + (u5° — ;) (k) where Q; (k) = §2(14 Kj2)z. A direct calculation shows that
0892 (9) = Qyr(w)}] < Cilj* = 3], VE20. (4.46)
Then all 0 < k£ < kg one has
08 { (152 = 15%) (k) = (@ = Q) (k) }| < 105 { (03 (1) = 1)(Q5 (k) — Qe ()]

+[0Fn (K)]]55 — §'5| + 25upj eyt |05 ()]

(4.46),(4.33)
G0 Cey~(Hh)|53 — /3. (4.47)

By ([{.29), ([£.30) and ([£.47) we get
maxg <k |Of {we (1) - €+ p3° (k) = p5¥ (1)} > maxpei, [O5{S(K) - €+ Qj(r) — Qi (r)}| = Cey~ IRtk
— Cey~hothj3 — 13

-4'> OFLT(K) -0+ Qi(k) — Q. _ Cery—Utkotk) gp
> maxp<k, |0 {D(K) - £+ Q;(k) — Qi (k) }] — Cey ()
() B

> po(l) — Cey~(IHRotRI(0) > po(£) /2

provided ey~ (+kotk) < po/(2C), that, by ([@27), is satisfied for ¢ small. O
Lemma 4.5 (Estimates of the resonant sets). The measures of the sets in (4.35))-(4.38) satisfy

|R(O)| < (e (r+1))ﬁ (I)| « (’YJ <€>—(r+1))ﬁ

3

3 8 - 3 B (1 =
IRID] < (753 = 57310~ +0) 50, 1QUD] < (y1j% + 573 ](0) =) T

11)

Proof. We prove the estimate of R The other cases are simpler. We write

R = {k € [, k2] : lgesy (0)] < 4153 — 53 |(0)~CHD}

where g/ (k) = (we(k) - £+ ,u;’o( K) — p3 (K ))(E}‘l We apply Theorem 17.1 in [4I]. We estimate the

measure of Rg 1) only if 44|53 — j'3|(0)~CHD) < 4 1%y~ Otherwise, for v small enough, the set RZJI,) =0

is empty. By (4.43] - we derive that

manSk0|arljgéjj'(F‘;)‘ Z p0/27 VK € [‘%17 "{2] .

In addition, and Lemma imply that maxg<y, |0%ge;; (k)| < C1, V& € [k1, k2], provided
ey (1+k0+k1) is small enough By Theorem 17.1 in [41] the Lemma follows. O
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PROOF OF THEOREM COMPLETED. The measure of the set G in (4.34)) is estimated by
c 0) 11 (11
G0 < D0 IROIH D, IR T+, IR+, QG

Lemma (0) RUD 495
Z |R |+Z <C’(€)2/3 EJ +Zj,j’§0(€)2 Ljj’ |+Z ’<C 2/3|Q5JJ |

Lemzaz( ()~ <T+1>)k0+ 3 (fyj%<€>*(’f+1))ﬁ+ S (liE - <T+1>)%

y4 J<C(0)2/3 3,3’ <C ()2

1 Lemmal3l L+ (4.27) “

+ > (lE AR TS oy R Y (R TS e
5,§' <C(€)2/3 ¢

Hence |G.| > ko — k1 — C’e%*%0 and the proof of Theorem is concluded.

5 Approximate inverse

5.1 Estimates on the perturbation P

We prove tame estimates for the composition operator induced by the Hamiltonian vector field Xp =

(0rP,—0p P, JV . P) in (4.17)).

We first estimate the composition operator induced by v(6,y) defined in (4.12)). Since the functions
Ij— /& + 1, 0 — cos(0), 6 — sin(f) are analytic for |I| < r small, the composition Lemma [2.22|implies
that, fOI‘ au @a Y € HS(TV’RV)a ||@||Sov ||y||50 S T, Setting 0(90) = + @(QD)?

19507 v(O0(), IC)IEY < 1+ 3|57, Va, BN, |a| + 5] < 3. (5-1)

Lemma 5.1. Let J3(p) in (4.19)) satisfy ||J||§2012k0+5 < 1. Then the following estimates hold:

. ko,
IXp @8 <01+ 19, a5 6:2)
and for all7:= (@ﬁ?)
; ko, ko, ko,
s Xp @I <o 71555 + 131587+ 2allleg 2 (5.3)
N ko, (14| ko- ~1ko, ko,
@2 Xp B <, RTINS, + IS, any e ()2 (5.4

Proof. By the definition (4.14), P = P.o A, where A is defined in (4.12)) and P is defined in (4.4)). Hence
Xp = ([0:0(6, DTV (A0, 1,2)), ~[090(0, DITVP.(A@D,1,2)), T IVP(A@,1,2)))  (5.5)

where Hgi is the L2-projector on the space HSL+ defined in (4.6). Now VP. = —JXp_ (see (4.1)) where
Xp. is the explicit Hamiltonian vector field in (4.2). The smallness condition of Lemma is fulfilled

k ko, ko,
because ||77H22012k0+5 < el|AO(), I(-), 2(:, '))"2212k0+5 < C(so)e (1‘1‘”3”2201%0%) < Ci(s0)e < 6(s0, ko)
for € small. Thus by the tame estimate (2.132)) for the Dirichlet Neumann operator, the interpolation

inequality (2.72)), and (5.1]), we get

IVP(A@BC), 1) 2T <6 TAOC) IC) 20D pargrs Ss L ITIS2T 4 agrs

Hence (| . ) follows by 1 , interpolation and ( .

The estimates 15.4) for d X p and d2X p follow by differentiating the expression of Xp in
and applying the estlmates , on the Dirichlet Neumann operator, the estimate (5.1) on
v(0,y) and using the interpolation inequality . O
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5.2 Almost approximate inverse

In order to implement a convergent Nash-Moser scheme that leads to a solution of F(i,a) = 0 (the
operator F(i,«) is defined in ) we construct an almost-approximate right inverse of the linearized
operator

di,o F(ig, a0)[t, 0] = w-0,7 — d; X g, (io(¢))[2] — (@,0,0)
at an approximate torus io() = (6o(p), Io(), 20(¢)) (recall [.1F)), at a given value of o, see Theorem
Note that d; o F (ig, ag) = d; o F(io) is independent of ayg, see and recall that the perturbation
Pin does not depend on « (it depends on k).

We implement the general strategy proposed in [15] and [8]. An invariant torus g for the Hamiltonian
vector field X with diophantine flow (i.e. w satisfies (1.32)) is isotropic (see e.g. Lemma 1 in [I5]),
namely the pull-back 1-form i§A is closed, where A is the Liouville 1-form defined in (4.9). This is
tantamount to say that the 2-form igW = igdA = digA = 0 where W = dA is defined in. For an
“approximately invariant” torus iy, which supports a linear flow which is only approximately diophantine,
ie w € DC}QL defined in , the 1-form ¢5A is only “approximately closed”. In order to make this
statement quantitative we consider

i\ = Zzzlak(w)d@ka ar (@) := = ([0,00(9)]" To(p)),, — %(Qak%(%@)a Jz0(#)) L2 (T,) (5.6)

and we quantify how small is
W =digh =
in terms of the “error function”
Z(p) = (21, Z2, Z3)(p) := F(in, a0) () = w - Opiio(p) — X, (i0(), o) , (5.8)

and the “ultra-violet” cut-off K,, = K(%(n, x = 3/2, in (1.39), used in the definition of DC}, . The
main difference with respect to [I5] and [] is that we do not assume w to be diophantine (i.e. )
but only w € DCy .

Along this section we will always assume the following hypothesis, which will be verified at each step
of the Nash-Moser iteration of section

Apj(p)dor Ndpj,  Agj(@) = 0y, a;(¢) — Op,ar(p) , (5.7)

1<k<j<v

e ANSATZ. The map (w, k) — Jo(w, k) :=ig(p;w, k) — (¢,0,0) is ko-times differentiable with respect
to the parameters (w, k) € RY x [k1, k2], and for some p := u(1,v) >0, v € (0,1),

130[l507, + |ag — wFo? < Cey=(Fk) (5.9)

where the constant k1 = & (v, ko) > 0 is given in Theorem We shall always assume ey~ (1+51)
small enough (in section [4.2] we have even required the stronger condition ey~ (1t*ot+k1) « 1),

We suppose that the torus ig(w, k) is defined for all the values of (w, k) € R” X [k1, k2] because, in the
Nash-Moser iteration of section |8 we construct a ko-times differtentiable extension of each approximate
solution on the whole R” X [k1, ka], see Lemma

Lemma 5.2. ||Z| % < ey~ Utk 4 ||Cio||]:j_éy

Proof. By ([T, 3). €. 0

In the following, we will assume that w € DCj (defined in (1.40)) and we split the coefficients

Apj = Ak;j () in (.7) as
Ay = AW + AT Ay =g, Ay, A =TI Ay (5.10)
where K,, := Ka‘n, X := 3/2, is defined in (1.39), the operator Ik, is the orthogonal projection on the

Fourier modes |(£,j)| < K,, and Iz :=1d —1Ilg,, see (2.7). The “ultra-violet” cut-off functions K, are
introduced in view of the nonlinear Nash-Moser iteration of section [l
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Lemma 5.3. Assume that w € DCj  defined in (1.40). Then the coefficients AEJ;) and A,(g)’L in (5.10)
satisfy the following tame estimates

ko, ko, ko,
A1 7™ 218y 1+ 12D 1100 1) .10
, ko, 1 ko, by~
ARG 8 <o 130ls3 s IAR 15 Soow Ko ITollsorore, V0 >0, (5.12)

and for any ¢ > 0 such that (5.9) holds with u > 7(ko + 1) + ko + 1 + c.
Proof. PROOF OF ([.11)). The coefficients Ay; satisfy the identity (see [I5], Lemma 5)
w - 0pAij = W(0,Z(0)ey, Dgin(p)e;) + W(Dypio(p)ey, 0, Z(0)e;)
where ¢;, denote the k-th versor of R”. Therefore applying the projector Il we have
w- DALY =T, [W(0,Z()er, Dpio(0)e;) + W (Dyio(p)er, 0o Z(9)e;)] -

Then by (2.72) and (5.9) we get
ko, ko, ko,
- D AL 5o <, 1201827 + 1211505 1Fol1E%7 (5.13)

and (5.11) follows applying (w - d,)"!, and using that, for all w € Dc}(n defined in (1.40)), it results
_ - ko,
H(W ’ 850) IHKng”ko”y <s 7 1”9”33_:(%4_1)4_]@0

PROOF OF . Recalling (5.7)) and (5.10)), the functlon A(n (¢) =g (Op.a;(p)— 0, ak( )) where
ar(p), k = 1 , U, are deﬁned in (5.6). Then follows by the smoothmg propertles and by

&72), B9 0
Remark 5.4. If the frequency w is diophantine, i.e. w satisfies (1.32), then (5.11)) holds with Aj; instead
of A(") (i.e A(n) L= = 0). Furthermore if Z = F(i9, ag) = 0, then Ay; = 0. O

As in [15], [8] we first modify the approximate torus iy to obtain an isotropic torus s which is still
approximately invariant. We denote the Laplacian A, := 22:1 a;k

Lemma 5.5. (Isotropic torus) The torus is(¢) := (6o(v), Is(¥), 20()) defined by

Is := Io + [0,00 ()] " (%) . - 12 Op; Akj(#), J=1...,v, (5.14)

is isotropic. Moreover Is admits the splitting Is = I(gn) + Ign)’l where
I = Io + [0,00(0) "0 (), P (0) = AT 0, A0 (9) (5.15)
I = 10,00 ()] TP (), p§-”> @) =AY 0, AR (o). (5.16)

There is 0 := o(v, T, ko) and ¢ > 0 such that if (5.9) holds with o + ¢ < u, then

15 — Tol[5o < 15 — Tollkoy + |25 |1k <, 130197 (5.17)
1§ — Tl ¥ <, v (121152 + 112115, 1 30l1537) (5.18)
IS (1507, oo K Tollsgtess, VO >0, (5.19)
19 lis] IR < (710 + | Tol 522 ol o7 . (5.20)

Moreover the “error” function Zs := F(is, ) of the isotropic torus is (defined analogously to (5.8)) may
be splitted as Zs = Z(gn) + Zgn)’L with

ko, ko, ko,
1Z5 (1B < 11211592 + 12115, 1Tl b2 (5.21)
Lk ko, ,-L ko, ko,
1Z5 ko < 101507, 128 1R <go K VTolEOT oty s VB> 0. (5.22)
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In the paper we denote equivalently the differential by 9; or d;. Moreover we denote by o := o (v, 7, ko)
possibly different (larger) “loss of derivatives” constants.

Proof. The isotropy of the torus is, defined by (b , is proved in Lemma 6 of [I5]. The estlmate 1

follows by (5.14), (5.6), (5.7). (2.72) and (5.9). The estimate (5.18) follows by l and 1 The
estimate ([5.19)) follows by (5.16) and (5.12). The bound (5.20) follows by (5.14 , , , 1

now prove ((5.21)), (5.22). One has
0
Fis,a0) = Flio,0) + | w-0p(Is — Io) | +e(Xp(is) — Xp(io))
0
0 1
:f(io,ao)-f— u)'ap(fg—]o) +€/ 8]Xp(ti5+(].—t)i0)~ (Ig—Io)dt:Z5n) '|‘Z(§n)7L
0 0
where
0 1
Z\" = Flig,a0) + | w0, (I — Ip) | + 5/ OrXp(tis+ (1—t)io) - (I — Io) dt , (5.23)
0 0
0 1
Z{ = | wea, 1t +€/0 O X p(tis+ (1 —t)ig) - I dt. (5.24)
0

By differentiating ((5.15) and, arguing as in [I5], [8], we get

w0, (I" = Io) = [0,00(9)]) w0, () — ([0,00(9)] T (00,1000 (2)]T) [0 b0(2)]~T) ™ () (5.25)
w-0,[0,00(2)] = 20, (D1 P)io(9)) + 0, z1< > (5.26)

Then (5.21) follows by (5.23), (5.25)-(5.26), (5.3), (2.72), (5.18 , 5.9) Lemma. ; » (p-11).
The estimates (5.22)) follow by ( 5 24 5 16)), 2 72), 5 12), 5 1m; and 5 1 |) O

In order to find an approximate inverse of the linearized operator d; oF (is) we introduce the symplectic
diffeomorpshim Gs : (¢, y,w) — (0,1, z) of the phase space TV x R” x Hshr defined by

0 ¢ 0o () .
Il =Gs [y | = | I5(¢) + [0s00(¢)] "y — [(90Z0)(00(0))] " Jw (5.27)
z w z20(¢) +w

where Zo(6) := 2(0; *(#)). Tt is proved in [I5] that G5 is symplectic, because the torus is is isotropic
(Lemma . In the new coordinates, is is the trivial embedded torus (¢,y,w) = (¢$,0,0). Under the
symplectic change of variables G5 the Hamiltonian vector field X (the Hamiltonian H,, is defined in
(4.16))) changes into

XKQ = (DG(;)_]-XHQ [¢] G(; Where Ka = Ha o G§ . (528)

By (4.18)) the transformation Gy is also reversibility preserving and so K, is reversible, K, o p = K.
The Taylor expansion of K, at the trivial torus (¢,0,0) is

Ko(o,y,w) = Koo(¢, ) + Kio(h, ) - y + (Ko1(9, ), w) 21,y + %Km((b)y Y

1
+ (Kll(@y’w)m(m) + §(K02(¢)w ’LU) L2(T,) + K>3(¢ Yy, w ) (529)
where K>3 collects the terms at least cubic in the variables (y,w). The Taylor coefficient Koo(¢, ) € R

Klo(;b, @) € RY, Koi(¢,a) € Hiy, Kao(@) is a v x v real matrix, Koa(¢) is a linear self-adjoint operator
of H: St and K11(¢) S E(RV,HSJ;)

51



Note that, by (4.16) and (5.27)), the only Taylor coefficients which depend on « are Kog, K10, Ko1-
The Hamilton equations associated to ([5.29)) are

¢ = K10(¢, ) + Kao()y + Ky (P)w + 0, K>3(, y,w)
§ = 05 Koo(9, @) — [0 K10(¢, )]y — [6¢K01(¢, a)]Tw
*3¢( Koo(@)y -y + (K11 (9)y, w) 21,y + 5 (Koz(@)w, w) p2(n,) + K>3(¢,y,w))
= J(Ko1(¢, @) + K11(¢)y + Ko2(¢)w + Vi K>3(,y, w))

(5.30)

where 03 K7{, is the v x v transposed matrix and 9,Kd;, K{; : Hi — R” are defined by the duality
relation (8¢K01[¢A5],w)Li =¢- [0sKo1])Tw, Vé € R, w € Hg:, and similarly for Ky;. Explicitly, for all
w E Hsf:r, and denoting e;, the k-th versor of RY,

K{l (P)w = Z (Kifl(¢)w '§k>§k = ZZ:l (w’ K11(¢)Qk)L2(TI)Qk eR”. (5.31)

In the next lemma we provide estimates of the coefficients Kog, K10, Kp1 in the Taylor expansion (5.29).

v

k=1

Lemma 5.6. There is 0 := o(7,v, ko) > 0 and a decomposition
05 Koo = 0K\ + 0, K0+ Ko =K + K+ Ko = K + k(P (5.32)
such that, if (5.9) holds with > o+ c, ¢ > 0, then

n n n ko, ko, ko,
106K (-, o) |27 + (|5 (-, ca0) — wl[*7 + [|ESY (- o) |27 < 1211597 + | 2115 1To]|507 . (5.33)

so+o s+o
n),L n),L n),L ko,
106K (-, o) 150 + K5 c0) 507 4+ | S (y o) [ F07 < [|T0 1507 (5.34)
n),L ko, n),L ko, n),L ko, ko,
19S5 (- o) 150, + 1B (o) 1507 + 1S (- a0) 1507, <o Ko lIT0llE00 4o (5.35)
for all b > 0.

Proof. In Lemma 8 of [I5] or Lemma 6.4 of [§] the following identities are proved

0y Koo(¢, a0) = —[0s00(9)]" (= Za,5 — [0515)[000) " Z1,6 — [(B6Z0) (00(0))]" T Z3.5
—[(8020) (0())]" TDp20(¢)[0600(0)] ™ Z1,5) ,
K10(, a0) = w — [0400(0)] " Z1,5(0) ,
Ko1 (¢, a0) = JZ3,5 — J0y20(0)[0s00(¢)] " Z1,5(9)

where Zs = (Z16, Z2.5, Z3.5) := F(is,a0). According to the splitting Zs = Z(gn) + Z(gn)’L given in Lemma

| setting Z(n) (ZYS), Zgg), Z?(f?) Z(") + (Z(") -+ Z(") + Z(n) l), we get the decomposition (5.32))
Wlth

B K (6, c0) = — 0500 ()T (= 25 — 05 15)[080) 2 2\ — [(99%0) (B (6))]T T 237
- [(aezo><eo<¢>>1TJa¢zo<¢>[a¢eo<<z>>1 1z,
Do K6 (0, 00) = — 10500 (0))T (= Z55 — 05 15)[0500) 2 25 — [(9920) (B0 (&) T 275

K{§) (6, 00) = w — [0600(6)] ' 2{) ()
K (6, a0) = —[0500(0)] 1 200 (9) ,
K§Y (6, a0) = T2 — T9520(6) (0600 (6)] 215 (0)
KE§ (6, 00) = JZé’s — J0y20(9)[0580(0)] 1 2" (9).
Then the estimates - follow by (5.17), (5.21)), (5.22)), using ( and . O
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We now estimate the variation of the coefficients Kyg, K19, Ko1 with respect to a. Note, in particular,
that 0, K1¢ ~ Id says that the tangential frequencies vary with o € R”. We also estimate Ko and K11.

Lemma 5.7. We have
106 Kool 507 + 1|06 K10 — TA[[¥7 + (|00 Kor [ 57 <a 130ll5%7 1 K20lls < e(1+1T0ll537)
Iyl <o e(lyllS3 + 1Tollss T lwllie) I wlf” <o e(lwly3 + [30l557 wl5es) -

Proof. By [15], [8] we have

00Koo(®) = Is(8), 0aKi0(¢) = [0p00(¢)]

Kao(p) = £[0,00(0)] " 011 Pis(¢))[0,00 ()],
K11(p) = €(01V.P(is())[0,00(2)] " + J(9970)(00())(011P)(i5(¢))[0,00(2)] ") -

Then (5.2), (5.9), (5.17) imply the lemma (the bound for K{; follows by (5.31)). O

Under the linear change of variables

aaK01(¢) = J8020(00(¢)) 9

¢ 000 () 0 0 3
DG5(¢,0,0) | 7 | = [ 9s1s(¢) [0600(0)]™"  —[(00Z0)(0o()]" T | | ¥ (5.36)
w 0p20() 0 I W

the linearized operator d; F (is) is transformed (approximately, see ((5.71)) for the precise expression of
the error) into the one obtained when we linearize the Hamiltonian system (5.30) at (¢,y,w) = (¢, 0,0),
differentiating also in a at ag, and changing J; ~» w-0,,, namely

¢ -0y — 05 K10(9)[8] — 0aK10(2)[@] — Kao(9)7 — KTy (9)@
S| = | 90065 + oo Koo (#)[6] + 050a Koo () [a] + [0 Kr0(2)] 75 + [ Kon (@)@ | (5.37)
a

w0, — J{0s Ko1()[¢] + OaKo1(p)[a] + K11(0)y + Koz2(p)w}

As in [§], by (5.36), (5.9), (5.17), the induced composition operator satisfies: for all 7:= ($, Y, W)

— ~ ko, ,
IDG5(,0,0) 18 + | DG (19,0,0) M FIIIEY <, [ + 1 TollF7 215 (5.38)
Yy » g » » 7 af k7 » ) » 5
ID?*Gs(,0,0) 0, 221527 < [RS8 + a8 7 llE + 3ol &g mllsy Y 2llss ™ (5.39)

In order to construct an “almost-approximate” inverse of ((5.37)) we need that

Lo, =T (w0, — JKoa(p)) (5.40)

|HY
is “almost invertible” up to the scales K,, := Kﬁfn, X := 3/2, defined in (|1.39)), and used for the nonlinear
Nash-Moser iteration of section [8 Let Hf (T**1) := H*(T**') N Hg;.

e ALMOST-INVERTIBILITY ASSUMPTION. There exists a subset A, C Q X [k1, ko] such that, for all
(w, k) € A, the operator L, in (5.40) may be decomposed as

L,=L,+R, +R} (5.41)

where L, is invertible and R,,, R satisfy the estimates —. More precisely for every
function g € HT7(T*+1) and such that g(—¢) = —pg(¢), there is a solution h := L 'g € HS (T**!)
such that h(—¢) = ph(p), of the linear equation L,h = g which satisfies for all sp < s < S the
tame estimate

_ — ko, ko, ko,
I3 <o v~ (g2 + 130015 T 4 Nl02,) (5.42)
for some o := o(7,v, ko) > 0, and the constant p(b) > 0 is defined in (7.10).
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This assumption shall be verified by Theorem [7.12] at each n-th step of the Nash-Moser nonlinear
iteration. It is obtained, in sections [6] and [7} by the process of almost-diagonalization of L, up to
remainders of size O(eN2_1) where the larger scales N,, are

N, :=KP., ie Ny=K}, (5.43)

and the constant p > 1 is large enough, i.e. it satisfies (8.5)). The set of “good” parameters A, is contained
in particular in the set DCj, X [#1, #2] defined in (1.40). Actually the parameters in (w,#) € A, have to
satisfy also first and second order Melnikov non-resonance conditions, see ([7.90)).

In order to find an almost-approximate inverse of the linear operator in (5.37) (and so of d; o F(i5))
it is sufficient to almost invert the operator

 [@:0,0 = aK10(9)[a] — Kao()] — KT (9)@
D(¢,y,w,a] := w-0,7 + 030 Koo (p)[a] (5.44)
L,w— JoaKon(p)a] — JK11(9)y

which is obtained by neglecting in (5.37) the terms 9y K10, Opp Koo, 0pKo0, 05Ko1 (which vanish at an
exact solution by Lemma [5.6), and the small remainders R,,, R} which appear in (5.41)). In addition,
since we require only the finitely many non-resonance conditions (|1.40]), we also decompose w-0,, as

w0y =DM + DL DIV =g, w0 llk, + 1, DM+ =1k wo,llx —Ix  (5.45)
and we further split the operator D in (5.44) as

Do
D=D,+D}  where D}¢,5 @.a]:= | pMiy (5.46)
0

and
_[DE6 - duKo(p) (@] - Kao(0)§ — KT ()@
Dy (¢, 7§, W, @) = DIV + 0005 Koo ()]0 : (5.47)
Lo — Jou Ko (p)[a] — JK11(p)y

By the smoothing properties (2.8)), the operator DM satisfies

n - ko, n), , ko,
IDSY Rl < KRGy s VO >0, DS R < RS (5.48)
Lemma 5.8. Assume that w € DC}Y(H, see (1.40). Then, for all g € H® with zero average, the linear
equation Dﬁ,”)h = g has a unique solution h := [D(E,")rlg with zero average, which satisfies
DS gl <47 lgllse s mi=T 4 ko(r+ 1), (5.49)

We look for an exact inverse of D,, defined in ([5.47) by solving the system

- DEVé — 0o K10(9)[a] — Kao(9)§ — K ()@ g1
Dy[¢, 7, w,a] == DIVG + 0004 Koo (0)[d) = | 92 (5.50)
L@ — JOo Ko (9)[a] — JK11(0)7 93

where (g1, g2, g3) satisfy the reversibility property
91(p) = 91(=¥),  92(0) = —g2(=¢),  g3(p) = —(pgs)(—) . (5.51)

We first consider the second equation in ((5.50]), namely D&")ﬂ = g2 — 003 Koo(p)[@]. By reversibility,
the g-average of the right hand side of this equation is zero, and so, by Lemma [5.8] its solution is

7= [D{V] 7 (g2 — 0a0pKoo(9)[a]) - (5.52)
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Then we consider the third equation L,@w = g3 + JK11(p)y + JOKo1(¢)[a] that, by the inversion
assumption (5.42)), has a solution

W= L5 (g5 + JE11(9)§ + J0a Ko1(#)[a]) - (5.53)
Finally, we solve the first equation in 7 which, substituting , , becomes
DSV = g1 + Mi(@)[@] + Ma(p)gz + Ms(2)gs (5.54)
where
My () := 0aK10() = M2(9)0adpKoo(p) + Ms(p)JaKoi(#) (5.55)
My () = Kao(@)[DSV) 7! + KT (LS W TEn(@)[DEV) ™, Ma(p) = K (9L (5.56)

In order to solve the equation (|5 we have to choose @ such that the right hand side has zero average.
By Lemma., ., - ) the go—averaged matrix (M) = Id + O(ey~(1+k1)), Therefore, for ey~ (1+F1)
small enough, (M) is invertible and (M;)~! = Id + O(ey~(*+*1)). Thus we define

a = —(M1)" ((g1) + (Magz) + (Mzgs)) - (5.57)

With this choice of @, by Lemmal5.8] the equation (5.54) has the solution

o~

¢ = [D&n)]71(91 + My (9)[a] + Ma()g2 + Ms()gs) - (5.58)
In conclusion, we have obtained a solution ((E, 7, w,a) of the linear system ([5.50)).

Proposition 5.9. Assume ( . (with w=pu(b)+ o) and ( - Then, ¥(w, k) € Do, Vg := (g1, 92, 93)

satisfying (5.51)), the system (5.50) has a solutzon D lg := (¢,7,W,a) where ((j),y,w Q) are defined in
(5.58), (5.52), (5.53), (5.57), whzch satisfies (4 and for any s < s< S

- - ko, ko, ko,

D5 g5 <5 7 (gl + 10l Ly N6l ). (5.59)
Proof. To shorten notations we write || ||s instead of || ||¥o-7. Recalhng (5.56 ) by Lemmaa * .,
(B-49), we get [ Maglls, +[|Msgls, < C||g|so+a Then, by (5.57) and (My)~! = 140(

we deduce [a] < Cllglluoa and (5, (5.49) anly 171 <s v~ (lgllsto + ”JOHS—&-/L(b)-&-o”g”ASo) The

bound (5.59) is sharp for @ because L g3 in is estimated using ([5.42)). Finally also ¢ satisfies
(5.59) using (5.58), (5.56), (5.42), (5.49) and Lemma O

Finally we prove that the operator

Ty := To(io) i= (DCs)(p,0,0) o D" o (DGy)(i,0,0) " (5.60)

is an almost-approximate right inverse for d; o F (ig) where ég(qﬁ, y,w,a) := (Gs(¢,y,w), a) is the identity
on the a-component. We denote the norm ||(¢,y, w, a)||¥07 := max{||(¢, y, w)||Fo7, |a|*07}.

Theorem 5.10. (Almost-approximate inverse) Assume the inversion assumption (|5.41))-(5.42]).
Then, there exists o := a(T,v, ko) > 0 such that, if (5.9)) holds with u = p(b)+ a7, then for all (w, k) € A,
for all g := (g1, g2, 93) satisfying (5.51)), the operator Ty defined in (5.60) satisfies, for all sop < s < S,
- ko, ~ ko> ko,
IToglle” <s v~ (g% + 130153 ey 5 19llsois) - (5.61)

Moreover Ty is an almost-approzimate inverse of d; o F (i), namely

di o F(ig) 0 Tog —Id = P(ig) + Pu(i0) + Pt (i) (5.62)
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where, for all sp < s < S,

_ . ko, ko,
IPgllier <s v~ (1o, a0l g 152

o+ {17 o, o) %2 + 1 Gios o) 1805 13011257 5 Hig T ) (5.63)
1Pogllf” <s ey > N2 (lgl557 + 13001857 w40 lal5e25) (5.64)
IPEalse <sp v K (g8 4o + 1900127 oy svpal9l5025) W0 >0, (5.65)
P2 gllE™ <s v~ (lglls3d + 190155 )45 19115075 (5.66)

Proof. The bound (5.61)) follows from (5.60), (5.59)), (5.38). By (4.17)), since X does not depend on I,
(see 5. 14

and 5 differs by ig only in the I component , we have
1
di o F(io) — ds o F(is) = 5/ Ordi Xp(00, Is + s(Io — I, z0)[To — Is, TI[ -] Jds =: & = £ + EE (5.67)
0
where II is the projection (7, @) — 7 and, recalling (5.15)), (5.16)),
1
gl = g/ 01d; Xp (00, Is + s(Io — I5), z0)[Io — I, TI[-]]ds, (5.68)
0
€ ! iR
gt = —s/ 01d; X p (60, Is + s(Io — I5), z0) I T[] )ds (5.69)
0

Denote by u := (¢, y, w) the symplectic coordinates induced by Gs in (5.27). Under the symplectic map
G, the nonlinear operator F in (4.17) is transformed into

F(Gs(u(p)), a) = DGs(u(p) (Puu(p) — Xk, (u(p), o)) (5.70)

where K, = H,0Gs, see (5.28) and (5.30). Differentiating (5.70) at the trivial torus us(¢) = G ' (i5)(¢) =
(<)07070)a at a = Qp, We get

dz‘,a}-(ig) =DGs(us) (w-a@ —dya Xk, (us, ao))Dég (ug)_l + &1, (5,71)
&1 :=D*G5(u5)[DGs(us) " Flis, ap), DGs(us) [ -]] = &M + €M+ (5.72)

where, recalling the splitting F(is, ap) = Zs = Zén) + Z(gn)’J‘ in Lemma H, we have

£ = DG (us) [DGs(us) " 25", DGs(us) 1] ] ] (5.73)
M = D2Gs(us) [DGs(us) ' 2, DGs(us) T[] - (5.74)

In expanded form w-0, — du o Xk, (us5,a0) is provided in (5.37). By (5.44)), (5.46), (5-47)), (5.40), (5.41)
and Lemma [5.6] we split

w0y — dyo X (05, 00) =Dy, + D + RS + RV 4 R, + RE (5.75)

where ~
~ ~9, K13 (¢, a0)[9)
R [6.5.@.6] := | 940 K5 (2, 00)[0] + [0 K5 (12, 00)]75 + [0 KL} (9, 00)] T8 | -
—J{O, K (0, 00) (6]}

R L %K (pao)ld X
(6,9, @,8] = | 96 K56 (0, 20)[8] + [0 K15 (0, 00)) 7T + [0 K™ (10, 00)) 7T

-~

~J{OE§ (0, 00) (6]}
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and

0 0
B6g0.48:=( 0 |, RGG@a=( 0
R[] R} (@]

By (5.67), (5.71)), (5.72)), (5.75) we get the decomposition

di. o F(io) = DGs(us) oDy, 0 DGy(us) P+ M + &, + &+ (5.76)

where _ B
£ = g™ 4 M 4 DGs(us)RY DGs(us)™", €, = DGys(us)R,DGs(us) ", (5.77)
g =Mt 4 Mt 4 DGs(us)[RE + D + RY DG (us) ! (5.78)

Applying T defined in (5.60) to the right in (5.76]) (recall that us(¢) := (¢,0,0)), since D,, o D,;* = Id
(Proposition , we get

di,a.f(io)O'I‘O—Id:’P_|_’Pw_|_fp‘j_7
'P::f)(”)oTo, Py =&y 0Ty, 'lezgjOTo.

Lemma 5.1 and (5.9), (5.33), (5.17), (5-18), (5-21), (5.38)-(5-39), imply the estimate

~ o~ ko, ko, ko, ko, ko, ko, ko,
€M [ al|kr < 1ZI87 RIS + I ZISS T IR, + 1 Z]150 7, 1R800, 10l 557 (5.79)

so+o so+o
where Z := F(ig, ap), recall (5.8). Then (5.63) follows from (5.61)), (5.79), (5.9). The estimates (5.64)),
(5.65), (5.60) follow by (7.93)-(7.95), (-61), ©.39), (5.17), B-19), B-22), (5.34), (5.35), B.9), B.43). O

6 The linearized operator in the normal directions

In order to write an explicit expression of the linear operator L, defined in (5.40) we compute the
quadratic term %(Kog(qi))’w, w)r2(t,) in the Taylor expansion of the Hamiltonian K, (¢,0,w) in (5.29).

Lemma 6.1. The operator Koa(¢) reads
Koa(¢) = 51 0,V H(T5(9)) + eR(¢) (6.1)
where H is the water-waves Hamiltonian defined in (1.6)), evaluated at the torus

T5(¢) := e A(is(9)) = eA(bo(0), 15(¢), 20()) = ev(Bo(9), 15(#)) + €20(¢) (6.2)
with A(0,1,2), v(0,1) defined in [A.12). The operator Koa(¢) is even and reversibility preserving. The

remainder R(¢) has the “finite dimensional” form
R@)B =3 (h:9i) x5, ¥heHgi, (6.3)
for functions g;,x; € Hgﬁ which satisfy the tame estimates: for some o := o(1,v) > 0, Vs > 59,

~ ko5 ~

lgills>™ + sl < 141136087, 10:g;0llls + 1005 Ells < [Ellso + TsllstollEllsors - (6.4)
Proof. The operator Koo (¢) is

Ko2(¢) = 00w VuwEKa(6,0,0) = 0,V (Hy 0 Gs)(9,0,0) = Q|H;+ + €0y V(P o Gs)(9,0,0) (6.5)

where H, = N,+¢P is defined in (4.16]) and Q in (1.14). Differentiating with respect to w the Hamiltonian

(P o Gs)(d,y,w) = P(bo(¢), I5(¢) + L1(#)y + La(d)w, 20(¢) + w)
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where (see ) Li(¢) := [6¢90(¢)]’T, Lo(9) = —[0p20(00(0))]TJ, we get V(P o Gs)(o,y,w) =
La(¢)T0rP(Gs(b,y,w)) + V. P(Gs(¢,y,w)), and therefore

6wvw(P © G5)(¢7 0, 0) = anzP(@é(éﬁ)) + R(¢>) with R(¢) = R1(¢) + R2(¢) + R3(¢) ’ (66)
Ri(¢) = La(¢)T 011 P(is(9)) La(9), Ra(d) := L2(¢)T 9.0 P(i5(0)), Ra(¢) = 0rV.P(is(¢))La(0) .

Each operator R;, Ry, R3 has the finite dimensional form (6.3]) because it is the composition of at least
one operator with finite rank R”. For example, writing the operator Ly(¢) : Hgy — RY as La(¢)[h] =

iy (b La()"[ed]) pei, Vh € Hs, we get

Ri(®)[h] = Z;l(f% L2(¢)T[€i])L£A1[ei} , Ay = Ly(¢) 011 P(is(9)) -

Similarly R3(¢)[h] = 27— (h, La(¢)" [ei]) ,» Asles] with A3 := 8, V. P(i5(¢)), and since Ay := 8.91 P(i5(¢)) :
Hg, — RY, we get Ro(¢)[h] = E;’Zl(h AT [ez]) » La(¢)T[e;]. The estimate follows by Lemma

By (6:3), (6:6), and [@14), [@12), [@3), (@ - we get
Koz(9) = Q\Hsgr +€0.V.P(is(¢)) + eR(¢) = Q|HS*+ + ellgy 0,V Pe(A(is(6))) + eR(6)
= 15 8, VuHe(A(is(0))) + £R(6)
which proves because A(is(¢)) = T5(9), see (6.2)). O
By Lemma the linear operator £, defined in has the form

L, =Tz (L+ eR)me where L :=w-0,ly — JO,V,H(Ts5(¢)) (6.7)

is obtained linearizing the original water waves system (1.3)), (1.5) at the torus v = (1, 1) = Ts(yp) defined
in (6.2), changing 0; ~» w-0,,, and denoting the 2 x 2-identity matrix by

L Id 0
>~ \o 1)
Using formula ([2.116|) the linearized operator L is

9.V +G(n)B —G(n) )

(1+ BV,) + BG(n)B — k0zcd, V9, — BG(n) (6:8)

£ = W'awﬂg —|— (

where the functions B := B(p,x), V := V (¢, z) are defined by (2.117) with (n,v) = (n(p,x),¥(p,z)) =
Ts(p) defined in (6.2)), and

= clp.a) = (L+m3) 72 (6.9)
By (6.2), (£.12), (£.18) the function u = (n,v) = T5(y) is in (even(yp)-even(z),odd(p)-even(z)), and c is
even(p)-even(z), B € odd(y)-even(z), V = odd(y),odd(z). The operators L, and L are real, even and

reversible.

Notation. In and hereafter any function a is identified with the corresponding multiplication
operators h +— ah, and, where there is no parenthesis, composition of operators is understood. For
example, 9,¢0, means: h +— 0, (cOzh).

In the next sections we focus on reducing the linear operator £ in to constant coefficients up
to a pseudo-differential operator of order 0 (and up to a small remainder supported on the high modes).

The finite dimensional remainder R transforms under conjugation into an operator of the same form
(Lemma [6.30) and therefore it will be dealt only once at the end of the section.

For the sequel we will always assume the following ansatz in “low norm” (that will be satisfied by the
approximate solutions along the Nash-Moser iteration): for some p := p(7,v) >0, v € (0, 1),

I)1%7, <1, and so, by 17, [|3s]%7, <2. (6.10)
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Actually p := p(b) + o1, where p(b) is defined in and o1 in (8.4), is fixed in the Nash Moser
iteration of section 8| (see also (8.8))). In order to estimate the variation of the eigenvalues with respect to
the approximate invariant torus, we need also to estimate the derivatives with respect to the torus i(y)
in another low norm || ||s,, for all the Sobolev indices s; such that

s1+o0<sp+p, for some o:=oc(r,v)>0. (6.11)
Thus by (6.10) we have
130]l¥7, <1 and so, by (B-17), [|35]|57, < 2. (6.12)

The constants p and o represent the loss of derivatives at any step of the reduction procedure of this
section and it possibly increases along the (finitely many) steps of this reduction procedure. In Lemma
we fix the largest loss of derivatives o := o(b).

Remark 6.2. Let us shortly motivate the role of the intermediate Sobolev index s;. In the reducibility
scheme in section |z| we require that the remainders Ry, Qq satisfy the estimates (|7.8). In Lemma

we take Rg := RS\?/’[), Qo = QS\‘? defined in Proposition and so we want that (6.250) holds with
s1 = so. For that we need to estimate, along section [6 the derivatives 9; of functions, operators, etc, in
intermediate || ||s, norms, i.e. for s; which satisfies (6.11)). O

As a consequence of Moser composition Lemma [2.22] the Sobolev norm of u = Ty (see (6.2))) satisfies
lull 57 = 5 + [pllee < eC(s)(1 + [Tolls7), Vs > so (6.13)

(the funtion A defined in is smooth). Similarly
10zuldllls, <s: ellills, - (6.14)

We remark that it would be sufficient to give Lipschitz estimates of u (and of operators, transformations,
eigenvalues) with respect to the variable ¢, namely to estimate the finite difference Ajou := u(i1) — u(iz)
in terms of the difference ||i; — i2||s,+o, but for convenience we compute the derivatives 9;. We repeat
that it is sufficient to estimate the derivatives (or the finite difference) with respect to i only in low norm
s1 is because this information is only needed to control the variation of the eigenvalues with respect to ¢,
see remark [7.41

Finally we recall that Jy := Jg(w, k) is defined for all w € R” by the extension procedure of section
Moreover all the functions appearing in £ in are C* in (¢, z) as the approximate torus u = (n, 1) =
Ts5(¢). This enables to use directly pseudo-differential operator theory as reminded in section

6.1 Linearized good unknown of Alinhac

We first conjugate the linearized operator £ in by the change of variable
(1 0 4 (1 0
2= 1) == (%)

o z-1 _ 0.V —G(n)
Lo:=Z" LZ=w0,l+ (a — KOy Oy Vo, (6.15)

obtaining

where a is the function
a:=a(p,z)=14+w-0,B+VB,. (6.16)

The matrix Z amounts to introduce (a linearized version of) the “good unknown of Alinhac”.
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Lemma 6.3. The maps Z*!' — 1Id are even, reversibility preserving and Do -tame with tame constant
satisfying, for all s < s <5,

Mz als), Mzrray () <o (14 [3all%22). (6.17)

The operator Lg is even and reversible. There is o := o(1,v) > 0 such that the functions

la = 1|57 + [V [k 4 | BlFo7 <, e(1+1130l1837),  lle— 1|57 < (1 +110]1527) - (6.18)
Moreover

[0salillls, + 10V s, + 10:Blillls, <sy €llillsio,  N0iclillls; <si €*llillsy 10 (6.19)

10:(ZF i) Rls, » 10:((ZF) iD)Allsy <sp ellillsyrollBlls, - (6.20)

Proof. The estimate (6.18)), follows by the explicit expressions of a,V, B,c in (6.16)), (2.117), , by
Z* are

applying Lemma and the estimates (2.72)), (2.120)), (2.68) and Lemma [2.14] The operators
reversibility preserving because B is oddp. The estimate (6.17) holds by ([2.39), (2.68)), (6.18) and since

the adjoint Z2* = (1 B . The estimates involving Z~! follow similarly. The estimate (6.19) follows by

0 1
differentiating the explicit expressions of a, B, V, ¢ in (6.16)), (2.117)), , by applying Lemma

2.116), (2.120]), (2.72) and (6.14). The estimates (6.20]) follow by the estimate of 9;B in (6.19)) and
2.72]). O

6.2 Symmetrization and space reduction of the highest order

The aim of this section is to conjugate the linear operator Ly in (6.15]) to the operator L3 in (6.58) whose
coefficient mg () of the highest order is independent of the space variable. By (2.118) we first rewrite

Lo=wdly+ < Vs +Va ~ 1P| _RG> .

a — kCOpy — KCyOy Vo, (6.21)

Step 1. We first conjugate Ly with a change of variable
(Bh)(p,x) := h(p,z + B(p, 7)) (6.22)
induced by a p-dependent family of diffeomorphisms of the torus
y=a+phpz) &  w=y+iey) (6.23)

where (¢, ) is a small periodic function to be determined. Under the change of variable (6.22]) the
differential operators 0y, Oys, w-0,, and the multiplication operator by a, transform into

B~19,B={B7(1+ (.)}9,, B719,.B = {B~ Y14 6,)}20y, + (B z)dy,  (6.24)
B 'w-0,8=w-0,+ (B 'w-0,8)9,, B taB = (B7'a). (6.25)

Moreover, using ((6.24]),
B~ YD, |B= B0, HB = (B 0, B)(B"*HB) = {B~*(1 + .)}0,[H + (B~*HB — H)]

= {B7'(1+ B.)}|Dy| + Rs (6.26)
where, by Lemma [2.2
R = {B (1 + B,)}0,(B"'"HB - H) € OPS™. (6.27)
Thus, by (6.24)-(6.26]), the operator Ly in (6.21) transforms into
-1 _ . a18y+a2 70,3|Dy| +R1
Ly:=B"LoB=w0,l,+ (m@w — Kas0y + ag @10y (6.28)
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where a; = a;(p,y) are

a1 =B w0, B+ V(1+ 6, az=B1(Va), ag =B (1+8,),  (6.29)
ag = Bil[C(l + 6:8)2]? as ‘= Bil[cﬂzm + e (1 + B2)), ag ‘= Bilaa (6.30)

and
Ri:=—-Rp— B "RgBe€OPS™™. (6.31)

We look for B(p,x) such that
(azaq)(p,y) = m(p) (6.32)

for some function m(y), independent of the space variable y. By (6.29))-(6.30)), the equation (6.32) is
el 2)(1+ Bulp, 2))° = m(ep)

which is solved by

mie) = (50 [eleodde) "L Blea) =0 e etp)-1), 63)

where 9! is the Fourier multiplier

6ijx

—1 ijz .__
0, e’ =

Vi #0, o '1:=0.

ij ’

Remark 6.4. Since c is even(y)-even(z), it follows that 3 = even(y),odd(z). As a consequence, B, B~!
are even and reversibility preserving. Therefore a; = odd(p),odd(z), az = odd(yp),even(z), as, a4, a6 =
even(p),even(zx), as = even(p), odd(z). O

Step 2. We conjugate £; in (6.28) by the linear map

(10 (1 0
Q - <0 q)a Q - (O q—1> I

where ¢(¢p, z) is a real valued function close to 1 to be determined. We compute

a10y + a —asq|D,| —asqg, H+ R
Lo = Q_1£1Q=w-8go]l2+< e 01Dy = asy ’ ) (6.34)

—kq tasdyy — kg rasdy + g rag 10y + ¢ (w-0,q) + ¢ taigy
where, by Lemma and , the remainder

Ro :=Riq — az[H, q|0y — as[H,q,] € OPS™. (6.35)
We choose the function g so that the coefficients of the off diagonal highest order terms satisfy

asq=q ‘as, i.e. q:=+/as/a (6.36)
(note that as, a4 are close to 1). Thus by (6.36]), (6.32), (6.33)), we get

—3/2

1
aag =g s = ma(e). male) = Vo) = (57 [ VIFd) (6.37)
and, by (6.34),

(116 +a2 —mg(go)\D | +G,7H+R2
= w-0.1 Yy Yy )
Lo=wlcl+ (ms(w)(l — KOyy) + ag0y + by a10y + bio (6.38)
where
ay = —asqy, ag:= —kq tas, b :=q lag— m3(¢), bio:= q_l(w'awq + aﬂly) : (6.39)
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Remark 6.5. Since a4,a3 € even(p),even(z), the function ¢ € even(p),even(x), hence the operator
Q is even and reversibility preserving. Moreover ar,ag = even(p)odd(z), by € even(yp),even(z), byg =
odd(yp)even(x). O

Lemma 6.6. The operators BT' are D*o-(ky+1)-tame, Q' are DFo-tame with tame constants satisfying
Mp(s), Ma(s) <s 1+ [|Toli%7, Vso<s<S. (6.40)

The operators BT —1d, (B* —1d)* is D*o-(kg + 2)-tame and QF' —1d, (QF! —1d)* are D*-tame and,
for all sg < s < S,

M1 1a(s), Mpe1_1ay-(5) , Moz1_1a(s), M=t _1ay-(5) <s (1 + [|Tol|E%7) . (6.41)
The functions ms satisfies
~ ko,
lma = 157 <s (L +130l555) » N0mafillls, <s: ell@lsito (6.42)

and the functions a; satisfy
max{ a1 |57, [laz |57, [laz ][5, [las][ 57, [[bo |57, [[b1ol|E27} <s (1 + [|T0[1557)- (6.43)

The remainder Ro in (6.35) is in OPS™>° and, for some o :=o(7,v) >0, for allm >0, s >0, a € N,

Rl Smosioc €L+ 1T0l1537 4mra) - (6.44)
Moreover
1 AlDAlls, <s ellills+ollbllsro, A€ {B, Q5 (B)", (@)}, (6.45)
[0ia1[illls,, |Giazlillls, , |Giaz[llls,, [|Oias[llls, , |Dibo[illls,» ibro[illls, <s ellills, +o (6.46)
and for allm >0, a € N
[0 R 8] -m,51,0 Sm,s,a Ellills;+o+m+a - (6.47)
Proof. The estimates (6.40), (6.43) follows by (6.37), (6.29), (]ﬁii 6.39 usmg (2.72]) and Lemmata

6.3} [2.22] [2.21] [2. 13 The estimate (6.44]) follows by Lemmas [2.21] [2.25 6[, 2. 2 Proposition [2.28]
(6.13)), and |-| The estimate (6.41]) for @ = Q* follows since the functlon q(p, x) is close to 1, and 1t

satisfies ||g — 1]|%7 <g e(1+ [|To]|5%7) , for some o := o(ko, T,v) > 0. The estimate for B — Id follows by

1
(B-1h =B (], Bilho.0)i= [ hulpa+m(oa))dr
0
and the estimate for the adjoint (B — Id)* follows by the representation

B*h(p,y) = (1+ B(e, y)h(e,y + B(e.y)) (6.48)

where y — y + B(gp, y) is the inverse diffeomorphism of z — z + 3(¢, x). The expressions of B~! —1Id and
(B~1)* are similar.

Let us prove the estimate (6.45) for B and B~1. The other estimates follow analogously. By
and using the estimates , (6.19) on ¢ we get

19:B[llls; <s €llills;+o (6.49)

then the estimate ) for B follows since (0;B8[i])h = 0;8[i]B[hg]. Since y = = + B(x) if and only if
r=y+p6), dnoferentlatlng with respect to i we get 9;6[i] = (1 + B,)*B~1[9;8]i]], hence ;3 satisfies
(6-49) (for a possibly larger o := o(7,v) > 0), and hence B! satisfies (6.45). The estimates
follows by differentiating the explicit expressions of the coefficients and applying (2.72)), the estimates of
Lemma [6.3] for B*! and Lemma[2.22] By (6.36), 9;¢ satisfies (6.46), therefore Q and Q' satisfy
(6-45). For proving (6.47) for 0;Rz[i] we show that the derivative d; of each term in satisfies the
estimate (6.47). For instance the term 0;[H, ¢|[2] = [H, D;q[2]] can be estimated by applying Lemma
and using that d;¢[7] (the function ¢ is defined in ) satisfies the same bound (6.46]). For estimating
0;R1[1] we estimate separately the derivatives of the two terms B~'RsB and Rp in (6.31)). The operator
0;(B~*RgB)[1] satisfies the estimate (6.47) by (2.129)-(2.130) by Lemmata | Proposition
[2.28and (6.40)), (6.41)), (6.45)), (6.14). The estimate of the operator 9; Rg[?] in (6.27)), follows similarly. O

62



Step 3. We “symmetrize” the order of derivatives in the off-diagonal terms of the operator Ly in (6.38]).
We conjugate Lo by the vector valued Fourier multiplier

(1 0 1 (1 0 - 12
5= (0 G)’ S = (0 G1>’ G :=Op(g(€)) € OPS (6.50)
where g is a C* even function satisfying

g0)=1, ¢>0, g(&) = 2(1+rE), Vi¢|>1/3. (6.51)

Note that S is a real and even operator, see Lemma Recalling the definition of the cut off function

x in (2.26]), the symbols g € S% and 1/g € S~=% admit the expansions
(L+r€%)?

9(&) = x(§)g(&) + (1 = x())g(¢) = X(E)W + (1= X(€)9(8) = VEX(©)I€]? +9_3()  (652)

)2 L1 _ x©

5
= + =x(¢ = +9_5(8), g_s €872, 6.53
© 00 a0 Ot T e vaegr T o (659
Since 1;5‘5()5) =0, for |¢] > 1, and %O()O) = 1, the operator Op(lgé()g)) = 7y on the periodic functions,
where 7 is the projector
1
= — dx . 6.54
()= 5= [ fla)de (6.54)
By (6.52)-(6.53]) we get the expansions
1 1
G=VED|Z+G 355, G '=|D|5(1 - kdpy) * +m= ﬁwr% +G 52, (6.55)

where G_3/5 = Op(g,%) € OPS—3/2 and G_5)0 = Op(g,g) € OPS—5/2. Using (6.50), (6.51), (2.25),
(6.55) we get

IDIG = Op(x(&)I¢lg(€)) = T(D), G™'(1 = #0ss) =T(D) +mo (6.56)
where T'(D) is the Fourier multiplier
T :=T(D) := |D|"/?(1 — £0,,)"/? = Op(x(€)[¢|2 (1 4 K€%)%) € OPS?/? (6.57)
Hence using (6.55)-(6.56) (and renaming 0, as 0,) we get
£y 88 517,56 BB g1 p1p-1, Bos — (6.58)
— w-Ol + 10z + ag —ms(@)T(D) + karH|D|? + Rs,p
B w2 m3(<p)T(D) - % |D|§H + m3(p)mo + Rs,c a10; + R3,p

where the remainders are the pseudo-differential operators in OPS°

R37B = a7’HG,3/2 + RQA, R37D = [G_l, a1]8$G =+ G_lbloG, (659)
Ra,c = asG_5/90, + (G, as]d, + G 'by. (6.60)

Lemma 6.7. Fach R = R3 B, R3.c,R3,p isin OPS° and satisfy, for all so < s< S,

Rl <sa e(L+ 1300550 4a) s 10R o510 <s.a ellillsi+ota (6.61)
for some o :=o(1,v) > 0. The real operator L3 is even and reversible.

Proof. Use Lemma to estimate the commutators in —. O
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6.3 Complex variables

We now write the real operator L3 in (6.58), which acts on the real variables (n,1) € R?, as an operator
acting on the complex variables (see (2.16]))

h:=n+iy, h:=n-ip, ie. n=(h+h)/2, ¢ =(h—h)/(2i).

By (2.17) we get the real, even and reversible operator (for simplicity of notation we still denote it by
L3)

L3 = w-0,15 +ims(p)T(D) + A (@, 2)0, + (AL (0, 2) + AT (0, 2))H|D|? + ims(o)TTy + RS + R

(6.62)
where (D) ( )
. __(T(D 0 _fai(p,x 0
T := T(D) := ( ) T(D)) . Ag(p,7) = ( 0 al(%x)> : (6.63)
Do) (O _1 as
Ay (p ) = <0 —a9> ;a9 i= =g <\/Ea7 + \/E) , (6.64)
(1) _( 0 an 1 _ s
A (o, 2) = <a10 . ) @y i= 2(\/Eaa7 \/E) (6.65)
1/1 1
HQ = 5 <_1 _1> o , (666)
0 r$?(w, D) 0 0, D 1
R3 = (1)7 € OPS s (1' D) (a2 + R37D — 1R37B + iR&C) s
0 ry ' (x, D) 2
(I1)
1 0 r3 (v, D) 1 1 . )
Ré ) = (UI)(‘TD) 3 0 EOPSO, é )(JZ,D) = §(a2*R3,D+1R3,B+1R3,0)~
Lemma and (6.61]) imply for all sg < s <5, the estimates
Irs” (@, D)o 1™ (&, DY <sia e(1+ 190]155240) (6.67)
0, D)l 105120 D)o S0 il s (6.68)

Note that L3 in is block-diagonal (in (u, %)) up to order |D|'/2. The introduction of the complex
formulation is convenient in section where we eliminate iteratively the off-diagonal terms of L3 up to
very smoothing remainders, see Proposition

In the next sections we reduce the real, even and reversible operator £3 neglecting the term img ()l
in . For simplicity of notation we denote it as L3 as well. The projector ms(p)illy transforms under
conjugation into a finite dimensional operator and we will conjugate it only once in section

6.4 Time-reduction of the highest order

The purpose of this section is to remove the dependence on ¢ from the highest order term imgs()T(D)
in the operator L3 defined in 1-) (without IIp). Actually, since we only assume that the frequency
w belongs to DC}, defined in , we shall only transform illx, mg(go)T(D) (where K, is defined in
(1.39)) into a constant coeﬁiment operator, and we keep the term which is Fourier supported on
the high harmonics, and thus contributes to -

To this aim we perform a quasi periodic reparametrization of time

di=p+wplp) < @=19+wp(¥) (6.69)

where p(¢) is a small periodic function to be determined. We conjugate L3 by the real operator

P, = (75 72) where (Ph)(p,x) := h(p +wp(p),z), (P h)(0,x) := h(9 + wp(d), z).
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The differential operator w-0, and the multiplication operator by a transform into
P lw-0,P = p(9)w-0p, p0):= (P '[L4+w-9,p]), P 'aP = (P 'a), (6.70)
while a space Fourier multiplier ¢(D) remains clearly unchanged P~1¢(D)P = ¢(D). Thus

(P '1)Ls (PL) = (P 1+ w - Opp))w-0,lz + (P~ 'm3)iT(D) + (P_lJIQA )0y
Fi(P L) (A + ASYHIDIE + (P'L) (RS + RY) (PLy) .

Splitting ms(¢) = Ik, m3(p) 4 I ms(p) we solve, for all w € DC}  (see (L.40)), the equation
1+ w-0,p =my Tk, ms(p), (6.71)

by defining (the function ms(y) is even)

: , 1 ~3/2
= [ Memate)do & em [ (o [ VTERa) e, (6.72)
p:=(w-0,) " (m3 ' Mk, m3(p) — 1) which is odd in ¢. (6.73)

Dividing (P! I3)L3 (PI2) by the even function p := P~ [1+w-9,p] we get the real, even and reversible
operator

Ly:=p (P )L3 (Pla) = w9,z + imyT(D) + Bi(p,2)0; + i(BéI)(QPa x) + B(()H)(@,x))H|D|%

+R + R + RE (6.74)
where
1y 0 1y
B, :=p 'P LA, = <(1) ) . an =p P Hay) (6.75)
ai1
BE)I) = p P71, A(I) (5 . ) ., a1z = p P (ag) (6.76)
12
—1p-1
B{'" = p P LA{ = ( T (“1°)> (6.77)
a10 0
rR(D fol)(ﬂf,D) ()( D) :=p tp! ( ,D)P, (6.78)
= — z, =p x .
! 0 n&”(m,D)
(I1)
0 , D
R{D = | — D)) 0, D) o= p P (2, DYP (6.79)
ry '(z,D) 0
and
Ry :=ip g, ms()T(D). (6.80)

Lemma 6.8. The maps P, P~ are D*-(kg + 1)-tame with tame constants satisfying the estimates
Mp+1(s) <s (1+ [|Tol|F07), Vso<s<S. (6.81)

The maps P —Id, P~! —Id are D*-(ko + 2)-tame and

Mpa1_1a(s) <s e " (1+Tols57), Vso<s<S. (6.82)

The coefficient m3 defined in and the functions ai1, a1z, p~*P~(ay) in — satisfy
Img — 1]k < Ce,  |Oims[i]| < Cel|i|, , (6.83)
lana |57, flasa |57, |7 P~ (ar0) 597 <s (1 + [ Foll357) , ¥so < s < S, (6.84)
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and

" (@, DY S (2, DG, <s.0 (1 + 113001522 ) (6.85)
si4o (6.86)

(6.87)

(6.88)

1(0:P=!1i ])h||51 <s ey lills, +o
10iar1 illls, s 19sar2lillls, 10:{p™ P~ (as0) } sy <s ellillsy+o

I II A N
||airi (@, D)o,y 05" (2, D) [illo,51,0 <50 €llill sy 0o -

Proof. The estimates - 6.84]) follow by Lemmata [2.21] - m 2.14] and [6.6] . The bound ([6.82)) follows since

(P —Id)h = p /0 Polw- 0 dr, Prlh)(ea) = hie +wp(@). ).

and since by Lemma using (6.73) and (6.43)), (6.84)), we have

Il <o ey (L + 1T0lls27) - (6.89)

The estimate for P~ — Id follows similarly. Let us prove (6.85). The conjugated operator
P (2, D)P = Op(is)  where  75(d,2,€) == r§ (9 + wp(v), 2, €). (6.90)
Hence for all o > 0, for all |k| < ko, for all £ € R and for all w we have by Lemma
. I ko, ko, I ko,
|9g(w, -, Ol <s 108r5” (L OISR, + IpllesaIogrs” (I8, -

thus using the estimate (6.89)) we get

I ko, I k ko, I k ~ ko,
[P~1ri" (@, DYPIET, <s 1§ (@, D), + 13115210 (2, D)o S (1 130l

0,5,

and the estimate (6.85|) for 7"4(1[) follows. The estimate for riH) is analogous. The proof of (6.86]) is similar
to the proof of the estimate for 9;8*' in Lemma m The estimate ) follows by differentiating the

explicit expressions in ([6.72)), (6.75)-(6.77)), using (| ), - the estnnates of Lemma [6.6] - and ( -
The estimate ( - ) follows since by - 6.90) 9;0p( 7“3)[] = 0;ip[i ]Op(8¢r3 (9 4+ wp(¥), x ,f)) O

In the next sections we reduce the real, even and reversible operator L4 neglecting the term R7 (for
simplicity of notation we denote it in the same way). Note that the term Rj is in OPS3/ 2. However
it is supported on the high Fourier frequencies and it will contribute to remainders in - In
other words, these terms do not need to be treated in the KAM reducibility scheme of sectlon [7 and the
estimates — are yet sufficient for the convergence of Nash-Moser scheme of section

6.5 Block-decoupling up to smoothing remainders

The goal of this section is to conjugate the operator £4 in (6.74) (without Ry ) to the operator £j; in

(6.120)) which is block-diagonal up to the smoothing remainder Rgg[) € OPS2~M_ This is achieved by
applying iteratively M-times a conjugation map which transforms the off-diagonal block operators into
1-smoother ones.

We describe the generic inductive step. We have a real, even and reversible operator

L, = w-0,l, + imgT(D) + B0, +iB{'H|D|? + RY) + RUD (6.91)

with block-diagonal terms

"Dz D
R = (" @ D) (I)L . rD(z,D) € OPS°, (6.92)
0 (z, D)
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and smoothing off-diagonal remainders

(I1)
0 n 7D L
RrELII) = (IT) ' (x ) ) Tr(LII)(an) € OPS; ”7 (693)
ry (z,D) 0
which satisfy

ko, ko, ko,
RO+ BRIV, L s 0419005 ) Y0 €525, (099
iR [{llo,s1.0 + ORIV i 2610 Snsia elillsitorn ) (6.95)

where the increasing constants N,,(«) are defined inductively by
No(a) = a, Nppi(@) =R, (a+1)+n+2a+4. (6.96)

Initialization. The real, even and reversible operator £4 in (6.74)) satisfies the assumptions (6.91))-(6.95)
where the off diagonal remainder is iB(()H)(go, 2)H|D|z + Rz(ln € OPS'/? (recall that we have neglected
R1).
Inductive step. We conjugate £,, in (6.91)) by a real operator of the form

0 U (z, D)

. o —n—1
&, =, +V,, T,:= (%(I’D) 0 ) ., tn(z,D) € OPS . (6.97)

We compute

L,®, =, (w8, + imgT(D) + B, 9, + iB{ " H|D|7 + R(D)

+ [imsT(D) + B0, + iB{"H|D|? + RY), ¥,] + w-0,¥, + RID + RUDw,, | (6.98)
By (6.63) and (6.97)) the vector valued commutator
. . 0 T(D)yn(x, D) +¢n(I7D)T(D>>
ilmsT(D), ¥, ] = im: 6.99
(D) ] = ms <—(T(D>wn(x,D) +4u(, D)T(D)) (6:99)
is block off-diagonal.
We define a cut off function xo € C*°(R,R), even, 0 < xo < 1, such that
0 i ¢ <s
Xo(§) = { : 3 (6.100)
1 if ¢ >2.
Lemma 6.9. Let
Yn(2,8) = 2im3T'(€) 3 Y € ST, (6.101)
0 if gl <3,
Then the operator ¥,, in (6.97)) solves
i[msT(D), ¥, ] + RUD = Ry, (6.102)
where ( )
. 0 rT P Z, D ) 1
R =i —— e , T esS"2 6.103
T hn (,’,T,wn (I’ D) Tpn ( )
satisfies for all sp < s < S
|rTﬂ/1n (z, D)”]i(),;’i%’&a <S,a 5(1 + ||jO||§$Z+Nn(o¢)+o¢+4) : (6.104)
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The map ¥, is real, even, reversibility preserving and

[ (2, DYEST 1 o Smosia (1 + [T0ll25 7 0, (@) s V0 <8< S, (6.105)

|ai¢n(x,D)[i]”—n—1751,a gn,S,a 5||2HS1+0+N71,(0¢) ) (6-106)

[0ir T, (2, D)J|_p— 1 s, .0 <n,s.a €llillsy 400, (a)+atd - (6.107)
2

Proof. By and (6.93), in order to solve (6.102) with a remainder Ry, € OPS™""% as in (6.103),

we have to solve the equation
im3 (T(D)tn (2, D) + 1y, (z, D)T(D)) + I (z, D) = ryy, (x,D) € OPS™"" % . (6.108)
By , (applied with N = 1), we have
T(D)ip (2, D) +1pn(, D)T(D) = Op(2T(&)¢n (7, €)) + Op(tr,p, (7,€)) Where try, €S2 (6.109)
because T/(€) € $3/2 and ¢, (x,£) € S~ 1. The symbol ¢, (x, &) in is the solution of
2imy T (€)n (2, €) + x0 () (2,€) = 0 (6.110)

where the cut-off xo is defined in (6.100). Note that T'(¢) = 0 for all |§| < 1/3 (see (6.57), (2:26))

and that is why we do not include in (6.110) the symbol (1 — Xo(f)) T (x &) € S7°°. Note also that
IT(£)] > ¢ > 0 for all [¢] >1/2. By (6.101)) and Lemma [2.7 and (6.94)), we have, for all 5o < s < S,

ko, ko,
lon (@, D) g Sna REPIT | <nsac (L4 [Tollsotaa @)

proving (6.105). By (6.109) and (6.110) the remainder 77, (x, &) in (6.108) is

1, (2,€) = imger,p, (2,) + (1= xo(€)rf! D (,6) € 5775 (6.111)
By (2.42)) (applied with A =T(D), B = ¢ (x,D), N =1, m=3/2, m' = —n — 1) we have
(6.94)
ko, ko, ~
[o7.0, (2. D) 0,3_% o S BRIV o S (U Tollaroisarrars)  (6112)
and the estimate ) for rp .y, (2, D) follows by (6.111)) using also (6.83)), - The bound m

is obtained dlfferentlatmg the symbol {|6 101)) and using (6.83)), (6.94)), (6. 95 Let us prove the estimate
(6.107). By differentiating (6.111]) with respect to i we get

Oirry, (2, )] = i0mg[ifer,y, (,€) + imzdivr,y, (9575)[] (1= x0(€)dir " (z, )[i].- (6.113)

Note that, since T'(£) does not depend on ¢, by formulae , 2 (with A = T( ), B =,(x,D),
N = 1), we get O;tr .y, (z, D)[i] = vr9,4,[:(2, D) and hence by (2.42) for A=T(D), B = 0;tn(x,D)]i],
N=1,m=3/2,m =—n—1) we get

(16.106))
|6{CT7¢” (m’D>[Z]”7TL71 81,0 Sn,S,a Iaﬂﬁn(.ﬁ, D)[ ” n—1 sl+2+ +a,a Sn S,a EH ||S1+G'+N () +a+4 -

The estimate ) for O;rr 4, (x, D)]i] then follows by recalling (6.113)) and (6.83), (6.95), (6.112)
Finally, using Lemma and Lemma [2.4] we see that the map ¥,, defined by the symbol (6.101] 1() is

even and reversibility preserving because 7, is even and reversible.

By (6.98) and (6.103)) the conjugated operator is

Loy1 =0 1L, @, = w-0,]5 + im3T(D) + B19, +iB"H|D|? + R + R, 14 (6.114)
where R, 41 := &, IR* na1 and
R:., = Rry, + [Bi10,,V,] +iBY H|D|Z,9,] + RD, ] + w-8,9, + R{DW, . (6.115)
Note that R,,4+1 is the only operator in containing off-diagonal terms.
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Lemma 6.10. The operator R, 41 € OPS——2 satisfies
R, 1|zio7;w_§ so Snsa 1+ [130l1557 ) VS0 <5<, (6.116)
Rl s 010 S £lillonbotrinsa e (6.117)

where the constant R,,;1(c) is defined in ([6.96).

Proof. PROOF OF ([6.116). We first estimate separately all the terms of R}, in (6.115). The operator
Rry, € OPS~"% in (6.103) satisfies (6.104). By (6.75) and since Y (z, D) € OPS™ 1 see (6.101)),

we have

0 [a110z,Yn(x, D)]

_ —n—1 —n—%
[B19,,¥,] = ([anam%(x,D)] 0 ) € OPS Cc OPS .

Moreover Lemma [2.§] (with m = 1, m’ = —n — 1) implies

ko, ko, ko,
"[alla&vaql}n(x D)“ y ’Y, < |[allawin(z7D)]||—On11,s,a Sn S, ||a“11||s—oi-g—i-3+ozlwn(:Zj D)l—n 1,80+3+a,a+1

5»5»06

ko, ko,
+ ||011\|581n+3+a\|1/)n(9€ D)| On7 1,54+3+a,a+1

o Mo X oo -

<n,S,a 5( + Hjo||s—',-70'+Nn(a+1)+n+Oé+3) :

We also claim that [BSI)H|D|%,\I/7L] € OPS—" 2. Indeed by (6.76) we have

1 0 a19H|D|2 ¢y, (z, D) + ¥ (z, D)ayaH| D)2
B(I)HD%,\I/n _ ( 12 ) P
B0 HIPE U0l = 011D D) — 9 Dass I DI 0
and ([2.41), (6.84), (6.105) imply [B\"H|D|%, ¥ Tl L Snsia €0 130155 0 @) entasd)- I ad-
dition the operator [R%I),\I/n] € OPS~""1 c OPS~""z because (see (6.92), (6.97))

[R(I) U ] — 0 T»SLI)(%,D)Q/)”(:E,D) _wn(va)rg)(va)
9’ n| — - _-
! ri (@, D)ihu (@, D) — (e, D)ri!’ (x, D) 0

<R, W7 0 Snisia e(1H]1T0]502

I ko,
and (241), (6.94), (6.105) imply |[RS, ]| T e < (@) dntatl)-

n——soz

Moreover w-0,¥,, € OPS™"~ L c OPS—™ % satisfies

ko, ko, ko, ~ 11ko,
- 0o a5y Sl 0oVl < IVl 10 Snsia (14 150055, (o)1)

by (6.105). Finally RY"W, € OPS™2"~3 C OPS™ % and by (241) (applied with m = 1 —n,

m' = —n—1), (6.94), (6.105) we have

RUDw, [0, <RIV < (14 30 ).

3.8, =T s+o4+R, (a)+nta+i
Collecting all the previous estimates we deduce that R, ; defined in (6.115) is in OPS™ "3 and

ki ~ nko,
|R +1‘| o 2 8, Sn SO& (1 + HJO||93—0+N (a+1)+n+a+4) (6118)

Now (2-41) (applied with m = 0, m’ = —n — 1), Lemma [2.10, (6.107)), (6.118) imply

ko, ko,
lR”Jrll—Dnz%,s,a =12, 1R*+1|—0n1§7s o
Ko,y

11k ko, 11k
S [ e Y| S Pt S Rl 2 AN ) S Listaa

nf— ,So+a, 0,50,

~ 11ko,
<n,S,a 5(1 + ||J0||S?|»;-Y+Nn(a+1)+n+2a+4)
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which is (6.116)), recalling (6.96)).
Proor oF ([6.117)). First we estimate 9;R;,,, in (6.115). The operator 0;Rr y, satisfies (6.107). Then

we have
0;[B10x, U,][i] = [0:B1][i]0z, ¥r] + [B10a, 0¥, [i]] -

Hence Lemma [2.8] (with m = 1, m’ = —n — 1), the estimates of a;; in (6.84), (6.87), (6.105), (6.106),

imply

|6¢[B16x, \Ijn] [i]l—n—%,sl,a < "ai [Blaﬁva ‘I’n] ml—n—l,sl,a Sn,S,a 5||i||sl+U+N"(a+1)+n+a+3-
The terms 0; [BE)I)H\D|%, U], 0; [Rg), U, ] may be estimated similarly. In addition

10: (©-0%0) [l 3 100 < 103 (-0 W) [l -n—1.51,0 < [ nlill-n1,5 1.0
(6.106)) .
Sn,S,a 5||Z||31+0+Nn(04)+1 :

Finally |8i(R£lH)\Iln)[i] € OPS~2"~2 ¢ OPS~""2. Hence applying (2.41)) with m = —n+i,m =-n-1,

and using (6.94)), (6.95)), (6.105]),(6.106|) we get

|ai(R£LII)\IIn)[i]”—n—%,sl,a < ‘|ai(R£LII)\IIn)[i]l—Zn—%,sl,a STL,S,CX €||i||sl+a'+Nn(a)+n+a+% .

Collecting the previous bounds we conclude that ;R (1[il_n_1 s, 0 Snsa llills,+otr, (a+1)+nta+a
and the estimate (6.117)) follows by

DR [1] = 0;(®, 'R 1) [i] = 0;@, ' [(IRS 1 + @, ' ORS 4 [)] and  9;@,'[i] = —@,,'9,®,[i]®,
applying (2.41)) (with m =0, m’ = —n — 3), Lemma and the estimates (6.105]), (6.106]). O
By (6.114)) and (]6.116[)—!6.11%! the operator £, has the same form (6.91)-(6.93)) with Rgﬁl, Rgﬁ

that satisfy the estimates ((6.94)-(6.95)) at the step n+ 1. Hence we can repeat iteratively the procedure of
Lemmata and|[6.10} Applying it M-times (M will be fixed in (7.9))) we derive the following proposition.

Proposition 6.11. The real invertible map ®p; := ®40...0DPyry4 satisfies the estimate

(B} — Ll (@5 — L) 5% <sar e(L+ 305 o) Vso <s <5, (6.119)

and conjugate Ly to the real, even and reversible operator
Lor =3 La® 1y = w-0,]5 + imsT(D) + By (p,2)0, + B (0, 2)H|D|7 + R + RYD (6.120)

where the remainders

Do . D 0 0 RUD
R — (" (P1 D) ] eoprs®, Ry = (_g;y M JeopstM (6121)
0 TM (@aan) RM 0

satisfy the estimates

IR oy 4 RO Foy <s.o (14 [|T0*7 ), Vsg<s<S§, (6.122)

0,s,a —M+3,s5,a SSa € sto+Rp(a)

and the constant Nyr(a) is defined recursively by . Moreover

I) A II)~ ~
RS [lo,1.0 + IORS Wars 1 0100 <150 sy 40430000 (6.123)
1085 0,10 > 10,5 [o,s1.0 <ar,s ellillss 4osrar(0) - (6.124)
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Proof. Let us prove (6.119). For all 4 <n < M +4, s < s < S, we have

koy €30 ko, ko, ~ ko,
@y, — Tal5% b [Talotn <s €@+ 1Tll3 7w, ) <s €@+ 1T0l53 0 10 0)

and (6.119) follows as in the proof of Corollary 4.1 in [7]. The estimate on the adjoint operator (‘Iﬁ; —Iy)*

follows as well since Lemma [2.9 implies |(®£1 — I5)* ||§0 0 <w |@F - ]I2|§f’(;13070. Also (6.124)) is proved
analogously. O

The operator Ly in (6.120]) is block-diagonal up to the smoothing remainder Rg\?) € OPSz=M_ The
prize which has been paid is that Rg\?) depends on R,/ («)-derivatives of the approximate solution J, i.e.

on ||j||§0+;+NM a) in m In any case, the number of regularizing steps M is fixed (independently on
s, see .7 .6))), determined by the KAM reducibility scheme in section m

6.6 Elimination of order 0,: Egorov method
The goal of this section is to remove B (p, )9, from the operator L£; defined in (6.120]). We rewrite

Ly = w-0,15 + Py, z, D) + RYD (6.125)
where we denote the whole block-diagonal part by

. 0 0
Po(y, 7, D) i= insT(D) + By (¢, 2)0; +iBS (0, 2)H| D[ + R = ( p(po) ) (6.126)

0 Op(po)
and, by (6.63), (6.57)), (6.75), (6.76)), (6.121)), the associated symbol is
polp,,€) = i(msT(€) + ar1 (0, 2)€) + ara(ip, 2)x()sign(€)|€]% + i (0, 2,6) € S92 (6.127)

where T'(€) = x(§)[¢]'/*(1 + w€?)'/2.
Egorov approach. We transform L,; in (6.125]) by the flow of the system of pseudo-PDEs

) (Z) = ia(p, z)|D|? (Z) where  a(p,z) == (a(‘%’ z) a(?p’x)) (6.128)

and a(p, z) is a real valued function to be determined, see (6.153). The flow ®(¢,t) of (6.128) has the

block-diagonal form
([ ®(p,t) 0

where ®(p,t) is the flow of the scalar linear pseudo-PDE

dyu = ia(p, z)|D|?u. (6.130)

In the Appendix we prove that its flow ®(p,t) : H® — H*® is well defined in the Sobolev spaces H?, see
Propositions The flow ®(p,t) solves

{atfb(@vt) = iA((p)‘I)((p,t) ’ A(‘ﬁ) = a(np,x, D)’ Cl((p,il?,f) = a(@a z)X(g)‘ﬂ% ’ (6 131)
B(p,0) = 1d |

and, since (6.130]) is autonomous, it satisfies the group property
D(p,t1 +12) = B(p, 1) 0 D, ta),  Blp,t) ™ =B, 1) (6.132)

Moreover, assuming that a(w, &, -) is ko-times differentiable smooth with respect to the parameters w and
K, the flow ®(p,t,w, k) is also ko-times differentiable with respect to w and x see Proposition If
a(p, z) is odd(p)-even(x) then the flow ®(p,t) is even and reversibility preserving.
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We denote for simplicity ® := ®(p) := P(p, 1) the time-1 flow map of (6.130) and ® := ®(yp) :=
®(ip, 1) the time-1 flow map of the system (6.128]). The transformed operator is

LY = @Ly® ! = w0,y + B(0)Po(p, 2, D)®(p) " + B(0)w-0,{®(p) '} + BR{VD1 . (6.133)

The terms ®(¢)Po(p,z,D)®(p) "' and ®(p)w-0,{®(p) '} are block-diagonal. They are classical
pseudo-differential operators and shall be analyzed by an Egorov type argument. On the other hand
the off-diagonal term @RE&”@* is very regularizing and satisfy tame estimates. The contents of this
section are summarized in Proposition [6.26,

Analysis of ®(p)Pq(¢,x, D)®(¢)~! in (6.133).

We first consider P(y,t) := ®(p,t)Po®(p,t)~ L. By (6.126)) and (6.129) it reads

pon)= (70 ply) . Pt =deonlpa D en. (613

The operator P(ip,t) solves the vector valued Heisenberg equation

{atP(QO, ) [a(gp,x)|D|%,P(cp,t)}
P(,0) = Po(p),

namely the operator P(y,t) solves the usual Heisenberg equation

atp((pvt) = I[A(gp), P(@J)} - — 3
{P«o, 0=P=mpap) o APTsen Dl ZdealbE 615

We use the notation |D|z := Op(x(€)|€]2) as in (2.25).
We look for an approximate solution Q(p,t) := q(t, ¢, z, D) of (6.135) with a symbol of the form

(expanded in decreasing symbols)

tp,,8) = anw, &), an(tp,w,€) €82 ¥n=0,... M. (6.136)

The order of the commutator [A(p), Q(p)] is strictly less than the order of Q(yp). Let ax ¢ denote the
symbol of the commutator, i.e. [A(¢), Q(¢)] := Op(a*q), see (2.50).

Lemma 6.12. (Commutator symbol) If g€ S™, m € R, then axq € S™=3 qnd

m— *SO(

k ko, ko,
A, Q7 | =10p(a* @)y | <o IOP@t s okt 1015 oo
ko, ko,
+ ”Op(q)lﬂg,;/o-‘ra—i-&a-i-l ”a’H53-|m\+a+2 .
Proof. By Lemma with m' = 1/2. O

We solve approximately the equation (6.135]) in decreasing orders. We define g as the solution of

Orqo(t =0
tqo( ,(,0,$,§) (6137)
qo(oa P, T, g) = PO(% Zz, 5) )
namely .
%(@%%O :p0(<)07$7£) €52 ) vt € [07 1] (6138)
Then we define inductively the symbols ¢, (t, ¢, z, &), n > 1, as the solutions of
Orqy, =1 n—
tn = 10 o1 (6.139)
an(0,,7,€) =0,
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namely

@n(t, o, 2, 8) = i/o (ax gn_1)(7,0,2,8)dT. (6.140)

Each symbol ¢, € §2B3-n) yp = 0,...,M. Actually qo € S%?2 by (6.138). Then, by induction, if
gn-1 € S§2B3=(=1) we deduce that a * qn—1 € S§2(B3-n) by Lemma The quantitative estimate is
given in (6.190)).

We now expand the symbol ¢ in (6.136)) writing explicitly the terms of order greater than 0. They

come from ¢y € S%, q1 € S' and g2 € S2 (all the symbols g,, n > 2, are yet in S°). For that we further
expand as in ([2.57) the symbol of the commutator as

(axq)(t,p,2,8) = —i{a, ¢} (t, ¢, 2, &) + 12(0, ) (t, ¢, 2, §) (6.141)
where {a, ¢} = (0:¢)(0ca) — (0¢q)(0,a) is the Poisson bracket and ry(a, ¢) is a lower order symbol.
Lemma 6.13. (Lower order commutator symbol) If ¢ € S™, m € R, then ra(a,q) € S™=% and

|Op (r2(a, q))llﬁf’f%,s,a SN (031 7)] WY |1 [
H10P(@Ol 3 ass.ara Al S T s -
Proof. Apply to Op(g)oOp(a) and to Op(a)oOp(g) with N = 2 and m’ = 1/2 (and use (2.37)). O

We now get the expansion of the symbol g<a2(p, z,€) := ¢<2(1,¢,2,8) = (g0 + ¢1 + ¢2)(1, @, x,&).

Lemma 6.14. (Expansion of approximate solution) The symbol <o = qo+¢1+g2 has the expansion

g<2 = im3T(§) +i(a11 — gm3\/zax)§ + (ia13 + a1a sign(€)) x(€)[¢]2 + Tqes (6.142)

where the symbol

Facs 1= Taey (9, 2,€) = 77 +righ + 1 + 75 € S° (6.143)

is defined in (6.148), (6.150), (6.152)), and rg\f[) in Proposition and the function

1 3 3
a1z = a13(p, ) = §(a11)za —aj10y — gmg\/ﬁama + ng\/ﬁai . (6.144)

Proof. By (6.140)), (6.138]), (6.141]) we have

t
Q1(t7 30,3375) = l/ (a*qo)(T, @71‘75) dr =it (a*po)«p)m?g)
0
= t{avpo}(sovxaf) + itrQ(aapo)(@ﬂ $7€> € Sl (6145)
and note that ry(a,pp) € S°. Similarly, using also (6.145)), the symbol

1 1 1
QQ(L(P,J?,&.) :1/0 (a*QI)(TﬂOax)g)dT:/o {a7QI}(7-7%07x7€)dT+i/(; r2(aaq1)(7750"ra§)d7—
1
= %({a, {a,po}} +i{a, rz(a,po)}) + i/o ro(a,q1) (7, 0, z,&)dr € g1/2 (6.146)

where {a,ry(a,p0)} and ry(a,q1) € S1/2. By (6.135), (6.145) at t = 1, and (6.146) we get
1
q<2=qo+q1 +q2=po+{a,po} + 5{‘1, {a,po}} + T&% (6.147)

where

. 1
. 1 .
Tgl%)o = lI'Q(Cl,po) + i{aa IQ(ﬂ,po)} + 1/ r2(a7 Q1)(Tﬂ 907:636) dr € SO . (6148)
0
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By and 9T () = 2/rsign(€)x()€]7 + O(|€] %), we get
{a,p0} = i{ax(€)€]2,m3T(€) + a11€} + Fapo

= —imyT(¢)aux(€)[€]7 + i@(an)xa — anag ) (I +i(011)2a(@x(€))IEI € + Fap,

= —iomyVRa.E +i( 5(an)ea - anas )@l + 78, (6.149)
where Fap, = {ax(©)I¢]¥, arasign(©)x(§) €] * + {7’} € S and
s = ap — ms (T (€) — 5 Vsign(@x(€) Il ) arnle] /2 (6.150)
FiomsAar(1 —X(€)E + i) o (ex(©)lel e € °.

Furthermore, using ([6.149)), we compute

1 .3 1 1
s{a{apo}} = —igme Vi (Sauma — a2 )(©I¢lF + 0, (6.151)
where
1 .3 1
rin = {ax(©1612,i(5 (@11 — anag )x(©I6Y2 + v, b =i Vimsana@x() 61 € $°. (6152)
Finally (6.147), (6.127), (6.149), (6.151) imply (6.142)-(6.143). O

Choice of the function a(p,z). We now choose the function a(p,x) so that the first order term in
(6.142)) vanishes, namely such that a1 (¢, z) — 3ms\/kas (¢, z) = 0. Since the function a11 (¢, z) is odd in
z (see (6.75) and remark such equation may be solved. Its solution is

2
a(% SL’) = d((p7 .’17) + a0(<p) where 6(507 SL’) = 3m3\/E8;1a11(ap, aj) (6153)

and the function ag(¢) will be determined later, see (6.169). In this way (by (6.142))

g<2 = m3T (&) + (ia13 + a2 sign(§))x(§)|§\% + Tqey (6.154)
where ry_, € S0, The next lemma proves that we have found an approximate solution of (6.135)).

Lemma 6.15. (Approximate solution of (6.135) The operator Q(¢,t) = q(t,p,x, D) where ¢ =
Zﬁio qn with qo defined in (6.138)) and g,, n =1,..., M in (6.140), solves the approrimate Heisenberg

equation

Q(0) = Py (6.155)

where Ryr(p,t) := —i0p(a* qpr) € OPS'=% . The quantitative estimate is given in (6.192]).

Proof. By (6:137) and (B.139) the initial symbol q(0,¢,7,€) = o0, 0,2,€) + Y21, qu(0, 0,2, ) =
po(p, x,&). Hence Q(0) = Py. Moreover (6.137) and (6.139)) imply

{«%Q(%t) = i[A(9), Q(¢,1)] + Ras (¢, )

M M M-1 M
Org = Oign =1 axgu1 =1 akgy =13 axq,—iaxqy =iaxq—iaxqy
n=0 n=1 n=0 n=0

because a * ¢ is linear in ¢. Since [A(p), Q] = Op(a * q) we get (6.155)) with Rys(p,t) := —iOp(a * qar).
The operator Ry; € OPS'~% since qm € S%@’M), see after (6.139))-(6.140)). O
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The next lemma expresses the difference between P(p,t) and the approximate solution Q(p,t) of
(6.135)) in terms of the remainder Ry in (6.155) and the flow ®(¢,t) of (6.130).
Lemma 6.16. We have

W(ert) = Qlpnt) — Plpt) = / (.t — 1) Ras(pu7) (0,7 — ) dr (6.156)

Proof. Recalling (6.134) we write W (¢p,t) = (Q(p, t)®(p,t)—®(p,t)Py) ®(¢, t)~*. By (6.131) and (6.155)
we deduce that V(p,t) := Q(p, t)P(p,t) — ®(p,t) Py solves the non-homogeneous equation

By Duhamel principle (variation of constants method) and (6.132)) we get

Vip.t) = / B, t — ) Ras(ip, 7)B(p,7) dr

and thus ((6.156f) using again ((6.132]). O

Analysis of ®(¢)w-0,{®()"'} in (6.133).
Set for brevity (recall (6.129)))

0
o,t)

The term W(i,t) can be computed in terms of the flow ® of (6.130) and A(y) = a(p,z)|D|z.

W(o.t) = B0, (2000 = (T GO0 ) where 90 i= @000, {800 ).

Lemma 6.17. The operator

W(p, 1) = —i / Sulpr)dr  where  Su(p.t) == B(p, 1)(w D A(2))B(, 1)

Proof. By the flow ®~1(t) = ®(—t) and 9, ®(t)~* = —iA®(t)~ 1. Thus ¥(p,t) solves
0¥ (p,t) = (atcp)w-aﬂ*+<1>w~5zp(at¢r1) = —0(0,0 N Pw- 0,0 " —idw-0, (AP )

=i0Aw-0,® ! —iPAw 0,27 —i®(w-0,A)P ' = —i®(w-0,A)P " .
Moreover ¥(p,0) =0 (as ®(p,0) =1d, Y € T”, see (6.131))). The lemma follows by integration. O

The operator S, (¢, t) has the same conjugation structure of P(p,t) in (6.134) and therefore it solves
the Heisenberg equation

0:S, (o, t) = 1i[A(p), Sw(p, t

1S (0, 1) = i[A(p) (;p )] (6.157)
Su(p,0) = (w- 9,a)|D|2

Following the same procedure used for P(¢p,t), we look for an approximate solution of (6.157)) of the form

(expansion in decreasing symbols)

M

L _ l(1—n)
Sw,m (@, t) == s(t,,z,D), 5= anos"’ Sp €57 . (6.158)
We define the principal symbol sq to be the solution of
atS()(t,gD,{L',g) =0 . 1 1/2
y e so(tg €)= (W d.a)x(IE] €52 (6.159)
{30(07%1‘,5) = (w- Dpa)x()IE]? :

Then we define inductively the symbols s,,, n > 1, as the solutions of

Btsn =ia* Sn—1
sn(O, 9071:75) = 07

It turns out that s, € 2= in particular each s,, € S°, Vn > 1.

i.e. sp(t,p,x,&) = i/ot(a*sn_l)(r,go,x,ﬁ) dr. (6.160)
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Lemma 6.18. (Approximate solution of (6.157)) The pseudo-differential operator S, m(p,t) =
s(e,t,x, D) in (6.158)) with sg € Sz defined in (6.159) and s, € Sz(=n) ' =1,...,M in (16.160)), solves

the approximate Heisenberg equation

05 (p.1) = {A(P), Sups (0,0 + Runs(o,1) 6161
Sw,m(9,0) = (w- 0pa)|D|2
where Ry, pr(,t) := —iOp(a*sy) € OPS™% . Moreover
t
Wl t) = Sum(e,t) = Su(ep;t) =/ (p,t = 7)Rona (0, 7)P(p, 7 — 1) dr (6.162)
0

where ®(p,t) denotes the flow of (6.130)).

Proof. The equation (6.161f) follows as in Lemma Then (6.162) follows as in Lemma O
Sub-principal symbol of Eg\}[). By Lemma and the choice of a(y,z) in (6.153), the principal
and subprincipal symbols of ®(¢)Po(p,z, D)®(p) ! are given by (6.154)). Also ®(p)w-9,{®(p) '}
contributes to the subprincipal symbol of Eg\?, i.e to OPS'/2. By Lemmata , and the expression

of 59 = (w- 8¢a)x(§)|§|% in ((6.159)) we find that the conjugated operator Eg\? in ((6.133)) has the expansion

L8 = w-0,1y + imgT(D) +1(C1 (g, ) + Colep, 2)H)|D|? + ... (6.163)
where
0 0
Cilpay= (4 ) i -w-d,0. Golen)i= (%0 ) Gae

and the functions a13, ai2 are defined respectively in (6.144]), (6.76]).
In the next sections we reduce the operator ES\}[) neglecting the term

. 1 (T ays(p, ) 0 1
R =il Cy|D|7 =i (K1 D|? 6.165
M K, 1| | 0 —HIL(”GM((P,x) | | ( )
which is supported on the high Fourier frequencies and which will contribute to the remainders in ((7.94)-
(7.95) (as we did with the similar terms at the end of section . For simplicity of notation we still
denote it by EE&I).

Choice of the function ag(¢). In view of the reduction of illg, C1|D|2 in section 6.7, we choose the
function ag(y¢) in (6.153)) in such a way that, for all ¢ € T", the integral

1
— [ Ik, a14(p,x)de =m g, , YeeT”, (6.166)
2 T
is a constant. Since a = a + ag (see (6.153))) we write the function a14 in (6.164) as
a14(p, &) = a14(p, ) — w - Opao(p) where (14 = a13 — W - Oypl . (6.167)

The function ai3(p, ) in depends on a, and thus also on ag(p), but the integral [} ai3(y,z)dz,
and thus [ a14(p, z)dz, does not depend on ag(y). For solving (6.166) we look for ag(p) = Ilk, ao(p)
such that 5= [Tk, d1a(p, ) dz — (w - dpa0)(p) = my k. For all w € DCY (see (1.40)) such equation is
solved by

mc, = (20 [ M au(ea)deds = 200 [ au(po)deds,  (668)
Tv+1 Tv+1
1 1 -
ao() = —(w - 9,) 7 (mixe, = 3= [ T, dnalp, @) da) (6.169)
T Jr

Note that ag(p) is odd in . Since also a(p,x) defined in (6.153) is odd in ¢, and even in z, the flow
®(p,t) of (6.128)) is even and reversibility preserving.
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Lemma 6.19. (Coefficient my g, ) The coefficient

m x, = —(27;)\;;_2 Bl 0,8+ V(L B)PIlk, (/T N dy)3/2d<p dr  (6.170)
where the function V is defined in and 3 in , The coefficient my ., satisfies
my g, [P < Ce,  |0mk, 1] < Cellill, . (6.171)
Proof. By (6.168)), (6.167)), (6.144)), (6.153)) the coefficient

1 3 1
LK = Gyt /TV+1 a14(p, ) dpdr = W/JI‘ - a13(p, ) dedz

1 1 3
/ (all)xa —aja; — gm?)\/»axa:a + m3\/>a dpdx
T

- (27T)V+1 Vi1 2
(2m)~"~ 2

v a2, (o, z) dodz . 6.172
ey -2l 11(py2) do (6.172)

By (6.79), (6.70), d¥ = (1 + w - O,p)de (by (6.69)), (6.71), (6.29)), (6.23) we have

2 0,8+ V(L+ ;)2
2 (o, x)dod :/ D) e — / (w9, 2))_ (14 8,)dodz . (6.173
/TV+1 0111((,0 $) par Tv+1 1+w-8¢p L 3 Tv+1 HKnmg(ga) ( +ﬂ ) par ( )

By (6.172), (6.173), (6.37) we deduce (6.170). O
Lemmata [6.14] [6.16] [6.17}, [6.18] imply that
L) = w8, + imgT(D) +1(Cy (¢, 2) + Col(g, 2)H) | D|* + R + QY

1 1
RO ._ Riy/ o w._ (0 vl
M 0 REM’ My o

with remainders

R\ = op(r(Y) / Wo(p,r)dr, QY =orUDT ", (6.174)
D28 =ry (e + Y allpr&) +iy /snr%xﬁ)dreSO

where r,_, is defined in (6.143)), g, in (6.140), s, in (6.160)), the operator W is defined in ([6.156)), W, in

(16.162) and Rg\f) in Proposition
In the final part of this section we prove that RS&I) and QS\Z) are tame operators and (6.212]) holds.

Lemma 6.20. For all sg < s < S, we have
lar2 |27, [lars |27, lasal 207, a7 <s e(1+ 130l2%2) . llaoll2o” <s ey~ (1 +[1T0]1532),  (6.175)
10sa12[l|s,, |10ia13 (i[5 Osarald|s,, 105010 |, <s ellollsy o [1Osaolillls, <5 €y lillsy 4o - (6.176)

Lemma 6.21. The remainder rq_, € S° in (6.154)) (see (6.143)) satisfies, for some o := o(7,v) > 0,

ko, ko,
|qu2 (va)IO?st SS.a 8(1 + H30||33_3+NM(Q+4)+204) , Vsg<s<S. (6177)

Moreover, if the constant p in (6.10) satisfies
s1+ o+ Ny (a+4)+2a<sy+pu, (6.178)

then
0irq<, (@, D)[illo,s1,0 <s,a €llills, +o+Rar (at4)+20a - (6.179)
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Proof. We rely on the Lemmata and We prove that each term of ry_, = rg\? +7’§8,)0 + rgé,)o +7'E3,)0
defined in (6.148)), (6.150), (6.152) satlsﬁes 6.177). The term Op(r')) satisfies (6.177), (6.179) by

Proposition 6.1ll Then we consider rapo in (6.148]). Lemma (with m = 3/2), the deﬁnition of po in
(6.127)), the estimates of Proposition [6.11} and (6.175]), imply

ko, ~ ko,
fra(a.p0) (2, D), s (14 190097 10y vz ) (6.180)

In the same way, using 9;r2(a, po)[i] = r2(8;a[il, po) + r2(a, d;po[i])) and (6.10), (6.178), we deduce that
19120, p0) (@, D)oo st lilln st (2 - (6.181)

Lemma [2.59] (6.180) and (6.175) imply

ko, ko, ko, ko, ko,
{a, r2(a, o)}, D)lo’s e <s.a [r2(a, po) (#, D)lojstr et llallso s + Ira(as po) (2, D)l 1
~ I1ko,
<S.a 5(1 + ||J0||33,_Z+NM(Q+2)+Q) (6.182)

for some ¢ := o(7,v) > 0. Moreover 9;{a,rs(a,po)}[i] = {0;a[i],r2(a,po)}+ {a,dira(a,po)[?]}. Hence

©59), (6.175), (6.176), (6.180), (6-181)), (6.10), (6.178) imply that

|ai{av r2(aap0)}(m7 D)[i]IO,SLa SS,a €||€||51+U+NM(0£+2)+04 . (6'183)
Moreover by (6.145)), (6.180), (6.181)), (2.59) and Proposition [6.11] (and (6.10)), (6.178)) we get
k k
las (2, D) s (14 130107 sy sz ) (6.184)
|9iq1 (%D)[l]ll,sl,a <s.a €lltllsi+onar(ara)ta (6.185)
and using Lemma (with m = 1), by the same arguments used to deduce (6.180)), (6.181)), we get
ko, ~ ko,
|r2(a,¢1) (2, D)o <sia €(1+ 11300530 1wy, ara)r20) - (6.186)

|0ir2(a, ¢1) (2, D)[illo,

for some o := o(7,v) > 0. The estimates (6.180)), (6.181)), (6.182), (6.183), (6.186)), (6.187) imply

<SO¢ 5“ ||s+a+NM(a+4)+2a (6187)

0 ko, ~ ko,
Iréon (2, DI, <s.0 € (14 1301507 s agay20)

0 A~ ~
10575m (22, D) [illo,51,0 <, 1151 40+ 30r (a4 420

for some o := o(7,v) > 0. The symbol 74y, defined in (6.150) satisfies

. ko, ko,
[Fapo (2, D)lo%e e <s.a €(1+ 130l1557 1y as1)) » (6.188)
|07 ap, (2, D)lillo,s1,0 <s.a €llills,+o+xu (a+1) (6.189)
by (6.122)), (6.123)), Lemma and . Also the symbols rupo in (6.150) and rapo in (6.152)) satisfy
(6.188), (6.189). O
Lemma 6.22. For alln € {1,..., M} the symbols ¢, € §3(3-n) defined in (6.140) satisfy
ko, ko,
0D s s 21+ 1300873, )+ Y0 S S, (6.190)
where the constants 3,(M,a), n € {3,..., M} are defined inductively by
3
(M, a) =Ry(a+2)+a, Tni(Ma)=a+—o+>+I(Ma+l). (6.191)

2 2
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The operator Ra(¢,t) := —iOp(ax qu) € OPSY™% satisfies

|Ras (¢, t)l’fi’%’s,a <usa e(LH 15001557 0, aray) » VS0 <8< S. (6.192)

Moreover if the constant p in (6.10) satisfies

s1+0+Iys1(M,a) < so+u, (6.193)

then for allmn € {3,..., M}
10.00 ()il 3 o1 <o lillr s, 1000 (6.194)
“aiRM(QO’t)[’Z]"l—%,sl,a SM.S,a €||2H51+0'+:M+1(M7Ot) . (6195)

Proof. For n = 1 the estimates (6.190), (6.194) for Op(q;) have been proved in (6.184]), (6.185)) in Lemma
Then we argue by induction supposing that g,, € 523~ satisfies (6.190)), (6.194). Then, recalling
(6.140]), Lemma and (6.175)) imply

I o )

10D ) sy SnvSio (1 101575, ariy

where 3,11 (M, «) is defined in (6.191)). By (6.140))

2

t

000(0r12)01 = 100( [ @il xt0-1). 2,6) ) 100 [ (82 ta-a)(r 2. €l tr).

Then (6.175), (6.176), (6.190), (6.194), (6.10), (6.193) imply

10;:0p(gn+1)[il1 (3—(n+1)),51,0 Sn.sa Ellillsi+o+3, 40 (Ma) -

In the same way (6.192), (6.195) follow. O
Remark 6.23. We need (6.192)) only for a = 0. O

We now estimate the difference W(p,t) in (6.156) between the approximate solution Q(y,t) and the
exact solution P(y,t) of the equation ([6.135]).

Lemma 6.24. For all 8 € N with 8+ko+4 < M, the operators 8£jW(go,t), (‘3&_ W(p,t),0:],5=1,...,v,
are DFo-tame with tame constants

Mo w o) (8)s Mog w(g,0),0,1(8) <s.nr (1 + 1301537 s armanygg): VS0 S5 S, (6.196)
for some o := o(7,v, ko) >0 and (the constants 3,,(M, ) are defined in Lemma[6.23)
M) :=Dpr11(M,0) . (6.197)
Moreover if the constant u in satisfies
s1+o+xM+TM)+8<sy+p, (6.198)
then
102, [0:W (0, 1)[i], Ba]ll o101 ), 102, B:W (0, ) il 2 arory s ellills, +or 2100048 - (6.199)

Proof. To simplify d, := 0, j = 1,...,v. We prove that ag[W(go,t), 0] = agW(go,t)aw - &ﬁgW((p,t)
is DFo-tame. We first consider 8£W(g0, t)90;. Recalling (6.156)) it is sufficient to estimate V¢, 7 € [0, 1]

900% ((I)(t — 7Ry (7)® (7 — t)) = 3 CBr... ks)0D OBt — T)0% 08 Ray ()02 0 B (7 — 1)

B1+P2+B3=p
ki+ko+ks=k
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where 81, 32,83 € N and ki, ko, ks € N*T1. We write each term as

0D OB (t — 7)% 08 Ry ()0 020 (r — )0, = 0P O 0t — 7)(D)~ (6.200)
<D> [1+| 1l aﬁzaszM( )< >[33+2Ik3\ +1 (6201)
(D)~ 1950k (r — 1)d, . (6.202)

Propositions and and ([6.175) provide the estimates for (6.200) and (6.202): for some o :=
J(Ta v, kO) > 07

ALY _ o,
|02 a8 @t — 7)(D)= "=kl <oy BI(IBILs + 1301557, 4o 12l ) (6.203)
_ Batlkal _ 0,
(D)~ "= 1aﬁsaksq>(r—t)6 hlls <7 lks\(”hH +||30||’:+§ﬂs+o||h||so). (6.204)

We now estimate the norm of the pseudo-differential operator in (6.201)) where Ry € OPSl_%7 see

(6.192). By (2.37), 8o + ko + 4 < M, Lemmata [2.7] and [2.6] (2.40), we get
B1tlkyl
[(D) =
B Hk | Ba+lk3|
) Bitlkyl 8528k2R (T)<D>73 kg ||/31+2\k1‘+1_%+63+2|k3‘+l,s,0 <s

B1tlkyl k k
[(D) = 3523A23M(7)|%w“,%,5,0 <s |3ﬁ23AZRM(T)|1,M CESISTR

(16.192))

—|k ko, ko,
Seor VRO, s Ssor 97 (L [30]1 )

>B3+\k3

92205 Ry (1)(D o0 <s

Y 254 ) (6.205)

where (M) := Jpr41(M,0), see (6.197). Then (6.203), (6.204), (6.205) and Lemma imply that
AW (i, )8, is DFo-tame with tame constant < C’(S)E(l—i—HTJO||’:3_’Z+%M+.[(M)+B). The operator 8,00 W (¢, 1)
satisfies a similar estimate and so (6.196|) is proved.

The estimate (6.199)) follows by differentiating the operator W (¢, t) with respect to the torus ¢, using

the same strategy as above, applying (6.10]), (6.198)), the estimate (6.195)) for 9;Rps(7)[i], Proposition
and the estimates for 9;® in Propositions [9.13}[0.14] O

The following lemma can be proved as Lemmata [6.22) and [6.24]
Lemma 6.25. For alln € {1,..., M} the symbols s, € Sz(1-n) defined in (6.160) satisfy

ko, ko,
0p(s0)I3%0" ) g0 Snosia £(L+ 130015015, uasey) s ¥S0 <5< S (6.206)

where the constants 3,,(M, o) are defined in (6.191)). The operator Ry, p(p,t) := —1Op(axsy) € OPS—%
satisfies

ko, ~ ko,
IRt (0 )0 | Sansa e (L 11300157 53, s0r0)) - Y50 S5 < S

ForallpeN, B+ko+4 <M, the opemtorsﬁng (p, 1), 65 Wo(p,t),04], 5 =1,...,v (recall (6.162)))
are DFo-tame where the tame constant satisfies

~ ko,
Mas W (o0, (8) > Mo wr, (o, (8) Sars e(1+ 190l s s aurszyeg) VS0 Ss<S5. (6:207)

Moreover if the constant p in (6.10) satisfies s1 4+ o + SM + 1M +2) + 8 < s + p then

|8iop(sn)[i]|%(lfn),sl,a Sn,S’,oz E||2H51+0'+:ln+2(M,04) ) (6208)
|aiRw7M<Lp’ t)[i]‘l—%,sl,a SM S,a €||i||81+0+3M+3(M,04) ) (6209)
||8§j [aiWw(%t)[i]aaw]”ﬁ(HSl Haﬂ oW, ( )[i]HE(HSl) <m,s €||’Z||51+U+%M+7(M+2)+,6" (6210)

80



We summarize the whole section in the next proposition:

Proposition 6.26. Let a(p,x) be as in (6.153) and ag(p) in (6.169). Then the conjugated operator LS\?
in (6.133)) is real, even, reversible and has the form

L) = w-0,1 + imyT(D) +i(Ci(p, ) + Colp, 2)H)|D|* + REY + QL) (6.211)
where C1(p, ), Co(p,x) are defined in (6.164)), the function a14 satisfies (6.166), and

1 1
R{Y = REV[) 01 .= 01 Qs\/l) .
M o ®rRY) MGl

ForallBeN, B+ ko +4 < M, the operators aijgj}, 85]_ [Rg\?,am], 8&, QE&I), 85 [Qg&l),(‘?z], j=1,...,v

J

are DFo-tame with tame constants satisfying for all so < s < S

~ ko, 1) o@D
magj [Rﬁz](s) s ma@jn(s) <m,s 5(1 + HJ0||53_Z+%M+-|(M+2)+,3)’ R € {RM ) QM} (6'212)

where the constant (M + 2) is defined by (6.197). Moreover if the constant y in satisfies
s1+o+xM+TM+2)+5<sy+ i, (6.213)
then each R € {RS\Z), QS&I)} satisfies
185, (ORI, Bl ey » 10,0 R M ey <nas €l ot 3 arear2)+6 - (6.214)

Proof. Tt remains only to prove ((6.212)) and (6.214)).
PRrROOF OF ([6.212)). We estimate each term in (6.174). Let , := 0, j = 1,...,v. The estimates (6.177),

(6.190), (6.206) imply |r'Y (=, D)[Fo;" o,y

0 <50 &(1+ ||30||S+U+:M+2(M’a)). Now since 8@[8§Op(r§\?)78x] =
3§Op(3£3mr$[)), we get

192[050p(7), Ballo.s.0 < 4 HNODP@2 (8, NIE <~ HIODH IS 511 o

~ ko,
<5 (14 13015 9 nrso)4s) -

Hence the operator rg\?(cp, x, D) satisfies the estimate (6.212)).

The lemma follows by the estimates (6.196), (6.207). The proof of (6.212) for Q\; is similar. It
follows by (6.122)) (for o« = 0) and Lemma using the same strategy for proving (6.196) in Lemma

0.24]
PRrROOF OF (6.214)). It follows by differentiating with respect to ¢ the expression of ’Rg&l) in (6.174) and
by applying the estimates (6.179)), (6.194)), (6.199)), (6.208]), (6.210]). O

6.7 Space reduction of the order |D|%

The aim of this section is to eliminate the x-dependence of the coefficient in front of |D|% in the operator

1) . HKna14 0
Eg\/[) in (6.211) (where we have neglected the term (6.165)) and Ik, Cq := ( 0 )

—IIk, a14

We conjugate Eg\? by means of a real operator of the form

V= (g 3) ) V := Op(v), vi=v(p,z,8) € 5. (6.215)
Setting ¥ := <(1) _01> and recalling that m; g, is defined by (6.166)), we compute

LYV = V(w-0,1, + imgT(D) + imy g, B|D|?) = img[T(D), V] +i((llk, C1 + CoH)| D2V —my g, VE|D|?)
+(w-0,V) + (R + Q) V. (6.216)
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By (6.63), (6.57) and (2.28), the commutator has the expansion
) _ (im3[T'(D),V] 0 . _
m3 [T(D)’ V] - ( 0 —img [T(D), V] ; 1m3 [T(D)7 V] - m3Op (35T(§)vz) + TTyv((E, D)

with 77y (z, D) € OPS~2. Similarly (recall (6.164)) the operator

(1,01 + Copg ity = (et dODEV o  o)
has the expansion
i(Ig, a14 + a12H)|D|2V = Op((illk, ar4 + arasign(€))|€]2 x(€)v) + vy (z, D) (6.217)
with ty(z, D) € OPS~2. In addition
imq K,LV2|D|% = (Op(iml,K"vx(E)|§|%) : 0 T ) . (6.218)
’ 0 Op(im1 &, v x(§)[€]2)

By (6.217)), (6.218) and decomposing the cut-off function x (&) = x0(§) + (x(§) — x0(&)) where xq is the
cut-off function defined in (6.100)), we get

i((Tk, a1s + a12H)| D2V —my k, V|D|?) = Op((i(Ilk, a14 —m x, ) + ar2sign(€)) €2 xo(€)v) + ry (@, D)
where
€[ (x(&) — xo())v) € OPS ™

noting that (illk, a4 + aizsign(§) — imLKn)|§|%(X(.f) — Xxo0(§))v € S because x(§) — xo(§) = 0 for
|€] > 3/4. Therefore we have to solve the equation

ry(z, D) :=ty(z,D) + Op((iHK"aM + apasign(§) — im1,K")

m39eT(€)vy + (Mg, a4 —m1 &, ) + ar2sign(€)) xo(€)[€[ 20 = 0. (6.219)
We look for a solution of (6.219) of the form
vi=v(p,x,§) = exp(p(p,x,§)), pi=pp,x,&) €S, (6.220)
Thus, from , the symbol p has to solve
ms 0T (E)pa (0, €) = — (i(Ik, a1a(p, @) — my k) + a1a (e, 7)sign(€)) xo () €] - (6.221)

The right hand side in (6.221)) has zero average in x by (6.166|) and because a15 is odd in z, by (6.76)),
(6.64) and remark [6.5] By (6.57) the derivative

X (&) sign(&)(1 4 3k€?)
0:T(§) = {

20€[1/2(1 + rE2)1/2 +Oex(&)I€12 (1 +Kl¢?)E € 5172 if g >
0 if ¢l <

W= W=

Since the symbol T'(§) is even in &, the derivative 9¢T'(§) is odd. Moreover, by (2.26), d:x(§) > 0 for all
1/3 < ¢ < 2/3, and so |0:T(§)| > 0 for all |£] > 1/3 and |0¢T(€)] > ¢ > 0 for all [¢| > 1/2. Therefore
(6.221)) admits the solution

€)1 A~ 0 (0T, s, ) — w1 + aral (@) i el >

0 i ¢ <

(6.222)

Nl= N|—
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Since p(—¢, x, —&) = p(p, z, &) and p(p, —x, —§) = p(p, z,£), then V is reversibility preserving and V is

even, by Lemma As a consequence ([6.216))-(6.219) imply that

VLUV = w0, + insT(D) + imy x, X[D|* + R + QP (6.223)
with block-diagonal terms
2 2
R® ._ Ry 0 @ _ (0 Qy
M o ®mY) TMTAGY o
R =V (rry(z, D D)+ w8,V + RV W =v1ol)v 6.224
M T v\, )+7”v($, )+w (%] + M )7 QM QM . ( )
Finally we define the real, even and reversible operator
£? = w-0,I, + in3T(D) + im Z|D|? + R + Q) (6.225)
where the coefficient
(2m) % (14 Bo)w - 9,8+ V(1 + 8 )]2(/ J1+2d )3/2d dz (6.226)
m = —-——— ) |w - - .
1 2\/E ot © T ny Y 4
substitutes my g, in (6.223), i.e.
VLV =P +RE, R =i(mix, —m)S|D|?. (6.227)

The term Ry will contribute to the remainder R in the estimates (7.94)-(7.95)).
Lemma 6.27. |m; —m; g, [F07 < CeK,°, Vb > 0.

Proof. By (6.170)), (6.226)) one has

5

—v-3 /
m —m g, = (27;)\/E TV(l + Be)w - 0,64+ V(1 + ﬁm)]Qﬂﬁn (/T \/1+n2 dy)3 2d<pd:c.

Then the lemma follows by (6.18)), (6.33)), (6.43), (6.13)), (6.10)), using the smoothing property (2.8). O

Lemma 6.28. The coefficient m; defined in (6.226]) satisfies, for some o := o(7,v, ko) > 0, the estimates
my [*o7 < e, |9m[i]| < Celli| - (6.228)

The operator V defined in (6.215)) is real, even, reversibility preserving and ¥V = Op(v(p,,£)) € OPS®
with symbol v(p,x,£) € SO defined in (6.220) and (6.222), satisfies, for all so < s < S,

VE = Tdlg2 s [V = 1) 1% <s (1 + [1To]l%7) - (6.229)

Forall B €N, B+ ky+4 < M, the operators 8£j RS\?, 8£j [Rs\?, 0z, 6£j Qg\?, 8£j[ S\i), 0, are DFo-tame
and the tame constants smagj [R,am](s) ) Smaij(s), R € {Rg\?’ QS@)} satisfy (6.212) (with a possibly larger
o:=o(r,v,ko) >0).

Moreover if the constant 1 in (6.10)) satisfies (6.213) (with a possibly larger o := o(T,v, ko) > 0) then

10V [ill0,61.0 » 10: (V) [illo,s1.0 <s €llillsy o » (6.230)

and the remainders RE@), Qg@) satisfy the estimates (6.214). The operators Rg\?, Qg\? are reversible.

Proof. The estimate (6.228) follows by (6.226)), (6.18)), (6.19)), (6.33), (6.43)), (6.46]), (6.13), (6.10). The
estimates (6.229)), (6.230) for V*! follows by (6.215)), (6.220), (6.222) and Lemmal|2.10l The estimates for
(VEL—Id)* and 9;(V*1)* follow by Lemma Using Lemmawe get [rr,v(x, D)|o% b Irv (=, D)|§?S’}, <s

e(1+ [130[153:9), 197, (x, D) [illo,s1,0, 10iv (%, D)[illo,s1.0 <s €lills, 4o, for some o := o(7,,ko) > 0. The
term Vﬁle\?V in (6.224]) is estimated following the same strategy of Lemma O
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6.8 Conclusion: partial reduction of £,

By sections 6.7] the linear operator £ in is semi conjugated to the real, even and reversible
operator 55\2/[ defined in (6.225)), up to operators which are supported on high Fourier frequencies, namely

£ =wylow + RY* £ R, (6.231)
R+ = v 18d, ) Rf®y® V-V IRV _RL, (6.232)
R, = -V '@,/ p (P '1y) (ims(p)p) (Ply) @1, @'V (6.233)
where
Wi = ZBOS(PL) @y @ 'V, Wy := ZBOS(Ply)p @)@ 'V, (6.234)

and Ri‘,Rg\?’l, R, are defined respectively in (6.80)), (6.165), (6.227) (they will contribute to the re-
mainders in -) and the operator Iy is defined in (6.66). The maps Wy, W, are real, even and
reversibility preserving.

Let S=ST U (=ST) and Sp := SU {0}. We denote by Ilg, the corresponding L?-orthogonal projection
and Hé‘o = 1d — Ig,.

Lemma 6.29. Assume (6.10). For ey~! small enough, the operators
Wi =Tg Willy,, Wy =g Whllg, , (6.235)
are invertible and for all sg < s < S they satisfy the tame estimates

_ ko, ~ 11ko, ko,
WIS + W) T RN <ars (1RIES + 130300 o 120 de s n=1,2, (6.236)

for some o := o(1,v) > 0.
Moreover if the constant p in (6.10) satisfies s1+ o+ Ry (0) < sg + p for some o := o(7,v, ko) > 0, then

oW illlsy , 18:0V ) [(hllsy <ars Nillsy+o+nar @) 1llsy o - (6.237)

Proof. By Lemmata and by the estimates of sections 6.7] the operators Wy, W, are invertible

and satisfy tame estimates [WE R[5 <g |[h]|597 + ||30||]:j_’g+NM(O)Hh||§gfg where N/(0) is given in

Proposition In order to prove that Wi is invertible, it is sufficient to prove that IIg, W, Ilg, is
invertible. This follows by a perturbative argument, for ey~! small, as in [§] using that Ig, is a finite
dimensional projector. O

Finally, the operator £, defined in (i.e. (6.7)) is semi-conjugated to
WH) LWt =g £ — T R + Ry
where Hé‘o Rﬁ)’lﬂé-o is supported on the high Fourier modes and
Ras = (W) 7 IE (Wallg, LTI — Walls R TIE — LT1s, WiTTE — WoR . Tl + eRW)  (6.238)
is a finite dimensional operator.

Lemma 6.30. The operator Ry has the finite dimensional form (6.3))-(6.4]).

Proof. We analyze the term (W3- ) "!RWi in (6.238). The others are similar. Since R has the form (6.3),
it is sufficient to prove that, given R : h — (h,g)r2 X, the operator (W5 ) "'RW{- has the form (6.3) as
well. We use the following property: given a scalar function a : T — C and x := x(¢, ") € HSJ(-)7 we have

W) FHa(e)x] = (PHa) ()W) X - (6.239)
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Let us prove (6.239) for Wjy-. We write (recall (6.235]) and (6.234)))

Wy =g, (T1PLpl2)Il,  where Ty:=2ZBOS, Ty:=&,® 'V,
are, for any ¢ € T, linear operators I';(y) : HSJ(-) — H§5 of the phase space. Then

Wi [a(e)x] = Hg, (T1PL2pl2) g, [a(e)x] = Mg, T1 Plafa(e) pT2 11, []] (6.240)
=I5, T'1 [(Pa) () (PlapTaIlg, [x])] = (Pa) ()1, T'1 Plaplallg [x] = (Pa)(@)Ws [X] -

Then (6.239) follows also for (Ws-)~!. Denoting @ := P~ 1a and Y := (W5 )" [x], we have

W3) ™ alp)x] = Wa ) (Pa) (9) (W5 X)) (W3) ™ Wyla(e)x] = (P 1a)(9) (W3 )~ [
Now for any h(yp,-) € HSJ(-) one has

W) RWE ] = W)L (W[, )2 x] B2 (PTHWER], 9)22) X (6.241)

with x. := Wy )~ ![x] and

P W [R], )2 = P~ (I3, T1PLToI0g, (], g) 12 = P~ (PLaToIlg, [h], T5TIg, g) 2
= (DoIIg [h], P~ 'TiIIE g) 2 = (b, I T3P T g)r2 = (h,g.) 12 (6.242)

with g, := IIg T3P~ 'T{1Ig g. By (6.241)) and (6.242) the lemma follows. O

In conclusion we write

Lo =W WH '+ RO+, £ =20 + Ry, RPH = WiRPA )1 (6.243)

where Eg\? is defined in ((6.225)), RE\Z)’L is defined in (6.232) and Ry, in (6.238]). The remainder Rg\:})’l

satisfies tame estimates: there is o := o(7, v, ko) > 0 such that

3),L , - ko, ~ ko, ko,

RS Al <g ek (IRNE, 4+ 1300507, s oy IS ) B >0, (6.244)
3),L ko, ~ ko, ko,

RS 507 <s e (RIS + 130l15 7y o IB1E0, ), Vso <s < S (6.245)

The estimates (6.244), (6.245|) follow by (6.243), (6.231]), (6.80)), (6.165), (6.227)), using the estimates
(6.43), (6.175)), (6.236)), (6.229), (6.119)), (2.8, Lemma [6.27| and Proposition [9.11

Proposition 6.31. Assume (6.10). For all (w,x) € DCy X [k1, ka] (see (1.40)) the operator L., defined

in (5.40) (i.e. ) is semiconjugated to the real, even and reversible operator Eg\? in (6.243)) up to the
remainder Rg\g/’[)’L which satisfies (6.244))-(6.245)). The operator

L) = 11E (w0-0,1 + imgT(D) + im S|D|2 + RS + Q)1 (6.246)

where the constant coefficients mg := mg(w, k) € R, m; :=m;(w, k) € R, are defined in (6.72), (6.226) for
all (w, k) € R X [K1, ka), and satisfy (6.83), (6.228). The operator T(D) is defined in (6.63), (6.57) and

the matriz X := (1) Pl . The remainders
(3) (3)
3 R O 3 O Q
Ry = ("™ o), QF:={_s M (6.247)

satisfy the following tame properties: for oll 3 € N, B+ko+4 < M, the operators ng Rg\?/’[), agj [RS\Z), Oz],

8& QS\‘Z), a{,fj[ S\?/’[), Oz], 5 =1,...,v, are D*o-tame and their tame constants satisfy, for all so < s < S,

max My () Mo (.5,)(5)} Sars v (1+ [ Tol|"? (6.248)

SM M+2)+RX )
RE{RE\Z)’Qg\?} s+o+35 M+T(MA42)+R (0)+3
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for some o := o(1,v,ko) > 0 where the constant Ry (0), (M) are defined in (6.96)), (6.197).
Moreover if the constant p in (6.10) satisfies

s1+o+xM+TM+2)+ Ry (0)+ M —kyg—4<s0+pu, (6.249)
then each R € {’Rgg} QESI)} satisfies, for all B €N, B+ ko +4 < M,
102, 10ROl ooy 100, R cemony <nrs €7 1ol sy 4ot 8 mam(M+2)400r )45 (6.250)

Proof. Note that the coefficients m3, m; in (6.72), (6.226) are actually defined for all the parameters
(w, k) € R X [Kk1, ko] since the approximate solution (7,1) is defined for all (w, k) € R” X [k1, k2] at each
step of the Nash-Moser iteration in section |8} see the extension Lemma (8.5

By (6.243), (6.225) and Lemma [6.28] it is enough to prove the estimates (6.248), (6.250) for the
operator Ry defined in (6.238). We estimate the term (W;-)~'IIg WoR, IIg , the others are analogous.

By (6.233]), setting

[ :=®y® 'V, T3:=Wy) 'IgW,V e,/ p ",
and recalling we write
(W;)ilﬂé_oWQRﬂ-OHé'o = I‘3(im3H0)I‘2H§‘O where mg(ﬁ) = Pilm:‘:(ﬁ) = m3(19 + Wﬁ(ﬁ)) .

ry) T

Writing T',,, = | _ _
glm (FETQL) Ffrll)

we get

) ,m = 2,3, and recalling the definition of Il and using that IoIlg = 0,

R :=T'3(im3I1o) To11g5, = I'3(imslly) (T2 — Id) 15,
and then for all h € HSJ;J we get
_ R iR R * i
Rh = x(p,x)(h(¢.), 9(p,")) 2 » x:=iTs[ms] € Hg,, g :=TI5 (T2 —1d)"[1] € Hy .

Lemma [6.29] the estimates of sections [6.1}[6.7] and of Propositions [9.17] [9:1§] imply that for some o :=
o(ko,T,v) > 0, for all s € [so, 5],

_ ~ 11ko, , ko,
HgHEoﬁ <s.MEY 1(1 =+ ||JO||S-0F;I]M(O)+U)’ ”X”’go T <sm 1+ ||jo||53-§M(0)+a )

10:g@llsr <s.ar ey HlEllsyrnus 040 NOXAlsr <sar [Fsi 400 0405

provided ([6.249)) is satisfied. Then the estimates (6.248)), (6.250) for the operator R follow since for all
j=1,...,v, B€N, ke N/,

05 O5R, 0,)h = — > (03021 x (h, 05202 ga) 12 + Y 0 xa(h, 952022 g) 12)
B1+B2=8,k1t+ka=k

and the operators 8gj AR, agj [O:R 7], O], 5& 0;R[7] have similar expressions. O

In the next section we diagonalize the operator Cg\?/’[). We neglect the term RS\Z)’J‘ in (6.243)), which
will contribute to the remainders in ([7.94)-(7.95).

7 Almost diagonalization and invertibiility of L,

We have a linear real operator acting on HSL0 ,

Lo := Lo(i) = w-0,ly +iDo + Ro + Qo, Iy :=IIIg , (7.1)
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defined for all (w,x) € DC} X [K1, Ko](see (1.40)), with diagonal part (with respect to the exponential
basis)

D, 0 . Nt 1
Dy := (OO —Do)’ Dy := dlagjescﬂg), 1= mgl5|2 (1 + k1512 F +ml]7 (7.2)

where S§ := Z \ Sy (see (1.42)), mg := m3(w, k) € R, my := my(w, k) € R are defined for all (w,x) €
R” X [K1, ka|, and

Ro O 0
R07 QO : HSJ;] - HSJE)’ RO = ( 00 Ro) ) QO = (QO QOO> (73)

are real, even and reversible. The operators Ry, Qq satisfy also the following tame estimates:

e (Smallness assumption on Ry and Qg). The operators
R07 [R078"E}7 a;(:,LR07 8 [RO; ] QOa [90;81]7 a:;[:nQO’ 82(:,L[QO;81]7 Vm = 1a"'7l/a
are DFo-tame with tame constants, defined for all so < s < S,

M (s) := mzl"“’ygg{mgo}{93?7%(5)793?[@830]( 5), Myzo = (s), Mazo.

.0, (8)} - (7.4)

In addition the operators

830+bR 880+b[R078I] ) ai;ﬁijOa a;(i:rb[QO»aw] , M= 17 NS

Pm

are DFo-tame with tame constants, defined for all so < s < S,

Mo(s.B):= - max (D (8) Myt 5 1(5)) (7.5)

where b € N satisfies
b:=[a]+2eN, a:=3n, x=3/2, 7:=7+(+1ko. (7.6)
We assume that the tame constants satisfy
Mo (s0,b) := max{My(s0), Mo(s0,0)} < C(S)ey™* (7.7)

and moreover, there is o(b) > 0 (we take o(b) = pu(b) + o in Lemma [7.9), such that, for all
m=1,...,v, BEN, B<b+ s,

9% ORI w0y, |02 [OiR o < C(S)ery  illse o) - 7.8
Rei%%’fg}{u [l 2cereoys 1102, [0R[E], Oxlll c(rro0y } < C(S)ey ™ illso+ow) (7.8)

Remark 7.1. The conditions b>a+y ! and a > 31 = 1 x/(2 — x) arise for the convergence of the
iterative scheme (7.74)-(7.75)), see Lemma [7 We take an integer b := [a] +2 € N so that 930" are
differential operators (recall also that sy € N by (L:20)). Note also that a > xko(7 +2) + 1 (as 7 > 1)
which is used in the extension procedure in (S2),, see e.g. (7.27). Moreover a > x(7 + ko(7 + 2)) which
is used in Lemma O

Proposition implies that the operators R Q in (6.247)) satisfy the above tame estimates by
fixing the constant M in section [6.5| E large enough (thlb means to perform sufficiently many regularizing

steps in Proposition , namely

Set (recall (6.197)), (6.96))

c(b) := x(b+so+ ko +4)+ -I(b + 50+ ko +6) + Noysorhot+4(0), w(b):=s9+c(b)+Db. (7.10)

M:=b+sg+ko+4. (7.9)
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Lemma 7.2. (Tame estimates of RS@) (3)) Assume with 1 > (o) + o. Then the operators
Ry Rg\i , Qo Q in (6.247) satisfy, for all s < s < S, the tame estimates (|7.4)-(7.5)) with

Mo(s) <5 v (L4 130507 o) Mo(s,b) Ss er (L4 [3ol507 1) (7.11)

and (7.7) holds. Moreover, for all m = 1,...,v, 8 € N, 8 < b+ sg, the operators agmam[i],
98 [0;R[i],0:], R € {Ro, Qo} satisfy the bounds (7.8) with o(b) = p(b) + 0.

Proof. The estimates (7.11) follow by (6.248) and by the definitions (7.9)), (7.10). Moreover with the
choice of p := p(b) + o in (7.10) (see also (7.9)) the condition (6.249) holds with s; = s¢ and so (7.8)

holds by (6.250)), with o(b) = u(b) + o. O
By (7.11)), (7.10)), we have verified that, for all s < s < S,
Mo (s, b) := max{Mo(s), Mo(s, )} <s &7 (14 [ Toll 27 )10) - (7.12)

We perform the almost reducibility of Ly along the scale
N_y:=1, N,:=N}, Ww>0, yx:=3/2, (7.13)
requiring inductively at each step the second order Melnikov non-resonance conditions in ([7.19)).

Theorem 7.3. (Almost reducibility) There exists 7o := 19(7,v) > 0 such that, for all S > sq, there
is No := No(S,b) € N such that, if
NJMo(s0,b)y E <1, (7.14)

(see (7.7))), then, for allm e N, v =0,1,...,n

(S1), There exists a real, even and reversible operator

. D, 0 . v
L, = w-ag,]lé‘ +iD,+R,+Q,, D,:= ( 0 _D ) , D, := dlagjegg,uj , (7.15)

-which acts on the space of functions even in x- defined for (w,x) € DCy X [k1, k2] for v =0, and
for all (w, k) in
N, AN T cn)/?, forv>1, (7.16)

(recall the definition (1.41)) where p are ko-times differentiable functions of the form
1 o1 g1
s (w, k) o= g (w, 5) + 7% (w, k), pd = malj]2(1+ £j%)2 +mj]2, (7.17)

satisfying
ph =ty dert =1, YR <C(S)eyt, VjeS. (7.18)

The sets £} are defined by A} := Q X [k1, k2], and, for allv > 1,
A = (i) = {)\ — (w,k) € A]_, N (D€}, NDCY, ] X [k1, 45]) : (7.19)

fw- €4y = s 2 15— RO T < Npm G € NAST g € (-

(recall (1.40) and that the tangential sites S = ST U (—ST) C Z with ST C N). The remainders

— RV 0 R 0 Ql/
Re (% 0) ae(l2) o0

are D*-modulo-tame: more precisely the operators R, Q,,, respectively (0,)° R, (0,)°Q,,, are D*o-
modulo-tame with modulo-tame constants respectively

ML (s) 1= max{My (s), MG, (s)},  ML(s,b) := max{M, o0 (), M, 1o ()}, (7:21)
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satisfying for all s € [sg, S],

M (5) < Mo(s,b)N, 2, M (s5,0) < Mo(s,0)N,_; . (7.22)
Moreover, for v > 1, there exists a real, even and reversibility preserving map
\Pufl 1 \Ijufl 2
®, =l +¥, ,, ¥, .= ("0 b2} 7.23
! 2 ! ! <‘I’u—1,2 Y, 11 (7.23)
such that
L, =®,'L,,®, ;. (7.24)

The operators W,,_; n, and (@,)b\lll,_l,m, m = 1,2, are D*o-modulo-tame with modulo-tame con-
stants satisfying, for all s € [so,S], (11,2 are defined in (7.6))

Clho) o . Ok
Dﬁﬁ (s) < (’YO)NullNVQQnO(‘S?b)’ m%@;)b‘l’u_l,m(s) < (70)

- N7 Ny oMo (s,b).  (7.25)

(S2), Forallj € S§ there exists a ko-times differentiable extension Ay s ax [k1, k2] — R such that g =y
on A), and

v

B2 (w, k) = 1w, k) + 7 (w, k) ER, 7 =7, [7%|F7 < C(S)ey NG wje s, (7.26)

and for allv > 1

i — R < Clho) N2 (s0) < Clko, S)ey ' NOTIN2, . (T2)

(S3), Let i1(w, k), i2(w,k) such that Ro(i1), Qo(i1), Ro(i2), Qoliz) satisfy (7.7). Assume also (7.8).
Then for all v = 0,...n, for all (w,k) € A (i1) N AJ2(i2) with v1,72 € [y/2,27], there exists
o :=o(1,v,ko) > 0 such that

1Ry (i1) = Ro (i)l [l c(areo)s 1Qu (1) = Qu(@2)lll £(rrs0) <sp €Y Ny2illin = dallso+ (o) +o (7.28)
11{00)°(Ro(i1) — R (i)l w0y, 11(0) (Qu (i1) — Qu(i2))l| w0y <sp %Nu—lﬂil — lalso+u(o)+o -
(7.29)

Moreover for allv =1,...,n, for all j € S,
|(r¥ (1) = 1% (i2)) = (7 (i) = 771 (i2))| < Cl[Ru(i1) = Ru(i2)|l| 22150 » (7.30)
¥ (i) — 7% (i2)] < C(S)ey ™ liv — i2llse-uc)+o - (7.31)

(S4), Let iy, iy be like in (S3), and 0 < p < y/2. Then
ey OSSN llix = iollstpoyio < p = AJ(i1) S AT (ia).

Remark 7.4. Note that (7.30)-(7.31]) are sufficient to prove (S4), about the inclusion of the Cantor sets
A)(i1), A)~P(i3) corresponding to two nearby approximate solutions: a smallness condition in | |*0:7 is

not required. This is sufficient to prove Lemma and thus Lemma The bounds ([7.30))-(7.31)) are
implied just by the estimate ([7.28)), which is in sy norm and there is no control of the derivatives with

respect to (w, k). This is why we do not need to estimate the derivatives with respect to (w, x) of the
operators O;R in ([7.8). O

An important point of Theorem is to require only the bound for My (sp,b) in low norm,
which is verified in Lemma as well as the estimate (which is still in low norm). On the other
hand Theorem |7.3| provides the smallness of the tame constants D (s) and proves that MY, (s, b),
v > 0, do not diverge too much. Theorem implies that the invertible operator

U, :=®Pp0...09, (7.32)
has almost diagonalized Lo, i.e. (7.35]) below holds. We have the following corollary:
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Theorem 7.5. (KAM almost-reducibility) Assume (6.10) with p > (o) + o. For all S > sg there
exists Nog := No(S,b) > 0, dg := dp(S) > 0 such that, if the smallness condition

NJPey™2 < 6 (7.33)

holds, where the constant 1o := 1o(7,v) is defined in Theorem then, for alln € N, for all A = (w, k)

m
n+1

Ay =M (1) = ﬂ A} (7.34)
v=0
where the sets N}, are defined in (7.19)), the operator U,, in (7.32)) is well defined and
L, :=U,'LiU, = w-9,I; +iD, + R, + Q, (7.35)

where D, is defined in (7.15) and R.,, Q. in (7.20) (with v = n). The operators R,, Q, are DFo-
modulo-tame with modulo-tame constants

— —a ~ ko,
My (), M (s) <5 &7 N2 (L4 [30l33  yse)» VS0 <5< S (7.36)
Moreover the operators Ul — 13 are D*o-modulo-tame with modulo-tame constants
— T ko,
zmﬁﬁlfﬂrj(s) <5 ey NG (L4 [130ll3y ey o) s VS0 <8< S, (7.37)

where 71 is defined in (7.6). The operators U,, U, ! are real, even and reversibility preserving. Ly, is
real, even and reversible.

Proof. The assumption (7.14) of Theorem [7.3|holds by (7.12)), (6.10) with x> u(b) + o, and (7.33)). The
estimate ((7.36) follows by (7.22) (for v = n) and (7.12)). It remains to prove (7.37). By Lemma the

composition of D*o-modulo-tame operators is D*-modulo-tame. To estimate the modulo-tame constant
SJT%VH (s)of Uyyy =U,0®,,; =U,o(Iy +¥,,;), we use the following inductive inequalities, which

are deduced by Lemma and ,
My, (s0) <MYy, (50)(1+ C(ko)en(s0)) (7.38)
M, ., (5) < MY, (5)(1+ Clho)e, (50)) + Cko) My, (s0)es(s) (7.39)

v+1

where &, (s) := Mo(s,b)y ' N1 N2
Iterating (7.38), setting €, := C(ko)e,(s0), and using (7.7), (7.25), (7.33) we get

MY, (s0) <MYy (s0) [J (1 +e0) < MGy, (s0)exp(C(S)ey™) <2, Vv >0. (7.40)
v>0

Iterating (7.39), using (7.40) and [[,~o(1 +¢,) < 2, we get

MY, (5) <y Zyzogy(s) + 9 (5) < Clko) (1 + NG Mo(s,b)y™Y), Vv >0, (7.41)

since Ug = @ = I3 + ¥ and SDI%O(S) <1+ C(ko)NJ*Mo(s,b)y~! by (7.25). Finally

n—1 n—1
U, —I5 = (Up— @)+ (Bo—I3) =D (Up1 —U,) + ¥ = U, ¥, +¥.
v=0 v=0
Hence Lemma [2.16] (7.40), (7.41), (7.12), (6.10)), (7.25), (7.33), imply (7.37) for U,, — I3. The estimate
for U, ! — I3 follows by Lemma [2.17] O
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7.1 Proof of Theorem [7.3|

PROOF OF (S1),. Properties (7.15)-(7.20) for v = 0 follow by the assumptions (7.1)-(7.3) with r9(w, x) =
0. We now prove that also (7.22) for v = 0 holds:

Lemma 7.6. 9 (s), M (s,b) <..0 Mo(s,b).

Proof. Let R € {Ro,Qo} and set A := (w, k). The matrix elements of the commutator [R,d,] are
i(j = 5)(R)% (£ - e’) of 0%, R, m=1,...,v, are {*(ly, — £,)'RI ({— '), and of 8", [R,0,] are i**1(L,, —

(5 — 7)(Ro)] (6 — {'). Then, recalling (2.67) with ¢ = 0, the assumptions (7.4)-(7.5) imply that
V|k| < k07 S0 <s < S7 U e ZV7jl € 887

Py, () V2|OSRY (£ — 0)] < 2MB(s0)(, §')%° + 2ME(s)(¢', j')2 (7.42)
PN, (05)%10 = 5 PIOER (€~ £)]7 < DM (s0)(€',5) + 23 (5) €', 5) (7.43)
PN 037 o — O |ORR (=€) < 2V (50) (¢, 5') + 2V (){C', )% (7.44)
VY, ()Pl = 601 = 5 PIOAR (¢ =€) < 2M3(s0){€', ) + 2MG(s)(¢', 5 (7.45)
PN ) o = L PEODNORRS (€~ )7 < 213 (s0,)(¢, )" + 2M3 (s, B)(E, 5 (7.46)
SR e,a )2y — €, [P0 — §RIOSRY (£ — )2 < 2M3 (50, b)(, 5')* + 2MZ (s, b)(C', )20 (7.47)

Using the inequality

=0 (G =3) S 1+l =5 P+ max |ln — G, + [ =7 max |l —£,[*  (7.48)
m=1,...,v

eV

for s1 = sg, $ = sg + b, the estimates ((7.42)-(7.47) imply, recalling also (|7.7)),
ST, )= )0 = §IORRS (¢ = ) <o M (s0,0)(¢ )2 + M D) (¢, 5)20 (7.49)
ST, 0G)P = X0 YIRS (€ =€) <o M (0, 0) (€52 + M (s, D)L, 5 . (7.50)
We can now prove that (0,)°R is D*-modulo-tame. V|k| < ko, by Cauchy-Schwartz inequality, we get
. 2
@ okRINE < 3, (00> (3, = €)% 04R] (¢ = O)llhery])
, 1 2
= Z GG (D (=)ot = DARE (= O)lher o |
(Z,J, (€= )=o) = J>)
2s N\ 2(sp+b) 3’ / , 12
oo D, (60D, (= PTG = )2 ONRE (€ = ) e |
= Ze, ,,|hzf,j'|22 ,<&j>28<f — Y20t 2(OERY (0 — 1)
—!60 2|k|Z |h2/ j’| S):TZO(SOv )<£l7jl>28 + mg(&b)@ v] >280)

sy M (93“(0(80, B)[[A[I3 + MG (s, B)|]Z,) - (7.51)

Therefore (recall (2.73])) the modulo-tame constant ?m%aw)bn(s) <so.0 Mo(s,b). Since R is both {Ro, Qo}
we have proved that (see (7.21))

M (s, b) := max{M, o (5)s zmﬁwgo(s)} Zsop Mo(s,b).

The inequality 90 (s) <, Mo(s,b) follows similarly by (7.49). O

91



PRrOOF OF (S2),. It follows since the functions m3(w, ) and m;(w, x) are ko-times differentiable on all
Q X [k1, k2] (they depend on the torus is(w, k) which is ko-times differentiable with respect to (w, k) on
all Q x [k1, Ka)).

PROOF OF (S3),. We prove at v = 0, namely that, for R € {Ro, Qo},

1K04)° A12RIAIE, < C(S,0)e*y 2 [li — 2|2, 4 py o IPI3, . VRE H™, (7.52)
where we denote AjoR := R(i1) — R(i2). By (7.8) and the mean value theorem we get

[ALR £(me0), I[A12R, Ox]ll (50, 1020 A2 R (1150, 1020 P 1A R, Ol (r1%0) <50 €7 lir—i2ll st pu(v)+o

m

forall m=1,...,v. We deduce as in (7.42)-(7.47)) (with & = 0) and (7.48) that, for all ¢’ € Z¥,j’ € S§,

Z“@ )07 = 32— P (ARR)] (€ )P < C(S,0)y 2 [li — 23, 4 oy (€552

)

which, arguing as in (7.51)), proves (7.52). The proof of (7.28) at v = 0 is analogous.

PROOF OF (84),. It is trivial because by definition Qg (i1) = Q@ = Q)" (i2).

7.1.1 The reducibility step

In this section we describe the generic inductive step, showing how to define L,1; (and ®,, ¥, etc).
To simplify notations we drop the index v and we write 4+ instead of v + 1, so that we write L := L,,
D=D,R=R,,R:=R,,Q:=Q,, Q:=9,,D:= Dy, u] = pf, etc ...

We conjugate L by a transformation of the form (see

=1y +¥, U= @; i"f) : (7.53)

We have
L® = @(w-@vﬂi + iD) ( :0,¥ +i[D, ¥] +IIyR + HNQ) +TINR+TIyQ+R¥ + Q¥ (7.54)
where the projector Iy is defined in and HJJ\-, = Iy — IIy. We want to solve the homological

equation
w-0,¥ +i[D,¥]+IIyR +1IyQ = [R] (7.55)

where -
Rl O . j
[R] := ( 0 [R]) , [R]:= dlagjega(R);(O). (7.56)
By (7.19), (7.20), (7.53)) the equation ([7.55) is equivalent to the two scalar homological equations

w- 0,0y +i[D, U] + TINR = [R],  w-0,Vs+i(DV¥y+ UyD) +TxQ =0. (7.57)

The solutions of ((7.57) are

PN P 210 V(0,5,5) # (0,45, £5) || < N
(O] () =19 i(w-€+p; —pj) ) L= A (7.58)
0 otherwise
, iy
(U2)} (€) := — (9); & V(€,5,5') € Z" x S§ x S§,|{| < N. (7.59)

i(u)'€+,uj+/ij’),

Note that, since p; = p—j;, Vj € S§ (see (7.18])) the denominators in ((7.58)), (7.59) are different from zero
for (w, k) € A}, (see (7.19) with v ~» v+ 1) and the maps W, Wy are well defined.
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Lemma 7.7. (Homological equations) For all (w, k) € Av/ '1 the solutions 1, Uy in (T.58), (7.59) of
the homological equations (7.57) are D -modulo-tame operators with modulo-tame constants satisfying

M, (5). D, (5) g N7y DE(s), My g (), g, (5) g N7 DE(s,B)  (7.60)

where 11 := 7(ko + 1) + ko.

Given i1, iy denote A1oWy := Wy(ig) — Wyi(i1). If v/2 < y1,72 < 27 then, for all (w,k) € M)l (i1) N
AZil(i2)7

1A%l 2are0) < CN*TYH([[IRG) 2ea00) 11 = i2ll2seto-tuew) + I1A1R[|£(m00)) » (7.61)
11{0g)° D121 ||| 2250y <o N7y ([[1{0) "Relia) | o o0 i1 — i2ll2sg+o-+u0) + 111(00) " A12R | £ (s20))  (7.62)

and a similar estimate holds for WUy, replacing R by Q. Moreover ¥ is real, even and reversibility
Preserving.

Proof. We make the proof for ¥ := W, for ¥y is analogous.

Proor oF (7.60). Let (w,k) € AZfl By (7.19) with v ~» v 4+ 1, and the definition of ¥y in (7.58)), we
have, for all (¢,7,5') € Z* x S§ x S§, with |¢] < N, (£,4,5') # (0, %4, £5), [¥/ (0)] < CN"y R} (¢)].
Moreover, differentiating ([7.58) with respect to A = (w, k), we get

oxwl () = Zk1+k2:kc(k1, ko) [0V (w - 0+ iy — g ) T ORERS (1),

and since, by (7.17), (7.18)), (7.19), (6.83), (6.228)),

sup OV (w - £+ py — py) T < Clko)(€) ot FRoq=1=lknl
|k1|<ko

we deduce that, for all 0 < |k| < ko,
0K (O] < Clho) ()T Rortihoq =ty 7 - ORI (O] (7.63)

Therefore for all 0 < |k| < ko we get

. 2
|||<a¢>ba’;xP|h||§§Z<e,j>2s( S =k (= ) |he )

4,5 [6"—¢|<N,j"
_ , , 2
S Nen ) 3 S (5 e PRy = e )
[k2| <[k 4,5 2,5

_ Nzﬁv‘““’“‘)z y2 k21| (D, )P R R[|Rf]||2

k2| <|k|

EED ., _
<ko 72D (90 (5, D)2 | [R][13, + 900 (s0, B)? IR )
C(ko) N2y —2(1+\k|)(§mﬁ(s b)? ||hH2 +£mﬁ(so,b)2||h||§) (7.64)

and, recalling Definition the second inequality in (|7.60]) follows. The proof of the first inequality is
analogous.

Proor or (7.61)-(7.62). By (7.58), for all (w,x) € A)';(i1) N A)% (i2), one has

AR (0)
dejjr (i1)
By (717), (6.33), (6.228), (7-31) we get

|Av2desyr] = Dzt = )| < Cev 1312 = 112 llin = iz llasy bt o)

ANPIYITY

~ Ry (i) 535

AW (£) = Oejjr = 1w £+ py — pjr) -
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whence 77 1,751 <471, ey~ 2 small enough, imply

1A ()] < CN? 3 L (IRI () (i2) lli1 — iallasy 404wy + [A12RS (0)])

and (7.61)), (7.62) follow arguing as in ((7.64)).
Finally, since R, Q are even and reversible, (7.58), (7.59) imply that ¥ is even and reversibility

preserving. O

By , we have
Ly =® 'L®=w-0,]; +iDy + Ry + Q.
which proves (7.24]) and at the step v + 1, with
iD, :=iD+[R], R;+Qs=® '(IIyR+1I3Q+R¥ - ¥[R]+QT). (7.65)

The new operator L has the same form of L with R4 + Q4 which is the sum of a quadratic function
of ¥ and (R, Q) and a remainder supported on high frequencies. The new normal form D is diagonal:

Lemma 7.8. (New diagonal part). The new normal form is

D 0 .
iD; =iD+ [R] = ( 0+ —’D+> , Dy:= dlagjesguj-', ,uj' =pu;+r; eR, (7.66)

withrj =1_j, ,uj' = ufj, Vi e€S§, and ‘Hj— — [P0 < M ().
Moreover, given tori i1 (w, k), i2(w, k) then, for all (w, k) € AJ*(i1) N AY2 (i), the difference

|rj(i1) — ;(iz)| < Cll|A12Rll (7o) - (7.67)
Proof. By (7.58)-(7.59) the operator [R] in (7.56)) satisfies

[Ru = Zjesg (R;7(0)u_j + RIO)u;)e?™ =" (R;7(0) + RI(0))uje™

JESG

since [R] acts on the space of functions even in z, i.e. u; = u_;. Thus (7.66) holds with R; 70 )—|—R]( )=
ir;. Since R is even, by (2.15] - we deduce r_j =71 In addition, since R = A + 1B is revermble we have

R(—p) = —R( ), and so the maps ¢ — AJ () are odd and so the average AJ = AJ Ydp =0 as
well as A;7(0) = 0. Hence R; 0) +R; (0) = 1(Bg (0) +B; 7(0)) € iR and each r; R
Recalling the definition of 9% (sq) in (7.21)) (with s = s¢) and Defintion [2.9] we have, for A = (w, k),
for all 0 < |k| < ko, [||0FR|hs, < 27~ ¥I90%(s0)]|R||s,, Which implies that (see (2.67)))
[0SR (O)] + [OAR;7 (0)] < Oy~ M (so)
Hence

i — g |*o T < RG(0)F7 + R 7(0)[*07 < CMF(s0).
The estimate (7.67) follows analogously by |A15(R2(0) + R;7(0))| < C|[|[A12R||| £(#r70)- O

7.1.2 The iteration

Let v > 0 and suppose that the statements (S1),-(S4), are true. We prove (S1),4+1-(S4),41.
PROOF OF (S1),1. Since the eigenvalues i are defined on N (4], YN, 77?), the set A7), is well-defined.
Moreover % are well defined also on the set N'(A),, YN, 7~%) C N(A], YN, 7;?) because ], ; C AJ. Let
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us prove (7.16)) at the step v+ 1, namely that N'(A],, N, 772) C AZ/+21~ Indeed, let Ao = (wo, ko) € &), 4
and A\ = (w, k) with |A — X\o| < yN, 7=2. Then, for all |[¢/| < N,, j # j' (consider the case ¢ = 1),

|w - €+ 1 (A) = p5 (M| = wo - £+ 15 (Ao) — 15 (Xo)| — |w — wol[€] — [(1f — 17 ) (A) = (1f — 157) (o)
= lwo £+ 14 (wo) — 1% (wo)| — (1] + C(S)|3 — 573[) A = Ao

> 1% = O =Ny = et - N 2 21t - e
for Ng > 4C(S) large enough. Thus A = (w, k) € AZfl (defined in with v ~» v+ 1 and 7 ~ 7v/2).
By at the step v + 1 and Lemma for all (w,k) € N(A],;,vN, 7~2) the solutions ¥, ,,,
m = 1,2, of the homological equations , defined in , , are well defined and, by ,
, satisfy for all 0 < |k| < ko, the estimates (7.25)) at v + 1. In particular at v+ 1 with k =0,
5§ = sg imply
MY, (s0) < Clho) NN, 21y Mo(s0,b), m=1,2. (7.68)

Therefore, by (7.6]), (7.14]), the smallness condition (2.82)) of Lemma is verified for Ny := Ny(S,b)

large enough and the map ®, = I3 + ¥, is invertible. Its inverse has the form

. . U, ¥,
@ =1 +¥,, ¥, .= (\P ; 3 ?) (7.69)

and, by Lemma the \i!%m m = 1,2, are D*o-modulo-tame with the same modulo-tame constants of

Uy m (see (7.25) for v+ 1), ie.

ML (s) gy v NJN, 2 Mg (s,b), M

v 2 (0,0, m(s) <kob Y INTEN, 10y (s, b). (7.70)

Since W, is even and reversibility preserving, also W, is even and reversibility preserving.
By Lemmathe operator D, ;1 is diagonal and its eigenvalues p ™' : N(A],;, YN, 7~2) — R satisfy

J
(7.18) at v + 1.
Now we estimate the remainder (see (7.65))

R,i1+Q,:=®,'H,, H, =1y R, +1Iy Q, +R, ¥, - ¥,[R,] +QT,.
By (7.69)), (7.20), (7.53) we get
R/u-&-l 0 0 Qu+1
R,y = = , vyl == 7.71
= ( 0 R,,H) Qv (QVH 0 (771

where

RV+1 = (Id + \ilwl)(H]lVL,RV + RIJ\IJV,I - \I/l/,l[Rl/] + QVWV,Q)

+ 0,010, Qu + R,z — U5 [Ry] + QT,0) (7.72)
Qi1 = (Id+ ¥, )TINQ, + RV, 2 — U, 5[R, ]+ Q,V, 1)
+ HJ]\_[ﬁl/ + ﬁuau,l - ﬁy,l[ﬁy] + @quu,Z . (773)

Lemma 7.9. (Nash-Moser iterative scheme) The operators R, 11, Q.41 are Do _modulo-tame with
modulo-tame constants satisfying

M 11(5) S NP (s5,) + NJ'y 100 ()00 (50) (7.74)
The operators (0p)°Ry+1, (0,)°Quy1 are D*-modulo-tame with modulo-tame constants satisfying

M1 (5,1) oo M (5,0) + N1y~ L (5, D), (s0) + NJHy D (50, )N (). (7.75)
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Proof. We estimate each term in (7.72)-(7.73]). The proof of (7.74)) follows by Lemmata[2.18} [2.16] (7. 60)
(7-70). The proof of (7.75) follows by Lemma [2.16] (7.60), (7.70), (7-22) and Lemma[2.18]

The estimates , , and , allow to prove that also holds at the step v + 1.
Lemma 7.10. 9%, (s) < N, *My(s,b) and ME, (s,b) < N,Mo(s,b).
Proof. By and we get
M1 (5) <y Ny P N1 Mo (s, 0) + N3y 900 (5, 0)0o (0, B) N, f < N, 200y (s, b)
by (7.6)), and taking Ny := No(S,b) > 0 large enough. Then by (7.75), we get that

M1 (5,5) <poo Nuo19Mo(s,b) + NP N2y~ (s, b) DMy (50, b) < N, Mo(s,b)

by (7.6)), (7.14) and taking Np := Ny(S,b) > 0 large enough. O
The proof of (S1),; is concluded by noting that the operators R, 1, Q.1 are even and reversible
because ®,, is even and reversibility preserving (Lemma .

PROOF OF (S2),4+1. We now construct the smooth extension ﬂJ”.'H on all the parameter space Q X [k1, ko).
By the inductive hyphothesis there exists a ko-times differentiable function a7 : @ x [£1, k2] — R such that

p¥ = @ on AY and i = 0 outside N (A}, YN, 7[?). Note that all the sets A} in (7.19) are defined by only
finitely many non-resonance conditions, namely (for brevity we omit to write the sets DC](TL N DCYVWI)

v -G
A = N {wm)en) yslw 04wyt —q 1|_W,JJ €855 € {+,-}}.
1SNy -1 3137 SONZ_,

Actually, provided j2 + j'2 > CN,_q, j # j', for all (w, k) € A]_, the functions

N | =

v— v— v— 1 .3
w4 = 7 > 1—uj/l\—lt«fllf|2§|32—3 | = Clf] > C(j* +4'7) = CNy—y >

Since ,u’”rl = p¥ 4 ¥ (defined on N'(A),,vN,;7~?)) we need only to extend the function r%.
Let ¢, € C* : RV! — R be a cut-off function satisfying: 0 < 1, < 1,

—T— T — k 14

Yo () =1, YA € AL, , supp(h,) C N (AL, 1, vN;™2), |05, ()| < C(k) (NTH2 )M vk e Nv |

and thus |y, [For < C(kO)N,EH_Z)k”. Hence, defining 7/ := ¢, r} and ,u”'H i= fif + 17, we get the estimate
25— P < [y [P 2R < Cko) NSTHPROME (s0) < ey Cko, S,B)NSTTIRON 2

by Lemma [7.8 (7.22) and (7.12). This is (7.27) at v + 1. Summing we also get (7.26)) at the step v + 1.

PROOF OF (S3),4+1. At the v-th step we have already constructed the operators

Ru(im)a Qu(im)aq]v—l,l(im) 7qlu—1,2(im)a m = 1727

which are defined on AJ'(i1) N A2(i2) and they satisfies (7.22)), (7.25). We now estimate the operator
A19R,41. The estimate for A120Q, 41 is analogous. By Lemma we may construct the operators
Wy 1(i1), Wp2(ir), Vo1(i2), Wy o(iz), defined for all w € AJly (i1) NA)Z (i2) and

. . o
||\<3w>bA12‘I’u,1|||c(Hso) <b CN2 L(1100) PR (i)l 2200y 11 = i2llsg+pv)to + 11(00) P D12 Ryl £ (20

722).C12) P .

Zon NZTNy—1e7 iy — dallsotpum)+o + NoTv 1100 A12Ru | £ (220
(729 2T —2]| :
SS,b Nl/ Nu—lf’}/ ||7'1 - 7’2|‘So+u(b)+0’ (776)
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and by 1|7.61|), 1|2.66| , |7.22|), 1|7.28| we get
|||A12\Iju,1|||£(H50) <sp NzTN 1&Y 2”“ i2||So+u(b)+o' (7~77)

Similarly one can prove that A.oW, o satisfies (7.76)), (7.77). By (7.68 , for ey~2 small enough, the
smallness condition ([2.86)) is verified. Therefore by 1} 1”' Lemmal 20| and ([7.70), (2-66) we get

AT 1l 2oy, 1A12 02l £(rr0) Ssp N2TN, 267 2 |lin — dallsotpu) 4o » (7.78)
11(0p)° A2 W1 ||| 2 a0y, [11{00)? D12V s 2|l £(rr0) <sp NZTNy—187 2 li1 — i/l 5o+ p(v)+o - (7.79)

We now estimate Ai13R, 41 where R, is defined in (7.72). We consider the term R}, , := (Id +
\I/VJ)(HﬁVR,, + R,¥,.1). The other terms in (7.72) satisfy the same estimate. One has

ARy = AW, 1 (TIy Ry (i) + Ry (i1) 1 (i1))
+ (Id + Uy (i2)) (I, A1z Ry + A12Ry Wy (i) + Ry (i2) A2 ¥o1) - (7.80)
Hence by Lemma [2.19] (7.78), (7.70), (7-61), (2-66)), (7.60), taking e7~2 small enough, we get
[ALRS 4l 2(rreo) <o (N, P (s, b) + Nty 0 (50)2) i1 — d2llsgtpu(o)rot
+ NP AraRoll 2 rreo) + N7y~ 9 (s0) | Ar12Ru | £ a0 - (7.81)
Moreover, using also , and since , imply N7t~ (s) < 1, we get

[100p)°A12RS 1 || 2oy <sp (87 No1 + I (50,0)) i1 — d2l 5o+ (o) +0
F 1(00) " Ao Rl £(areoy + NJ' v H I A12 Ry || 2120y I (50, ) . (7.82)

The other terms in l-i may be estimated in the same Way7 Whence A12RV+1 satisfies (7.81)), (7.82).
We now prove (7.28)), (7.29) at the step v + 1. By (7.81), (7.22)), (7.7), (7-28), (7-29) we get
ARy 1]l 2(r0)<sp(ev ' Ny_1 N + N5162773NJ_2T) i1 = 2l sg+po)+o

" —1 —alls .
<sp ey N Plin — iz lsotpgo)to -

for ey=2 < 1 and Ny(S,b) > 0 large. Hence (7.28)) at the step v+ 1 is proved. Similarly, by (7.82), (7.22)),

7 7 , we get

11(00)° AraRusalllc(arooy <so €7 Nyt (147 2NJ N, 2) ) [lin—ia| st u(o)+o <5 €Y Nollit—izllsg+puv)+o

by (7.6), ey~2 < 1 and taking Ny := No(S,b) > 0 large. Thus (7.29) at the step v + 1 is proved.

The proof of ([7.30) at the step v+ 1 follows by Lemma The estimate ([7.31)) follows by a telescopic
argument using ([7.30) and (7.28]).
PROOF OF (S4),4+1. The proof is the same as that of (S4),41 of Theorem 4.2 in [7]. It uses (S3),. O

7.2 Almost-invertibility of L,
By (6.243]) and Theorem (applied to Ly = Eg\g/})) we obtain

Lo=Wy, LWL+ R, Wi, =WU,, W, :=WiU,, (7.83)

where the operator Ln is defined in {- ) and R(3 (defined in ) satisfies the estimates ((6.244)),

. Then , - . 0)), 1mply that for all s < s < S

ko, ko, ko,
[WERIE™, (W5 R[5 <s [[BI5YS + 19155 w0 lPlseis (7.84)

for some o := o(1,v, ko) > 0.
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In order to verify the inversion assumption (5.41)-(5.42)) required to construct an approximate inverse (and
thus define the successive approximate solution of the Nash-Moser non-linear iteration) we decompose

the operator L,, in (7.35)) as
L,=D; +R; +R, +Q, (7.85)

where
D;; =k, (w-0,ly +iDy) gk, + 1k, , Ry =1g, (v-0,ly +iD,) g, — Ik , (7.86)
the diagonal operator D,, are defined in (7.15) (with v = n), and the constant K, in ([1.39).

Lemma 7.11. (First order Melnikov non-resonance conditions) For all A = (w, k) in

N = AL = e w0 > 2953077, Y < K, jeN\ST} (7.87)
(recall (7.34) ), the operator D5 in (7.86)) is invertible and
D) gl <uo v lglliss, s 7= 7+ ko7 + 1) (7.88)

Proof. The estimate (7.88) follows by |95 (w - £+ pf (X)) 7| < C(k)(€)7IHFDHFA=(FFD Y|k < k. O
Standard smoothing properties imply that the operator R;- defined in (7.86)) satisfies, for all b > 0,

Ko, , ko,
IRE RIS < KPRl s IRGAISY < [IRIGT (7.89)

By the decompositions ([7.83)), (7.85)), Theorem Proposition [6.31] the estimates (7.88), (7.89)), (7.84)

we deduce the following theorem:

Theorem 7.12. (Almost invertibility of £,) Assume (5.9) and that, for all S > s, the smallness
condition ([7.33|) holds. Let a,b as in (7.6). Then for all

(wWok) €A} == A} (6) == A1, NALL (7.90)
(see (7.34), (7.87)) the operator L,, defined in (5.40) (see also (6.7)) can be decomposed as
L,=L,+R, +R}, (7.91)

L, := W, DSWiL, R, :=Wy,(R,+Q,)Wi., R}:=W,,R-W;l R
where Ly, is invertible and, for some o := o(v, T, ko) > 0, for all so < s< S, g€ H'7,
- - ko, ~ ko, ko,
IL5 gk <s v (ol + 1300152y lgl12) (7.92)

(with u(b) defined in (7.10)) and

R AR <5 ey N2 (IBI153Y + 13011257 o I1BII5 5 ) (7.93)

IRSA[E <5 Kb (I015 0 + 15015574 ey lRIS) VB >0, (7.94)

IRSRET <s 11557 + 150l1550, IR I152, - (7.95)
We finally remark that the operators

Wi =WitUs, Wi, :=W; U, where Uy = Jim U, (7.96)

see ([7.32), and Wll, WQL are defined in ((6.235]), (6.234)) completely diagonalize the linearized operator L,

defined in (5.40). We deduce that Wy o (), Wa oo () satisfy the tame estimates (1.26)-(1.27) by small
modifications of the arguments of sections [6}[7]
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8 The Nash-Moser iteration

In this section we prove Theorem [4.1] It will be a consequence of Theorem [8.2] below where we construct
iteratively a sequence of better and better approximate solutions of the operator F (i, «) defined in (4.17)).
We consider the finite-dimensional subspaces

B, = {3(@ = (0,1,2)(p), ©=11,0, [ =11, z = an}
where II,, is the projector

I, =TI, s 2(p,x) = Y 2T S Mz(pa) = Y zgeltetin) (8.1)
LET jES [(£,5)|<Kn

with K,, = Kﬁfn (see and (5.43)) and we denote with the same symbol also IL,p(¢) := D l0<K. peett P,
We also define IT;- := Id — II,,. The projectors II,,, IT} satisfy the smoothing properties for the
weighted Sobolev norm defined in .
In view of the Nash-Moser Theorem [8.2] we introduce the constants

a; == max{601 + 13, x(pko(T +2) + pr + u(b) + 201) + 1}, a2 := x'ay — pko(7 + 2) — p(b) — 207 (8.2)
b :=2a; +,U(b)+301 +3+X71[L17 M1 = 3(/14(b)+20'1)+1, X:?)/Z,
o1 :=max{7,0,s0+ 2ko + 5}, (8.4)

where ¢ := (7,v, ko) > 0 is defined in Theorem o = o(1,v, ko) > 01is the constant which appears in

Theorem [7.3}(S3),-(S4),, so+2ko +5 is the largest loss of regularity in the estimates of the Hamiltonian

vector field Xp in Lem wu(b) in , the constant b := [a] + 2 € N where a is defined in (7.6,
5.13)

and the exponent p in (| satisfies

1 3
pa > (x — lai +xo1 = jai + 501 (8.5)
By remark the constant a > xko(7 + 2) + 1. Hence, by the definition of a; in (8.2)), there exists

p :=p(7,v, ko) such that (8.5) holds. For example we fix

501+ 7 x(p(b) +201) + 1}
Xko(T +2)+ 1’ xko + 1

Remark 8.1. The constant a; is the exponent in . The constant ay is the exponent in .
The constant p; is the exponent in (P3),. The conditions a; > (201 + 4)x/(2 — x) = 601 + 12,
by > aj+u(b)+301+2+x "1, as well as pa > (x—1)ai +x01, 1 > (p(b)+201)x/(x—1) = 3(u(b)+201)
arise for the convergence of the iterative scheme -, see Lemma In addition we require
a1 > x(pko(T +2) + u(b) 4+ 201) + xp7 + 1 so that as > pr, more precisely ap > pr+x 1. This condition
is used in the proof of Lemma 8.6 O

Theorem 8.2. (Nash-Moser) There exist 6y, Cy > 0, such that, if

pi= max{ (8.6)

KpPey 2 <8y, 7o:=max{pry, 201 +a;+4}, Ko:=7"' ~vy:i=¢*, 0<a< (8.7)

241
where 1o := To(T, V) is defined in Theorem then, for alln > 0:

(P1), there exists a ko-times differentiable function Wy @ RY X [k1,62] — Eno1 X RY, XA = (w,k) —
Wp(A) == (T, @ —w), forn > 1, and Wy := 0, satisfying
T ko, ko(T+2 —
HWn||S[?Jju(b)+01 < C.K§ 072 -1 (8.8)
Let U, := Uy + W,, where Uy := (¢,0,0,w). The difference H,:=U,—U,_1,n>1, satisfies

' ko, — ko(T+2 [ ko, — —a.
||H1||s§1u(b>+al < Coey 'KY o( )7 ||Hn||s§:#(b)+al <Cuey 'K, Vn>1. (8.9)
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(P2), Setting i, := (,0,0) + J,, we define
Go == QX [k1,K2], Gnt1:=0n ﬂAZJrl(in)y n>0, (8.10)

where A (in) is defined in (7.90). Then, for all X in /\/(gan;fY“)), setting y_1 = v and
K_1:=1, we have )
|F (U507 < CueK, 2. (8.11)

(P3),, (High norms). HWangﬂbl < Coey KM for all w € N'(Gn, vE, P H).

Proof. To simplify notations, in this proof we denote || ||*o-7 by || ||.
STEP 1: Proof of (P1,2,3)p. They follow by || F(Up)||s = O(e) and taking C, large enough.

STEP 2: Assume that (P1,2,3), hold for some n > 0, and prove (P1,2,3),41. We are going to
define the successive approximation U,y; by a modified Nash-Moser scheme. For that we prove the
almost-approximate invertibility of the linearized operator

applying Theorem to L,(\). The verification of the inversion assumption (5.41)-(5.42)) is the
purpose of Theorem that we apply with ¢« = %,,. By (8.7) the smallness condition (7.33)) holds

for € small enough. Therefore Theorem applies, and we deduce that the inversion assumption

(5.41)-(5.42) holds for all A € A:Lfl (2n), see (7.90). Actually the inversion assumption holds for all
AeN(A]) L (), 2y, P because

N —o(r 2
N(AZ-H(Z")’ Z’YKn ol +2)) < AZL{H('Ln)a Vn > 0,
which is a consequence of (7.16]) and the similar inclusion N(AZil(in), QPVK;”(T‘*‘Q)) C AZf{I(in).
Now we apply Theorem to the linearized operator L, (A) with A, = N(AZH(%), 27K;p(7+2))
and

S :=sg+b; where b; is defined in (8.3]). (8.12)
It implies the existence of an almost-approximate inverse T,, := T, (), 7,(\)) which satisfies
HTnQHS <so+by 7_1(||g||s+01 + ||5nHS+Ul+IJ«(b)||g||50+01) , Vsg<s<sp+bg (8'13)
ITrgllso <so+b: 771”9”50+01 . (8.14)
For all
N E N (G, 27K, M) C N (G /K PTH) im0, (8.15)

we define the successive approximation
Upi1:=Un+ Hui1, Hpy1 = Opi1,8ny1) = —IL,T,IL,F(U,) € E, x R” (8.16)
where IT,, is defined by (see (8.1)))
I, (J3,a) = (I1,3,a), II:(3,a):=11:3,0), Y(J,a). (8.17)
We now show that the iterative scheme in is rapidly converging. We write
F(Uny1) = F(Un) + LnHp 1 + Qn
where L,, 1= d; oF(in) and

Qn:=QUn,Hp+1), QUy, H):=F(Uy +H) =~ F(Un) ~ L,H, HE€E,xR". (8.18)
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Then, by the definition of H,; in , we have (recall also (8.17))
F(Upsr) = F(U,) — LIL, TLIL, F(U,) + Qn
F(U,) — L, T, 1L, F(U,) + L,JIET,IL,F(U,) + Qn
F(U,) =, L, T, 0, F(U,) + (L,JI: — I L,)T,IL,F(U,) + Qn
—HL]-'( w)+ R+ Qn+ Py

where
R, = (L 01} — I} L,)T, 10, F(U,), P, := —11,(L, T, — I, F(U,).

We first note that, for all A € Q x [k1, k2], $ > S0,

.
IF@n)lls <s IFU0)lls + 1F(Un) — F(Uo)|ls <s e+ [[Walls+o,
and, by €5, E3).
Y HIFOn)llso < 1.

Lemma 8.3. For all A € N(Gpi1,29K,, (T+2)) we have, setting ps := pu(b) + 301 + 2,

_ ~ K2(71+4
H}—( n+1)HSo =so+b1 Kﬁz b1(5+ ”WnHSo+b1) +

IF O3, + K, pi‘K‘“WQIIf( n)lso

[Willso+b1 Sso+by €Y 17 Wt llso+br Ssotvr KA e+ [W[lsgrv,), n > 1.

Proof. We first estimate Hn+1 deﬁned in l-)

Estimates of H, 1. By (8.16]) and (2.8 ), - ., we get

Sso+br Y —I(Kzn”]_-( )||80+b1 +Ku(b)+201||"n”50+b1”}—( )HSO)
E21). -

<80+b1 n +201’Y—1(E + ”W ||80+b1) 5
||HTL+1||$0 Ss0+b1 Y 71K01 ||f( )”30 :

Now we estimate the terms @, in {j and P, R, in (8.20) in || ||s, norm.
Estimate of Q,. By (8.18)), (4.17), and (B.8), (2.8), we have the quadratic estimate

IIQ(UmH)IIaO s K313, VI € B
Then the term @,, in satisfies, by (8.27] , m, eyl <1,
IIQnIISU Ssotoy Ko7 7Y F(O )H
Estimate of P,. According to , we write the term P, in as
P, = —11,(L, T, — I)IL,F(U,) = fP,(Ll) — P —Pp,
PV =T, P )0, F(U,), Prw =P, F(U,), Pi,:=1,Pr()1,F(U,).

By (8.8 @, @ m, using that, by (2.8 @,

IA

[ Hnt1]] s+,

IN

(8.19)

(8.20)

(8.21)

(8.22)

(8.23)

(8.24)

(8.27)

(8.28)

IFOlsoror < IMnF(On)lsgror + 1M F(On)llsorar < K5 (IFOa)llso + K > I1F (Un)llso 1)

the bounds (5.63)-(5.66|) imply the following estimates:

1P Mo <sorwn v~ KT (IF (Un) 5o + Ko IF () s [F (O s

EE - )
St VK2 (| F (Ol + K7 e + [Wallsgs) 1F ) s

[Prwllse Ssotor €7 Ny 2L K7 IF(Un) s »
||PnL,w||So =s0+b1 Kﬂ(b)+201_b1 _1(H‘7:( )Hso-‘rh +EH3 ||80+b1)
@21, .

<so+b1 b)+301 b1771(€ + ||W ||80+b1) .
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~

Estimate of R,. For H := (3,a) we have (L,JI+ — TIXL,)H = e[d; X p (i), IL)3 = [IL,, d; X p(7,)]3
where X p is the Hamiltonian vector field of the perturbation P in (4.14)), see (4.17). Thus, applying the
estimate (b.3)), using ([2.8) and recalling (8.4, the following estimate holds:

||(LTLH7LL - HTJ;LH)HHSO SS(hUD1 EK;b1+01+2(||§||80+b1 + HjnHSoerl H/:(\H50+2) . (832)
Hence, applying (8.13)), (8.32)), (8.7), (8.8)), (2.8), (8.22) the term R,, defined in (8.20) satisfies
||Rn||80 Ssotbs Kﬁ(b)+201+27b1(8771‘If(Un)“30+bl +5Hjn”sO+b1)

8.21) (b)+301+2—b T
Ssotbr KN ! Y+ [[Wallsg4,) - (8.33)

We can finally estimate F(U,41) in || [|s,- By (8:19) and (8:28), (8:29)-(8-31)), (8-33), (8-7), (B-8), we get
(8.23). Moreover by (8.16) and (8.13)) we have the bound (8.24) for

[Willsoavy = [Hillsor0: sotvr ¥ IFU0)lsotr+or Ssotbr €77

The estimate (8.24)) for W, 41 := W, + H, 1, n > 1, follows by (8.25). O

As a corollary we get

Lemma 8.4. For all A € N (G411, 27K;p(T+2)) we have

[F(Un+1)llsy < Cue K™, [Waitllsorn, < Coey 1KLY, (8.34)

1H1llsg+u)ror <Oy I Hngallsgsurror Sso €7 KL 2K > 1 (8.35)
Proof. First note that, by (8.15), if A € N (Gy11, 27K, ") then A € N(Gn, 7K, "7 *)) and so
and (P3), hold. Then the first inequality in follows by (8.23), (P2)n, (P3)n, 7' = Ko < K,,
ev~2 < ¢ small, and by (8.2), , — (see also remark For n = 0 we use also . The
second inequality in (8.34) follows similarly by (8.24), (P3),, the choice of uy in (8.3) and Ky large
enough. Since H; = W the first inequality in (8.35) follows by the first inequality in. For n > 1,

the estimate (8.35) follows by (2.8), (8.26) and (8.11)). O

We now define a ko-times differentiable extension of (Hy41)

N (Grsr y KPTHD) to the whole R” x [k1, ko).

Lemma 8.5. (Extension) There is a ko-times differentiable function fInH defined on the whole R” x
[k1, ka] such that

Hypr = Hopr, YAEN(Gnir, 7K, 7012), (8.36)
and holds also at the step n + 1.

Proof. The function H,,11(\) is defined for all A € N(gn+1, 27K;p(7+2)). Then we define

- UnitNHor1(N) YA €N (Gryr, 29K, ")
Hp1(A) = —p(r+2)
0 YA ¢ N (Gni1,27Kn )
where ¢,,41 is a C* cut-off function satisfying 0 < 9,11 <1,

Y1) = 1, YA € N(Gnp1, K, PTH), supp($n11) € N (G, 29K, 772
1051 (V)] < C(k) (KR )M yp e ot

Then ) holds and we have the estimate ||ffn+1||50+u(b)+,,l < KR(TH2ko | Hnt1lls04p(0) 40, - Forn =20

(8.36

and (B.35) we get the first inequality in (8.9). For n > 1 we deduce using (8.35)) and the definition of a,
in (8.2]), the estimate also at the step n + 1. O
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We now define
Whit =Wn+Hpy1y, Ungpr :=Up+Hpy1 =Upg+ Wy + Hypy = Up + Wy,
which are defined for all A € R” x [k1, ko] and satisfy
Wit =Wait,Unpr = Unga, YA€ N(Gnyr, 7K, 70H2)).

Therefore (P2)n11, (P3),11 are proved by Lemma Moreover by , which has been proved up to
the step n + 1 in Lemma we have

n+l k pho(T+2)
sl < S Iy, < oL

and thus (8.8) holds also at the step n + 1. This completes the proof of Theorem O

8.1 Proof of Theorem [4.1]

Let v = &® with a € (0,a0) and ag := 1/(2+ 72). Then the smallness condition (8.7]) holds for 0 < & < &g
small enough and Theorem [8.2 holds. By . ) the sequence of functions U, := (zn,ozn) is a Cauchy
sequence in || [[¥7 and we define its limit fmction

Uso := (lioos Qo) = (,0,0,w) + Woo,  Weo 1 QX [R1, k2] — HP X H x H®, xR, Wy = lim W, .

n—-+400
By (8.8) and we also deduce

— ko(T7+2 d — —a
Uso = UallE7 )0y < Coty T RES T U — T[22 L < CoyT K™, ¥n>1. (8.37)
Moreover by Theorem [8.2}(P2),,, we deduce that F(, Us(A)) = 0 for all X belonging to
) Gn =20 () A ---Am[ﬂmzn1}(]“]1&:;1(5”,1)}, (8.38)
n>0 n>1 n>1

where A := Q X [m, Ko]. By (8:37) for n = 0 and since Ko = v~! (see (8.7)) we deduce the estimates
(4.21) and ) with &k := pko(T +2).

In order to conclude the proof of Theorem we have to provide the caractherization of C2 in (4.25).

We first consider the set
Goo =001 [ () 227G)| [ ) 4277 (i) - (8.39)
n>1 n>1

Lemma 8.6. Goo C (1,50 Gn defined in (8.10).
Proof. By (8.37)), (8.7), we have
ey O(S)NG llise — ol +utorton < &7 CISKE Cuey ™ KT+ <4
ey C(S)N_1llioe = Tn-1llsgtno) 4o, < €V TC(S)ERTCen K> <y, ¥n > 2,

noting that the exponent 75 in satisfies 7o > a; > 3(pko(7+2)+p7)/2 by and that ag > pr+x~!
(see (B8.2) and remark[8.1]). Recall also that S has been fixed in and that o1 > o, see (8.4]). Therefore
Theorem (S4), implies

A2 (o) C A (Tpy), Yn>1.

By similar arguments we deduce that A27(i..) C A)/(7,,_1) and the lemma is proved. O
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Then we define the “final eigenvalues”

s = mPj% (1 + kj2)? +mi0)7 +7°, jeNT\ST, (8.40)
where
my” = m3(ine), W i=m(ieg), 75 i= hIJIrl Piso), JeENT\ST, (8.41)

where m3, my are defined in 6.226)) and 77 are glven inT heorem(S2) Note that the sequence
(77 (ioo) Jnen is a Cauchy sequence in | |’CO il by . As a consequence its limit function 73°(w, k) is
well defined, it is ko-times differentiable and satisﬁes
150 — i (ig )P0 < CeyTINRUHIN 2 0> 0. (8.42)
In particular, since 7 (ioo) = 0 and Ko = v~ we get \r§?°|k0’7 < Cs’yilngO(TH)H and (4.24]) holds with
k1 = pko(T 4+ 2) + 1 (recall that the constant C' := C(S, ko) with S fixed in (8.12))).
Consider the final Cantor set C2, in (4.25)).

Lemma 8.7. C2 C G, defined in (8.39).

Proof. By (8.39), we have to prove that CI, C A27(i.), ¥n € N. We argue by induction. For n = 0 the
inclusion is trivial, since A} (7o) = 2 X [m, ka] = A. Now assume that C2. C A (i, ). Theorem [7.3}(S2),
implies /1] (zoo)()\) = (i) (A), YA € 027 (ino). Hence VX € CZ, C A2 (ioo), by (7.17), (8.40), (8.42), we
get

[ = 1) (is0) = (5% = p57)| < Cey INJR AN 2,
and therefore (consider in (4.25) the case ¢ =1 and j # j')
W €+ i (o) = W (ine)| = Jw €+ p$® — pSF| — Cey INJFAIN 2,
> 4’Y|j% —j/%|<£> — Ceny™ 1|32 _] |N’€o(7+2)N—a
> 20j% — 3O, VI < N,

provided ey~2 < CN2_ 1N_k°(7+2)_7, Vn > 0, which holds true by (7.6)), (8.7), see also remark H We
have proved that CI, C An+1(ioo) Similarly we prove that C2. C A27I (i), Vn € N. O

Lemmata, imply that
Corollary 8.8. C, C ()50 Gn defined in (8.10).

9 Appendix: tame estimates for the flow of pseudo-PDEs

In this Appendix we prove tame estimates for the flow ®* of the pseudo-PDE

{&u = ia(¢p, x)|D|%u

peT’, zeT, (9.1
u(0,2) = up(x), )

where a(p,x) = a(A, ¢, x) is a real valued function which is C* with respect to the variables (¢, ) and
ko-times differentiable with respect to the parameters A = (w, ). The function a := a(i) may depend
also on the “approximate” torus i(y). We look for the solution of by a Galerkin approximation, as
limit of the solutions of the truncated equations

{&u = illy (a(ep, LE>|D|%HNU)

eT”, xeT, 9.2
u(0,z) = Uyug(x), v (92)

where, for any N € N, we denote by Il the L?-orthogonal projector on the finite dimensional subspace

Ey = {ue L*T) : u(z) = le‘SNujeijx} .

104



We denote by ®n(t) = Py (N t, @) : Ey — En the flow of (9.2]). It solves

{a@N(t) = illya(p, z)|D|2 Dy (1)

peT”. 9.3
On(0) =Ty, 9:3)

We introduce the “paraproduct” decomposition for the product of two functions a,u : T — C,

au =Tou+ Rya (9.4)
T,u:= Z ak —&ue)e*™, Rya:= Z a(k — &)a(e)e™ . (9.5)
kg€, |k—¢|<|¢] k,§€Z | k—¢[<|€]
Note that
T, = Op(ap(x,§)) with ag(x,€) = Z\k|§\g\a(k)eikx~ (9.6)

For all s > 0, we have the following estimates

[Taullay < CS)llallalulles,  [[Ru(@)llmg < Cls)llall garar [ull gz 9.7)
(the operator u — R, (a) is smoothing) which follow arguing as in Lemma[2.13]
Lemma 9.1. [[|D|*(T)" = Tu|D|? || s, < Cllalluz and [[(D)*, Tu|D|2Jul 1, <, llallmzllullz; . ¥s = 0.
Proof. By the adjoint of T, = Op(ag) is the pseudo-differential operator (7,)* = Op(ag) with

symbol
* — ikx - ikr ~ ikx
ap(#,€) = 3, pA0(k:& — ke Z|k\<|s g AR = Z|k|gs+k\a(k)e

since a(k) = a(—k) because a(x) is real valued. Thus

ok Oz _
where, writing
€+ K| — €]
IE k) =€+ k =—— "5, f Kk 0,0), 9.9
(& k) =€+ k|7 — &2 ekl (&, k) # (0,0) (9.9)
we split
Ri=Y > lelrak)a@e™om Ry=3" Y d(& kak)a(e)e o (9.10)
€ |k|<|€4k] £ |k[<|E+k]

In addition, by (9.5)),
T,|D|z Ya(g)elk+ee 9.11
Dlu) = 3 3, Jelaac)e (911)
We estimate ) . .
(IDI}(Ta)* ~ Tu|D|*)u = (R, — Tu|D[*u) + Ro. (9.12)

ESTIMATE OF Rs. By the triangular inequality implies |9(&, k)| < |k, for any k,& € Z. Then by
the Cauchy-Schwartz inequality we get

1Balz: <3 (Y Wied - 9llaG - olle)])

VI

<S( X h-dae-omei=g)

Jo 1i=¢I<ldl

<Cy. Y G-8Yal - oPEE)?

I 1i—=¢I<lg]

<COY [a©P Y (7 - &Yal - O < Clalfglluli; - (9.13)
€

J
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ESTIMATE OF R; — T,|D|2u. By (9.10) and (9.11)) we write

R —T, |D|%u:T1—T2 (9.14)

n=Y Y ERamEeeetT, Ti=Y Y jamaE)e .

& EI<|kI<[E+F| & |E+kI<|kI<IE]

We estimate the L2 norm of Ty. The estimate for T} is analogous. We have
2
1. I
I <> (Y KEEG - ollace))
i aI<li—¢I<Igl
and, since in the sum [&] < |j] + [€ — j] < 2|j — £, the Cauchy-Schwartz inequality implies

it <4y (X li-eltag - olae)i=g)

7 lil<li—el<lel i-9

<Cy Y G-9%al-oPrae)?

J o il<li—€I<Ig]

<O [P Y G- &%aG -9 < Clla\lj{g lullZs - (9-15)
¢ i ‘

The first estimate of Lemmam 9.1| follows by (9.12)), (9.13)), (9.14), (9.15)) (and the similar bound for Ty).
Let us prove the second estimate of Lemma (9.1} By (9.11)) the commutator

KDfﬂumﬂu=ELEL%&%WQJWU—QMQWI

where 9 (&, 7) = ((j)* = (€)*)[¢]>. Since [j — &| < [¢] we have [1h(&,5)| <5 (€)*]j — €. Hence using as
before the Cauchy-Schwartz inequality we get

1Dy TulDul?, <. 3 (% e aliat - llae))

VR VES TN

s|i (i — o <]—§> 2
< ( 3 @u-da-almoig=g)

<s Z<£>2S|ﬁ(£)l2z<j = &"ali — I <s llalld: lul, -

3

The lemma is proved. O

Proposition 9.2. Assume Ha||30+% < 1. Then, Y € T", for all s > 0 the flow D4 () of (9.2)) satisfies

sup;e(o,1) | P () (o)l 1z < Clluol s VO<s<1 (9-16)
supye(o, 1| P () (o)l g < Cs)(lwollmg + lall .oy lluollmy) ., Vs =1, (9.17)

uniformly for all N € N. The flow of (9.1)) is a linear bounded operator ®(p) : HS(T) — HE(T) satisfying

supyefo,1)| 2" () (o) |z < Clluollas , VoO<s<1 (9.18)
supefo 1112 () (uo) [z < C(s)([luollmz + llall .y luollry), Vs >1. (9.19)

Proof. PrROOF OF ((9.16)), (9.17).

STEP 1. s =0. For any N € N, the equation (9.2)) is an ODE on the finite dimensional space Ex which
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admits a unique solution uy(t) = uy(\,t,¢,-) = ®4(up) € En. The L2-norm of the solution uy(t)
satisfies (using that Il is L? self-adjoint)

. 1 : 1
8t||uN(t)H2Lz = (illlya|D|2un,un) 2 + (un,illya|D|2uyn) L2

= (ia|D|*un, un)rz + (un,ialD|Fuy) 2 = (i[a, |D|Jun, un) 2 (9.20)

because a is real. Lemma (2.13), (2.39), (2.40), and Ha||so+% < 1, imply the commutator estimate
l[a, \D\%]HL(L%) < C. Hence 9;|lun (t)||2: < Cllun(t)||2. and Gronwall inequality implies (9.16) for s = 0.

STEP 2. s > 1. The Sobolev norm HuNH%,m = H<D>SUN||%3 satisfies
oll(D)*un |7z = ((D)*InialDl2uy, (D)*ux) , + ((D)*un, (D)*Tyia| D] un)
— (D¥ialDluy, (D)ux) 1y + (1D)un (D)alDlbux)
= ((D)*iT, \DPuN), (D) SUN)Lg + ((D)*un, (D) siTa(|D|5uN))Li (9.21)
+ ((D)*i R g, ® <D>8uN)Li + ((D)*un, <D>81R|D|%uNa)Li (9.22)
by the paraproduct decomposition of a|D|2uy = T,|D|2uy + R‘D‘%UNQ.
ESTIMATE OF (9.21). We write
@21) = (iT.|D|% (D)*un, (D)*un) 5 + (i(D)*, Tu|D|? Jun, (D) un)
+ ((D)*un,iT,|D|? (D)* un) s + ((D>SuN,i[<D)s,Ta|D|%]uN)Li
= (i(D)*, Tu|D|Z]un, (D)*un) o + ((D)*un,il(D)*, Tu|D|Z]ux)
+ (i(Ta|D|§ — | DI*(T.)")(D)*un, (D)*un) ., - (9.23)
Thus and Lemma imply that the term in satisfies
|((D)'Ta|DI2un, (D) un) o + (D) un, (DYITu| DI2uy) o] <, llalluzllunll, (9.24)

ESTIMATE OF (9.22). Cauchy-Schwartz inequality and imply

|(<D>SiR‘D‘%uNa, (D) un)» + ((D) uy, <D>siR|D|%uNa)L§| <o (DY unlzzllall oy llunllay - (925)

By (9.21)-(9-22)), (9-24), (9.25), [|all gz < 1, we deduce the differential inequality: Vs > 1

Oullun s <s llall gorarm lunllms lun s + lallmz sl <s lall3oram lunF +llunliZ. . (9:26)
x x T H, z x

For s = 1 and since [|af g2 < 1, (9.26) reduces to d;llun |3, < Cllun|3., which implies ||®% (uo)|| g1 <
ol ¥ € [0,1]. For s > 1, [@28) reduces t0 Bluxly < C)(all,osm 1oy + s and

the estimate (9.17) follows by the Gronwall inequality in differential form.

Since ®%, : HY(T) — HY(T) and &% : H(T) — HX(T) are linear bounded operators, a classical
interpolation result implies that @Y% : H:(T) — H:(T) is also bounded Vs € [0,1] and (9.16) holds.
Proor oF (9.18), (9.19). Now we pass to the limit N — +oo. By (9.16) the sequence of functions
un(t,-) is bounded in L{° HZ and, up to subsequences,

unN N u in LSOH; B ||U||L§QH; S }\IIIEH(% ||’LLN||L§CH; . (927)

_1
CLAIM: the sequence uy — u in COHS NCFHy 2, and u(t,z) solves the equation (9.1)).
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We first prove that uy is a Cauchy sequence in C L2. Indeed, by (9.2), the difference hy := uni1 — upy
solves

Ohn = illy41(a|D|2hn) + iyt — x)alD|Zuy,  hy(0) = (yiq — I )uo,
and therefore
8t||hN(t)||%§ = (OhN , hn)r2 + (hn, OthN) L2
= (illy 11 (a| D2y ), hon) 2 + (hv, il (] D|2 hoy)) 2
+ (((Mn41 — Tn)alD|Fun, hw)rz + (hav, iy — x)al D] Fuy) g2 - (9.28)
Since Iy is self-adjoint with respect to the L? scalar product
(illy1(a|D|2hn), hn)rz + (hy,illys1 (a| D)2 hy)) 2 = (ia|D|Zhy), hy)zz + (hw,ia|DI2hy) 2
= (ila, |D|?)hw) , hn)rz < Cllan(t)]7z - (9.29)
Moreover
(i(My41 — HN>a|D|%“N7hN)L§ + (hn, i(Iy41 — HN)a|D|%uN)L§
< 2|y 41 — In)a|D|2un | g2 | Anllr2 < Ihwlf3z + [|(Myi1 — Ty )al D2 uylf3
_ 1 2 _ 2
<|hn 3z + (N 2llalDI2unlm2)” < kw32 + (N2 [uoll yo2) (9.30)

using that ||afzz < 1. Hence (9.28)-(9.30) imply that 8t||hN(t)H%i < ||hN(t)H%£ + N—4|\u0\|§{5/2 and,
since ||hn(0)||2 < N~72||lugl| g2, by Gronwall lemma we deduce that

lun+1—unllcorz = SFP] lunt1(t,) = un(t, )z < N72|uoll yor2 -
t€l0,1

The above inequality implies that uy is a Cauchy sequence in CY L2. Hence uy — @ € CYL2. By (9.27)
we have u = 4 € CYL2 N L{° HS. Next, for any 5 € [0, s) we use the interpolation inequality

~A
lun = ullpgens < lluy —ull s lluw = ullZge ps

and, since uy is bounded in L H$ (see (9.16)), (9.17)), v € L°HS, and uy — u € CYL2, we deduce that
un — u in each L{°HS. Since uy € CY HS are continuous in ¢, the limit function u € CY H is continuous
as well. Moreover we also deduce that

dyun = illy(a|D|?uy) — ia|D|Zu in COHS V2, Vse[0,s).

-

As a consequence u € CtH, ? and d,u = ia|D|2u solves (9.3).

Finally, arguing as in [43], Proposition 5.1.D, it follows that the function ¢ — ||u(t)||§{l is Lipschitz.
Furthermore, if t,, — ¢ then u(t,) — u(t) weakly in HZ, because u(t,) — u(t) in HE for any s € [0, s).
As a consequence the sequence u(t,) — u(t) strongly in H?. This proves that u € CYH? and therefore

_1
dyu = ia|D|zu € COH, 2.

_1
UNIQUENESS. If uy,us € COHS N CtlH; 2, s> 1/2, are solutions of (9.1)), then h := u; — ug solves

d:h =ia|D|Zh,  h(0)=0.

Arguing as in the proof of (9.26)) we deduce the energy inequality d;[|2(t)[|7. < C||h(t)|7. Since h(0) =0,
Gronwall lemma implies that ||h(t)||2. = 0, for any ¢ € [0,1], i.e. h(t) = 0. Therefore the problem (9.1)

has a unique solution u(t) that we denote by ®!(ug). The estimate (9.18)), (9.19) then follows by (9.27),
(9.16)), (9.17)), since un (t) = @4 (ug). O
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In the next lemma we prove the smooth dependence of the flow with respect to parameters.

Lemma 9.3. Let a(z,-) € C°°(T) and po-times differentiable, resp. CP°, with respect to z € Bx, where
Bx is an open subset of a Banach space X. Then, for any p < po, the flow map ®(z,t), t € [0,1], is
smooth in z, more precisely, the map

1

By >z ®(z,t) € LIHS HS 272), Vs> (p/2) + (1/2),
is p-times differentiable, resp. CP. Moreover, for any z € Bx, the derivative OP®(z,t) is a multilinear
form from XP in L(HS, Hy ?).

Proof. We denote for simplicity || ||zms) := || lc(zms,ms)- We argue by induction on p. We first prove the
statement for p = 0. Let s > 1/2. By (6.131)), we have that A, ®(z,t) := ®(z + 21,t) — P(2,t) solves

OAD(t) =ia(z + 21, 2)| D2 A.®(t) +iA.a|D|2®(2,t), A.D(0) =0,

where A,a := a(z+21, z)—a(z, z). By Duhamel principle A, ®(z,t) = fot ®(z+21,t—7)iAa|D|2 B (2, T)dT.
Hence

sup ||A.P(z,t 1 < sup |[|®(z+ 21,t .1 ||ALa
S 1A Dl,y S S 0Dl 18

w3 sup [|®(z,t)|lcmsy — 0 (9.31)
Ca * tefo,1]

1 — 0 by continuity.

o=3
Now we assume that for all 0 < ¢ < p < po, the flow z — ®(2,t) € L(HE, Hy %), s>q/2+1/2,1s
_4g g—ptl_ 1
¢-times differentiable, with 92® : X9 — L(HZ, H, *) and we prove that z +— ®(z,t) € L(HS, Hy 2 ?),
_ptl
s> (p+1)/2+1/2,is (p + 1)-times differentiable with 0P T1®(z,t) : XP+1 — L(HS, H, 2 ).
The derivate 02 ®(z,t) solves the equation, for any z1,...,2, € X,
O (08P (2,t)[21, ..., 2p]) =la(z, x)|D|%8f\<I>(z, izt .. 2p) + Fp(z, t)[z1,. .., 2p], 0P®(2,0) =0 (9.32)
where Fjy := 0 and, for any 1 < g <p+1,
g 1
Fy(z, )21, 02g) o= Y 1087 a(2)[2001)s s Zo(a-an) DI ZOP B (2, ) [Z0(g—gi11)s -+ » Zo(a)]

0<q1<q—1,0€P,

as z1 — 0, because ||a(z + z1) — a(z)

—q_
2

(9.33)
denoting by P, the set of permutations of the indices {1,...,¢}. For 0 < ¢ < p we have
Fyi1(z,t) = 0.F,(2,t) + i0.a(z, z)[]|D|2 07®(z, 1) . (9.34)
The candidate (p + 1)-derivative of the operator ®(z,¢) is the multilinear (p + 1)-form
¢
Ap(z,8)[z1, - - - s 2pt1] 1:/ (2, t — ) Fpt1(2,7)[21, s 2pa] dT (9.35)
0

obtained by differentiating formally the equation and using the Duhamel principle. We now
estimate 0P®(z + zpt1,t) — 00 ®(2,t) — Ap(2,t)[zp+1]. Note that, since A,(z,t) is a multilinear (p + 1)-
form, then A,(z,t)[2p41] is a multilinear p-form. Taking the difference of evaluated at z + 2,11
and z, and using the Duhamel principle we get that

t
AL (z,t) := OPD(2 + zpy1,t) — OV (2, ) = / D(z+ zpt1,t — T)(iAza|D|%8§<I>(z,t) + AL F,)dr
0

where A.a = a(z+ zp11, ) —a(z,x) and AL F), := F(2+ zpt1,t) — Fp(2,t). Hence, by (9.35) and (9.34)
with ¢ = p, we get
A0L®(2,1) — Ap(2,1)[2p11]

t t
:/ <I>(z—|—zp+1,t—T)iAza|D|%8§<I>(z,T)dT—/ ®(z,t — 7)i0.a(2)[2p11]| D|2 0P®(z, 7)dr  (9.36)
0 0

t t
+ / D(z+ zpt1,t — T)ALFpdr — / O(2,t — 7)0, Fp(2, T)[2ps1]dT (9.37)
0 0
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ESTIMATE OF (9.36). Set A, ®(¢) := (2 + zpt1,t) — B(2,t). For all 0 < 7 < ¢, we have

[{®(z + zpt1,t — T)iAsa — D(2,t — T)iaza(z)[sz]}|D|%8§<I>(z, 21, 2p)

sl
< Hfb(z + Zpt1,t — T)i(Aza — Gza[zp+1])|D|%6§¢>(z, 21,5 2] L(H;,H;lef%)
+ HAZ<I>(t—T)iaza(z)[sz]|D|%(‘3§¢’(z,T)[zl,...,zp] Y
< s 120+ 21D ooy 1820 = Bealzpall ooepry Sup 10220 )z, zlll, et
oo (AR, gt gty 100l gt s 1028 D2l e
Sop (1820 = Bealzpiall] ,ops + sup 1820, g ety el Il sl (9.38)

using the inductive assumption on 0?®(z, 7).

ESTIMATE OF (9.37)). By the expression in (9.33) (with ¢ = p), the fact that z — a(z) is (p + 1)-times
differentiable, the inductive differentiability properties of the flow, the map z — F,(z,t)[z1,...,2p] €

L(HE, H;_%_%) is differentiable. Arguing as above, we have, for all 0 <t < 7,

H{@(z t i t— T)ALF(2,7) — B(z,t — T)aZFp(m)[sz]}[zl, .. .72,7]H£(H;1H;JT+17%)

<sp sup ||[(AFp(z,7) — 0. Fp(2,7)[% Z1yens 2 sopHl_1
o 50 I(BFe7) = Eyle ) ol ey,

+ AP T pt1 pr1 1 ||0LF, s _ptl . 9.39
g L ey (9.39)

In conclusion, by (9.36), (9.37), (9.38), (9.39), the differentiability of a(z) and (9.31)), we deduce that

sup sup H A 6P(I>(th) -A (Z7t) Rp+1])[R1ls -5 % || s—PFl 1 ||Z +1H71 _>O?
t€[0,1] |21 ,.. |l zp | <1 (A:; v [zpa])| v) coae gt E P

for 2,11 — 0, namely 0P®(z,t) is differentiable and 9?71 ®(z,t) = A,(z,t). Moreover, by (9-35)), (9-33)
for ¢ = p+ 1, the continuity of z — 0%a(z) and the inductive differentiability properties of the flow, we

Zpgt
have that z — 9Pt ®(2,t) is continuous and P ®(2,t)[21, . .., 2p1) € L(HE, Ha 2 ). O
We now want to prove tame estimates for the flow operator ®' := ®(t) := ®(\, p,t) acting in the

Sobolev spaces H® of functions u(p,z). Recall that the Sobolev norm || ||s in (L.19) is equivalent to
[ls = [lzzz2 + || 122 mz, see (2.2). Note also the continuous embeddings

He4so(TV ) s Ho0(T, HE) — L®°(TY, HE) . (9.40)

Lemma 9.4. For any |B| < fo, |k| < ko,t € [0,1],h € C>(T*), the function 9505®"(@)h is C*°(T11).

Proof. Since h(p,z) € C*(T” x T) then T¥ > ¢ +— h(p,:) € HS is a C* map for any s > 0. By
Lemma the map TV 2 ¢ — 8’;85@’5(@)[/1((,0)] € H? is C* and, for any o € N”| 83{8§8§@t(@)h} =
> tas—aConas VT @ (0)[022h]. By Lemma [9.3) each function 95951 & ()[022h] € C3°. O

Proposition 9.5. Assume that
lallasyrz <1, llallzso+1 < 6(s) (9.41)
for some §(s) > 0 small. Then the following tame estimates hold:

supyefo, [ (E)uolls < C(s)]uols Vs € [0,50 +1], (9.42)
supyefo,1) | 2(E)uolls < C(s)([[uolls + lallstsor 2 lluolls) Vs = so- (9-43)
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Proof. We take ug € C*°(T"*1), so that ®ug is C°(T*T1).
PROOF OF (9.42). For s = 0, integrating (9.18) in ¢, we have

90l = [0Oulzz = [ 10 0ult de<C [ Jultyde=Cluly. 049

Now we suppose that (9.42]) holds for s € N, s < s9, and we prove it for s + 1. By (2.2))

12 uolls+1 = [|2E)uoll 12 gzt + 1P E)uoll g pa - (9-45)

The first term in (9.45) is estimated, using (9.19)), (9.40), (9.41)), by

1R (E)ollz mrper <s lluoll gz prger + llall _oeg ol my <s lluollser +llallsrs sz lluoll (9-46)

Ly H

Ss ||u0||s+1 .

The second term in (9.45) is estimated, using (9.44)) and (9.42)), by

[@()uoll ya+1p2 > [[R(Huollzzz + sup |0y, (R(E)uo)llms L2

m=1,...,v
<s lluollzzrs + sup (I2()[04,,uo]lls + 105, 2 (t)uolls ) (9.47)
<s lluolls+1 + 19, R()uolls - (9.48)

For estimating the last term in (9.48)) note that, differentiating (6.131)), the operator 9, ®(t) solves
01(0,,,2(1)) = ia|D|* (0,,,2(1)) +i(dy, )| DI* (1), 8, 2(0) =0,
and then, by Duhamel principle (variation of constants method), it has the representation

a%@(t):i/o B(t = 7)(D,,,a)| D3 B(r) dr . (9.49)

By the inductive assumption (9.42)) up to s < sp, and (9.40)), we get

|19(t = 7)(D,,,a)| DI> ®(7)[uo] |5 <5 1Dy, @)| DIZ@(7)[uo]|ls < [|a

c5+1|\<1>(7')u0||8+% (9.50)
<s llall2so+15up;cpo 17 [ () uo 541 -

Therefore ([9.45)-(9.50) imply
12()uolls+1 < C(s)([uolls+1 + lall2se+15uPrepo, 1| @(E)uolls+1)

and, for C(s)]|all2s,+1 < 1/2, we deduce (9.42) for s+ 1. After so-steps we prove (9.42)) at so + 1. Then
a classical interpolation result implies that ®(t) satisfies the estimate (9.42) also for all s € (0, sg + 1).

PRrOOF OF (9.43). We argue again by induction on s. For s € [sq, So + 1] the tame estimate is

trivially implied by . Then we suppose that (9.43)) holds up to s > so and we prove it at s -+ 1.
We estimate ||®(¢)uo||s+1 as in (9.45)-(9.47). Then we estimate the last terms in in a tame way.

The inductive hyphothesis (9.43) and Lemma (with ag = 2s¢ + %, bo = S0, p =8 — So, ¢ = 1) imply

12(1)[0,, uollls <s luolls41 + llallstsor 2 [wollsorr <s [lwollsta + lallsrse+2 lluollsy + llallzsy+ 1 l1uollsa

<s [[wolls+1 + llalls4so+2 luollsy (9.51)

since |lally5,41 < 1. Then we estimate [|9,,, ®(¢)uolls. By the inductive assumption (9.43), the tame
estimates for the product of functions, (9.41)) and (9.42)), we get, for all ¢,7 € [0, 1],

19(t = 7)(Dy,, @) D2 B(7)[uo] s <o [1(D,,@) | DI @) [u]lls + [l 4.1 411, @) DIZD(T) 0]

<s llallstsor2llollsers + llallsora[|@(T)uollss 1 - (9-52)
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Then (9.45), (9.46), (0.47), (9.49), (9.51), (0.52) imply

SuPte[O,l]HCI)(t)UOHSJrl <s lluolls+1 + ||a’||s+so+%||u0”50 + ||a||50+1sup7_€[0’1]|\<I>(T)u0||s+1
Fllallsqso+2 lluollsot1 -
Then, using (9.41)) and Lemma (with ag = 2s0 + %, bo = sp, p=5— 50, ¢ = 1), we get
supsefo,1) [P uolls+1 <s llwolls+1 + llallsysos2 uollso + lallsqsor [uollso+1
<s [Juolls+1 + llallsqso+2 luolls

which is (9.43)) for s + 1.
We have proved (9.42)), (9.43)), for ug € C°°(T**1). The estimates for ug € H® follow by density. [

We also prove the following tame estimates.
Lemma 9.6. For alln > 1, if [lal|s,+ 2 +2 < (s) small, then the following tame estimates hold: Vs > sq
(D) =% @(t)(D) # hlls , IXDYE @(A)(D) % hlls <o bl + llallstsotg+2libllss - (9.53)

Proof. Let ®,,(t) := (D)~ ®(t)(D)%. We consider h € C* so that ®,,(t)h € C*°.
We have ®,,(0) = Id and

01, (t) = (D)~ ia| D|2®(t)(D) ¥ = ia|D|2®,,(t) +i[(D)~%,a|D[2](D) 2 &, (t).

Therefore by Duhamel principle we get
t
D,t)=D(t) + U,(t), T,(t):= / O(t —7)An P, (7)dr where A, := i[<D>_%,a|D|%]<D>g . (9.54)
0

By Lemmata and , , we get the estimate
[Anlo,s,0 <s llalls+z+2- (9.55)
Then by (9.54)), using (for s = sg) and Lemma [2.13] we get
$Prei0. | B (Dllsy < CllAlsy + Cllalsn s 342 5Dreio.y | Ba(t)hlls -

For Cllallso+2+2 < 1/2, we deduce sup;ejo 11| Pn(t)hl[s, < Cllhlls,- Then (9.43), (9.55) and Lemma
imply, for all s > s,

||\IJn(t)hHs <s SuPte[o,l](HAnq)n(t)h”s + ||aHS+SO+%||h||SO)
<s llalls+so+z+2llRllso + llallso+z+2llRlls + llallso+2+2 supseio )| ¥n ()R] - (9.56)

Hence, for [[alsy+ 2 42 < 0(s) small, we deduce the estimate (9.53) by (9.54), (9.43), (9.56).
If h € H®, the estimate (9.53) follows by density. O

Now we prove similar tame estimates for 8§8£CI> when the vector field ia(), ¢, z)|D|*/? depends also

on \. The operator 8’/{8@@ loses |D,| PEE derivatives which are compensated by applying (D)~ S
Proposition 9.7. Assume that
ko,
lalasgross € 5. a5 g1 <1 (9.57)
with 6(s) > 0 small enough. Then, for all |k| < ko, |B] < Bo, the following tame estimates hold:
|05050(D) =5 hlly <, v MRy, Vs € 0,50+ 1], (9.58)
_18I+Ik] _ Ko,
“a§a£¢<D> 2 h”s Ss Y lk‘ (”hHS + ||a|‘siz0+|ﬁ\+|k|+1Hh”So) ’ VS Z 50, (959)
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and

_1BI+Ik] _ _

I(D)okaZ e (D) 5 h), <y W Rll,, Vs € 0,50+ 1], (9.60)
_ 1BlI+Ikl _

1(D)a5a20 (D)~ hlly <oy (IRl + a7 4 sps ersallfllso) s s > s0. (9.61)

We prove Proposition [0.7] by induction. We introduce the following notation

e Notation: Given k1, k € N*T1 we say that k; < k if each component k1, <k, Vm =1,...,v+1,
and there exists m € {1,...,v + 1} such that ky 5 # k. Given (kyi, 81), (k, ) € N*T1 x N” we say
that (k1,01) < (k,B) if each component k1, < Ky, Bin < Bn, Ym=1,...,v+1, Vn=1,... v
and (klaﬂl) 7é (kaﬁ)

_1B1+1k]

We first estimate [|0§05®(D)~ 2 Az as-

Lemma 9.8. Assume (9.57). Then, for all p € T", |k| < ko, |B] < Bo,

_ 1Bl+1K] _
105020 (o)D)~ = hllms <s v *R||us | Vs €[0,1], (9.62)
kB _ 1Bl+lk K ko,
|0X02®(0)(D)™ = hl|u: gsv"(||h||H;+||a||sf;§0+w+@+%Ilhllﬂ;), Vs> 1. (9.63)
18|+|k]

Proof. We take h € C*°, so that [|050®(p)(D)~ "2 h is C*.

We argue by induction on (k,3). For k = 8 = 0 the estimates (9.62)-(9.63) are proved by (9.18)-(9.19).
Then supposing that (9.62)-(9.63) hold for all (k1,081) < (k,5), k| < ko, |8] < Bo, we prove them for

6’§8£<I><D>_M. Differentiating (6.131)) and using the Duhamel principle we get
t
0500 (1) = /0 B(t — 7)Fy () dr (9.64)
where
Fyp(r) := > Clky, ka, 81, 52) (952 022a)| D] 95 921 ®(7). (9.65)

k1+ko=k,B1+B2=0,(k1,61)=<(k,3)

We now prove (9.63)). For all (k1,51) < (k,3), k1 + ko =k, B1 + B2 = 3, for all ¢,7 € [0, 1], using (9.19),
tame estimates for the product, (9.57)), we deduce

1Bl +k]

|®(t — 7)(9520%a)| D20 02 ®(r) (D)~ = h|m:

1 _ 1Bl+Ik] 1 _ 1BI+1k|
< 103202a)| DI 05 03 @(r)(D) ™= hll iz + llallysso4 3 [1(03202a) | DIZ 05 05 @(r) (D)= hllms

oy ol g 105000 D) Ry el 02 e D) A Ly (0.66)
Now, since (k1,01) < (k, B8),
op o2 @(r)(D)” 5 = of ol e(r)(D) T D) T L = 18] = |81 + [k — k| > 1,
and, applying the inductive estimates for 8§18g1¢(7)<D>_LW, , we get
(©0:66) < v (IIRllzs + llaf ™ 1l 2)

s+so+i+|6+ 15

which, by (9.64), (9.65), proves (9.63]) for A which is C*°. The estimate (9.63) for h € H* follows by
density. The estimates (9.62)) follow in the same way using (9.18). O

Then, integrating in ¢ we get the following corollary
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Lemma 9.9. Assume (9.57)). Then, for all ¢ € T, |k| < ko, |5] < Bo, we have

10502 ® (o)D)~ % hllca s <o v MIAll L2 | vs €10,1], (9.67)
105022 (@)(D) = hllegme <oy M (Whllszas +Nalls? o bllzem), Vs=1, (968)
and
(D)5l ®(0)(D) "% hll 2 sy <oy WAl s Vs e [0,1], (9.69)
I(DYROZ()ND) 5" iy <oy Ml + llall™? |y Whllzm) . ¥s =10 (9.70)

Proof of Proposition Let h € C*°. We argue by induction. For k = 0, 3 = 0 the estimates ((9.58)-
9.59) follow by (9.42)-(9.43). We first argue by induction on k assuming that we have already proved
9.58)-(9.59)) for all k1 < k, |8] < By. Then we prove the tame estimates - for the operator

KoL ®(D)~ S , for all |3] < Bp. To do this we argue by induction on \ﬂ| assuming (9.58)-(9.59) for

all |8] < n and we prove them for |3] = n (also n = 0). To estimate ||8/\8£(I>< ) e
induction on s.

PROOF OF (9.58) FOR |3| = n. For s =0, by (9.67)), we have

I/fl-Hk\
10597 (D)~

h||s we argue by

\B\Hkl

hllo = [|0505® (D)~ hllzrz < Cv ™Al L2 2 = Cy~ Al .- (9.71)

Now we suppose to have proved (9.58)) with |3| = n, up to the Sobolev index s < sg + 1 and we prove it
for s+ 1 < so+ 1. We have

JEESL] [EIESL) JEESL]
|6x052(D)~ hls41 = [|0309(D)~ Wl g2 gz+e + 110505 @(D) Mggrps - (972)
The first term in (9.72)) is estimated, using (9.68)), s < sg, (9.57)), by
1BIE1k] ko, _
105080(D) 5 Bl g rgir <oy M (hllera + a7 Al <oy Bl
Now we estimate the second term in (9.72)). By the inductive hyphothesis
lox052(D)~ ~ |[8X0; (D)~
ENLIELION o [EESL
+  sup  [|0800(D)"F [Ogh]llmar: + sup  [|0XO)TR(D)” hlms 2
a€eNY, |a|=1 a€eNY |al=1
©.71) _IBIEIRL g - _
< M nllo+  sup  [|9k0Ze(D) 03kl +  sup 8397 ®(D) (9-73)
a€eNY |al=1 a€eNY, |Ja|=1
<o lhlapr+ sup (0502t eR(D) T TE A, (9.74)
a€eN? |a|=1
Now, differentiating (6.131) and using Duhamel principle, we get
t
akoltoa(t) = / Ot —7)Fpp(r)dr, Fau(r) = Fy(r) + FSNr) + FON(r) (9.75)
0
where
Fit)(r) = > Ok, ks, B, B2) %2 0% a| DM/ 20% 951 d(r)
B1+B2=0+a,k1+ka=k, k1 <k
2
FS)(r) = > C(B1, B2)0% a|D|Y/?05 00 d(r)
Bi1+PB2=F+a,|p1|<n—1
Fy)(r) = > C(By, B2)022a| D205 05 @ (7). (9.76)

B1+B2=p+a,|B1|=n
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Note that if n = 0 the same formula applies, just without the second line. Therefore

|0kl (D)~ sup sup [[®(t — 7)(95202a)| D25 0% D (r)(D)~
klﬁ<igl+§j— k, t,7€[0,1]
1 2 «
+  sup sup [|B(t—7)(0%2a)|DIFASOS @ (r)(D) T E b
51‘;[‘32 ﬁﬁiozt ,T€[0,1]
11<n
+  sup sup ||B(t—7)(0%a)|DIZAS B(r)(D)" T F Al (9.77)

B1+PB2=pF+a t,7€[0,1]

[B1]=n

We estimate separately the three terms in the above inequality. By the estimate ((9.42)) for ®, the inductive
hyphothesis for k1 + ko =k, k1 <k, 81+ 02 = S+ «, t,7 € [0, 1], and using (9.57)), we get

1 IBIHM 1 \BH\kI
|®(t — 7) (Y2 022a)| D20y 02 ®(7)(D)~ 2 hlls <, [(052022a)| D20y 02 ®(7)(D)~ = hl|,
_ \ﬁ\HkI
<s vl lall 3o 5y 198100 @ () (D)7 Bllspa
<o 7R ]|sq1 - (9.78)

The second term in (9.77)) is estimated as in (9.78]). Then we consider the last term in (9.77). For
Pr+ B2 =P+ a [Bi] =n, s < so,

\ﬁ\;rlk\ |B|+Ik\

|@(t — 7)(8%a)| D|* 0502 B(r)(D)~
By (9:72)-(9:79) we get

sup sup [|05050(t)(D)~ <o 7 MIRlls 1+ lallzsgrig141 sup sup [OOSR (t)(D)~
1Bl=nt€l0,1) 18l=n t€[0,1]

hlls <s llallasgris1+1 10507 @(7)(D) Mlsgr- (9:79)

|5I+Ik\

Hs+1

which implies 1' for |8] =n at s + 1, because ||a||250+|[3|+1 < §(s) is small enough (see (9.57))).
PRrROOF OF FOR |B| = n. The estimate (9.59) for s = sq follows by (9.58). Then we assume to have

proven 1- ) with |3] = n, up to the Sobolev mdex s and we prove it [|0505® (D)~ S h||s+1. The first
term in (9.72)) is estimated, using ), by
1814 1k] ko,
105028(D) 5 bl s <o v (Il + 101201y Il (9.50)

Now we estimate the second term in (9.72). We have as in (9.73]) that

181+ 1k]
10X05@(D) ™= Rl o 2
—‘k‘ k a8 _ 1B1+1k| o k af+a _ 1BI+Ik]
~y " "hllo+  sup  [[OXO,R(D)” 7 T [0gh]ls + sup  [[OXO,TR(D)T T Al (9.81)
aeNY |al=1 aeNY |al=1
The first term in (9.81)) is estimated by the inductive hyphothesis (on s)
_1Bl+Ikl _ ko,
||8’§8£<I><D) 2 [8<ph]||3 gs Y Ikl(Hh”s+l + Ha||sizo+1+|ﬁ|+\k\||h||50+1)
_ k
<o v I (IPllssr + Nall2Sd i ipre 1Plso) (9.82)

using (9.57)) and the interpolation inequality (2.10) with ag = 2s9+|5]|+|k|+1,b0 = S0, = $— S0,q = 1,
e=1.
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Now we estimate the second term in (9.81). By (9.75)-(9.76]) one has

|okolte®(Dy""F  hlly < sup  sup [ B(t —7)(20%a)D[FOS OB (r)(D)" " E b,
k}1-<k7,]€1+k2:k7,t,7'€[0,1]
B1+B2=p+c
+  swp sup [|B(t—7)(0%2a)|DIEAOS @(r) (D) E b
B1+B2=B+at,T€(0,1]
\ﬁl\<n 1
+ sup sup ||B(t—7)(8%a)|D|FA d(r)(D)" T F Al (9.83)

B1+B2=B+at,T€[0,1]
|B1]|=n

Note that if n = 0 the same formula applies, just without the second line. We estimate separately the

terms in (9.83). By the estimate (9.43) on ®, (9.58), and the inductive hyphothesis for k; + ko = k,
kl = kv ﬂl +62 :ﬂ-l—(},, taT € [031]7 we get

|@(t - 7)(8520%a)| D|* 05 02 @ (r)(D) =5 h

—|kz| || k1 581 51+ [kl k2| || - 11F0sY k1 a8 18L41k)
Ss v 0N 0, (T (D) hlloy s+ all 55 4 541 108 95t @(7)(D) ™ Allsos 2

_ ko,
<,y (Hh”SH + Ha||sizo+1+|ﬂl+\k|+1||h||sU) (9.84)

using (9.57) and since (2.10)) with ag = 2so + |8 + 1, bo = S0, p = 8 — S0, ¢ = 1, € = 1, implies
ko, ko, ko,
||a||83-zo+\ﬁ|+1||h||50+1 < ||a||2201|,8|+1Hh”S+1 + Ha||si;/0+|5|+2Hh||so . (9.85)

The second term in (9.83) is estimated similarly by (9.84). Then we consider the third term in ([9.83).

For 1 + 2 = B+ «a, |B1] = n, by (9.43), (9.58)

1 L8141kl
@t — T)(Biza)lD|23§8£1¢>(T)<D> hlls
_ RS L}
<o [allstsoslo+1 8502 @(r) (DY so+1 + lallasy+151+1110502 @(7)(D) ™ s+
_ 3 18L41k|
<5 ¥ Mlall st o +18141 1Bllso+1 + lallzg 1514110505 @(7)(D)~ s+
(19-85) k| Koy k28 18141k
<o v P llsr + llallsy s, 4542 1Plls0) + llallzs+is1+1110x05 @(T) (D)~ Allstr - (9.86)

By (0.80), (9.31), (9.82), (0-83), (0.84), (9.86) we get

sup sup [|0507@(t)(D)"
1Bl=nt€l0,1]

_ ko,
o1 <5y M (Ihlls1 + ||a\|so+;/0+\,a\+|k|+2HhHSo)

8 \ﬁ\HkI
+ [lall2so 18141 ﬂlp SFpl] |0X05® () (D)~
=ntel0

which implies (9.59) at s + 1 for |3| = n, because [|a||25,+|3/+1 < 0(s) is small enough (see (9.57))).

PROOF OF —. We argue by induction on s. The estimate for s = 0 is proved by
for s = 0. Now let us suppose to have estimated the operator <D)8’§8£<I><D)_ S i up to the Sobolev
index s and let us prove it for s + 1. We have to estimate

hHerl

181+

_ 18Itk _ _ k| _ _1BI+Ikl _
[{D)OXOSD(D) ™= ~'hlls41 = [(D)OXOZ®(D) ™= 1h\|L3H;+1+|\<D>5§3£‘1’<D> = hllgsrigs -
The first term is estimated by (9.70]) as

(DYBEOED (D)~ =1kl e <o v ¥ (s + [laf®o7 A1) (9.87)

AT LyH:T =s ot s+1+s0-+8]+ 5+ 4 ’
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and the second term, using (9.69), as

1B1+1F]

(DyBsOLB(D) " kv o = [[(D)OROZR(D) "5 k2 10 (9.88)

+  sup  [(D)ROZTD)TTE Mg+ sup  [[(D)0ROSR(D)”
aeNY Jal=1 aeNY |al=1

|Bl+]1k|
2

\ﬁH\k\

il L1
18$hH5

|5|+Ik\

<y Minllo+  sup  (D)OROZTOR(D)FE AL+ sup [[(D)0SOSR(D) ~Oghlls -
a€eNY Ja|=1 a€eN? |a|=1
By the inductive hyphothesis, for all « € N¥, |a| =1,
[(D)ko2e(D) 5 0ghy <oy M Bllagr, Vs < s (9.89)
1(D)BEOEB(DY 1021, <y 7 (Ihlloss + 1l s ppsalbllsnss) s ¥5 > 5o
<o v M (IRl 1 + Ha”]:i?JrsoH,@HlHlirl”h”SO) ; (9.90)

since (2.10) with ag = 2so + 8| + k| + 2, bo = S0, p = s — S0, ¢ = 1, e = 1, and (9.57)) imply

ko, ko,
Hall®2 st ez lPllsort < Wolloss + 1al¥% 7o eiae 1 llso -

Finally
_1BItIR o _1BI+IR] o _ 114k +1 _1
D)OkaS @ (D)~ "= ~th||, < |00t (D)5 lhl|er = 0500 CR(D) T2 (D)7 E Rl
and (9.58)-(9.59) imply
_1Bl+|kI+1 1 _
18505 (D)= (D) Fh]|lsr1 <o v M |Bllsr1, Vs < so,
_1Bl+IkI+1 1 _ ko,
o5z (D)= (D) 2 hlllaps <o v M (Rllssr + Hall27 oo s pper s 1Pllso) s V5 > s0.

Collecting all the above estimates we have proved (9.60)-(9.61) with Sobolev index s + 1.
We have then proved the estimates ((9.58)-(9.61) for h € C*>. If h € H? they follows by density. The
proof of Proposition is completed. O

Proposition 9.10. For By € N assume that

ko,
gy sugsa gy 60510 Tall2 o <1, (9.91)

or o(s) > 0 small. en, for a e N ke wit < Bo, < ko, s > 59, we have
ford 0 I. Then, for all B € N”, k € N**1 with || < Bo, |k| <k h

_ ko,
supyeo (D)~ 95020 )hlls <oy (s + llall® 7 o a s 1Bllso) - (9.92)
+so+ +2|B|+2‘ |
_1s _ — ko,
supyeoyll(D) " L kOLD (o, t)(D)hll. <. v HI(0])s F Ml o aiamaIRllso) - (9.93)
0+3+318]+3kl

Proof. We prove only (9.93). The proof of (9.92)) is the same (easier). We take h € C*° and we argue by
induction on (k,3). For k = 0,8 = 0 the estimate ((9.93) is proved by (9.53) with n = 2. Then supposing
that (093) holds for all (k1. 51) < (k. 3), [k| < ko, |8] < Bo. we prove it for (D)~ "= ~19k98®(D) for

which we use the integral representation (9.64)-(9.65)). For all 51 + 02 = 0, k1 + ko = k, (K1, ,6’1) (k,8),
t,7 € [0,1], one has

(D)~ 55 () @20 a) DIy 00 @(r)(D) = (D) F T e - (D) TE T (0.04)
<D>—'B‘Q‘k‘—l(a’;zagm)<p>'5'3""‘+1
1 _m _1B1lHIR]
IDIH(D)~% (D)~ k02 @) (D)
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where m := |3 — |B1| + |k| — |k1| > 1. These three terms satisfy tame estimates. By (9.53]) (which can
be applied because of (9.91))) we have

_ 18Ikl 181+ k|
KDY= 35 (e — 7)(D) TF Ry <, [lls + Nl s 5150 1Bl - (9.95)
Lemma [2.6] and (2.39)), (2.40), imply
ST 181 41K _
(D)5 k02 a(D) o s <, 08202l s <oy Pl L e (990)
Since (k1, 81) < (k, 3), using the inductive estimates (9.92) for (D>’M¢*18’;18£1®(7)<D>, we get
1, _m o, 1B1llRl 181 L+1kq | _
I1DI2 (D)~ % (D)~ = " 1oy o @(r)(D)hlls <, (D)~ 2 oy ol e(r) (D) (9.97)
< —|k}1 ko,y
<oyl 1l )

In conclusion, (9.94)-(9.97) imply (9.93). If h € H*® the estimate (9.93)) follows by density. O

As a corollary we get

Proposition 9.11. Assume (9.57). Then the flow ®(t,A) of (9.1)) is DkO—’Z—O—tame (Deﬁnition, more
precisely, for all k € N*T1|k| < ko, s > so,

105 (. )]s <5 "“‘(IIhH ST /i 1) PO (9.98)
sup 105(@(®) ~ T)Al. <oy~ (a5 I, s + 163, gy L) (9.99)
Proof. By (with 8 = 0) we have
|85 (e, t)hlls = 95® (2, ) (D)5 (D) % hls <o 7 ¥ (DY F hlls + [all*7 4y 1D) 5 Rl
<o RN+ 1l eI )

which proves ((9.98)).

PROOF OF . By (9.1), i.e. (6. 131 , we write ®(t) — Id = fo ia|D|2®(7) dr. Then for k=0
2.72) -

follows by (|2.72]) and ( For |k| > - follows by interpolation and using O

Finally we consider also the dependence of the flow ® with respect to the torus i := i(p) := (,0,0) +
J(¢) (recall the notation (4.19))). Assuming that there exists o > 0 such that for any s > 0, the map

I(N) € Y¥7 —a(N,i(N) € HY, Y*:= H*(T",R") x H*(T",R") x (H*(T"*",R?) N Hg" )

is differentiable, then, by Lemma the flow ®(¢) is differentiable with respect to i. Note that in the
lemma below we do not estimate the derivatives of 9;®(t) with respect to A since it is not required, see
remark We state an analogous version of Lemma (the proof is similar) which takes into account
the dependence with respect to the torus i.

Lemma 9.12. For any |B| < Bo, h, i, T which are C*°(T"*1), the function 950;®"(i)[i]h € C>°(T¥+1).
Proposition 9.13. Let s1 > sg and assume the condition
allpsys gy < G52 Nl s gn < 1 (9.100)

for 6(s1) > 0 small enough. Then, for all 8 € N” with |3] < Bo, for all s € [sg, 1]

(D)~ = 02 (0@ ()l Al < 119:alilll, 2514 2 1Bl (9.101)
(D)= 2102 (@i (D)) (D) hlls <, 1ialilll,y 215 1Rl (9.102)
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Proof. We prove (9.102)). The proof of (9.101]) is similar. We take h,7 in C* with respect to ¢ and x, so

that (D)~ o5 ’135 (0;®(t)[]) (D)h is C>. Differentiating (6.131) and using Duhamel principle we get
¢
020, 0[i] :/ ®(t —7)Fs(r)dr, Fp:=FS) +F (9.103)
0
where
FY(r) = > C(By, B2)(022a)|D|2 05 0, 0[1) (1) (9.104)
B1+B2=0,|611<8|
FP ()= > C(Br,32)(020:a[0))| DI 02 (7). (9.105)
B1+B2=p

We argue by induction on 3. The proof of (9.102f) for § = 0 follows as a particular case of the estimate

below for the term in ((9.105]).
ESTIMATE OF ((9.104). For any 31 + B2 = 3, |61] < |8| we have

[B]+1
2

(D)~ (t — 7)(82a)|D|? 02 8, ()(D)
= (D)™ e — 7)(D) T (D) 0 a)(D) )
D[ (D)3 (D)~'7 ~'90,[3)(r)(D) . (9.106)
By , s < 5 < s, one has

18]+1

181+1 \m+1
2

(D)~ —Lo(t — 7)(D) <o IAlls + lall, g g 1820 1 1Allso <5 [1A]s (9.107)
Lemman . and -, -, imply
[EIES Ll+1 s<s1, (9.100)
(D)= "= 1 (02a) D) 2 oo <o 102all oy <o llalegaes <5 L (9.108)
Since |B1] < |B] the inductive hyphothesis implies
181 [811+1
I|D|2(D)~3 (D)~ = 028,00 (r)(D)h||s <, (D)~ = ~'020,B[)(7)(D)hlls
® ®
< 10501431504 215 - (9.109)
Then (9.104)), (9.106)), (9.107), (9.108), (9.109) imply
_1Bl+1 1
(DY~ 710t — 1) ESY (I)(D)hlle <o 10:afil]l o 315152111l (9.110)

ESTIMATE OF (9.105). For any 1 + 82 = 3, t,7 € [0, 1], we have

(D)™ 1 (t — 7)(0%0,afi)) | D] 2 0% 0 (r)(D)
= ((D) (t = 7)(D) ) (D)~ (@2 0afi) (D) )
D[ (D)~3(D)~'7 19l &()(D) . (9.111)
Lemma [2.6] and (2:39), (2.40), imply (as for (9.108))
(D) EES (8[328 afi)(D >w\+1+1|080 <s [10; a[A]||er 318142 - (9.112)
By , so < s < s1, and we get
I|DJ* (D)~ % (D) =5 102 ®(r)(D)hs <. [Ih].- (9.113)
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Finally (9.105), (0.111)), (0.107), (9.112), (0.113) imply

_1Bl+1
(DY~ 710t — 1) ES ()(D)hlle <o 10:afil]l o 315152111l (9.114)

In conclusion the estimate (0.102) follows by (0.110), (0.114). If h € H®,7 € Yst21A+5+7 then (9.102)

follows by density. O

Proposition 9.14. Let s; > so and assume

”a”sl—i-so-l-%-i-ﬁo <1, ||a‘|81+30+50+1 < 6(31)7 (9115)

for some §(s1) > 0 small. Then for all |5] < Bo,

_1Bl+1
1020:2F1(D) ™= hlls <5 10ia[ll st 5oy 1110l Vs €10,51], (9-116)
_18l+1
1(D)OEOBED) 5l <, 100l agsg Bl Vs € 0,51 — 1] (9.117)
We first provide the estimate in | - || 22 s for all s € [0, 51].

Lemma 9.15. Assume (9.115)). Then for all p € T¥, the following estimate holds

1678 [2)(D) ¢ s 0ia[llls s 1415 10l ms s Vs €10, 1] (9.118)

Proof. Let us suppose that 7 and h are C*°. We argue by induction on 3, supposing that we have already

proved (9.118) for |81 < |8]. We use the integral representation of aﬂa ®[7] in (9.103)). For all 51+ 02 = 0,
1B1] < 18|, t,7 € [0,1], by (©.18), (9.19), (0.115), and the inductive hyphothesm

|[I+

|®(t — 7)(9%a)| D202 9;@[)(D) ™= hl|u: (9.119)

1B]+1

<s llallge+1011|05* 0:@[)(D)~ = A etk So 10l loroo s 4ipallilla

Similarly, for all 8; + 82 = 3, by (9.18)), (9.19), (9.115)

|®(t — 7)(820;a))|D| 2 91 @ (7) (D)~ (9.120)
o E0). 639, @1
< 10sali|cerie |02 @(7)(D) hil ory <s 10:a[t]||s+so+181 12l s -

By (0.103), (9.119)), (0.120) we deduce (9.118). If h € HS and 7 € Ystso+2+B1+9 it follows by density. [

Then, integrating in ¢, we get the following corollary

Lemma 9.16. Let s1 > so and assume (9.115). Then for all |3] < Bo

020 1(D)” <o NI, g Whllzzme s Vs € 0,5a], (9.121)
M_
(D)OLORTUDY 5 il iy <o 1050l sy g o IBllzms Vs € 0,51 =1 (9.122)

Proof of Proposition Let i and 7 be C* with respect to the Variables p and .
PROOF OF (9.116]). We argue by induction |§|. For § = 0 the proof of ( is a particular case of the

estimate of ( 12 ), (9.129) (with £ =0,8+ «a =0) in Assume that we have proved for
950, ®[1)(D)~ B for all |ﬁ| < n, and let us prove it for \ﬁ| = n. Then we estimate [|20; ®[1] > h||
for all || = n, for all s € [0, s1]. For s = 0 one has

_ E1z1)
1650:@[(D) 2 < Gialdll g1 141170 -

[(D)~
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Then, assume that (9.116]) holds up to the Sobolev index s < s; and we prove it for s +1 < s;. We have

_1Bl+1 18] [IE]

_1Bl+1 _1Bl+1
1020:@ (D)™ = hllsyr = |00 @ED) ™= hllpa gres + 1030, RFID) ™= hllyovaps -
By (9.121]) we have

_I8l+1
1020:@(D) ™= hll s s <s 10ialillly 11001 34111 llsr (9.123)
Then
_I8l+1 _18l+1
1050: @[ (D)~ = Rl o1z = 1050:[A(D) ™= hllg (9.124)
EEIE= o _lBl+1
+  sup  [000:®FND)TE 00hlluars + sup  [OSTCORI(D) T hllms L -
a€eNY |al=1 a€eNY |al=1
The inductive hyphothesis implies
_ 1Bl ko,
[020:861(D) 5 a2 hl, <, 10iaflI 2 1kl (9.125)
We estimate the last term in (9.124)). Differentiating (6.131)) and using the Duhamel principle we get
t
o 1 2 3 4
a2+ 8,0[1 :/0 Ot —7)Fp(r)dr, Fg:=F" +FP +FY +FY, (9.126)
with
1 2 i 1
F§(r) = 3 C(Bi1, 52)922a| D| 2 82 0,9[3) () (9.127)
B1+B2=B+0,|81]=|8]
1
FP(r) = 3 C(B1. 52)9%a| D| 2821 9;®[i)(7) (9.128)
B1+B2=0F+a,|B1|<|B|
F ()= 3 C(Br.52)(020:al))| D205 (). (9.129)
B1+B2=F+a

We estimate separately the terms ®(t — T)Fﬁ(m)(T), m =1,2,3. We use that by (9.42)), (9.43), (9.115)

sup || ®(t)h|ls <s ||hlls Vs € [0, 1] . (9.130)
te(0,1]
For all t,7 € [0,1], 81 + B2 = B+ «, |/1] = |B|, one has by (9.130))

_1Bl+1 [Bl+1

1 _ 18I+
|@(t = 7)022a|D[2 801 ;@[ (T)(D) ™= hlls <s llallstsosip141105 0 @@ (T)(D)” = Alssr.  (9.131)
For all t,7 € [0,1], 81 + B2 = B+ «, | 51| < |6, by (9.130), the inductive hyphothesis, and (9.115]) we get

_1Bl+1

||q)(t—7')352(1‘D|%(9£181‘<DW(T)<D> 2 hs (9.132)

_1B8l+1
<s llallstso+151+11102 B @E(TI(D) ™72 hllsgr < 105014004 24181 -1 [Bllss1
2

For all t,7 € [0,1], 1 + B2 = B+ «, we have, by (9.130)),

_1Bl+1

7 hlls (9.133)

|®(t — ) (9% d;afi))|D|2 92 ®(r)(D)

_ 1B+t
<o [0sad]llcoripra |02 @(T)(D) ™7 hllss1 <s 0iafilllstsorigi+1lllst1-
using (0.58), (0.59), (O.115). Collecting (9.123)-(0.133) we get
_IBl+1
sup sup [|000;P[)(D)” 2 hlfss1 <s 10:a[t]ll 511450+ 3 41 1P lls+1
|B|=nt€[0,1]
8 _ IB+1
+[lallss1150+18) Sup sup [[0,0;@[(D)” 2 hl[s41
|8|=n t€[0,1]
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which, by (9.115)), implies (9.116) with Sobolev index s + 1. d
ProoF oF (9.117). We argue by induction on s. For s = 0 it follows by (9.122)). Then assuming that
(9.117) holds up to the Sobolev index s < 51 — 1 and we prove it for s + 1. We have

_1Bl+1 _1sl+r
[{DYOL@: @) (D)™~ hllysr = (D)L (B®DY 5 R g
+ (D)2 (D)D)~ 5 h| g (9.134)
By (9.122)) we have
_lsl+r
{DYOL@@EN(D) ™5 " hll s yger o 10y g0 [l s (9.135)

We estimate the second term in (9.134)). By the inductive hyphothesis and (9.122]) one has

1Bl ICIES
(D)2 (0,001) (D)5 A 1 ~ [(D)OLD O (D)~ 5> 1 12 (9.136)
INTIESRE
s DORE) D) bl
aeNY |a|=
o _ 18l
Tosup D) @BEND) T e
a€eNY Ja|=1
o _ 18141
Sl + _sup (D)@ BE)(D) )
aeNY |a|=
Finally, for all « € N¥, |a|] = 1, we have, by (9.116)),
a _ Bl a _ 1542 _1
KDYOZH (9 2[)(D)~ = ~*hlls <, l07F* (2:@[@)(D) ™ = (D)~ 251
<s [0iafills 1450+ 34181 1Pl s41 - (9.137)

Hence (0.134)-(9.137) imply the estimate (0.117) with Sobolev index s+1. Ifh € H® and7 € Ystsotlfl+z+o
(resp. 7€ YstsotlBl+3+9 ) the estimate (9.116) (resp. (9.117)) follows by density. O

We now estimate the adjoint ®* of the time-1 flow ® = ®(p,1). As in [§] (Lemma 8.2) we represent
the adjoint ®* = ¥ = ¥(yp, 0) with the backward flow ¥(p,t) of

8 W(p,t) =i|D|7a¥(p,t),  U(p,1)=1Id. (9.138)
Indeed, since ®(y,t) solves and U(¢p, t) solves (0.138), we have, for all ug, vy € L2(T), that
0, (®(p. ) [ua] . W, D)) 1, =0, Ve € [0.1].
Therefore (®(p, 1)[uo], vo)rz = (uo, ¥(p,0)[vo]) 2, namely
U(,0) = Dlp, 1)* = B()" (9.139)
The adjoint operator, since it is the flow of , satisfies properties like those stated in Lemma

Proposition 9.17. (Adjoint) Assume that

ko,
Jal5 gy S 10 lallososn < 6(5) (9.140)

for some 6(s) > 0 small enough. Then for any k € N**1_|k| < ko, for all s > so,

* — ko,
@@ AL <oy (1A 1+ a5 1A ) (9.141)
* — ko,
108(@* — Tkl <o v~ (llalls Al y e+ lall 322 4 gz lBll, 4 o) - (9.142)
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Proof. First we take h € C*°.

PrROOF OF (9.141f). The equation (9.138]) can be written as
0¥ (p, 1) = ia|D|> U(p,1) + D2, a¥(p,1),  W(p,1)=1d,

and, by Duhamel principle, one gets

W(t) = d()B(1) " — i/ (¢ — 7)[|D|?, a0 (7) dr .

t

By (9.139)) the estimate ((9.141)) follows by proving that, for all |k| < ko, s > so,

_ ko,
sup O W(t)hls <5 'k'(Hh||s+% +llall s [

3 m) :
te[0.1] s+so+|k|+3 S0+

(9.143)

(9.144)

For k = 0, the estimate ((9.144)) follows by the same proof below (using only (9.143)), (9.43)), and (9.150)

with k; = ko = 0). Then we argue by induction. We assume that (9.144) holds for k; < k with [k| < ko

and we prove it for k. Differentiating ((9.143]) we get

k() = FP (1) + P (1)

1
FP(t) = ok (@(t)(1) 1) —i > / oM@ (t — 7)[|D|?, 2a)0ks w(r) dr,
kitkoths=k,ks<k”?t

FM(t) = i/tl ®(t —7)[|D|?, )05V (7) dr .

EsTiMATE oF F\¥)(¢). By (9.98), (0.43) (for ®(1)~!), and (9.140), we get

10X (@)@ (1)~ )Alls < v~ (I1Al], 121 + llall 2] 2]

s+so+|k|+1 sﬁ%)

and, for all k1 + ko + ks = k, ks < k,

1051 (¢ — 7)[|D|Z, 05 alok* W (r)h || <oy " |[| D)2, 032 a)0fe ()b

k
S+\21\

+ 7 M la) |DI*,032a]05" W (7)h] ,

stso-+ia 111 o+l
By (2.58) we have
1ok k —k ko,
D082l o <o 10870l g1 g <oy a0,
and, by (9.140), and the inductive hypothesis for k3 < k, we get
Y y g
L oky a9k - ko,
1%, 032al0y* W(T)Al iy <o ™ F D (U iy iear + a5 s IR0y terrsiea ) -

Hence (0.146)), (9.148), (0.149), (0.151)) imply

(k) —|k
IES @Rl <o v MU, a1+ 0l cpsgprires 10l s0) -

(9.145)

(9.146)

(9.147)

(9.148)

(9.149)

(9.150)

(9.151)

(9.152)

ESTIMATE OF FQ(k)(t). For all ¢, 7 € [0, 1], using (9.43)), the bound \|[\D|%,a]|_%7s’0 <s [lalls4 5 (see (9.150)

with k1 = ky = 0), and (9.140) we get

k
RG-S lallsyrs sup [|OXU(T)Als + [lallstsosr sup [ONW(T)R]s, -
T€[0,1] T€[0,1]
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ESTIMATE OF 9%W(t). By (9.145)), (9.152)), (9.153) we get

105 ()hlle <oy (1AL 50+ Nl g 120, 4 )

+llallsgrs sup [|OX€(T)R]ls + llallstsor1 sup [|OXC(T)R]s, - (9.154)
T7€[0,1] T€[0,1]

Then, for s = s, using that, by (9.140)), ||al/2s,+1 < 0(s) is small enough, we get

3 @1a0)
sup 1OK2 (@l <5 (1A 1+ ol Vil ) 2~
tel0,

and therefore, by (9.154]), for all s > s,

sup |05 (Ohlls <oy IR, s+ lallapsoine gl ) +llalls s sup [1O5E(@)A]s
t€[0,1] 2 2 te(0,1]

which yields the estimate (9.144)) for 05 W¥(t) (using again (9.140)) and &(s) small enough).
PROOF OF (9.142). By (9.138]) we have ¥(yp,t) —Id = —i ftl \D\%alll(go, 7)dr, then it is enough to apply

O.144). If h € H*+'3 (resp. h € H+"5™), the estimate 1) (vesp. (9.142)) follows by density. O

Finally we estimate the variation of the adjoint operator ®* with respect to the torus i(y).

Proposition 9.18. Let s; > so and assume the condition

lallsitsors <15 llallsysorr < 6(s1), (9-155)
for some 6(s1) > 0 small. Then, for all s € [sg, $1],
10:2*[ilhlls <s [10safillsrs0+ 1 1Pl 541 - (9.156)

Proof. First, we prove that the map W(t) defined in (9.143) satisfies (9.156) for h and 7 which are C*
with respect to ¢ and x. By differentiating (9.143)) we get

B[] = 0:(D)B(1) 1) —i/t aiq>(t—7)m[\D\%,a]\y(T)dr—i/t (t — 7)[|D|}, Bsafil] U (r) dr

1
- i/ ®(t — 7)[|D|?, a)0; U (7)[i] dr . (9.157)
t
By (9.116|) applied with 3 = 0 we get
10:2(B)[t]Rlls <s [[iali]ll 515043 1Pl 511 - (9-158)
Moreover by (2.58)
D12, all_y 0 <s llalloyg s 11DI%, 0I5 0 <5 10l lo 15 - (9.159)
Then for all ¢ € [0, 1], by (9.158]), (9.43)), (9.155)),
10:(@()2(1) D[R]l <s [10:a[ll 45012 [1Pllss 1 (9.160)

and for all ¢, 7 € [0, 1], by (9.144) (applied for k& = 0), (9.158)), (9.116)), (9.159), (9.43)) and (9.155) we get,
for any s € [sg, s1],

|9:@(t = )EIIDI?, alU(r)hlls , [@(t = P)DI, a1 @ ()Alls <o [aflssyrgIPlasys  (9161)
|®(t = 7)[|D|2, a0 (r)[lA|s < lallsrsl|0:¥(T)[]Alls <s 6(s1)]|0:¥ () [e]R[s - (9.162)
Therefore (9.157), (9.160), (9.161)), (9.162) imply, for all s € [sg, 1],
sup (00 (@) [i]hlls <s [|0:ald]lls 45043 1lls41 + 0(s1) sup (|9 (8)[]A][s

tc[0,1] te[0,1]
and therefore, taking d(s1) small, sup,c(o 1) (0¥ () [t]hl[s <s [|0iat]l|s1 g0+ 1 [1Plls41, Proving If
h e Hs 2 and 7€ Ys+t50+t2+9 then the estimate follows by density. O
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