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Abstract

We develop a general framework for the discussion of detailed balance and analyse its microscopic background. We
find that there should be two additions to the well-knownT- or PT-invariance of the microscopic laws of motion:

1. Equilibrium should not spontaneously break the relevantT- or PT-symmetry.
2. The macroscopic processes should be microscopically distinguishable to guarantee persistence of detailed bal-

ance in the model reduction from micro- to macrokinetics.
We briefly discuss examples of the violation of these rules and the corresponding violation of detailed balance.
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1. The history of detailed balance in brief

VERY deep is the well of the past. ... For the deeper
we sound, the further down into the lower world of
the past we probe and press, the more do we find
that the earliest foundation of humanity, its history
and culture, reveal themselves unfathomable.

T. Mann [1]

Detailed balance as a consequence of the reversibil-
ity of collisions (at equilibrium, each collision is equili-
brated by the reverse collision, Fig. 1) was introduced
by Boltzmann for the Boltzmann equation and used
in the proof of theH-theorem [2] (Boltzmann’s argu-
ments were analyzed by Tolman [3]). Five years earlier,
Maxwell used the principle of detailed balance for gas
kinetics with the reference to theprinciple of sufficient
reason[4]. He analyzed equilibration in cycles of col-
lisions and in the pairs of mutually reverse collisions
and mentioned “Now it is impossible to assign a reason
why the successive velocities of a molecule should be
arranged in this cycle, rather than in the reverse order.”

In 1901, Wegscheider introduced detailed balance for
chemical kinetics on the basis of classical thermody-
namics [5]. He used the assumption that each elemen-
tary reaction is reversible and should respect thermody-
namics (i.e. entropy production in this reaction should
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Figure 1: Schematic representation of detailed balance forcollisions.

be always non-negative). Onsager used this work of
Wegsheider in his famous paper [6]. Instead of direct
citation he wrote: “Here, however, the chemists are ac-
customed to impose a very interesting additional restric-
tion, namely: when the equilibrium is reached each in-
dividual reaction must balance itself.” Einstein used de-
tailed balance as a basic assumption in his theory of ra-
diation [7]. In 1925, Lewis recognized the principle of
detailed balance as a new general principle of equilib-
rium [8]. The limit of the detailed balance for systems
which include some irreversible elementary processes
(without reverse processes) was recently studied in de-
tail [9, 10].

In this paper, we develop a general formal framework
for discussion of detailed balance, analyse its micro-
scopic background and persistence in the model reduc-
tion from micro- to macrokinetics.
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2. Sampling of events, T-invariance and detailed
balance

2.1. How detailed balance follows from microre-
versibility

In the sequel, we omit some technical details assum-
ing that all the operations are possible, all the distribu-
tions are regular and finite Borel (Radon) measures, and
all the integrals (sums) exist.

The basic notations and notions:

• Ω – a space of states of a system (a locally compact
metric space);

• Ensembleν – a non-negative distribution onΩ;

• Elementary process has a formα → β (Fig. 2),
whereα, β are non-negative distributions;

• Complex – an input or output distribution of an el-
ementary process.

• Υ – the set ofall complexes participating in ele-
mentary processes. It is equipped with the weak
topology and is a closed and locally compact set of
distributions.

• The reaction rater is a measure defined onΥ2 =

{(α, β)}. It describes the rates of all elementary pro-
cessesα→ β.

• The support ofr, suppr ⊂ Υ2, is themechanismof
the process, i.e. it is the set of pairs (α, β), each pair
represents an elementary processα→ β. (Usually,
suppr  Υ2.)

• The rate of the whole kinetic process is a distribu-
tion W onΩ (the following integral should exist):

W =
1
2

∫

(α,β)∈Υ2
(β − α)d[r(α, β) − r(β, α)].

… 

… 

r 

Figure 2: Schematic representation of an elementary process. Input
(α) and output (β) distributions are represented by column histograms.

The distributionν depends on timet. For systems
with continuous time, ˙ν = W. For systems with dis-
crete time,ν(t + τ) − ν(t) = W, whereτ is the time
step. To create the closed kinetic equation (the associ-
atednonlinear Markov process[11]) we have to define
the mapν 7→ r that puts the reaction rater (a Radon
measure onΥ2) in correspondence with a non-negative
distributionν onΩ (theclosure problem). In this defi-
nition, some additional restrictions onνmay be needed.
For example, one can expect thatν is absolutely con-
tinuous with respect to a special (equilibrium) measure.
There are many standard examples of kinetic systems:
mass action law for chemical kinetics [12, 13], stochas-
tic models of chemical kinetics [18], the Boltzmann
equation [14] in quasichemical representation [15] for
space-uniform distributions, the lattice Boltzmann mod-
els [16], which represent the space motion as elemen-
tary discrete jumps (discrete time), and the quasichemi-
cal models of diffusion [17].

We consider interrelations between two important
properties of the measurer(α, β):

(EQ)W = 0 (equilibrium condition);
(DB) r(α, β) ≡ r(β, α) (detailed balance condition).
It is possible to avoid the difficult closure question

about the mapν 7→ r in discussion ofT-invariance and
relations between EQ and DB conditions.

Obviously, DB⇒EQ. There exists a trivial case when
EQ⇒DB (a sort of linear independence of the vectors
γ = β − α for elementary processes joined in pairs with
their reverse processes): if (µ(α, β) = −µ(β, α))

∫

(α,β)∈suppr
(β − α)dµ(α, β) = 0⇒ µ = 0

for every antisymmetric measureµ on Υ2 (µ(α, β) =
−µ(β, α)), then EQ⇒DB.

There is a much more general reason for detailed bal-
ance,T-invariance. Assume that the kinetics give a
coarse-grained description of an ensemble of interact-
ing microsystems and this interaction of microsystems
obeys a reversible in time equation: if we look on the
dynamics backward in time (operation T) we will ob-
serve the solution of the same dynamic equations. For
T-invariant microscopic dynamics,T maps an equilib-
rium ensemble into an equilibrium ensemble. Assuming
uniqueness of the equilibrium under given values of the
conservation laws, one can just postulate theinvariance
of equilibria with respect to the time reversal transfor-
mationor T-invariance of equilibria: if we observe an
equilibrium ensemble backward in time, nothing will
change.

Let the complexes remain unchanged under the ac-
tion of T. In this case, the time reversal transformation
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for collisions (Fig. 1) leads to the reversal of arrow: the
direct collision is transformed into the reverse collision.
The same observation is valid for inelastic collisions.
Following this hint, we can accept that the reversal of
timeT transforms every elementary processα→ β into
its reverse processβ → α. This can be considered as
a restriction on the definition of direct and reverse pro-
cesses in the modelling (a “model engineering” restric-
tion): the direct process is an ensemble of microscopic
events and the reverse process is the ensemble of the
time reversed events.

Under this assumption,T transformsr(α, β) into
r(β, α). If the rates of elementary processes may be
observed (for example, by the counting of microscopic
events in the ensemble) thenT-invariance of equilib-
rium gives DB: at equilibrium,r(α, β) = r(β, α), i.e.
EQ⇒DB under the hypothesis ofT-invariance.

The assumption that the complexes are invariant un-
der the action ofT may be violated: for example, in
Boltzmann’s collisions (Fig. 2) the input measure is
α = δv + δw and the output measure isβ = δv′ + δw′ .

Under time reversal,δv
T
7→δ−v. Thereforeα

T
7→δ−v + δ−w

and β
T
7→δ−v′ + δ−w′ . We need an additional invari-

ance, the space inversion invariance (transformationP)
to prove the detailed balance (Fig. 1). Therefore, the
detailed balance condition for the Boltzmann equation
(Fig. 1) follows not fromT-invariance alone but from
PT-invariance because for Boltzmann’s kinetics

{α→ β}
PT
7→{β→ α}.

In any case, the microscopic reasons for the de-
tailed balance condition include existence of a symme-
try transformationT such that

{α→ β}
T

7→{β→ α} (1)

and the microscopic dynamics is invariant with respect
to T. In this case, one can conclude that (i) the equi-
librium is transformed byT into the same equilibrium
(it is, presumably, unique) and (ii) the reaction rate
r(α, β) is transformed intor(β, α) and does not change
because nothing observable can change (equilibrium is
the same). Finally, at equilibriumr(α, β) ≡ r(β, α) and
EQ⇒DB.

There remain two question:

1. We are sure thatT transforms the equilibrium state
into an equilibrium state but is it necessarily the
same equilibrium? Is it forbidden that the equilib-
rium is degenerate andT acts non-trivially on the
set of equilibria?

2. We assume that the rates of different elementary
processes are physical observables and the ensem-
ble with different values of these rates may be dis-
tinguished experimentally. Is it always true?

The answer to both questions is “no”. The principle
of detailed balance can be violated even if the physical
laws areT, P andPT symmetric. Let us discuss the pos-
sible reasons for these negative answers and the possible
violations of detailed balance.

2.2. Spontaneous breaking ofT-symmetry

Spontaneous symmetry breaking is a well known ef-
fect in phase transitions and particle physics. It appears
when the physical laws are invariant under a transfor-
mation, but the system as a whole changes under such
transformations. The best known examples are magnets.
They are not rotationally symmetric (there is a contin-
uum of equilibria that differ by the direction of magnetic
field). Crystals are not symmetric with respect to trans-
lation (there is continuum of equilibria that differ by a
shift in space). In these two examples, the multiplicity
of equilibria is masked by the fact that all these equi-
librium states can be transformed into each other by a
proper rigid motion transformation (translation and ro-
tation).

Thenonreciprocal mediaviolate PT invariance [19,
20, 21]. These media are transformed byPT into dif-
ferent (dual) equilibrium media and cannot be trans-
formed back by a proper rigid motion. Therefore, the
implication EQ⇒DB for the nonreciprocal media may
be wrong and for its validity some strong additional as-
sumptions are needed, like the linear independence of
elementary processes.

Spontaneous breaking ofT-symmetry provides us a
counterexample to the proof of detailed balance. In this
proof, we used the assumption that under transforma-
tion T elementary processes transform into their reverse
processes (1) and, at the same time, the equilibrium en-
semble does not change.

If the equilibrium is transformed byT into another
(but obviously also equilibrium) state then our reason-
ing cannot be applied to reality and the proof is not
valid. Nevertheless, the refutation of the proof does not
mean that the conclusion (detailed balance) is compul-
sory wrong. Following the Lakatos terminology [23] we
should call spontaneous breaking ofT-symmetry thelo-
cal counterexampleto the principle detailed balance. It
is an intriguing question whether such a local counterex-
ample may be transformed into aglobal one: does the
violation of the Onsager reciprocal relation mean the vi-
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olation of detailed balance (and not only the refutation
of its proof)?

It is known that for many practically important ki-
netic laws the Onsager reciprocal relation follow from
detailed balance. In this cases, violation of the recip-
rocal relations implies violation of the principle of de-
tailed balance. For master equation (first order kinetics
or continuous time Markov chains) the principle of de-
tailed balance isequivalentto the reciprocal relations
([24] Ch. 10,§ 4). For nonlinear mass action law the
implication “detailed balance⇒ reciprocal relations” is
also well known (see, for example, [12]) but the equiv-
alence is not correct because the number of nonlinear
reactions for a given number of components may be ar-
bitrarily large and it is possible to select such values of
reaction rate constants that the reciprocal relations are
satisfied but the principle of detailed balance does not
hold. For transport processes, the quasichemical mod-
els [17] also demonstrate how the reciprocal relations
follow from detailed balance for the mass action law ki-
netics or the generalized mass action law.

In general, let for a finite-dimensional system the set
of components (species or states)A1, . . . ,An be given.
For eachAi the extensive variableNi (“amount” of Ai)
is defined. The Massieu-Planck functionΦ(N, . . .) (free
entropy[25]) depends on the vectorN with coordinates
Ni and on the variables that are constant under given
conditions. For isolated systems instead of (. . .) in Φ we
should use internal energyU and volumeV (and thisΦ
is the entropy), for isothermal isochoric systems these
variables are 1/T andV, whereT is temperature, and
for isothermal isobaric systems we should use 1/T and
P/T, whereP is pressure. For all such conditions,

∂Φ

∂Ni
= −
µi

T
,

whereµi is the chemical potential ofAi or thegener-
alized chemical potentialfor the quasichemical models
where interpretation ofAi is wider than just various sorts
of particles.

Elementary processes in the finite-dimensional sys-
tems are represented by their stoichiometric equations

∑

i

αρiAi →
∑

i

βρiAi .

This is a particular case of the general picture presented
in Fig. 2. Thestoichiometric vectoris γρ: γρi = βρi −
αρi (gain minus loss). The generalized mass action law
represents the reaction rate in the following form:

rρ = φρ exp















∑

i

αρi
µi

RT















, (2)

where exp(
∑

i αρiµi/RT) is the Boltzmann factor (R is
the gas constant) andφr > 0 is the kinetic factor (this
representation is closely related to the transition state
theory [26] and its generalizations [27]).

The equilibria and conditional equilibria are de-
scribed as the maximizers of the free entropy under
given conditions. For the system with detailed balance
every elementary process has a reverse process and the
couple of processes

∑

i αρiAi ⇋

∑

i βρiAi should move
the system from the initial state to the partial equilib-
rium, that is the maximizer of the functionΦ in the di-
rectionγρ. Assume that the equilibrium is not abound-
ary point of the state space. For smooth function, the
conditional maximizer in the directionγρ should satisfy
the necessary condition

∑

i γρiµi = 0. In the generalized
mass action form (2) the detailed balance condition has
a very simple form:

φ+ρ = φ
−
ρ , (3)

whereφ+ρ is the kinetic factor for the direct reaction and
φ−ρ is the kinetic factor for the reverse reaction.

Let us join the elementary processes in pairs, di-
rect with reverse ones, with the corresponding change
in their numeration. The kinetic equation iṡN =

V
∑

ρ γρ(r
+
ρ − r−ρ ). The Jacobian matrix at equilibrium

is

∂Ṅi

∂N j

∣

∣

∣

∣

∣

∣

eq

= −
V
R

∑

k

















∑

ρ

req
ρ γρiγρk

















∂(µk/T)
∂N j

∣

∣

∣

∣

∣

∣

eq

,

wherereq
ρ = r+eq

ρ = r−eq
ρ is the rate at equilibrium of the

direct and reverse reactions (they coincide due to de-
tailed balance) and the subscript ‘eq’ corresponds to the
derivatives at the equilibrium. The linear approximation
to the kinetic equations near the equilibrium is

d∆Ni

dt
= −

V
R

∑

k

















∑

ρ

req
ρ γρiγρk

















∆

(

µk

T

)

,

where∆Ni and∆(µk/T) are deviations from the equilib-
rium values. The variables∆Ni are extensive thermo-
dynamic coordinates and∆(µk/T) are intensive conju-
gated v ariables – thermodynamic forces. Time deriva-
tives d∆Ni/dt are thermodynamic fluxes. Symmetry of
the matrix of coefficients and, therefore, validity of the
reciprocal relations is obvious.

Thus, for a wide class of kinetic laws the reciprocal
relations in a vicinity of a regular (non-boundary) equi-
librium point follow from the detailed balance in the lin-
ear approximation. In these cases, the non-reciprocal
media give theglobal counterexamplesto the detailed
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balance. Without a reference to a kinetic law they re-
main the local counterexamples to the proof of detailed
balance.

2.3. Sampling of different macro-events from the same
micro-events

In kinetics, only the total rateW is observable (as
W = ν̇ or W = ∆ν = ν(t + τ) − ν(t)). In the macroscopic
world the observability of the rates of the elementary
processes is just a hypothesis.

Imagine a microscopic demon that counts collisions
or other microscopic events of various types. If differ-
ent elementary processes correspond to different types
of microscopic events then the rates of elementary pro-
cesses can be observed. If the equilibrium ensemble is
invariant with respect toT then the demon cannot detect
the difference between the equilibrium and the trans-
formed equilibrium and the rates of elementary pro-
cesses should satisfy DB. But it is possible to sample
the elementary processes of macroscopic kinetics from
the events of microscopic kinetics in different manner.

For example, in chemical mass action law kinetics we
can consider the reaction mechanismA ⇋ B (rate con-
stantsk±1), A + B ⇋ 2B (rate constantsk±1) [22]. We
can also create a stochastic model for this system with
the states (xA, yB) (x, yare nonnegative integers) and the
elementary transitions (xA, yB) ⇋ ((x − 1)A, (y+ 1)B)
(rate constantsκ+ = k+1x + k+2x2, κ− = k−1(y + 1) +
k−2(x − 1)(y + 1)). The elementary transitions in this
stochastic model are linearly independent and EQ⇔DB.
In the corresponding mass action law chemical kinet-
ics detailed balance requires additional relation between
constants:k+1/k−1 = k+2/k−2.

Thus, macroscopic detailed balance may be vio-
lated in this example when microscopic detailed bal-
ance holds. (For more examples and theoretic consider-
ation of the relations between detailed balance in mass
action law chemical kinetics and stochastic models of
these systems see [22].) Indeed, both of the macro-
scopic elementary processesA ⇋ B andA + B ⇋ 2B
correspond to the same set of microscopic elementary
processes (xA, yB) ⇋ ((x − 1)A, (y + 1)B). Each of
these elementary event is “shared” between two differ-
ent macroscopic elementary processes. Therefore, the
macroscopic elementary processes in this example are
microscopically indistinguishable.

The microscopic indistinguishability in this exam-
ple follows from the coincidence of the stoichiomet-
ric vectors for two macroscopic processesA ⇋ B and
A+B ⇋ 2B. If the stoichiometric vectors are just linear
dependent then it does not imply the microscopic indis-
tinguishability.

For example, let us take two reactionsA ⇋ B and
2A ⇋ 2B. For the first reaction the corresponding mi-
croscopic processes have the form (xA, yB) ⇋ ((x −
1)A, (y + 1)B) (if all the coefficients are nonnegative).
For the reaction 2A ⇋ 2B the microscopic processes
have the form (xA, yB) ⇋ ((x− 2)A, (y+ 2)B) (if all the
coefficients are nonnegative). These sets do not inter-
sect, the elementary processes are microscopically dis-
tinguishable and the macroscopic detailed balance fol-
lows from the microscopic detailed balance.

Nontrivial Wegscheider identities appear in this ex-
ample at the microscopic level (in the first example all
the microscopic transitions are linearly independent and
there exist no additional relations). Let the microscopic
reaction rate constants for the reaction (xA, yB) ⇋ ((x−
1)A, (y + 1)B) be κ±1 (x, y) and κ±2 (x, y) for the reaction
(xA, yB) ⇋ ((x − 2)A, (y + 2)B). Due to the detailed
balance, in each cycle of a linear reaction network the
product of reaction rate constants in the clockwise di-
rections coincides with the product in the anticlockwise
directions. It is sufficient to consider the basis cycles
(and their reversals):

(xA, yB)→ ((x− 1)A, (y+ 1)B)→

→ ((x− 2)A, (y+ 2)B)→ (xA, yB).

Therefore,

κ+1 (x, y)κ+1 (x− 1, y+ 1)κ−2 (x, y)

= κ+2 (x, y)κ−1 (x− 1, y+ 1)κ−1 (x, y).

In the macroscopic limit these conditions transform into
macroscopic detailed balance conditions.

3. Relations between elementary processes beyond
microreversibility and detailed balance

If microreversibility does not exist, is everything per-
mitted? What are the the relations between the reaction
rates beyond the microreversibility conditions if such
universal relations exist? The radical point of view is:
beyond the microreversibility we face just the world of
kinetic equations with preservation of positivity, various
specific restrictions on the coefficients appear in some
specific cases and the variety of these cases in unob-
servable. Development of this point of view leads to the
general theory of nonlinear Markov processes [11], i.e.
the general theory of kinetic equations with preservation
of positivity.

The problem of the relations between elementary pro-
cesses beyond microreversibility and detailed balance
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Figure 3: Boltzmann’s cyclic balance (1887) (or semi-detailed bal-
ance or complex balance) is a summarised detailed balance condition:
at equilibrium the sum of intensities of collisions with a given input
v + w → . . . coincides with the sum of intensities of collisions with
the same output. . .→ v+ w.

was stated by Lorentz in 1887 [28]. Boltzmann imme-
diately proposed the solution [29] and used it for exten-
sion of hisH-theorem beyond microreversibility. These
conditions have the form of partially summated condi-
tions of detailed balance (Fig. 3, compare to Fig. 1).
This solution was analyzed, generalized and proved
by several generations of researchers (Heitler, Coester,
Watanabe, Stueckelberg and other, see the review in
[27]). It was rediscovered in 1972 [30] in the context of
chemical kinetics and popularized as thecomplex bal-
ance condition.

For the finite-dimensional systems which obey the
generalized mass action law (2) the complex balance
condition is also the summarized detailed balance con-
dition (3). Consider the setΥ of all input and output vec-
torsαρ andβρ. The complex balance condition reads:
for everyy ∈ Υ

∑

ρ, αρ=y

φρ =
∑

ρ, βρ=y

φρ.

Now, the complex balance conditions in combina-
tion with generalized mass action law are proven for
the finite-dimensional systems in the asymptotic limit
proposed first by Michaelis and Menten [32] for fer-
mentative reactions and Stueckelberg [31] for the Boltz-
mann equation. This limit this limit is constituted
by three assumptions (Fig. 4): (i) the elementary pro-
cesses go through the intermediate compounds, (ii) the
compounds are in fast equilibria with the components
(therefore, this equilibrium can be described by ther-
modynamics) and (iii) the concentrations of compounds
are small with respect to concentrations of components
(hence, (iiiA) the quasisteady state assumption is valid
for the compound kinetics and (iiiB) the transitions be-
tween compounds follow the first order kinetics) [27].

Now, the complex balance conditions in combina-
tion with generalized mass action law are proven for
the finite-dimensional systems in the asymptotic limit
proposed first by Michaelis and Menten. This limit
consists of three assumptions: (i) the elementary pro-
cesses go through the intermediate compounds, (ii) the
compounds are in fast equilibria with the components
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Small amounts 

Figure 4: Schematic representation of the Michaelis–Menten–
Stueckelberg asymptotic assumptions: an elementary process
∑

αρi Ai →
∑

αρi Ai goes through intermediate compoundsB±ρ . The
fast equilibria

∑

αρi Ai ⇋ B+ρ and
∑

βρi Ai ⇋ B−ρ can be described by
conditional maximum of the free entropy. Concentrations ofB±ρ are
small and reaction between them obeys linear kinetic equation.

(therefore, this equilibrium can be described by ther-
modynamics) and (iii) the concentrations of compounds
are small with respect to concentrations of components
(hence, (iiiA) the quasisteady state assumption is valid
for the compound kinetics and (iiiB) the transitions be-
tween compounds follow the first order kinetics) [27].

Thus, beyond the microreversibility, Boltzmann’s
cyclic balance (or semi-detailed balance, or complex
balance) holds and it is as universal as the idea of in-
termediate compounds (activated complexes or transi-
tion states) which exist in small concentrations and are
in fast equilibria with the basic reagents.

4. Conclusion

Thus, EQ⇔DB if:

1. There exists a transformationT that transforms the
elementary processes into reverse processes and
the microscopic laws of motion areT-invariant;

2. The equilibrium is symmetric with respect toT,
that is, there is no spontaneous breaking ofT-
symmetry;

3. The macroscopic elementary processes are micro-
scopically distinguishable. That is, they represent
disjoint sets of microscopic events.

In applications,T is usually either time reversalT or the
combined transformPT.

For level jumping (reduction of kinetic models
[15]), the equivalence EQ⇔DB persists in the reduced
(“macroscopic”) model if:

1. EQ⇔DB in the original (“microscopic”) model;
2. Equilibria of the macroscopic model correspond

to equilibria of the microscopic model. That is,
the reduced kinetic model has no equilibria, which
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correspond to non-stationary dynamical regimes of
the original kinetic model;

3. The macroscopic elementary processes are micro-
scopically distinguishable. That is, they represent
disjoint sets of microscopic processes.

In this note, we avoid the discussion of an important
part of Boltzmann’s legacy which is very relevant to the
topic under consideration. Boltzmann represented ki-
netic process as anensemble of indivisible elementary
events — collisions. In the microscopic world, a colli-
sion is a continuous in time and infinitely divisible pro-
cess (and it requires infinite time in most of the mod-
els of pair interaction). In the macroscopic world it is
instant and indivisible. The transition from continuous
motion of particles to an ensemble of indivisible instant
collisions is not digested by modern mathematics up to
now, more than 130 years after its invention. The known
results [33, 34] state that the Boltzmann equation for
an ensemble of classical particles with pair interaction
and short–range potentials is asymptotically valid start-
ing from a non-correlated state during a fraction of the
mean free flight time. That is very far from the area
of application. Nevertheless, if we just accept that it is
possible to count microscopic events then the reasons
of validity and violations of detailed balance in kinetics
are clear.
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[5] R. Wegscheider, Über simultane Gleichgewichte und die
Beziehungen zwischen Thermodynamik und Reactionskinetik
homogener Systeme, Monatshefte für Chemie/ Chemical
Monthly 32(8) (1901), 849–906.

[6] L. Onsager, Reciprocal relations in irreversible processes. I,
Phys. Rev. 37 (1931), 405–426.

[7] A. Einstein, Strahlungs–Emission und –Absorption nachder
Quantentheorie, Verhandlungen der Deutschen Physikalischen
Gesellschaft 18 (13/14) (1916). Braunschweig: Vieweg, 318–
323.

[8] G.N. Lewis, A new principle of equilibrium, Proceedingsof the
National Academy of Sciences of the United States 11 (1925),
179–183.

[9] A.N. Gorban, G.S.Yablonsky, Extended detailed balancefor
systems with irreversible reactions, Chemical Engineering Sci-
ence 66 (2011) 5388–5399; arXiv:1012.2908 [cond-mat.mtrl-
sci].

[10] A.N. Gorban, E.M. Mirkes, G.S. Yablonsky, Thermodynam-
ics in the limit of irreversible reactions, Physica A 392 (2013)
1318–1335; arXiv:1207.2507 [cond-mat.stat-mech].

[11] V.N. Kolokoltsov, Nonlinear Markov processes and kinetic
equations, Cambridge University Press, London, 2010.

[12] G.S. Yablonskii, V.I. Bykov, A.N. Gorban, V.I. Elokhin, Ki-
netic Models of Catalytic Reactions, Elsevier, Amsterdam,The
Netherlands, 1991.

[13] G. Marin, G.S. Yablonsky, Kinetics of chemical reactions. John
Wiley & Sons, Weinheim, Germany, 2011.

[14] C. Cercignani,The Boltzmann equation and its applications,
Springer, New York, 1988.

[15] A.N. Gorban, I.V. Karlin, Invariant Manifolds for Physical and
Chemical Kinetics, Lect. Notes Phys. 660, Springer, Berlin–
Heidelberg, 2005.

[16] S. Succi, The lattice Boltzmann equation for fluid dynamics and
beyond, Clarendon Press, Oxford, 2001.

[17] A.N. Gorban, H.P. Sargsyan, H.A. Wahab, Quasichemical
Models of Multicomponent Nonlinear Diffusion, Mathemati-
cal Modelling of Natural Phenomena 6 (05) (2011), 184–262;
arXiv:1012.2908 [cond-mat.mtrl-sci].

[18] D.T. Gillespie, Stochastic simulation of chemical kinetics,
Annu. Rev. Phys. Chem. 58 (2007), 35–55.

[19] C.M. Krowne, Nonreciprocal electromagnetic properties of
composite chiral-ferrite media, In IEE Proceedings H (Mi-
crowaves, Antennas and Propagation) 140 (3) (1993), 242–248.

[20] E.O. Kamenetskii, Onsager–Casimir principle and reciprocity
relations for bianisotropic media. Microwave and Optical Tech-
nology Letters 19 (6) (1998), 412–416.

[21] A. Guo, G.J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-
Ravat, V. Aimez, G.A. Siviloglou, D.N. Christodoulides, Obser-
vation of PT-symmetry breaking in complex optical potentials,
Phys. Rev. Lett. 103 (2009), 093902.

[22] B. Joshi, Deterministic detailed balance in chemical reaction
networks is sufficient but not necessary for stochastic detailed
balance (2013), arXiv:1312.4196 [math.PR].

[23] I. Lakatos, Proofs and Refutations, Cambridge University Press,
Cambridge, 1976.

[24] S.R. de Groot, P. Mazur, Non-equilibrium thermodynamics,
Dover Publ. Inc., NY, 1984.

[25] H.B. Callen, Thermodynamics and an Introduction to Themo-
statistics (2nd ed.), John Wiley & Sons, NY, 1985.

[26] H. Eyring, The activated complex in chemical reactions, J.
Chem. Phys. 3 (1935), 107–115.

[27] A.N. Gorban, M. Shahzad, The Michaelis–Menten–
Stueckelberg theorem, Entropy 13 (2011), 966–1019;
arXiv:1008.3296 [physics.chem-ph].
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