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Abstract

We develop a general framework for the discussion of detdildance and analyse its microscopic background. We
find that there should be two additions to the well-kndlivror PT-invariance of the microscopic laws of motion:

1. Equilibrium should not spontaneously break the releVamr PT-symmetry.

2. The macroscopic processes should be microscopicatipglisshable to guarantee persistence of detailed bal-
ance in the model reduction from micro- to macrokinetics.

We briefly discuss examples of the violation of these rulestha corresponding violation of detailed balance.
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1. Thehistory of detailed balancein brief Ve v’ v’ -~ "

VERY deep is the well of the past. ... For the deeper w TN w' w' N w

we sound, the further down into the lower world of

the past we probe and press, the more dowe find  Figure 1: Schematic representation of detailed balancedltisions.
that the earliest foundation of humanity, its history

and culture, reveal themselves unfathomable.

T. Mann [1]

Detailed balance as a consequence of the reversibil-
ity of collisions (@t equilibrium, each collision is equili-
brated by the reverse collisiorrig. 1) was introduced
by Boltzmann for the Boltzmann equation and used

be always non-negative). Onsager used this work of
Wegsheider in his famous paper [6]. Instead of direct
citation he wrote: “Here, however, the chemists are ac-

n thte proof of tPeH(—jtrgeo_I[elm [2] éBollt:z_manns argul_- customed to impose a very interesting additional restric-
ments were analyzed by Tolman [3]). Five years earlier, tion, namely: when the equilibrium is reached each in-

t/_laxv_vell u_sr?dhthe r;rlnmple of det_all_eo: ba:cance _for 935 dividual reaction must balance itself.” Einstein used de-
inetics with the reference to thwinciple of syficient tailed balance as a basic assumption in his theory of ra-

r.e‘f"SO”[“]- He analyzgd equilibration in cycles Of (?Ol' diation [7]. In 1925, Lewis recognized the principle of
lisions an_d in the pairs qf mutuglly reverse collisions detailed balance as a new general principle of equilib-
arrl]d r:;}enhoned NOW I IIS |_r':_1possf|ble tolass:gn ‘:]‘ re%sEn rium [8]. The limit of the detailed balance for systems
why the successive velocities of a molecule snould Be pich include some irreversible elementary processes

arranged in this cyclg, rajcher than in the reverse order.” (without reverse processes) was recently studied in de-
In 1901, Wegscheider introduced detailed balance for tail [9, 10]

chemical kinetics on the basis of classical thermody-
namics [5]. He used the assumption that each elemen-
tary reaction is reversible and should respect thermody- |1, this paper, we develop a general formal framework
namics (i.e. entropy production in this reaction should o giscussion of detailed balance, analyse its micro-
scopic background and persistence in the model reduc-
Email addressagi153@le.ac.uk (A. N. Gorban) tion from micro- to macrokinetics.
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2. Sampling of events, T-invariance and detailed
balance

2.1. How detailed balance follows from microre-
versibility

In the sequel, we omit some technical details assum-

ing that all the operations are possible, all the distribu-

tions are regular and finite Borel (Radon) measures, and

all the integrals (sums) exist.
The basic notations and notions:

e () —a space of states of a system (a locally compac
metric space);

e Ensemble’ — a non-negative distribution dn;

e Elementary process has a foun— g (Fig. 2),
wherea, 8 are non-negative distributions;

e Complex — an input or output distribution of an el-
ementary process.

e T — the set ofall complexes participating in ele-

mentary processes. It is equipped with the weak

topology and is a closed and locally compact set of
distributions.

e The reaction rate is a measure defined off =
{(a,B)}. It describes the rates of all elementary pro-
cesses — f.

e The support of, supp c Y?, is themechanisnof
the process, i.e. itis the set of painsg), each pair
represents an elementary process S. (Usually,

supp & 1)
e The rate of the whole kinetic process is a distribu-
tion W on Q (the following integral should exist):
1

W= =
2 Japer?

(B - a)d[r(a. ) - (B, )].

~2

Figure 2: Schematic representation of an elementary psodegut
(@) and outputg) distributions are represented by column histograms.

The distributiony depends on timé. For systems
with continuous timey '= W. For systems with dis-
crete timev(t + 7) — v(t) = W, wherer is the time
step. To create the closed kinetic equation (the associ-
atednonlinear Markov procesfl1]) we have to define
the mapv — r that puts the reaction rate(a Radon
measure of'?) in correspondence with a non-negative
distributionv on Q (the closure problem In this defi-
nition, some additional restrictions ermay be needed.
For example, one can expect thats absolutely con-
tinuous with respect to a special (equilibrium) measure.

+ There are many standard examples of kinetic systems:

mass action law for chemical kinetics [12, 13], stochas-
tic models of chemical kinetics [18], the Boltzmann
equation [14] in quasichemical representation [15] for
space-uniform distributions, the lattice Boltzmann mod-
els [16], which represent the space motion as elemen-
tary discrete jumps (discrete time), and the quasichemi-
cal models of dfusion [17].

We consider interrelations between two important
properties of the measuréy, §):

(EQ)W = 0 (equilibrium condition);

(DB) r(a,B) = r(B, @) (detailed balance condition).

It is possible to avoid the fficult closure question
about the map — r in discussion ofT -invariance and
relations between EQ and DB conditions.

Obviously, DB=EQ. There exists a trivial case when
EQ=DB (a sort of linear independence of the vectors
v = B — a for elementary processes joined in pairs with
their reverse processes): jf(f, B) = —u(B, @))

f (8- )du(@.f) = 0=y = 0
(a,B)esupp

for every antisymmetric measugeon 1?2 (u(a,8) =
—u(B, @)), then EG=DB.

There is a much more general reason for detailed bal-
ance, T-invariance. Assume that the kinetics give a
coarse-grained description of an ensemble of interact-
ing microsystems and this interaction of microsystems
obeys a reversible in time equation: if we look on the
dynamics backward in timeoperation T) we will ob-
serve the solution of the same dynamic equations. For
T-invariant microscopic dynamic3, maps an equilib-
rium ensemble into an equilibrium ensemble. Assuming
unigueness of the equilibrium under given values of the
conservation laws, one can just postulateitivariance
of equilibria with respect to the time reversal transfor-
mationor T-invariance of equilibria: if we observe an
equilibrium ensemble backward in time, nothing will
change.

Let the complexes remain unchanged under the ac-
tion of T. In this case, the time reversal transformation



for collisions (Fig. 1) leads to the reversal of arrow: the
direct collision is transformed into the reverse collision
The same observation is valid for inelastic collisions.
Following this hint, we can accept that the reversal of
time T transforms every elementary process»> g into

its reverse procegs — «. This can be considered as
a restriction on the definition of direct and reverse pro-
cesses in the modelling (a “model engineering” restric-

2. We assume that the rates offdient elementary
processes are physical observables and the ensem-
ble with different values of these rates may be dis-
tinguished experimentally. Is it always true?

The answer to both questions is “no”. The principle
of detailed balance can be violated even if the physical
laws areT, P andPT symmetric. Let us discuss the pos-

tion): the direct process is an ensemble of microscopic SiPl€ reasons for these negative answers and the possible
events and the reverse process is the ensemble of the/iolations of detailed balance.

time reversed events.

Under this assumptionT transformsr(a,8) into
r(8,a). If the rates of elementary processes may be
observed (for example, by the counting of microscopic
events in the ensemble) thd@nrinvariance of equilib-
rium gives DB: at equilibriumy(a,B8) = r(B,«), i.e.
EQ=DB under the hypothesis df-invariance.

The assumption that the complexes are invariant un-

der the action off may be violated: for example, in
Boltzmann’s collisions (Fig. 2) the input measure is
a = 6y + 6y and the output measure fis= 6y + Sy .

. T T
Under time reversaljy—d_,. Thereforea—o_y + 6_w

andﬁnlo‘_w + 0_w. We need an additional invari-
ance, the space inversion invariance (transforma®jpon
to prove the detailed balance (Fig. 1). Therefore, the
detailed balance condition for the Boltzmann equation
(Fig. 1) follows not fromT-invariance alone but from
PT-invariance because for Boltzmann'’s kinetics

{a — ,8}0P—T>{ﬂ - al.

In any case, the microscopic reasons for the de-
tailed balance condition include existence of a symme-
try transformatior¥ such that

(@ > BISIB - al (1)

and the microscopic dynamics is invariant with respect
to €. In this case, one can conclude that (i) the equi-
librium is transformed byg into the same equilibrium
(it is, presumably, unique) and (ii) the reaction rate
r(a,B) is transformed inta (8, @) and does not change

because nothing observable can change (equilibrium is

the same). Finally, at equilibrium{a, 8) = r(8, @) and
EQ=DB.

There remain two question:

1. We are sure th& transforms the equilibrium state
into an equilibrium state but is it necessarily the
same equilibrium? Is it forbidden that the equilib-
rium is degenerate ang acts non-trivially on the
set of equilibria?

2.2. Spontaneous breaking®fsymmetry

Spontaneous symmetry breaking is a well known ef-
fect in phase transitions and particle physics. It appears
when the physical laws are invariant under a transfor-
mation, but the system as a whole changes under such
transformations. The best known examples are magnets.
They are not rotationally symmetric (there is a contin-
uum of equilibria that dter by the direction of magnetic
field). Crystals are not symmetric with respect to trans-
lation (there is continuum of equilibria thatftér by a
shift in space). In these two examples, the multiplicity
of equilibria is masked by the fact that all these equi-
librium states can be transformed into each other by a
proper rigid motion transformation (translation and ro-
tation).

The nonreciprocal mediaviolate PT invariance [19,

20, 21]. These media are transformed®Y into dif-
ferent @ual) equilibrium media and cannot be trans-
formed back by a proper rigid motion. Therefore, the
implication EQ=DB for the nonreciprocal media may
be wrong and for its validity some strong additional as-
sumptions are needed, like the linear independence of
elementary processes.

Spontaneous breaking @Fsymmetry provides us a
counterexample to the proof of detailed balance. In this
proof, we used the assumption that under transforma-
tion T elementary processes transform into their reverse
processes (1) and, at the same time, the equilibrium en-
semble does not change.

If the equilibrium is transformed b§ into another
(but obviously also equilibrium) state then our reason-
ing cannot be applied to reality and the proof is not
valid. Nevertheless, the refutation of the proof does not
mean that the conclusion (detailed balance) is compul-
sory wrong. Following the Lakatos terminology [23] we
should call spontaneous breakingsymmetry thdo-
cal counterexampl® the principle detailed balance. It
is an intriguing question whether such a local counterex-
ample may be transformed intogéobal one: does the
violation of the Onsager reciprocal relation mean the vi-



olation of detailed balance (and not only the refutation where exp};; a,iui/RT) is the Boltzmann factorR is
of its proof)? the gas constant) angy > O is the kinetic factor (this

It is known that for many practically important ki- representation is closely related to the transition state
netic laws the Onsager reciprocal relation follow from theory [26] and its generalizations [27]).
detailed balance. In this cases, violation of the recip- The equilibria and conditional equilibria are de-
rocal relations implies violation of the principle of de- scribed as the maximizers of the free entropy under
tailed balance. For master equation (first order kinetics given conditions. For the system with detailed balance
or continuous time Markov chains) the principle of de- every elementary process has a reverse process and the
tailed balance iquivalentto the reciprocal relations  couple of processes; a,iA = i B,iA should move
([24] Ch. 10,§ 4). For nonlinear mass action law the the system from the initial state to the partial equilib-
implication “detailed balance> reciprocal relations” is rium, that is the maximizer of the functiah in the di-
also well known (see, for example, [12]) but the equiv- rectiony,. Assume that the equilibrium is notmund-
alence is not correct because the number of nonlinearary pointof the state space. For smooth function, the
reactions for a given number of components may be ar- conditional maximizer in the directioy), should satisfy
bitrarily large and it is possible to select such values of the necessary conditigy; y,iu = 0. In the generalized
reaction rate constants that the reciprocal relations aremass action form (2) the detailed balance condition has
satisfied but the principle of detailed balance does not a very simple form:
hold. For transport processes, the quasichemical mod-

els [17] also demonstrate how the reciprocal relations ¢, =, (3)

follow from detailed balance for the mass action law ki- _ L . .

netics or the generalized mass action law. Whgre¢; is the_ kinetic factor for the direct reaction and
In general, let for a finite-dimensional system the set ¢, IS the kinetic factor for the reverse reaction.

of components (species or statds) ..., A, be given. Let us join the elemeqtary processes in pairs, di-

For eachA; the extensive variablBi (“amount” of A) rect with reverse ones, with the corresponding change

is defined. The Massieu-Planck functi®N, . ..) (free in their numeration.  The kinetic equation I8 =

entropy[25]) depends on the vectdt with coordinates ¥ 2 ¥»(Ty — ;). The Jacobian matrix at equilibrium

N; and on the variables that are constant under given IS

conditions. For isolated systems instead.of)(in ® we o

should use internal enerdy and volumeV (and this® NV Z rpeqypiypk] i/ T) ,

is the entropy), for isothermal isochoric systems these oN; eq R k Up oN; eq

variables are AT andV, whereT is temperature, and

for isothermal isobaric systems we should ugg and ~ wherer? = r;%% = 1 *%is the rate at equilibrium of the

P/T, whereP is pressure. For all such conditions, direct and reverse reactions (they coincide due to de-

tailed balance) and the subscript ‘eq’ corresponds to the

[ MK derivatives at the equilibrium. The linear approximation
N T’ to the kinetic equations near the equilibrium is

wherey; is the chemical potential o&; or the gener-

alized chemical potentidbr the quasichemical models w _ _y Z redy A (&)

where interpretation o4 is wider than just various sorts dt R > p Yol Yok T/

of particles.
Elementary processes in the finite-dimensional sys- whereAN; andA(ux/T) are deviations from the equilib-
tems are represented by their stoichiometric equations rium values. The variablesN; are extensive thermo-
dynamic coordinates amntl(ux/T) are intensive conju-
Z @A — Z.BpiAi- gated v ariables — thermodynamic forces. Time deriva-
i i tives dAN;/dt are thermodynamic fluxes. Symmetry of
This is a particular case of the general picture presentedthe matrix of coéicients and, therefore, validity of the

in Fig. 2. Thestoichiometric vectois y,: y,i = By — reciprocal relations is obvious. _
,i (gain minus loss). The generalized mass action law ~ Thus, for a wide class of kinetic laws the reciprocal
represents the reaction rate in the following form: relations in a vicinity of a regular (non-boundary) equi-
librium point follow from the detailed balance in the lin-
_ Hi ear approximation. In these cases, the non-reciprocal
r, = ¢,ex aOyi—1, 2 T :
p =% p[Z o RT) @ media give theglobal counterexample® the detailed



balance. Without a reference to a kinetic law they re-  For example, let us take two reactioAs= B and
main the local counterexamples to the proof of detailed 2A = 2B. For the first reaction the corresponding mi-
balance. croscopic processes have the forrA(yB) = ((x —
1A, (y + 1)B) (if all the cosdficients are nonnegative).
2.3. Sampling of gferent macro-events from the same For the reaction & = 2B the microscopic processes
micro-events have the formxA yB) = ((x - 2)A, (y+ 2)B) (if all the
In kinetics, only the total rat&V is observable (as codficients are nonnegative). These sets do not inter-
W =vorW = Av = y(t +7) — v(t)). Inthe macroscopic  sect, the elementary processes are microscopically dis-
world the observability of the rates of the elementary tinguishable and the macroscopic detailed balance fol-

processes is just a hypothesis. lows from the microscopic detailed balance.
Imagine a microscopic demon that counts collisions  Nontrivial Wegscheider identities appear in this ex-
or other microscopic events of various types. el ample at the microscopic level (in the first example all

ent elementary processes correspond ftedint types the microscopic transitions are linearly independent and
of microscopic events then the rates of elementary pro- there exist no additional relations). Let the microscopic
cesses can be observed. If the equilibrium ensemble isreaction rate constants for the reactiad(yB) = ((x—
invariant with respect t@ then the demon cannotdetect 1)A, (y + 1)B) be 7 (x,y) and«;(x,y) for the reaction
the diference between the equilibrium and the trans- (xA yB) = ((x — 2)A, (y + 2)B). Due to the detailed
formed equilibrium and the rates of elementary pro- balance, in each cycle of a linear reaction network the
cesses should satisfy DB. But it is possible to sample product of reaction rate constants in the clockwise di-
the elementary processes of macroscopic kinetics fromrections coincides with the product in the anticlockwise
the events of microscopic kinetics infidirent manner. directions. It is stficient to consider the basis cycles
For example, in chemical mass action law kinetics we (and their reversals):
can consider the reaction mechanidre= B (rate con-
stantsk.1), A+ B = 2B (rate constantk.;) [22]. We (XA yB) — ((x- 1A, (y+1)B) —
can also create a stochastic model for this system with - ((x=2)A, (y + 2)B) = (XA yB).
the statesXA yB) (x, y are nonnegative integers) and the
elementary transitionxf, yB) = ((x — DA, (y + 1)B) Therefore,
(rate constants, = kX + ki2X%, ko = ka(y+ 1) +
ko(x — 1)(y + 1)). The elementary transitions in this K (XY (X =Ly + i (xY)
stochastic model are linearly independent and-HaB. =15 (% YK (X = 1,y + Lig (. Y).
In the corresponding mass action law chemical kinet-
ics detailed balance requires additional relation between In the macroscopic limit these conditions transform into
constantsk,;/k 1 = Kyo/k . macroscopic detailed balance conditions.
Thus, macroscopic detailed balance may be vio-
lated in this example when microscopic detailed bal-
ance holds. (For more examples and theoretic consider-3. Relations between elementary processes beyond
ation of the relations between detailed balance in mass ~ microreversibility and detailed balance
action law chemical kinetics and stochastic models of
these systems see [22].) Indeed, both of the macro- If microreversibility does not exist, is everything per-
scopic elementary processds= B andA+ B = 2B mitted? What are the the relations between the reaction
correspond to the same set of microscopic elementaryrates beyond the microreversibility conditions if such
processesxA yB) = ((x — 1)A,(y + 1)B). Each of universal relations exist? The radical point of view is:
these elementary event is “shared” between twitedi beyond the microreversibility we face just the world of
ent macroscopic elementary processes. Therefore, thekinetic equations with preservation of positivity, vargou
macroscopic elementary processes in this example arespecific restrictions on the cfiients appear in some
microscopically indistinguishable specific cases and the variety of these cases in unob-
The microscopic indistinguishability in this exam- servable. Development of this point of view leads to the
ple follows from the coincidence of the stoichiomet- general theory of nonlinear Markov processes [11], i.e.
ric vectors for two macroscopic processes= B and the general theory of kinetic equations with preservation
A+ B = 2B. If the stoichiometric vectors are just linear of positivity.
dependent then it does not imply the microscopic indis-  The problem of the relations between elementary pro-
tinguishability. cesses beyond microreversibility and detailed balance



Fast equilibria

outputsw/ \ inputs'/ \ w

Figure 3: Boltzmann’s cyclic balance (1887) (or semi-dethbal-
ance or complex balance) is a summarised detailed balancktion:

at equilibrium the sum of intensities of collisions with agi input
V+Ww — ... coincides with the sum of intensities of collisions with
the same output.. — v+ w.

Small amounts

was stated by Lorentz in ;887 [28]. Boltzmgnn iMMe- Figure 4: Schematic representation of the Michaelis—Mente
diately proposed the solution [29] and used it for exten- Stueckelberg asymptotic assumptions: an elementary gsoce
sion of hisH-theorem beyond microreversibility. These Z@iAi = X a:iA goes through intermediate compouris The

" . . fast equilibria} a,i Al = B and} B, Al = B, can be described by
conditions have the form of partlally summated condi conditional maximum of tﬁe free entropy. 60ncentrationsB§xfare

tions of detailed balance (Fig. 3, compare to Fig. 1). small and reaction between them obeys linear kinetic eguati
This solution was analyzed, generalized and proved

by several generations of researchers (Heitler, Coester, . o )
Watanabe, Stueckelberg and other, see the review in(therefore, this equilibrium can be described by ther-
[27]). It was rediscovered in 1972 [30] in the context of Modynamics) and (iii) the concentrations of compounds
chemical kinetics and popularized as t@mplex bal- are small with respect to concentrations of components
ance condition (hence, (iiiA) the quasisteady state assumption is valid
For the finite-dimensional systems which obey the for the compound kinetics and (iiiB) the transitions be-
generalized mass action law (2) the complex balance tWeen compounds foIIow_the first o_rd.e_r kinetics) [27].
condition is also the summarized detailed balance con-  Thus, beyond the microreversibility, Boltzmann's
dition (3). Consider the sét of allinput and outputvec-  Cyclic balance (or semi-detailed balance, or complex
torsa, andB,. The complex balance condition reads: balance) holds and it is as universal as the idea of in-

for everyy € 't termediate compounds (activated complexes or transi-
tion states) which exist in small concentrations and are
Z ¢, = Z &, in fast equilibria with the basic reagents.
P =Y P:Bp=Y

Now, the complex balance conditions in combina- 4. Conclusion
tion yw_th g_eneral_lzed mass action law are proven fqr Thus, EQsDB if:
the finite-dimensional systems in the asymptotic limit
proposed first by Michaelis and Menten [32] for fer- 1. There exists a transformati@nthat transforms the
mentative reactions and Stueckelberg [31] for the Boltz- elementary processes into reverse processes and
mann equation. This limit this limit is constituted the microscopic laws of motion af@-invariant;
by three assumptions (Fig. 4): (i) the elementary pro- 2. The equilibrium is symmetric with respect £
cesses go through the intermediate compounds, (ii) the that is, there is no spontaneous breakingZof

compounds are in fast equilibria with the components symmetry;
(therefore, this equilibrium can be described by ther- 3. The macroscopic elementary processes are micro-
modynamics) and (iii) the concentrations of compounds scopically distinguishable. That is, they represent

are small with respect to concentrations of components disjoint sets of microscopic events.
(hence, (iiiA) the quasisteady state assumption is valid
for the compound kinetics and (iiiB) the transitions be-
tween compounds follow the first order kinetics) [27].
Now, the complex balance conditions in combina-
tion with generalized mass action law are proven for
the finite-dimensional systems in the asymptotic limit
proposed first by Michaelis and Menten. This limit 1. EQeDB in the original (“microscopic”) model;
consists of three assumptions: (i) the elementary pro- 2. Equilibria of the macroscopic model correspond
cesses go through the intermediate compounds, (ii) the to equilibria of the microscopic model. That is,
compounds are in fast equilibria with the components the reduced kinetic model has no equilibria, which

6

In applications¥ is usually either time reversalor the
combined transfornPT.

For level jumping (reduction of kinetic models
[15]), the equivalence E©DB persists in the reduced
(“macroscopic”) model if:



correspond to non-stationary dynamical regimes of [10]
the original kinetic model;

3. The macroscopic elementary processes are micro-j;q
scopically distinguishable. That is, they represent

disjoint sets of microscopic processes. [12]

In this note, we avoid the discussion of an important
part of Boltzmann’s legacy which is very relevant to the [13]
topic under consideration. Boltzmann represented ki- [14]
netic process as aensemble of indivisible elementary
events — collisionsIn the microscopic world, a colli-
sion is a continuous in time and infinitely divisible pro-
cess (and it requires infinite time in most of the mod- [16]
els of pair interaction). In the macroscopic world it is
instant and indivisible. The transition from continuous 7]
motion of particles to an ensemble of indivisible instant
collisions is not digested by modern mathematics up to
now, more than 130 years after its invention. The known [18]
results [33, 34] state that the Boltzmann equation for [19]
an ensemble of classical particles with pair interaction
and short—range potentials is asymptotically valid start-
ing from a non-correlated state during a fraction of the [20]
mean free flight time. That is very far from the area
of application. Nevertheless, if we just accept that it is [
possible to count microscopic events then the reasons
of validity and violations of detailed balance in kinetics
are clear.

[15]

[22]
References [23]

[1] T. Mann, Joseph and his brothers. Prelude, Translated. by (24]
Lowe-Porter, A.A. Knopf, Inc., NY, 1945.

[2] L. Boltzmann, Weitere Studien Uber das Warmegleigtiget (23]
unter Gasmolekillen, Sitzungsber. Kais. Akad. Wiss. 662).8 (26]
275-370.

[3] R.C. Tolman, The Principles of Statistical Mechanicxf@d
University Press, London, UK, 1938. (27]

[4] J.C. Maxwell, On the dynamical theory of gases. Phildscgl
Transactions of the Royal Society of London, 157 (1867), 49— (28]
88.

[5] R. Wegscheider, Uber simultane Gleichgewichte und die
Beziehungen zwischen Thermodynamik und Reactionskinetik
homogener Systeme, Monatshefte fir Chemie&hemical (29]
Monthly 32(8) (1901), 849-906.

[6] L. Onsager, Reciprocal relations in irreversible psses. I,

Phys. Rev. 37 (1931), 405-426. (30]

[7] A. Einstein, Strahlungs—Emission und —Absorption naieh
Quantentheorie, Verhandlungen der Deutschen Physikalisc (31]
Gesellschaft 18 (1/24) (1916). Braunschweig: Vieweg, 318—

323. [32]

[8] G.N. Lewis, A new principle of equilibrium, Proceedingbthe
National Academy of Sciences of the United States 11 (1925), (33]
179-183.

[9] A.N. Gorban, G.S.Yablonsky, Extended detailed balafae
systems with irreversible reactions, Chemical Enginge8ui- [34]

ence 66 (2011) 5388-5399; arXiv:1012.2908 [cond-matmtrl
scil.

A.N. Gorban, E.M. Mirkes, G.S. Yablonsky, Thermodynam
ics in the limit of irreversible reactions, Physica A 392 120
1318-1335; arXiv:1207.2507 [cond-mat.stat-mech].

V.N. Kolokoltsov, Nonlinear Markov processes and kioe
equations, Cambridge University Press, London, 2010.

G.S. Yablonskii, V.I. Bykov, A.N. Gorban, V.I. ElokhjnKi-
netic Models of Catalytic Reactions, Elsevier, Amsterdaime
Netherlands, 1991.

G. Marin, G.S. Yablonsky, Kinetics of chemical reacto John
Wiley & Sons, Weinheim, Germany, 2011.

C. Cercignani,The Boltzmann equation and its applications,
Springer, New York, 1988.

A.N. Gorban, 1.V. Karlin, Invariant Manifolds for Phigal and
Chemical Kinetics, Lect. Notes Phys. 660, Springer, Berlin
Heidelberg, 2005.

S. Succi, The lattice Boltzmann equation for fluid dynesrand
beyond, Clarendon Press, Oxford, 2001.

A.N. Gorban, H.P. Sargsyan, H.A. Wahab, Quasichemical
Models of Multicomponent Nonlinear Busion, Mathemati-
cal Modelling of Natural Phenomena 6 (05) (2011), 184-262;
arXiv:1012.2908 [cond-mat.mtrl-sci].

D.T. Gillespie, Stochastic simulation of chemical diits,
Annu. Rev. Phys. Chem. 58 (2007), 35-55.

C.M. Krowne, Nonreciprocal electromagnetic propestiof
composite chiral-ferrite media, In IEE Proceedings H (Mi-
crowaves, Antennas and Propagation) 140 (3) (1993), 2824
E.O. Kamenetskii, Onsager—Casimir principle and pegity
relations for bianisotropic media. Microwave and Opticath-
nology Letters 19 (6) (1998), 412-416.

A. Guo, G.J. Salamo, D. Duchesne, R. Morandotti, M. Yiela
Ravat, V. Aimez, G.A. Siviloglou, D.N. Christodoulides, &¥y-
vation of PT-symmetry breaking in complex optical potelstia
Phys. Rev. Lett. 103 (2009), 093902.

B. Joshi, Deterministic detailed balance in chemiadation
networks is sfficient but not necessary for stochastic detailed
balance (2013), arXiv:1312.4196 [math.PR].

I. Lakatos, Proofs and Refutations, Cambridge UnitgiRress,
Cambridge, 1976.

S.R. de Groot, P. Mazur, Non-equilibrium thermodynesni
Dover Publ. Inc., NY, 1984.

H.B. Callen, Thermodynamics and an Introduction to fibe
statistics (2nd ed.), John Wiley & Sons, NY, 1985.

H. Eyring, The activated complex in chemical reactiods
Chem. Phys. 3 (1935), 107-115.
A.N. Gorban, M. Shahzad,
Stueckelberg theorem, Entropy 13 (2011),
arXiv:1008.3296 [physics.chem-ph].

H.-A. Lorentz, Uber das Gleichgewicht der lebendigen Kraft
unter Gasmolekilen, Sitzungsber. Kais. Akad. Wiss. 95 (2)
(1887), 115-152.

L. Boltzmann, Neuer Beweis zweier Satze iber das
Warmegleichgewicht unter mehratomigen Gasmolekulen.
Sitzungsber. Kais. Akad. Wiss. 95 (2) (1887), 153-164.

F. Horn, R. Jackson, General mass action kinetics, ARelion.
Mech. Anal. 47 (1972), 81-116.

E.C.G. Stueckelberg, Theorerhiet unitarite deS, Helv. Phys.
Acta25 (1952), 577-580.

L. Michaelis, M. Menten, Die kinetik der Intervintwitkg,
Biochem. 249 (1913), 333-369.

O. E. Lanford I, Time evolution of large classical $gms,

In Dynamical systems, theory and applications, J. Mosel),(ed
Lect. Notes Phys., 38, Springer, Berlin—Heidelberg, 1+111
1975.

I. Gallagher, L. Saint-Raymond, and B. Texier, From [mw

to Boltzmann: hard spheres and short-range potentialsctz i

The Michaelis—-Menten—
966-1019;



Lectures in Advanced Mathematics, European Mathematical
Society Publishing House, Zirich, 2014; arXiv:1208.5753
[math.AP].



