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Abstract. We construct analytic quasi-periodic solutions of state-dependent
delay differential equations with quasi-periodically forcing. We show
that if we consider a family of problems that depends on one dimen-
sional parameters(with some non-degeneracy conditions), there is a pos-
itive measure set Π of parameters for which the system admits analytic
quasi-periodic solutions.

The main difficulty to be overcome is the appearance of small divi-
sors and this is the reason why we need to exclude parameters. Our main
result is proved by a Nash-Moser fast convergent method and is formu-
lated in the a-posteriori format of numerical analysis. That is, given an
approximate solution of a functional equation which satisfies some non-
degeneracy conditions, we can find a true solution close to it.

This is in sharp contrast with the finite regularity theory developed
in [HdlL15]. We conjecture that the exclusion of parameters is a real
phenomenon and not a technical difficulty. More precisely,for generic
families of perturbations, the quasi-periodic solutions are only finitely
differentiable in open sets in the complement of parameters set Π.

1. Introduction

The goal of this paper is to investigate analytic properties of solutions of
state-dependent delay differential equations(SD-DDEs).

For functional differential equations with constant delay, [Nus73] proves
that for a broad class of analytic equations, many solutions are analytic. An-
alytic solutions for differential equations with time-varying delay(independent
of the state) have been considered before in [LS07, MPN14]. In both pa-
pers, an important technique is to conjugate the delay function to a simple
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form(either a linear multiple or a constant rotation). In the reduction to con-
stant delay[MPN14], the dynamical properties of the delay mapping play an
important role. In particular, they require to use the theory of smooth con-
jugacy to rotations[Arn63, Her80]. Hence, small divisors play a role.

As listed in open problems section in [MPN14], the case of state-dependent
delay equations is significantly more complicated. Nevertheless, as [MPN14]
observes, the time dependent delay can be considered as a linearization ver-
sion of the theory. Recently, [Kri14] considers a state-dependent delay dif-
ferential equation in which the delay is defined by the threshold condition.
It shows that the globally defined bounded solutions are analytic. We also
call attention to [SB03, Remark 3], which presents a KAM theorem for
state-dependent delay differential equations on the torus.

In this paper, we look for analytic quasi-periodic solutions of SD-DDEs
by the parameterization method[CFdlL03, CFdlL05]. To avoid technical
difficulties, we focus on the following scalar quasi-periodic differential equa-
tion with state-dependent delay, which contains all essential difficulties

(1.1)
{ ẋ(t) = ax(t) + bx(t − rµ(x(t))) + f (θ)

θ̇(t) = ω

where x ∈ R, θ ∈ Td = Rd/2πZd and the frequency ω ∈ Rd is rationally in-
dependent(i.e. ω·k , 0 for k ∈ Zd−{0}). Later we will need to impose quan-
titative Diophantine properties on the frequency ω. The nonhomogeneous
term f is a real analytic periodic function defined on the complex domain

(1.2) Dρ = {θ = (θ1, · · · , θd) ∈ Cd : |Im(θ j)| ≤ ρ, 1 ≤ j ≤ d},

which means it is analytic in its interior and can be extended continuously
to the boundary. We also denote the neighborhood of Td with width ρ in the
complex space by Td

ρ, i.e.

(1.3) Td
ρ = {θ ∈ Cd/2πZd : |Im(θ j)| ≤ ρ}.

Then we say that f is defined and analytic on Td
ρ for some ρ > 0. We

also introduce the parameter µ ∈ R into our system. Note that (1.1) is
a extremely nonlinear equation because the unknown function x appears
composed with itself.

Our main result, Theorem 3.1, asserts the existence of analytic quasi-
periodic solutions. We require introducing one extra one dimensional pa-
rameter and perform parameter exclusion. We prove that the set of pa-
rameters on which admits analytic quasi-periodic solutions is of positive
measure.
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It is worth to compare this paper with [HdlL15]. Both papers consider
similar problems, but the methods are very different and the results are com-
plementary. Hence the overlap is minimal. The paper [HdlL15] uses a the-
ory of exponential dichotomy in finite regularity setting. Even if it produces
finite regularity solutions, it does not need to exclude parameters.

Combining Theorem 3.4 with the results in [HdlL15], we have that given
an approximate solution in an one parameter family of problems, we can
obtain Cr solutions for all values of the parameter and obtain a positive
measure (with open dense complement) set Π of parameters for which the
solution is analytic.

We conjecture that this result is essentially sharp in the following sense.

Conjecture 1. Consider a family of quasi-periodic state-dependent delay
differential equations

x′(t) = f (ωt, x(t), x(t − rµ(x(t)))),

where f is analytic in its arguments and µ is the parameter.
Assume that for µ0, we have an analytic quasi-periodic solution and the

family of delay functions rµ satisfy some non-degeneracy conditions(which
hold in open sets of their arguments).

Then, there is a sequence of intervals I j accumulating at µ0, and a se-
quence of integers r j, such that when µ ∈ I j, then the Kµ produced in
[HdlL15] is Cr j but not Cr j+1.

The reason for this conjecture is the observation in [PdlLV03] that a fam-
ily of delay mappings which satisfies some non-degeneracy conditions will
experience phase locking intervals in which there is an exponentially at-
tracting invariant torus of lower dimension. The conditions for these phe-
nomenon are very explicit and can be verified in concrete examples with a
finite calculation. Furthermore, these conditions hold in open sets.

These are the generalizations to high dimension of the well-known Arnold
tongues in circle mappings. Once one has the existence of an set with
nonzero Lyapunov exponents in the delay mapping dynamics, it seems that
the argument of [Fen74] will be able to produce that the mapping K is only
finitely differentiable.

This phenomenon has been observed in the theory of normally hyper-
bolic invariant manifolds [HCF+15], where the manifold is analytic if the
motion on it is analytically conjugated to an irrational solution and it is only
finite differentiable if it contains periodic orbits with a positive Lyapunov
exponent. See also [Fen74, Fen77].

1.1. Motivation for the procedure. In the light of parameterization method
[CFdlL03, CFdlL05], we look for an embedding K : Td → R such that
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x(t) = K(θ +ωt) is a solution of (1.1). It is immediate that x(t) = K(θ +ωt)
is a solution of (1.1) if and only if K satisfies

(1.4) ∂K(θ) · ω = aK(θ) + bK(θ − ωrµ(K(θ))) + f (θ).

Instead of treating (1.1) as an evolution equation, we just work on function
spaces and find a solution of the functional equation (1.4). An important
source of difficulties is the study of the composition operator that to a func-
tion K associates Ψ [K, µ](θ) = K(θ − ωrµ(K(θ))).

If there was any hope to apply a fixed point theorem in a space of analytic
functions defined on a domain U ⊂ Cd, it would be necessary to have that
the range of the composition would be this domain, i.e.

(1.5) U = {θ − ωrµ(K(θ)) : θ ∈ U}.

The condition (1.5) is very hard to satisfy, especially if K is changing.
One case, however in which (1.5) is satisfied is when the diffeomorphism

of the torus

(1.6) ϕ[K, µ] ≡ Id − ωrµ ◦ K

is conjugated to a rotation RΩ on the torus (see (A.4)). We call the map ϕ
the delay mapping.

More precisely, if there exists an analytic function H such that

(1.7) ϕ ◦ H = H ◦ RΩ.

Then, takingU = H(Td
ρ), we have

ϕ(U) = ϕ(H(Td
ρ)) = H(RΩ(Td

ρ)) = H(Td
ρ) = U.

Remark 1.1. Hence, we can think of (1.7) as a way of finding the domain
U where to study ϕ. It is a result in [Mos01, Theorem 2.1] that if a mapping
ϕ sends a domain to itself it is conjugated to a rotation. So the reduction to
a rotation to obtain invariance of the domain is a natural procedure.

Remark 1.2. From [SB03, MPN14], we also know that the dynamics prop-
erties of the delay mapping play an important role in determining the ana-
lyticity and non-analyticity of the invariant objects of a differential equation
with time varying delay.

Given K and µ, we observe that the delay mapping ϕ is a foliation-
preserving torus map(also called reparameterization of an irrational flow
[Fay02]), which is a map of form

(1.8) ϕ(θ) = θ + ωϕ̂(θ)

defined on the torus. Here ϕ̂ : Td → R is a scalar function. It is easy to see
that the torus maps of the form (1.8) form a group. For more details, see
Appendix A.



CONSTRUCTION OF QUASI-PERIODIC SOLUTIONS: II 5

In the following, we assume the delay function r0(z) is a constant(i.e.
independent of z) so that when µ = 0, equation (1.1) becomes just a constant
delay equation, whose existence of quasi-periodic solutions has been well-
studied in [LdlL09]. Without loss of generality, we further assume that
r0 = −1. Otherwise, we just replace ω by r0ω, which also satisfies the
Diophantine affine condition required in Theorem 3.1.

Geometrically, for sufficient small µ, the delay mapping ϕ is close to
a rotation. From [PdlLV03, Theorem 3.2], we know that there is a near-
identity mapping H : Td → Td conjugating a foliation-preserving torus
map into a rigid rotation with a slight frequency shift αω. In Appendix A,
we present a more quantitative version.

It also should be kept in mind that the transformation H preserves the
ω-foliation, i.e.

(1.9) H = Id + ωh

where h is a periodic scalar function. With these motivations, especially the
particular form of H and the frequency shift in the direction of ω, one will
see that the reduction of conjugation equation defined in (1.13) is essentially
a one dimensional problem.

1.2. Formulation of the functional equations. We define the operator F
as

(1.10) F [K, µ] ≡ ∂K(θ) · ω − aK(θ) − bK ◦ ϕ[K, µ] − f (θ).

As indicated above, a zero solution of F will give a quasi-periodic solution
of frequency ω.

Following the motivation in Section 1.1, we supplement the functional
equation F = 0 with another auxiliary equation, whose purpose is to make
possible to solve the Newton equation for F .

To this end, we simultaneously consider the conjugation problem and
define the operator G as

G [K, h, µ;α] ≡ϕ[K, µ] ◦ H − H ◦ R(α+1)ω

=ωh − ωh ◦ R(α+1)ω − (α + 1)ω − ωrµ ◦ K ◦ (Id + ωh).

(1.11)

Then, we look for solutions of the functional equations

F [K, µ] = 0,(1.12)
G [K, h, µ;α] = 0.(1.13)

We call (1.12) the invariance equation and (1.13) the conjugation equation.
Even if our main goal is only the invariance equation (1.12), it is re-

markable that solving the two euqations is easier that solving just one. Of
course, the fact that the equation (1.13) gives us more information. We note
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that in [HdlL15] there is a procedure to solve (1.12) along but as indicated
in Remark 1.1, we do not expect that the solutions in [HdlL15] are always
analytic. See Conjecture 1.

Of course, the functional that to a map of the torus associates the conju-
gacy is rather delicate and one cannot solve it by elementary methods. As a
result, one has to resort to KAM methods and has to have external param-
eters [Arn63, Mos66a, Mos67]. Hence, the procedure we will implement
is a Newton iteration for the invariance equation and the conjugation equa-
tion. We will consider fixed frequency vector ω and real number α. The
unknowns will be thus the parameterization K, the conjugacy to the rota-
tion h and the parameter µ. As it turns out, these two equations(for three
unknowns) (1.12) and (1.13) are coupled, but we will be able to solve them.

Note that solving the linearization equation of (1.13) leads to small di-
visor problem, so that we will have to use a rapidly convergent method to
ensure that the iterative process converges. The KAM method has been
used in delay differential equations but in a very different way. Typically,
the KAM method was used for constant delay equations treated as a dy-
namical system (for example [FB76, LdlL09, LY12]). A case where the
parameterization method was used was [LdlL09] which uses the dynami-
cal interpretation (but only in a first preparatory stage). The KAM method
developed in [SB03, Remark 3] also applies to state-dependent delay equa-
tions on the torus, which reduces the delay equation to an integral form. We
note, however, that [SB03] requires the same dimensional frequency as the
torus.

Along the way, we will also have to solve several other difficulties. No-
tably, the ∂ω operator does not work well with the composition. Besides, to
establish the non-degeneracy condition, we have to take full advantage of
the structure of ϕ as was done in [Van02, PdlLV03].

Our main goal is to seek analytic quasi-periodic solutions of (1.1). Ob-
viously, in the case of µ = 0, they are easy to find. See the formulation of
Lindstedt series in Section 4. We want to show that for the majority µ in a
neighborhood of zero, there also exist analytic quasi-periodic solutions.

Our results are given in an a posteriori format, which plays an important
role in numerical analysis. More precisely, given an approximate solution
for (1.1) satisfying some non-degeneracy conditions, there is a true solu-
tion nearby. For example, we can take as the approximate solutions in the
assumptions of Theorem 3.1 the result of a numerical (non-rigorous) cal-
culation. Then, Theorem 3.1 validates the calculations since it shows that
there is a true solution nearby. We point out that careful calculations of
solutions which could be used as inputs of an a-posteriori theorem already
exist in the literature [HDMU12, MKW14, HCHS14].
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Unfortunately, the method in this paper is restricted to having just one
delay. Indeed, if we transform the variables so that one ϕ corresponding to
a delay becomes a rotation, the terms corresponding to other delays will not
in general be simplified.

This paper is organized as follows. In Section 2, we collect some standard
definitions and recall some properties, which serve to set the notations. This
section could be omitted at a first reading and used as a reference. In Section
3, we present our main results on the existence of analytic quasi-periodic so-
lutions of (1.1) in an a-posteriori format. As an immediate consequence, we
also prove that the obtained solutions admit C1-Whitney regularity, which
implies the set of µ validating Theorem 3.1 has positive measure. In Sec-
tion 4, we formulate a power series of α satisfying the Lindstedt property.
In Section 5, we give a detailed analysis on the Newton equations of the
functional equations (1.12) and (1.13). With different coordinates, we show
a delicate estimate on the loss of analyticity domain to construct a rapidly
convergence sequence. In Appendix A, we give a brief introduction to the
foliation-preserving torus map, which provides a background and enables
us to consider the conjugacy problem.

2. Preliminaries

To formulate the KAM results, we need to introduce the families of Ba-
nach spaces on which the operators F and G are defined. Hence, we collect
several definitions and properties of different spaces of analytic functions in
Section 2.1. When studying the conjugation equations, one encounters with
the small divisors problem. As standard KAM theory, in Section 2.2, we
give the definition of Diophantine conditions and the estimates on the solu-
tion of cohomology equations.

Following the notations in KAM theory, we denote the universal constant
by C, depending on the dimension of the space, the width of analytic do-
main, the Sobolev index and the Diophantine exponents. The value of C
may be different from line to line.

2.1. Function spaces. Throughout this paper, we will work on analytic
function spaces endowed with two different norms-the classical supremum
norm and Sobolev norm.

2.1.1. Supremum norm. Recalling the complex domainDρ defined in (1.2),
we denote by Aρ the Banach space of analytic functions on Dρ endowed
with the norm

(2.1) ‖u‖ρ = sup{|u(θ)| : θ ∈ Dρ}.
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Then by the Cauchy estimate, it is readily seen, if u ∈ Aρ, the partial deriv-
ative of u with respect to θ j satisfies

‖uθ j‖ρ−σ ≤
‖u‖ρ
σ

for all 0 < σ < ρ and 1 ≤ j ≤ d. Furthermore, if u is periodic, it can be
expanded into Fourier series

u(θ) =
∑
k∈Zd

ûke2πik·θ,

whose Fourier coefficients ûk satisfy

(2.2) |̂uk| ≤ ‖u‖ρe−2π|k|ρ

for all k ∈ Zd. Another useful property is the interpolation inequality
(Hadamard three circle theorem)

(2.3) ‖u‖θρ+(1−θ)ρ′ ≤ ‖u‖θρ‖u‖
1−θ
ρ′ .

Given an analytic function ψ mappingDρ to Cd, we denote its range by

(2.4) Dψ,ρ = {ψ(θ) : θ ∈ Dρ}.

2.1.2. Sobolev norm. We also find it convenient to introduce norms of an-
alytic functions which can be read off the Fourier coefficients. Since some
of our steps are formulated in in Fourier space, these norms will allow us to
obtain sharp results and formulate steps as fixed point arguments. For the
details, we refer to [CCCdlL15] and the references therein. For simplicity,
only the even Sobolev exponents are considered.

Assume ρ > 0 and s ∈ 2N. Let Aρ,s(Td) (or Aρ,s) be the space of real
analytic periodic functions defined on the domain Td

ρ such that the norm

(2.5) ‖u‖2ρ,s =
∑
k∈Zd

e4π|k|ρ

B(k, ρ)
((2π)d|k|2 + 1)s |̂uk|

2 < ∞,

where
B(k, ρ) = Πd

j=1a(k j, ρ)
with

a( j, ρ) =

4π| j|, if j , 0;
1/4πρ, if j = 0.

When considering Td
ρ as a 2d dimensional real manifold with boundary,

there is a geometric representation of the Sobolev norm norm given by

(2.6) ‖u‖2ρ,s =

∫
Td
ρ

|(∆θ + 1)s/2u(θ)|2d2dθ =

∫
Td
ρ

|(
d∑

n=1

∇θn∇θ̄n + 1)s/2u(θ)|d2dθ
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where the bar denotes the complex conjugation. Indeed, (2.6) can be ob-
tained from the inner product

(2.7) 〈u, v〉 =

∫
Td
ρ

〈u, (∆θ + 1)sv〉d2dθ.

This makes it clear that Aρ,s is the closed space of complex analytic func-
tions endowed with the norm corresponded to a real 2d dimensional Sobolev
space. And we can show that Aρ,s is complete, since the limit in the ‖ · ‖ρ,s
of analytic functions is still analytic. ThusAρ,s is a Hilbert space under the
inner product (2.7). Furthermore, for s > d, the Sobolev space Aρ,s is a
Banach algebra under multiplication.

For convenience, we also state some relations between supremum norm
(2.1) and the Sobolev norm (2.5).

If u ∈ Aρ′ with ρ′ > ρ, then, by (2.2) and Lemma 2.1, we have

‖u‖2ρ,s ≤
∑
k∈Zd

‖u‖2ρ′
B(k, ρ)

((2π)d|k|2 + 1)se−4π|k|(ρ′−ρ)

≤‖u‖2ρ′ (max{1, (4πρ)d})
∑
k∈Zd

(2π|k|2 + 1)se−4π|k|(ρ′−ρ)

≤C(ρ′ − ρ)−(2s+d)‖u‖2ρ′

(2.8)

where the constant C depends only on ρ, s and d.
On the other hand, if u ∈ Aρ,s,

‖u‖ρ ≤
∑
k∈Zd

|̂uk|e2π|k|ρ ≤ C

∑
k∈Zd

((2π)d|k|2 + 1)−sB(k, ρ)


1/2

· ‖u‖ρ,s

≤C

∑
n≥0

[(2π)dn2 + 1]−snd(2n + 1)d


1/2

· ‖u‖ρ,s

≤C‖u‖ρ,s

(2.9)

when s > d + 1
2 .

2.2. Diophantine properties and cohomology equation. There are two
types of Diophantine conditions that appear in KAM theory. The first con-
dition appears when we consider KAM theory for flows and the second one
for the maps. See [Rüs75, dlL01] for an introduction.

Definition 2.1. (Diophantine affine) A vector ω ∈ Rd is called Diophantine
affine of type (γ, υ) for positive constant γ and υ if

(2.10) |k · ω| ≥ γ|k|−υ

holds for all k ∈ Zd − {0}.
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Definition 2.2. (Diophantine) A vector Ω ∈ Rd is called the Diophantine of
type (τ, ν) for positive constants τ and ν if

(2.11) |k ·Ω − l| ≥ τ|k|−ν

holds for all k ∈ Zd − {0} and l ∈ Z.

In this paper, we are interested in the number α ∈ R such that Ω = αω is
Diophantine. Typically, denoting

D(τ, ν;ω) = {α ∈ R : αω is Diophantine of type (τ, ν)}

and
D(ν;ω) =

⋃
τ>0

D(τ, ν;ω),

we have the following lemma on the abundance of such numbers.

Lemma 2.1. ([SdlL12]) If ω ∈ Rd is Diophantine affine of type (γ, υ) and
ν > d + υ, then D(ν;ω) is of full Lebesgue measure.

The proof in [SdlL12] is just an elementary estimate on the regions where
the definition of Diophantine fails. The abundance of Diophantine numbers
in a constrained linear space has attracted attention in number theory[Spr79].
The papers Kle01,Kle08 present results with sharper exponents.

The following cohomology equation (2.12) is standard in KAM theory,
which will be used to solve the conjugation equations in Section 5. A de-
tailed proof can be found in [Rüs75].

Lemma 2.2. Assume that Ω satisfies (2.11). Let Q ∈ Aρ with zero average.
Then there is a unique solution W of

(2.12) W(θ) −W(θ + Ω) = Q(θ)

such that W has zero average.
Moreover, we have for all 0 < σ < ρ,

(2.13) ‖W‖ρ−σ ≤ Cτσ−ν‖Q‖ρ,

where the constant C depends only on the Diophantine exponent ν and the
dimension of the space.

2.3. Lindstedt series. We will study (1.1) perturbatively when the delay
mapping is close to a rotation. More precisely, we will consider α as a
small parameter and will find K(α), h(α) and µ(α) solving (1.12) and (1.13)
in the sense of formal power series in α. To this end, we give the definition
for the Lindstedt series.

Definition 2.3. (Lindstedt series) Let Xρ and Yρ be a scale of Banach spaces
and A : Λ × Xρ → Yρ. Assume that A (λ0, x0) = 0 for x0 ∈ Xρ and
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λ0 ∈ Λ. We say that the operator A satisfies the Lindstedt property for every
solution (λ0, x0) if there exist formal power series to order M, M ∈ N∪{∞},

x(λ) =

M∑
j=0

x j(λ − λ0)⊗ j

with x j ∈ Sym j(Λ, Xρ−δ), such that

‖A (
N∑

j=0

x j(λ − λ0)⊗ j, λ)‖ρ−2δ ≤ C(N, δ)|λ − λ0|
N+1.

for N < M.

The Lindstedt series method is also used to consider the bifurcation prob-
lems for delay differential equations. See [CF80].

3. KAM theorem

As stated before, our main technical result Theorem 3.1 is in an a-posteriori
format. Out of it, we will deduce several consequences which are almost
automatic. In Theorem 3.1, we will fix α and obtain that given approximate
solutions K0, h0, µ0, there are true solutions. We note that if α, α̃ ∈ D(ν;ω)
are close, the solutions corresponding to α is an approximate solution for α̃.
Then, applying Theorem 3.1 we can obtain solutions for α̃. Therefore, we
can obtain K(α), h(α), µ(α) defined in a Cantor-like set of parameters which
is of positive measure.

Theorem 3.1. Let 0 < ρ < ρ̃, σ = ρ/48 and d < s ∈ 2N. Assume the
frequency ω satisfies the Diophantine affine condition (2.10).

We further assume the following:
(H1) Regularity conditions: The forcing function f is an analytic periodic

function in Aρ; The delay function rµ(z) is analytic on the complex
domain D∗ for any parameter µ in some neighborhood O ⊂ R of
zero and µ 7→ rµ is CN+1 from O to the analytic function space on the
analyticity domainD∗ endowed with the supremum norm;

(H2) Nearly-rotation: rµ is independent of z ∈ D∗ when µ = 0. Without
loss of generality, we assume r0 = −1.

(H3) Initial guess: Let (K0, h0, µ0) be an approximate solution of (1.12)
and (1.13) satisfying K0 ◦ H0 ∈ Aρ̃ and µ0 ∈ O. We assume that

(3.1) ‖e‖ρ̃ , ‖E ◦ H0‖ρ,s < ε

where
E = F [K0, µ0],
e = G [K0, h0, µ0],
H0 = Id + ωh0.

(3.2)
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(H4) Diophantine condition: α + 1 ∈ D(τ, ν;ω). Namely, α satisfies

|k · (α + 1)ω − l| ≥ τ|k|−ν, ∀k ∈ Zd − {0}, l ∈ Z;

(H5) Non-degeneracy conditions:

‖ωh0‖ρ ≤ m1(σ, s, d, ρ) < 1,(3.3)
〈M[K0, h0, µ0]〉 , 0(3.4)

whereM is given in (5.33) and 〈·〉 denotes the average of a periodic
function;

(H6) Composition conditions: Let η = dist(Cd −D∗,DK0◦H0,ρ) > 0.
Let κ = 2ν + 5(s + d/2) + 2.
Then, if

|b| < m2(K0, h0, ‖r‖C2 , s, A)

and
ε < ε∗(K0, h0, ‖r‖C2 , a, b, s, ξ, d) · σκ,

there exist K∗, h∗, µ∗ such that h∗ ∈ Aρ/2, K∗ ◦ H∗ ∈ Aρ/2,s, µ
∗ ∈ O and

F [K∗, µ∗] = 0, G [K∗, h∗, µ∗] = 0,

where H∗ = Id + ωh∗. In addition,

(3.5)

‖ωh∗ − ωh0‖ρ/2 ≤ Cσ−κε,

‖K∗ ◦ H∗ − K0 ◦ H0‖ρ/2,s ≤ Cσ−κε,

|µ∗ − µ0| ≤ Cσ−κε,

where C depends only on ‖r‖CN+1 , h0,K0, A, µ0, a, b, s, ρ, ω, α, d, ξ, τ and ν.
We also have local uniqueness of the solution of (1.12) and (1.13). More

precisely, there exists δ∗ > 0 such that if (K1, h1, µ1) and (K2, h2, µ2) satisfy

F [K1, µ1] = G [K1, h1, µ1] = 0,(3.6)
F [K2, µ2] = G [K2, h2, µ2] = 0,(3.7)

and (H1) − (H2), (H4) − (H5).
Then, if

max
{
‖K2 ◦ H2 − K1 ◦ H1‖3ρ̂/2, ‖h2 − h1‖3ρ̂/2, |µ2 − µ1|

}
< δ∗,

we have
(K1, h1, µ1) = (K2, h2, µ2).

To produce the approximate solution, we can use a variety of methods.
One case is to apply the Lindstedt series developed in Section 4. We could
also take the numerically computed results as the approximate solutions.
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Remark 3.1. If we take the solution of the case µ = 0 as the approximate
solution, then the non-degenerate condition is simplified by 〈∂µrµ◦K0|µ=0〉 ,
0 since µ would be assumed to be small enough. See the formulation of
Lindstedt series in Section 4.

An immediate result of Theorem 3.1 is the Lipschitz continuous property
on the parameter α.

Corollary 3.1. Under the hypothesis of Theorem 3.1, if (K(α), h(α), µ(α))
is the true solution of (1.12) and (1.13) , then (K ◦ H, h, µ) is Lipschitz
continuous with respect to α ∈ D(ν;ω) in some neighborhood of ω.

Proof: Let (K(α1), h(α1), µ(α1)) and (K(α2), h(α2), µ(α2)) be two different
solutions of (1.12) and (1.13). We consider (K(α1), h(α1), µ(α1)) as an ap-
proximate solution of (1.12) and (1.13) when α = α2. Indeed, we have
G [K(α1), h(α1), µ(α1);α2]

=ωh(α1) − ωh(α1) ◦ Rα2 − α2 − ωrµ(α1) ◦ K(α1) ◦ H(α1)
=G [K(α1), h(α1), µ(α1);α1] + ωh(α1) ◦ Rα1 − ωh(α1) ◦ Rα2 + α1 − α2

=ωh(α1) ◦ Rα1 − ωh(α1) ◦ Rα2 + α1 − α2,

which implies

‖G [K(α1), h(α1), µ(α1);α2]‖ρ̂ ≤ C|α1 − α2|.

If |α1 − α2| is sufficient small, there exists a true solution nearby, which is
(K(α2), h(α2), µ(α2)) by the local uniqueness. From (3.5) in Theorem 3.1,
we have the Lipschitz continuity of the desired functions. �

We also formulate Lindstedt series for the solutions of (1.12) and (1.13).
There are two reasons that we discuss Lindstedt series here. On the one
hand, when looking for the power series, we would also encounter the main
difficulties appearing in the analysis of Newton equations in Section 5. That
is, the small divisor problem in conjugation equation and the solvability of
the Newton equation of invariance equation. On the other hand, [CCdlL15]
recently develops an easy and efficient way to prove the Whitney regulari-
ties of functions with respect to the parameters defined on some Cantor-like
sets. The methods in [CCdlL15] are based on an a-posteriori theorem and
the existence of Lindstedt series.

Actually, we have

Theorem 3.2. Let ω satisfy the Diophantine condition. Assume (H1) and
(H2) in Theorem 3.1 hold. If 〈∂µrµ ◦K(0)|µ=0〉 , 0, then we obtain the formal
power series to order N

K =

N∑
j=0

K( j)α j, h =

N∑
j=1

h( j)α j, µ =

N∑
j=1

µ( j)α j.
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Furthermore, the power series satisfy the Lindstedt property. That is, for
0 < δ < ρ and 0 ≤ M < N, we have

‖F ≤M[K, µ]‖ρ−δ ≤ C|α|M+1, ‖G ≤M[K, h, µ]‖ρ−δ ≤ C|α|M+1

where C depends on ρ, δ, a, b, rµ, ω and f .

From the proof in Corollary 3.1, it is readily seen that the Lipschitz con-
tinuity is a by-product of an a-posteriori result. In [CCdlL15], it is shown
that with the Lindstedt series one can obtain higher regularities on the pa-
rameters in the sense of Whitney. Actually we have a sharper result than
Corollary 3.1.

Theorem 3.3. Under the assumption of Theorem 3.1, the obtained solutions
(K(α), h(α), µ(α)) is CN-Whitney smooth with respect to α in some neigh-
borhood of zero satisfying α + 1 ∈ D(ν;ω).

Proof: Taking α = 0, we choose h = µ = 0 and obtain a unique solution
K(0). Then by Theorem 3.1, there is a unique solution (K(α), h(α), µ(α)) for
α ∈ D(ν;ω). Let α∗ ∈ D(ν;ω) be small enough. Using the continuity of the
non-degeneracy condition and Corollary 3.1, we have 〈∂µrµ◦K(α∗)|µ=µ(α∗)〉 ,
0. Repeating the procedure in Section 4, there are also power series of order
one

K̃(α) = K(α∗) + K(1) · (α − α∗),

h̃(α) = h(α∗) + h(1) · (α − α∗),

µ̃(α) = µ∗ + µ(1) · (α − α∗)

satisfying the Lindstedt property. Namely,

‖F [K̃(α), µ̃(α)]‖ρ−δ̃ ≤ C|α − α∗|2

and ‖G [K̃(α), h̃(α), µ̃(α);α]‖ρ−δ̃ ≤ C|α − α∗|2.

Then again by the a-posteriori result in Theorem 3.1, we have

‖K(α) − K̃(α)‖ρ−2δ̃ ≤ C|α − α∗|2,

‖h(α) − h̃(α)‖ρ−2δ̃ ≤ C|α − α∗|2,

|µ(α) − µ̃(α)| ≤ C|α − α∗|2,

which coincide the definition of C1-Whitney regularity.
For higher Whitney regularities of solutions K, h, µ with respect to α, we

refer to [CCdlL15] for a general discussion. The main technique is that we
can find a piecewise C1 path connecting two points α1 and α2 on which all
the points satisfy Diophantine condition for complex vectors. �
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Finally, we denote Π the set of the parameters µ which guarantees the
existence of analytic quasi-periodic solutions. We want to show the abun-
dance of parameters in Π.

Theorem 3.4. Under the assumptions of Theorem 3.1, there exist positive
constants C and r∗ such that for all r with 0 < r < r∗,

(3.8) |(−r, r) ∩ Π| ≥ Cr

where | · | denotes the Lebesgue measure.

Proof: By the Whitney extension theorem, we find a C1 function Γ(α) in a
neighborhood of zero, whose restriction on D(ν;ω) equal to µ(α). And we
also have

Γ′(0) = µ(1) = (〈∂µrµ ◦ K(0))|µ=0〉)−1 , 0

which provides a positive lower Lipschitz constant for Γ. Then the bi-
Lipschitz functions allow us to control the measure of their ranges. A stan-
dard argument yields inequality (3.8). �

Of course, with higher Whitney regularities of µ(α), we can get sharper
estimates on the measure of Π. See Appendix B in [Van02] on the density
of pullbacks.

4. Proof of existence of Lindstedt series(Theorem 3.2)

Following the standard perturbative procedure we write

K =
∑
j≥0

K( j)α j,

h =
∑
j≥0

h( j)α j,

µ =
∑
j≥0

µ( j)α j.

(4.1)

where K( j), h( j), µ( j) are the coefficients of α j. Substitute (4.1) into invariance
equation (1.12) and conjugation equation (1.13) and equate the powers of
α.

Equating the coefficient of power α0 in (1.13), we obtain

h(0) − h(0) ◦ Rω − 1 − rµ(0) ◦ K(0) ◦ (Id + ωh(0)) = 0.

Choose µ(0) = 0 and h(0) = 0. For the coefficient of power in (1.12), we have

(4.2) ∂K(0) · ω − aK(0) − bK(0) ◦ Rω − f = 0.
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Expanding K0 and f into Fourier series with coefficients K̂(0)
k and ĥ(0)

k re-
spectively, we obtain

(4.3) K̂(0)
k =

f̂k

2πik · ω − a − be2πik·ω .

It is readily seen that when |b| < |a|, the divisor in (4.3) stays away from zero
and |K̂(0)

k | ≤ (|a| − |b|)−1| f̂k|. Indeed, the Fourier series
∑

k∈Zd K̂(0)
k e2πik(θ+ωt) is

a real analytic quasi-periodic solution of the constant delay case.
Equating the coefficient of power α1 in (1.13), we have

h(1) − h(1) ◦ Rω − 1 − ∂µrµ(K(0))|µ=0 · µ
(1) = 0.

Then ifω satisfies the Diophantine condition and the average of ∂µrµ(K(0))|µ=0

is not zero, we obtain from Lemma 2.2 that there is a unique solution h(1)

with zero average. For the coefficient of power α1 in (1.12), we also have

∂K(1) · ω − aK(1) − bK(1) ◦ Rω = −bDK(0) · ω∂µrµ(K(0))|µ=0 · µ
(1)

is also solvable since the right hand side is already known.
Of course, one can further continue the calculations to higher order of

power series. Indeed, for the coefficients of power α j with j > 1, one has

(4.4) h( j) − h( j) ◦ Rω = ∂µrµ(K(0))|µ=0 · µ
( j) + S ≤( j−1)

and

(4.5) ∂K( j) · ω − aK( j) − bK( j) ◦ Rω = T≤( j−1)

where S ≤( j−1) can be explicitly computed. And T≤(n−1) also depends on µ( j)

in (4.4). Therefore, one is able to solve (4.4) and (4.5) by the same argu-
ments under the same assumption that the average of ∂µrµ(K(0))|µ=0 does not
vanish.

Then by the Taylor estimates, we can easily prove the Lindstedt property
for the power series, without involving the Sobolev norm.

5. Iteration procedure for the proof of Theorem 3.1

In this section, we analyze the Newton equations for the invariance and
conjugation equations. We show how having an (approximate) solution of
the conjugation equation simplifies the Newton step of the invariance equa-
tion.

5.1. Newton equation for the invariance equation (1.12). Given the ap-
proximate solution K0, h0 and µ0, we formulate and analyze the first New-
ton iteration step in this subsection. Without causing confusions, we use
(K, h, µ) instead of (K0, h0, µ0).
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5.1.1. Formulation of the Newton equation of (1.12). For the moment, we
specify the scheme and ignore several precisions such as domain of oper-
ators and regularities. They will be discussed later in Section 5.1.2. In
this section, we just want to highlight several remarkable cancellations that
make the scheme possible of the invariance equation.

The Newton equation of (1.12) is given by

(5.1) DF [K, µ](∆K,∆µ) = −E,

where K and µ are the given approximated solutions and unknowns are ∆K
and ∆µ. If we can find (∆K,∆µ) solving (5.1), we expect that K + ∆K and
µ + ∆µ are much better approximate solutions of (1.12).

Under some regularity assumptions which we discuss later, the derivative
of F is

DF [K, µ](∆K,∆µ)
=∂∆K · ω − a∆K − b∆K ◦ ϕ[K, µ] − bDK ◦ ϕ · ∂Kϕ[K, µ] · ∆K
− bDK ◦ ϕ · ∂µϕ[K, µ] · ∆µ

(5.2)

where

(5.3)
{
∂Kϕ[K, µ]∆K = −ωDrµ ◦ K · ∆K
∂µϕ[K, µ]∆µ = −ωDµrµ ◦ K · ∆µ.

See [dlLO99] and [Mey75] for the computations of Fréchet derivatives of
operators involving composition and their estimates.

Looking at (5.2), we see that the equation (5.1) presents an essential dif-
ficulty because it involves the terms ∂∆K ·ω and ∆K ◦ϕ(K, µ). The problem
is that due to the composition with the delay mapping ϕ[K, µ], it would be
hard to find an analyticity domain for both ∂∆K · ω and ∆K ◦ ϕ(K, µ). As
we discussed before in Remark 1.1, the problem of studying analyticity do-
main invariant under the delay mapping ϕ is resolved by the conjugation
equation.

To this end, denoting

(5.4) V = ∆K ◦ H = ∆K ◦ (Id + ωh)

and using (3.2) we have

DF [K, µ](∆K,∆µ) ◦ H

=
[
∂V · ω − aV − bV ◦ R(α+1)ω

]
+ ∂V · ((DH)−1 − I)ω + bP · ωDrµ ◦ K ◦ H · V

+ bP · ω∂µrµ ◦ K ◦ H · ∆µ − b
∫ 1

0
D∆K ◦ (H ◦ R(α+1)ω + qe) · e dq,

(5.5)

where

(5.6) P[K, h, e] = DK ◦ (e + H ◦ R(α+1)ω).
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From Proposition 2.2, we have

∂V ·((DH)−1−I)ω = Tr
{
D[V · ((DH)−1 − I)] · ω

}
−V ·Tr

{
D((DH)−1 − I) · ω

}
in which Tr represents the trace of a matrix and I is the identity matrix of
order d.

We would like to seek an approximate solution of the Newton equation
(5.1). More precisely, we will consider the following equation

−E ◦ H =L V + Tr
{
D[V · ((DH)−1 − I)] · ω

}
− V · Tr

{
D((DH)−1 − I) · ω

}
+ bP · ωDrµ ◦ K ◦ H · V + bP · ω∂µrµ ◦ K ◦ H · ∆µ

(5.7)

where the linear operator L is defined as

(5.8) L [V] = ∂V · ω − aV − bV ◦ R(α+1)ω

and the function spaces will be specified later.

5.1.2. Analysis of the Newton equation (5.7). We solve the functional equa-
tion (5.7) on the Sobolev space Aζ,s. Firstly, we prove that the operator L
has a bounded inverse onAζ,s for any positive ζ and s ∈ 2N. Then we show
that the other terms can be treated perturbatively.

To see that L has a bounded inverse, we have that, for a given S ∈ Aζ,s,
there exists a V solving L V = S given by

(5.9) V(θ) =
∑
k∈Zd

V̂ke2πik·θ =
∑
k∈Zd

(2πik · ω − a − be2πik·(α+1)ω)−1Ŝ ke2πik·θ.

The solution V in (5.9) is obtained by expanding S and V into Fourier series
with coefficients Ŝ k and V̂k respectively. Note that L is diagonal in the basis
of exponentials

L e2πik·θ = (2πik · ω − a − be2πik·(α+1)ω)e2πik·θ.

Obviously, if |b| < |a|, then the divisor in (5.9) stays away from zero and
satisfies ∣∣∣2πik · ω − a − be2πik·(α+1)ω

∣∣∣−1
< (|a| − |b|)−1

for all the k, ω and Ω. Then, for the Sobolev norm, one has

‖V‖2ζ,s =
∑
k∈Zd

e4π|k|ζ

B(k, ζ)
[(2π)d|k|2 + 1]s ·

∣∣∣2πik · ω − a − be2πik·(α+1)ω
∣∣∣−2
· |Ŝ k|

2

≤(|a| − |b|)−2‖S ‖2ζ,s
or equivalently

(5.10) ‖L −1‖ζ,s ≤ (|a| − |b|)−1

for any ζ and s.
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Next, we consider the expression L −1Tr{D[V ·((DH)−1−I)]·ω}. Keeping
in mind that (DH)−1 = (I + ωDh)−1 and that Dh is expected to be small, we
can apply the Neumann series to compute (DH)−1 − I and obtain

(DH)−1 − I = −ωDh ·
∞∑
j=0

(−ωDh) j.

We introduce the notation

(5.11) g = (g1, · · · , gd) = −Dh ·
∞∑
j=0

(−ωDh) j

and then

(5.12) (DH)−1 − I = ω · g.

By Proposition 2.3 in Appendix B, we have the following formal Fourier
series

L −1Tr
{
D[V · ((DH)−1 − I)] · ω

}
=

∑
k∈Zd

2πik · ω
(
2πik · ω − a − be2πik·(α+1)ω

)−1
d∑

j=1

ω j(V̂ · g j)k · e2πik·θ.

(5.13)

Noticing that for all q ∈ R, when |t| is sufficient large, the estimate∣∣∣∣∣ t
it − a − beiq

∣∣∣∣∣ =
|t|

| − a − b cos q + i(t + b sin q)|
≤

1
|1 + (b sin q)/t|

< 2

holds and when |t| is bounded,∣∣∣∣∣ t
it − a − beiq

∣∣∣∣∣ ≤ |t|
|a + b cos q|

is also bounded. Thus we conclude that

sup
t,q∈R

∣∣∣∣∣ 2πit
2πit − a − be2πiq

∣∣∣∣∣ < ∞.
Back to the series (5.13), we finally obtain
(5.14)
‖L −1Tr{D[V · ((DH)−1 − I)] · ω}‖2ζ,s

=
∑
k∈Zd

e4π|k|ζ

B(k, ζ)
[(2π)d|k|2 + 1]s

∣∣∣∣∣∣∣ 2πik · ω
2πik · ω − a − be2πik·Ω

d∑
j=1

ω j(V̂ · g j)k

∣∣∣∣∣∣∣
2

≤ C
d∑

j=1

‖V · g j‖
2
ζ,s ≤ C

d∑
j=1

‖g j‖
2
ζ,s · ‖V‖

2
ζ,s

if ζ < ρ − σ.
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Remark 5.1. Without the particular form (5.12), the estimate of the Sobolev
norm of L −1Tr{D[V · (D−1H− I)] ·ω} would diverge. This can be seen from
its general expression (B.2), in which the numerator does not contain factor
ω·k. Hence, for a general form of (DH)−1, the numerator would grow faster
than the denominator for large k.

With the analysis above, we now construct a contraction mapping B such
that the equation (5.7) can be solved using (5.10) and (5.14). To this end,
we define the linear operator B as

B[V; K, h, µ]

= −L −1Tr
{
D[V · ((DH)−1 − I)] · ω

}
+ L −1Tr

{
V · D((DH)−1 − I) · ω

}
− bL −1

{
P · ωDrµ ◦ K ◦ H · V

}
(5.15)

on the Sobolev spaceAζ,s.

5.1.3. Analysis of analyticity domain of (5.15). Obviously, we encounter
the problem of choosing suitable analyticity domains such that the mul-
tiplier P[K, h, e] in (5.15) is well-defined. Thus, we need the following
lemma to analyze the loss of domain. Recalling the notation defined in
(2.4) we know DH,ρ = H(Dρ) which represents the range of a function H
on the analytic strip domain Dρ with width ρ > 0. We will also give sev-
eral similar lemmas when determining the analytic domain for composition
functions.

Lemma 5.1. If

(5.16) σ−1‖ωh‖ρ, Cσ−1‖e‖ρ < 1/2,

then

(5.17)
DH◦R(α+1)ω+e,ρ−10σ ⊆DH,ρ−8σ ⊆ DH◦R(α+1)ω+e,ρ−5σ ⊆ DH◦R(α+1)ω,ρ−2σ

=DH,ρ−2σ ⊆ DH,ρ.

This is really a perturbation argument using that H = Id + ωh is a Lips-
chitz perturbation of the identity and one could use the standard Lipschitz
implicit function theorem. We give full details to be more quantitative.
Proof: Let ξ = (1, · · · , 1)d. We show one inclusion in (5.17) and divide the
argument into several steps.
1) H is injective onDρ−2σ.

For any different z1, z2 inDρ−2σ, one has
|H(z2) − H(z1)| = |z2 − z1 − (ωh(z2) − ωh(z1))|

≥ |z2 − z1| − ‖ωDh‖ρ−2σ|z2 − z1|

> (1 − (2σ)−1‖ωh‖ρ) · |z2 − z1|
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which implies the assertion. As a result, given any 0 ≤ p ≤ ρ − 2σ, the
mapping Mp

MH
p :

Rd → H({θ ∈ Cd : Im(θ j) = p, j = 1, · · · , d})
x 7→ H(x + ipξ)

is bijective. And we denote (·) j the j-th component of a vector.
2) Im(MH

p (x)) j is monotone increasing in p for any j = 1, · · · , n.
For any 0 < p1 < p2 and x ∈ Rd, one has

Im(H(x + ip2ξ) − H(x + ip1ξ)) j

= Im(i(p2 − p1)ξ + [ωh(x + ip2ξ) − ωh(x + ip1ξ)]) j

≥ p2 − p1 − ‖ωDh‖ρ−2σ(p2 − p1) > 0

since ‖ωDh‖ρ−2σ ≤ (2σ)−1‖ωh‖ρ < 1. It should be kept in mind that 2)
holds under the assumption of real analyticity of H.

Geometrically, 1) and 2) say that the surface H({θ : Im(θ) = p1ξ})
lies between the real plane and another surface H({θ : Im(θ) = p2ξ}).
Similar arguments hold for the case of negative imaginary part.

3) DH◦R(α+1)ω+e,ρ−5σ ⊆ DH◦R(α+1)ω,ρ−2σ.
For any x ∈ Rd, one has

Im(H(x + i(ρ − 2σ)ξ + (α + 1)ω)) j − Im((H ◦ R(α+1)ω + e)(x + i(ρ − 5σ)ξ)) j

=3σ + Im(ωh(x + i(ρ − 2σ)ξ + (α + 1)ω) − ωh(x + i(ρ − 5σ)ξ + (α + 1)ω)) j

+ Im(e(x + i(ρ − 5σ)ξ)) j

≥3σ · (1 − ‖ωDh‖ρ−σ − (3σ)−1‖e‖ρ) > 0.

Observing that the rotation operator R(α+1)ω does not change the strip do-
main on the complex space. That is, R(α+1)ω(Dζ) = Dζ for all ζ > 0.Then,
DH◦R(α+1)ω,ζ = DH,ζ .

The other inclusions in (5.17) are proved in the same way and thus omit-
ted. �

5.1.4. Solution of the Newton equation (5.7). Our goal in this subsection
is to prove that the operator B defined in (5.15) is a contraction on the
Sobolev spaceAρ−6σ,s. Actually, we have

Lemma 5.2. If
‖ωh‖ρ
σ2+s+d/2 , |b| << 1,

then, B is a contraction on the Sobolev spaceAρ−6σ,s.

Proof: We first estimate the Sobolev norm of g defined in (5.11) in terms
of the supremum norm of h, we get the estimates

‖g j‖ρ−2σ,s ≤ Cσ−(s+d/2)‖g j‖ρ−σ ≤ Cσ−(1+s+d/2)‖ωh‖ρ
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and

‖D((DH)−1 − I)‖ρ−3σ,s ≤ Cσ−(s+d/2)‖D((DH)−1 − I)‖ρ−2σ ≤ Cσ−(2+s+d/2)‖ωh‖ρ.

if

(5.18)
C

σ2+s+d/2 ‖ωh‖ρ < 1.

Furthermore, we have

‖P[K, h, e]‖ρ−6σ,s

≤Cσ−(s+d/2)‖DK ◦ (H ◦ R(α+1)ω + e)‖ρ−5σ ≤ Cσ−(s+d/2)‖DK ◦ H‖ρ−2σ

≤Cσ−(1+s+d/2)‖(DH)−1‖ρ−σ · ‖K ◦ H‖ρ.

(5.19)

Then, for any V1 and V2 inAρ−6σ,s, one sees from (5.14) and (5.19) that
(5.20)
‖B[V2 − V1]‖ρ−6σ,s

≤C(
d∑

n=1

‖gn‖
2
ρ−6σ,s)

1/2 · ‖V2 − V1‖ρ−6σ,s + C‖Tr[D((DH)−1 − I) · ω]‖ρ−6σ,s

× ‖V2 − V1‖ρ−6σ,s + |b| ·C‖P‖ρ−6σ,s · ‖ωDrµ ◦ K ◦ H‖ρ−6σ,s‖V2 − V1‖ρ−6σ,s

≤C ·
{
‖ωh‖ρ
σ2+s+d/2 +

|b|
σ1+s+d/2 ‖(DH)−1‖ρ−σ · ‖K ◦ H‖ρ ·

‖Drµ ◦ K ◦ H‖ρ−σ
σ1+s+d/2

}
× ‖V2 − V1‖ρ−6σ,s.

If
‖ωh‖ρ
σ2+s+d/2 , |b| << 1

such that

(5.21) C ·
{
‖ωh‖ρ
σ2+s+d/2 +

|b|
σ1+s+d/2 · ‖K ◦ H‖ρ ·

‖Drµ ◦ K ◦ H‖ρ−σ
σ1+s+d/2

}
< λ <

1
2

then B is a contraction onAρ−6σ,s, which satisfies

(5.22) ‖B‖ρ−6σ,s < λ <
1
2
.

�
Hence, from (5.7), one has

(5.23) V = (Id −B)−1
{
−bL −1[P · ω∂µrµ ◦ K ◦ H · ∆µ] −L −1[E ◦ H]

}
,

which belongs to Aρ−6σ,s. It is necessary to choose a suitable ∆µ such that
V can be small enough. We will find such ∆µ in next subsection under some
non-degeneracy conditions.
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5.2. Newton equation for the conjugation equation (1.13). Likewise, we
formulate and analyze the Newton equation for the conjugation equation.
Because of the delay mapping preserving the ω−foliation, we actually en-
counter a one dimensional problem.

5.2.1. Formulation of the Newton equation of (1.13). We consider the New-
ton equation of (1.13), which reads

(5.24) DG [K, h, µ](∆K,∆h,∆µ) = −e.

The unknowns are ∆K, ∆h and ∆µ. The goal is to solve (5.24) such that
K + ∆K, h + ∆h and µ + ∆µ are better approximate solutions of (1.13).

Under some regularity assumptions stated later, the Fréchet derivative of
the operator G is
(5.25)
DG [K, h, µ](∆K,∆h,∆µ)

= ω∆h − ω∆h ◦ R(α+1)ω − ωDrµ ◦ K ◦ H · DK ◦ H · ω∆h − ω∂µrµ ◦ K ◦ H · ∆µ
− ωDrµ ◦ K ◦ H · ∆K ◦ H.

Equation (5.24) is very standard and appears in [Mos66a]. We also observe
that when the delay mapping ϕ defined in (1.6) is foliation-preserving(see
Appendix A), the equation (5.25) has additional features. That is, the de-
rivative of G can be written as the product of the ω and a scalar function.
Differentiating (3.2) with respect to the variable θ, one also has

De =ωDh − ωDh ◦ R(α+1)ω

− ωDrµ ◦ K ◦ (Id + ωh) · DK ◦ H · (I + ωDh).
(5.26)

This motivates us introducing a new unknown W in place of ∆h. Let

(5.27) W = (I + ωDh)−1 · ω∆h = (I + ωg) · ω∆h

and then
ω∆h = (I + ωDh)W.

Substituting (5.25) and (5.26) into the Newton equation (5.24) yields
W −W ◦ R(α+1)ω = −(I + ωg ◦ R(α+1)ω) · {e − ω∂µrµ ◦ K ◦ (Id + ωh) · ∆µ

− ωDrµ ◦ K ◦ H · ∆K ◦ H + De ·W},

where now the unknown are W, ∆K and ∆µ.
Since the term De·W is formally quadratic from the equation to be solved,

we omit it for the moment and consider the following approximate Newton
equation
(5.28)

W −W ◦ R(α+1)ω = − (I + ωg ◦ R(α+1)ω) ·
{
e − ω∂µrµ ◦ K ◦ (Id + ωh) · ∆µ

−ωDrµ ◦ K ◦ H · ∆K ◦ H
}
.
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Inserting ∆K ◦ H obtained in (5.23) into (5.28), one has
(5.29)
W −W ◦ R(α+1)ω

= − (I + ωg ◦ R(α+1)ω) ·
{
e + ωDrµ ◦ K ◦ H · (Id −B)−1L −1[E ◦ H]

}
+ (I + ωg ◦ R(α+1)ω) · ω

{
∂µrµ ◦ K ◦ H + Drµ ◦ K ◦ H

×(Id −B)−1L −1[P · ω∂µrµ ◦ K ◦ H]
}
· ∆µ.

We emphasize that the unknowns in (5.29) are W and ∆µ and the other
terms are already known.

5.2.2. Analysis of the Newton equation of (1.13). With the properties of
foliation-preserving, we finally reduce (5.29) to a scalare equation problem.

To see this, we find that the initial error for the conjugation equation e
can also be written as

(5.30) e = ẽω,

where
ẽ = h0 − h0 ◦ RΩ − α − rµ0 ◦ K0 ◦ (Id + ωh0).

Let W̃ = ∆h + gω∆h and from (5.27) we have

(5.31) W = W̃ω.

Substituting (5.30) and (5.31) into the cohomology equation (5.29), we ob-
tain the scalar equation

(5.32) W̃ − W̃ ◦ R(α+1)ω = −N[K, h, µ] +M[K, h, µ]∆µ,

where
(5.33)
M[K, h, µ] =(1 + g ◦ R(α+1)ω · ω) ·

{
∂µrµ ◦ K ◦ H + Drµ ◦ K ◦ H

×(Id −B)−1L −1(DK ◦ H ◦ R(α+1)ω · ω∂µrµ ◦ K ◦ H)
}
,

and
(5.34)
N[K, h, µ] = (1+g◦R(α+1)ω ·ω)·

{̃
e + Drµ ◦ K ◦ H · (Id −B)−1L −1[E ◦ H]

}
.

Recalling the theory of cohomology equation developed in Section 2.2, to
obtain a solution of (5.29), it is necessary and sufficient that the right hand
side has zero average. This amounts to

(5.35) − 〈N[K, h, µ]〉 + 〈M[K, h, µ]〉∆µ = 0,

where 〈·〉 denotes the average of a periodic function.
For the first Newton step, by the non-degeneracy condition (3.4)

〈M[K0, h0, µ0]〉 , 0,
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we can solve (5.35) uniquely and obtain a sufficient small ∆µ . We will give
the estimates on the corrections in the next subsection.

Remark 5.2. Since we will be modifying the functional equation (1.12)
and (1.13) in the iteration process, it is important to realize that the non-
degeneracy condition (3.4) is an open condition. More precisely, if (3.4)
holds for some K0, h0, µ0, it will also hold for all K, h, µ close enough in the
usual C1 topology.

5.3. Estimates on the corrections. For Equation (5.35), using the non-
degeneracy condition (3.4) one has

(5.36) ∆µ = −〈M[K0, h0, µ0]〉−1 · 〈N[K0, h0, µ0]〉

and

(5.37) |∆µ| ≤ Cε,

where the constant C depends on the given approximate solution K0, h0, µ0, A,
the delay function r and the norm of (Id −B)−1.

Applying Lemma 2.2 to the equation (5.28), one readily obtains a unique
W with zero average which belongs toAρ−7σ and

(5.38) ‖W‖ρ−7σ ≤
C
σν
ε .

Combining with (5.27), we get the correction and its estimate as

(5.39) ‖ω∆h‖ρ−7σ ≤
C
σν
ε .

Once ∆µ and its estimate is obtained, we also have
(5.40)
‖∆K ◦ H‖ρ−6σ,s =‖V‖ρ−6σ,s ≤ C(‖P[K, h, e]‖ρ−6σ,s|∆µ| + ‖E ◦ H‖ρ,s) ≤ Cε.

For the following iteration step, we denote

K+ = K + ∆K,

h+ = h + ∆h,

H+ = Id + ωh+ = H + ω∆h,

µ+ = µ + ∆µ.

(5.41)

We also give some estimates after introducing the corrections ∆K, ω∆h,∆µ.
For convenience, we summarize these standard estimates below in detail
and give their proofs in Appendix C.

Proposition 5.1. If

(5.42) σ−(2+s+d/2)‖ωh‖ρ, Cσ−(ν+1)ε, |b| << 1,

one has the following estimates:
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(i) ‖ωh+‖ρ−7σ ≤ ‖ωh‖ρ + Cσ−νε;
(ii) ‖ωDh+‖ρ−8σ ≤ ‖ωh‖ρσ−1 + Cσ−(ν+1)ε;

(iii) ‖DH+ − I‖ρ−8σ ≤ ‖ωh‖ρσ−1 + Cσ−(ν+1)ε;
(iv) ‖(DH+)−1 − I‖ρ−8σ ≤ 2‖ωh‖ρσ−1 + Cσ−(ν+1)ε;
(v) ‖D((DH+)−1 − I)‖ρ−9σ ≤ C‖ωh‖ρσ−2 + Cσ−(ν+2)ε;

(vi) ‖D2H+‖ρ−9σ ≤ ‖ωh‖ρσ−2 + Cσ−(ν+2)ε
(vii) ‖K ◦ H+ − K ◦ H‖ρ−7σ ≤ C‖DK ◦ H‖ρ−2σ · σ

−νε
(viii) ‖K ◦ H+‖ρ−7σ ≤ [1 + Cσ−(ν+1)ε] · ‖K ◦ H‖ρ;

(ix) ‖DK ◦ H+‖ρ−8σ ≤ [σ−1 + Cσ−(ν+2) · ε] · ‖K ◦ H‖ρ · (1 + 2‖ωDh+‖ρ−8σ);
(x) ‖∆K ◦ H+‖ρ−12σ,s ≤ Cσ−(s+d/2)ε;

(xi) ‖DK+◦ϕ[K+, µ+]◦H+‖ρ−12σ,s ≤ C
‖DK ◦ H‖ρ−σ

σs+d/2 +C‖D−1H‖ρ−σ·σ−(1+s+d/2)ε;

(xii) ‖∂Kϕ[K+, µ+] ◦ H+‖ρ−12σ,s ≤ C‖Dr‖D∗ · σ−(2s+d)ε;
(xiii) ‖∂µϕ[K+, µ+] ◦ H+ · ∆µ‖ρ−12σ,s ≤ C‖∂µr‖D∗ · ε;
(xiv) ‖(∂KKϕ[K+, µ+] · (∆K)⊗2) ◦ H+‖ρ−12σ,s ≤ C‖D2r‖D∗ · σ−(3s+3d/2)ε2;
(xv) ‖(∂Kµϕ[K+, µ+] · ∆K) ◦ H+∆µ‖ρ−12σ,s ≤ C‖D∂µr‖D∗ · σ−(2s+d)ε2;

(xvi) ‖∂µµϕ[K+, µ+] ◦ H+(∆µ)⊗2‖ρ−12σ,s ≤ C‖Dµµr‖D∗ · σ−(s+d/2) · ε2;
(xvii)

‖D2K+ ◦ ϕ[K+, µ+] ◦ H+‖ρ−12σ,s

≤ Cσ−(s+d/2)‖D2K ◦ H‖ρ−2σ + C‖D2H‖ρ−2σ · ‖(DH)−1‖3ρ−σ · σ
−(2+s+d/2)ε.

The estimates (i) − (vi) can be proved using Lemma 5.1 to analyze its
analyticity domain. However, when composing with H+, the estimates
(xi) − (xvii) requires a further restriction on the analyticity domain. We
will present how these expressions come into our problem in the follow-
ing subsection. The Lemma 5.3 and Lemma 5.4 will be used to estimate
(vii) − (x) and (xi − xvii) in Proposition 5.1 respectively.
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5.4. Estimates on the improved error. By the assumptions on the smooth-
ness and the Taylor’s formula, we have

G [K + ∆K, h + ∆h, µ + ∆µ] − G [K, h, µ] − DG [K, h, µ](∆K,∆h,∆µ)

= −

∫ 1

0
q
∫ 1

0
ωD2rµ+pq∆µ ◦ K ◦ (H + pqω∆h) · [DK ◦ (H + pqω∆h) · ω∆h]⊗2

+ ωDrµ+pq∆µ ◦ K ◦ (H + pqω∆h) · D2K ◦ (H + pqω∆h) · (ω∆h)⊗2

+ 2ωD∂µrµ+pq∆µ ◦ K ◦ (H + pqω∆h) · [DK ◦ (H + pqω∆h) · ω∆h] · ∆µ

+ ωD2
µrµ+pq∆µ ◦ K ◦ (H + pqω∆h) · ∆µ⊗2

+ ωD2rµ+pq∆µ ◦ (K + pq∆K) ◦ (H + pqω∆h) · ∆K ◦ (H + pqω∆h)
× D(K + pq∆K) ◦ (H + pqω∆h) · ω∆h

+ ωDrµ+pq∆µ ◦ (K + pq∆K) ◦ (H + pqω∆h) · D∆K ◦ (H + pqω∆h) · ω∆h
+ ωD∂µrµ+pq∆µ ◦ (K + pq∆K) ◦ (H + pqω∆h) · ∆K ◦ (H + pqω∆h) · ∆µ

+ ωD2rµ+pq∆µ ◦ (K + pq∆K) ◦ (H + pqω∆h) · [∆K ◦ (H + pqω∆h)]⊗2

dp dq.

(5.43)

Before estimating the difference, we have to show the terms in (5.43) are
well-defined. To see this, we show a similar result to Lemma 5.1.

Lemma 5.3. If the conditions (5.42) hold, then

(5.44) DH+ω∆h,ρ−10σ ⊆ DH,ρ−8σ.

Proof: It is sufficient to show that, for any x ∈ Rd,

Im(H(x + i(ρ − 8σ)ξ)) j − Im((H + ω∆h)(x + i(ρ − 10σ))) j

=Im(H(x + i(ρ − 8σ))) j − Im(H(x + i(ρ − 10σ))) j − Im(ω∆h(x + i(ρ − 10σ))) j

≥2σ · (1 − ‖ωDh‖ρ−8σ −
‖ω∆h‖ρ−7σ

2σ
)

> 0

�
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We now consider the difference (5.43) on the analyticity domainDρ−10σ.
Obviously, a trivial estimate yields

‖G [K + ∆K, h + ∆h, µ + ∆µ] − G [K, h, µ] − DG [K, h, µ](∆K,∆h,∆µ)‖ρ−10σ

≤ |ω| · ‖D2r‖D∗ · ‖DK ◦ H‖2ρ−2σ ·Cσ
−2νε2 + |ω| · ‖Dr‖D∗ · ‖D2K ◦ H‖ρ−2σ ·Cσ−2νε2

+ |ω| · ‖D2r‖D∗ · ‖DK ◦ H‖ρ−2σ ·Cσ−(ν+1)ε2

+ |ω| · ‖D2r‖D∗ ·Cε2 + |ω| · ‖D2r‖D∗ · ‖DK ◦ H‖ρ−2σ ·Cσ−νε2

+ |ω| · ‖Dr‖D∗ ·Cσ−ν+1ε2 + |ω| · ‖D∂µr‖D∗ ·Cε2 + |ω| · ‖D2r‖D∗ ·Cε2

≤ C(‖DK ◦ H‖2ρ−2σ + ‖D2K ◦ H‖ρ−2σ) · σ−2νε2.

(5.45)

We recall that ∆K,∆h and ∆µ have been chosen in such a way that the
Newton equation (5.24) is solved up to an error term De ·W. Considering
the omitted term De · W in the Newton equation (5.2.1), one immediately
has

(5.46) ‖De ·W‖ρ−10σ ≤ C‖(DH)−1‖ρ−σ · σ
−(ν+1)ε2.

Then, from (5.28), (5.45) and (5.46), we have

‖G [K + ∆K, h + ∆h, µ + ∆µ]‖ρ−10σ

≤ ‖G [K, h, µ] + DG [K, h, µ](∆K,∆h,∆µ)‖ρ−10σ

+ ‖G [K + ∆K, h + ∆h, µ + ∆µ] − G [K, h, µ] − DG [K, h, µ](∆K,∆h,∆µ)‖ρ−10σ

≤ C(‖(DH)−1‖ρ−σ + ‖DK ◦ H‖2ρ−2σ + ‖D2K ◦ H‖ρ−2σ) · σ−2νε2 .

(5.47)

We denote the new error of the conjugation equation (1.11) by

(5.48) e+ = G [K + ∆K, h + ∆h, µ + ∆µ]

and thus

(5.49) ‖e+‖ρ−10σ ≤ Cσ−2νε2.

Now we are ready to give the estimates on the new error in the invariance
equation after introducing the new correction ∆K. Again one has the formal
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expression

F [K + ∆K, µ + ∆µ] −F [K, µ] − DF [K, µ](∆K,∆µ)

= −b
∫ 1

0
q
∫ 1

0
2D∆K ◦ ϕpq · [∂Kϕpq · ∆K + ∂µϕpq · ∆µ]

+ D2(K + pq∆K) ◦ ϕpq · [(∂Kϕpq · ∆K)⊗2 + 2∂Kϕpq · ∆K · ∂µϕpq · ∆µ

+ (∂µϕpq · ∆µ)⊗2]

+ D(K + pq∆K) ◦ ϕpq · [∂KKϕpq · (∆K)⊗2 + 2∂Kµϕpq · ∆K∆µ

+ ∂µµϕpq · (∆µ)⊗2] dpdq

(5.50)

where
ϕpq = ϕ[K + pq∆K, µ + pq∆µ].

Furthermore, when composing (5.50) with H+, we show some terms explic-
itly as follows:
(E1)

ϕpq ◦ H+ =H+ − ωrµ+pq∆µ ◦ (K + pq∆K) ◦ H+

= − ϕ[K, µ+] ◦ H+ − (ϕ[K, µ + pq∆µ] − ϕ[K, µ+]) ◦ H+

− ωpq
∫ 1

0
Drµ+pq∆µ ◦ (K + pqt∆K) ◦ H+ · ∆K ◦ H+dt

= − H+ ◦ R(α+1)ω + e+

− ω(1 − pq)
∫ 1

0
∂µrµ+[pq+(1−pq)t]∆µ ◦ K ◦ H+ · ∆µ dt

− ωpq
∫ 1

0
Drµ+pq∆µ ◦ (K + pqt∆K) ◦ H+ · ∆K ◦ H+dt

(5.51)

(E2)

[∂Kϕpq · ∆K + ∂µϕpq · ∆µ] ◦ H+ = − ωDrµ+pq∆µ ◦ (K + pq∆K) ◦ H+ · ∆K ◦ H+

− ∂µrµ+pq∆µ ◦ (K + pq∆K) ◦ H+ · ∆µ

(E3)

[∂KKϕpq · (∆K)⊗2] ◦ H+ = −ωD2rµ+pq∆µ ◦ (K + pq∆K) ◦ H+ · (∆K ◦ H+)⊗2

which either determine the analyticity domain or are useful for the error
estimates.

The remanning terms are similar to (3) and thus omit. From lemma 5.3,
one has

DH+,ρ−10σ ⊆ DH,ρ−8σ.
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Furthermore, since
(5.52)
‖Drµ+∆µ ◦ (K + ∆K) ◦ H+ · ∆K ◦ H+‖ρ−10σ ≤ C‖∂µr‖D∗ · ‖∆K ◦ H+‖ρ−10σ

≤ C‖∂µr‖D∗ · ‖∆K ◦ H‖ρ−6σ ≤ C‖∂µr‖D∗ · ‖∆K ◦ H‖ρ−6σ,s

≤ C‖∂µr‖2D∗ · ‖P‖ρ−6σ,s · ε

and

(5.53) ‖∂µrµ+∆µ ◦ K ◦ H+ · ∆µ‖ρ−10σ ≤ C‖∂µr‖D∗ · ε,

we have the following lemma from the expression (5.51) of ϕ[K+, h+] ◦H+.

Lemma 5.4. If the conditions (5.42) hold, then

(5.54) Dϕ[K+,µ+]◦H+,ρ−10σ ⊆ DH,ρ−8σ.

The smallness of ε also ensure that µ + ∆µ andDK+◦H+,ρ−10σ does not run
out of the analyticity domain of ∂µr and Dr. Using Lemma 5.4, we are able
to estimate the terms in (5.50).

By Proposition 5.1, we have

‖{F [K + ∆K, µ + ∆µ] −F [K, µ] − DF [K, µ](∆K,∆µ)} ◦ H+‖ρ−12σ,s

≤ C‖D∆K ◦ ϕpq ◦ H+‖ρ−12σ,s ·
{
‖(∂Kϕ[K+, µ+] · ∆K) ◦ H+‖ρ−12σ,s

+‖∂µϕ[K+, µ+] ◦ H+‖ρ−12σ,s × |∆µ|
}

+ ‖D2K+ ◦ ϕ[K+, µ+] ◦ H+‖ρ−12σ,s

× {‖(∂Kϕ[K+, µ+] · ∆K) ◦ H+‖ρ−12σ,s + ‖∂µϕ[K+, µ+] ◦ H+‖ρ−12σ,s

× |∆µ|}2 + ‖DK+ ◦ ϕ[K+, µ+] ◦ H+‖ρ−12σ,s·

× {‖(∂KKϕ[K+, µ+] · (∆K)⊗2) ◦ H+‖ρ−12σ,s

+ 2‖(∂Kµϕ[K+, µ+] · ∆K) ◦ H+‖ρ−12σ,s · |∆µ|

+ ‖∂µµϕ[K+, µ+] ◦ H+‖ρ−12σ,s · |∆µ|
2}

≤ C
ε2

σ5(s+d/2)+2 .

(5.55)

For the omitted term in the Newton equation of F , it is readily seen

DH−1◦H+,ρ−10σ = H−1(DH+,ρ−10σ) ⊆ H−1(DH,ρ−8σ) = Dρ−8σ

and then
(5.56)∥∥∥∥b

∫ 1

0
[D∆K ◦ (H ◦ R(α+1)ω + se) · e]ds ◦ H−1 ◦ H+

∥∥∥∥
ρ−12σ,s

≤ Cσ−2(s+d/2)‖D∆K ◦ (H ◦ R(α+1)ω + e)‖ρ−8σ · ε ≤ Cσ−2(s+d/2)‖D∆K ◦ H‖ρ−7σ · ε

≤ Cσ−(2s+d+1)ε2.
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Then, similarly to (5.47), we have the new error of F under the corrections

(5.57) ‖F [K + ∆K, µ + ∆µ] ◦ H+‖ρ−12σ,s ≤ C
ε2

σ5(s+d/2)+2 .

Let
E+ =F [K + ∆K, µ + ∆µ],

ρ+ =ρ − 12σ,

ε+ =Cσ−κε2,

(5.58)

where κ = 2ν + 5(s + d/2) + 2. Combining the analysis above, we have
proven

Lemma 5.5. Assume ‖ωh‖ρ and |b| are small enough such that (5.21) and
(5.42) hold. Furthermore, the approximate solutions K, h, µ satisfy the non-
degeneracy condition in Theorem 3.1. Then if

C
σν+1 ε < 1,

we have
‖E+ ◦ H+‖ρ+,s ≤ ε

+ = Cσ−κε2,

and
‖e+‖ρ+ ≤ ε+ = Cσ−κε2.

6. Proof of theorem 3.1

In this section, we complete the proof of our main result Theorem 3.1.
The openness of the non-degeneracy condition enables us to iterate the
Newton steps. By the analysis in Section 5, we prove the convergence of
the iteration sequences. This is very standard in KAM theory.

6.1. Proof of the convergence. From the standard techniques in KAM the-
ory, we use the subscript n to denote the n-th step for the Newton itera-
tions. More precisely, we choose the loss of the analyticity domain σn as
σn = 2−(n−1)σ and σ = ρ/48. Let ρn+1 = ρn − 12σn+1 and ρ0 = ρ. Induc-
tively, we assume the errors En = F [Kn, µn] and en = G [Kn, hn, µn], satisfy
‖En ◦ Hn‖ρn,s ≤ εn and ‖e‖ρn ≤ εn, where K0 = K, h0 = h, µ0 = µ and ε0 = ε.
Noted that Kn and hn are inductively defined by Kn = Kn−1 + ∆Kn−1 and
hn = hn−1 + ∆hn−1. Furthermore, we also assume that

(6.1) εn = Cσ−κn ε
2
n−1.

Generally, if (6.1) holds for all n, it is easy to show that εn approaches zero
when ε is small enough. Indeed, denoting ε̃n = Cσ−κ2κ(n+1)εn, from (6.1)
one has ε̃n+1 = ε̃2

n , which implies

(6.2) ε̃n = [C(2/σ)κε]2n
.
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Then if

(6.3) C(2/σ)κε < 1,

εn obviously approaches zero and satisfies
∞∑

n=1

ε̃n ≤

∞∑
n=1

[C(2/σ)κε]n ≤ C(2/σ)κε

To prove the (n + 1)-th step, it suffices to verify the conditions in Propo-
sition 5.5. All together, we are led to show the difference Kn ◦ Hn − K ◦ H
and ωhn − ωh are small enough so that the non-degeneracy and contraction
conditions hold. Furthermore, we also need to show D2Hn and (DHn)−1 are
uniformly bounded along all the iterations. Obviously, by (vii) and (x) in
Proposition 5.1, one has

(6.4)

‖Kn ◦ Hn − K ◦ H‖ρn,s

≤

n∑
j=1

‖K j−1 ◦ H j − K j−1 ◦ H j−1‖ρ j,s + ‖∆K j−1 ◦ H j‖ρ j,s

≤

n∑
j=1

C(
ε j−1

σν+s+d/2
j

+
ε j−1

σs+d/2
j

)

≤

∞∑
j=1

ε̃ j

and

(6.5) ‖ωhn − ωh‖ρn ≤

n∑
j=1

‖ω∆h j−1‖ρ j ≤

∞∑
j=1

C
ε j−1

σν
j
≤

∞∑
j=1

ε̃ j.

Likewise, the uniformly boundedness of D2Hn, (DHn)−1, P[Kn, hn, en] can
be proved by applying our detailed analysis in Proposition 5.1. Since ρn

decreasing to ρ/2, for the convergence of Hn and Kn ◦ Hn , it is sufficient
to apply the same estimates in (6.4) and (6.5) to show that both sequences
are Cauchy on the uniform analyticity domainDρ/2, which is an immediate
result of the convergence of

∑∞
j=1 ε̃ j.

6.2. Proof of local uniqueness. For the local uniqueness, we assume that
there are two solutions (K1, h1, µ1) and (K2, h2, µ2) of the invariance equa-
tion (1.12) and the conjugation equation (1.13), which also satisfy the non-
degeneracy conditions.

We can write

(6.6) F [K2, µ2] = F [K1, µ1] + DF [K1, µ1](K2 − K1, µ2 − µ1) + RF
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and
(6.7)
G [K2, h2, µ2] = G [K1, h1, µ1]+ DG [K1, h1, µ1](K2−K1, h2−h1, µ2−µ1)+RG

where RF and RG are the Taylor remainder for F and G . Let

∆K = K2 − K1, ∆H = H2 − H1 = ω(h2 − h1), ∆µ = µ2 − µ1.

We just repeat the computations in (5.50)-(5.55) to estimate RF . It is readily
seen that RF has the same expression (5.50). When composing RF with H1,
we need to specify the analyticity domain of (∂Kϕpq ·∆K)◦H1, (∂µϕpq ·∆µ)◦
H1 and ϕpq ◦ H1, where

(∂Kϕpq · ∆K) ◦ H1 = −ωDrµ+pq∆µ ◦ (K1 + pq∆K) ◦ H1 · ∆K ◦ H1,

(∂µϕpq · ∆µ) ◦ H1 = −ω∂µrµ+pq∆µ ◦ (K1 + pq∆K) ◦ H1 · ∆µ,

and
ϕpq ◦ H1 =ϕ[K1, µ1] ◦ H1 + ϕpq ◦ H1 − ϕ[K1, µ1] ◦ H1

=H1 ◦ R(α+1)ω +

∫ 1

0
∂Kϕpqt ◦ H1 · pq∆K ◦ H1 + ∂µϕpqt ◦ H1 · pq∆µ dt.

Noticing that, for 0 ≤ t ≤ 1, the following estimate

‖H1 + t∆H − H2‖ρ̂ = ‖(t − 1)∆H‖ρ̂ ≤ C‖h2 − h1‖ρ̂.

holds, which yields

(6.8) DH1+t∆H,ρ̂−6σ̂ ⊂ DH1,ρ̂−4σ̂ ⊂ DH1+t∆H,ρ̂−2σ̂ ⊂ DH2,ρ̂−σ̂

if ‖h2 − h1‖ρ̂ is small enough. Immediately, one has

‖K2 ◦ H1 − K2 ◦ H2‖ρ̂−3σ̂,s = ‖

∫ 1

0
DK2 ◦ (H1 + t∆H) · ∆H dt‖ρ̂−3σ̂,s

≤ sup
0≤t≤1
‖DK2 ◦ (H1 + t∆H)‖ρ̂−3σ̂,s · |ω| · ‖h2 − h1‖ρ̂

≤ Cσ̂−(s+d/2)‖DK2 ◦ H2‖ρ̂−σ̂ · ‖h2 − h1‖ρ̂

≤ Cσ̂−(1+s+d/2)‖K2 ◦ H2‖ρ̂,s · ‖h2 − h1‖ρ̂.

which implies

‖∆K ◦ H1‖ρ̂−3σ̂,s ≤ ‖K2 ◦ H2 − K1 ◦ H1‖ρ̂−3σ̂,s + ‖K2 ◦ H1 − K2 ◦ H2‖ρ̂−3σ̂,s

≤ ‖K2 ◦ H2 − K1 ◦ H1‖ρ̂−3σ̂,s + Cσ̂−(1+s+d/2)‖K2 ◦ H2‖ρ̂,s · ‖h2 − h1‖ρ̂

(6.9)

Then the smallness of ∆K ◦H1 and ∆µ in the integrand of ϕpq ◦H1 yields
the analyticity domain inclusion

(6.10) Dϕt◦H1,ρ̂−4σ̂ ⊂ DH1,ρ̂−3σ̂

for any 0 ≤ t ≤ 1.
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Let

δρ = max
{
‖K2 ◦ H2 − K1 ◦ H1‖ρ, ‖h2 − h1‖ρ, |µ2 − µ1|

}
.

Combining the equations (6.8)-(6.10), one has

‖RF ‖ρ̂−4σ̂,s ≤ Cσ̂−(2s+d+2)δ2
ρ̂.

Similarly, for the Taylor remainder of G , RG has the same formula with
(5.43) and satisfies

‖RG ‖ρ̂−6σ̂ ≤ Cσ̂−(2s+d+3)δ2
ρ̂.

Repeating the procedure in Section 5, we also obtain the equation (5.29)
but replacing E and e by RF and RG respectively. Then we have

|µ2 − µ1| ≤ Cρ̂−(2s+d+3)δ2
ρ̂,

‖ω∆h‖2ρ̂/3 ≤ Cρ̂−(ν+2s+d+3)δ2
ρ̂,

‖(K2 − K1) ◦ H1‖ρ̂/2,s ≤ Cρ̂−(2s+d+3)δ2
ρ̂.

(6.11)

Noticing that
‖K2 ◦ H2 − K1 ◦ H1‖ρ̂/2 ≤ C‖K2 ◦ H2 − K2 ◦ H1‖ρ̂/2,s + C‖∆K ◦ H1‖ρ̂/2,s

≤ Cρ̂−(ν+3s+ 3d
2 +3)δ2

ρ̂ + Cρ̂−(2s+d+3)δ2
ρ̂,

it is readily seen that
δρ̂/2 ≤ Cρ̂−(ν+3s+ 3d

2 +3)δ2
ρ̂.

Combining the interpolation inequality (2.3) to δρ̂, i.e.,

δ2
ρ̂ ≤ Cδρ̂/2δ3ρ̂/2

we have
δρ̂/2 ≤

Cδ3ρ̂/2

ρ̂ν+3s+ 3d
2 +3
· δρ̂/2.

Then if δ3ρ̂/2 is small enough such that Cρ̂−(ν+3s+ 3d
2 +3)δ3ρ̂/2 < 1, we have

δρ̂/2 = 0, which implies the local uniqueness.
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Appendix A. Foliation-preserving torus map

There are quite extensive literature on the dynamical properties of torus
maps both in mathematics and physics. They appear in ergodic theory ,
Schrödinger’s equation with a quasi-periodic potential, bifurcation of quasi-
periodic tori and etc. The original treatment appears in [Arn63, Mos66b,
Mos66a]. For a more modern presentation, see [KH95] and the references
therein.

As we all know, the universal cover of Td is Rd with the covering map

π : Rd → Td, π(x) = x mod 1.

Therefore, for any continuous torus map

(A.1) T : Td → Td,

we can lift T to T̃ : Rd → Rd such that the diagram commutes as

(A.2) T ◦ π = π ◦ T̃ .

Moreover, T̃ has the form as

T̃ (x) = Ax + F(x)

where A is a d × d integer valued matrix and F is a periodic function. It
is noted that any torus map has infinitely many lifts, differing by an integer
vector.

If ω is a eigenvector of A, any torus map of the form T f = A + ω f with
periodic scalar function f has the property that it preserves the foliations
{x + ωt : x ∈ Rd, t ∈ R}. We refer to such maps as ω-foliation preserv-
ing torus map. These maps are also called reparameterization of linear
flow[Fay02]. More particularly, when T f = Id + ω f , the torus map T f pre-
serves each equivalence class of Td/ωR, where the equivalence relation is
defined by

x ∼ y⇔ x − y ∈ ωR.

Indeed, for any z = x + ωt, one has

(A.3) T f (z) = z + ω f (z) = x + ω(t + f (x + ωt)).

Furthermore, the set ofω-foliation preserving torus maps has group struc-
ture under the composition operator. We denote Diff(Td) the diffeomor-
phism on the torus Td.

Remark 1.1. Note that when ω is irrational(ω · k , 0,∀k ∈ Zd − 0), each
of the leaves of the foliation is dense. Hence, there is no quotient manifold.
The maps that preserve irrational foliations have infinitesimal Lie symme-
tries, but they cannot been ”reduced” to a lower dimensional system.
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Lemma 1.1. Let Ξ be the subset of Diff (Td), in which the element T f has
the form of T f = Id + ω f . Then Ξ is a subgroup of Diff (Td) under the
composition T f ◦ Tg = Tg+ f◦Tg and the inverse of T f is given by T− f◦T−1

f
.

The preservation property reduces the dynamics of F to be essentially
one dimensional problem.

The simplest example of ω-foliation preserving torus map is the rigid
rotations Rαω : Td → Td defined by

(A.4) Rαω(x) = (x + αω) mod 1

where α ∈ R. These maps are clearly invertible and analytic and their
dynamics are easy to understand. If ω is non-resonant, then each leaves of
foliation wind densely on Td. Due to the simplicity of rotations, one may
be interested in which classes of torus map can be conjugated to a rotation
torus map like (A.4).

It is also noteworthy that if a ω-foliation preserving torus map T f can be
conjugated to a rotation RΩ, then there exists a α such that Ω = αω. We
show a simple argument as a justification. If there exists H and Ω such that
H−1 ◦ T f ◦ H = RΩ, then

1
n

(T n
f − Id) =

1
n

n−1∑
j=0

f ◦ T n−1
f · ω

which implies the limit of (T n
f − Id)/n, if exists, has the form of αω. On the

other hand, T n
f also satisfies

T n
f = H ◦ RnΩ ◦ H−1 = Id + nΩ + h(RnΩ ◦ H−1) + H−1 − Id

which implies (T n
f−Id)/n approaches Ω since the left terms remain bounded.

Thus we have Ω = αω. Furthermore, to maintain the foliation preserving
structure, we also have H ∈ Ξ, i.e. H = Id + ωh. More precisely, in the re-
duction procedure of a ω-foliation preserving map, all the transformations
should be chosen from the subgroup Ξ.

The conjugation problems of maps of the torus is studied in great detail
in [Mos66a]. The analogy with Lie algebras is also discussed. Since the
the set of foliation preserving maps is a subgroup of the group of diffeo-
morphism, there are some differences. The most notable is the fact that to
study the conjugacies of foliation preserving maps, we only need to adjust
one dimensional parameter, while the general case requires as parameters
of the same dimension as the torus. See also [Van02, PdlLV03].
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Appendix B. Some technical lemmas

In this appendix, we give several elementary facts used in the formulation
of our main results. Firstly, we cite a well-known result on the infinite sum
containing the exponential decay terms.

Lemma 2.1. [BMS76] Assume 0 < δ < 1 and ν > 1, then

(B.1)
∑
k∈Zd

|k|νe−2|k|δ <
(ν
e

)ν 1
δν+d (1 + e)d.

Next we show a differentiation formula on the product rule of matrix
value functions.

Proposition 2.2. Given ω ∈ Rd and a matrix A = (ai j)d×d. If V, ai j ∈

C1(Rd,R), then

DV · A · ω = Tr[D(V · A) · ω) − V · D(Aω)].

Proof: Denoting C = (ci j)d×d = D(V · A) ·ω and M = (mi j)d×d = V ·D(Aω).
Then one has

ci j =
∂V
∂x j

d∑
l=1

ailωl + V ·
d∑

l=1

∂ail

∂x j
ωl

and

mi j = V ·
d∑

l=1

∂ail

∂x j
ωl.

The result is readily obtained by observing that

DV · A · ω =

d∑
j=1

∂V
∂x j

d∑
l=1

a jlωl.

For the formal Fourier series (5.13), we prove the general result.

Proposition 2.3. Assume A = (ai j)d×d with formal Fourier series as

ai j(θ) ∼
∑
k∈Zd

âi j;ke2πik·θ.

Then,

(B.2) L −1Tr[D(Aω)](θ) ∼
∑
k∈Zd

∑
1≤ j≤d

∑
1≤l≤d

2πik jωl · â jl;k

2πik · ω − a − be2πik·Ω e2πik·θ

where the operator L −1 is given in Section 5.1.1.

The verification is straightforward and thus omitted. When

A = V · ω · (g1, · · · , gd),

we have a jl;k = ω j ̂(V · gl)k and inserting the particular coefficients into the
above sum yields the expression (5.13).
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Appendix C. Proof of Proposition 5.1

The estimates on the corrections are standard in KAM theory. Not sur-
prisingly, the techniques used here are the Cauchy inequality (2.1.1) and the
relation of two different norms (2.8) and (2.9). In order to prove the con-
vergence of the Newton iterations, we need to give delicate estimates on the
corrections.
Proof of Proposition 5.1: We show some direct computation as follows.

(i) ‖ωh+‖ρ−7σ ≤ ‖ωh‖ρ + ‖ω∆h‖ρ−7σ ≤ ‖ωh‖ρ + Cσ−νε.
(ii) ‖ωDh+‖ρ−8σ ≤ ‖ωDh‖ρ−σ + ‖ωD∆h‖ρ−8σ ≤ σ

−1‖ωh‖ρ + Cσ−(ν+1)ε.
(iii)

‖DH+ − I‖ρ−8σ ≤‖DH+ − DH‖ρ−8σ + ‖DH − I‖ρ−σ
≤σ−1‖ωh‖ρ + Cσ−(ν+1)ε.

(iv) Since σ−1‖ωh‖ρ is small enough, the inverse of DH does exist onDρ−σ

and satisfies

‖D−1H − I‖ρ−σ = ‖

∞∑
n=1

(−ωDh)n‖ρ−σ ≤ ‖ωDh‖ρ−σ · (1 − ‖ωh‖ρ−σ)−1

< 2‖ωDh‖ρ−σ < 2σ−1‖ωh‖ρ.

Likewise, we also have

‖D−1(H + ω∆h) − I‖ρ−8σ ≤ 2‖ωDh+‖ρ−8σ ≤ 2σ−1‖ωh‖ρ + Cσ−(ν+1)ε

if σ−νε is sufficient small.
(v) Cauchy inequality from (iv).

(vi)

‖D2H+‖ρ−9σ ≤‖D2H‖ρ−3σ + ‖D2H+ − D2H‖ρ−9σ

≤σ−2‖ωh‖ρ + σ−2‖ω∆h‖ρ−7σ.

(vii)

‖K ◦ H+ − K ◦ H‖ρ−7σ = ‖

∫ 1

0
DK ◦ (H + qω∆h) · ω∆h dq‖ρ−7σ

≤

∫ 1

0
‖DK ◦ H‖ρ−2σ · ‖ω∆h‖ρ−7σ dq

≤ C‖DK ◦ H‖ρ−2σ · σ
−νε.

(viii)

‖K ◦ H+‖ρ−7σ ≤‖K ◦ H+ − K ◦ H‖ρ−7σ + ‖K ◦ H‖ρ
≤[1 + Cσ−(ν+1)ε] · ‖K ◦ H‖ρ.
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(ix) Since

‖D(K ◦ H+) − D(K ◦ H)‖ρ−8σ ≤σ
−1‖K ◦ H+ − K ◦ H‖ρ−7σ

≤Cσ−(ν+2)‖K ◦ H‖ρ · ε

and

‖D(K ◦ H+)‖ρ−8σ ≤‖D(K ◦ H+) − D(K ◦ H)‖ρ−8σ + ‖D(K ◦ H)‖ρ−σ
≤σ−1‖K ◦ H‖ρ + Cσ−(ν+2)‖K ◦ H‖ρ · ε,

then one has

‖DK ◦ H+‖ρ−8σ ≤‖D(K ◦ H+) · D−1H+‖ρ−8σ

≤[σ−1 + Cσ−(ν+2) · ε] · ‖K ◦ H‖ρ · (1 + 2‖ωDh+‖ρ−8σ).

(x)

‖∆K ◦ H+‖ρ−12σ,s ≤ Cσ−(s+d/2)‖∆K ◦ H+‖ρ−10σ ≤ Cσ−(s+d/2)‖∆K ◦ H‖ρ−6σ,s.

The following estimates would also need the domain analysis in
Lemma 5.3.

(xi) Since

‖D∆K◦ϕ[K+, µ+] ◦ H+‖ρ−12σ,s ≤ Cσ−(s+d/2)‖D∆K ◦ ϕ[K+, µ+] ◦ H+‖ρ−10σ

≤ Cσ−(s+d/2)‖D∆K ◦ H‖ρ−8σ ≤ Cσ−(s+d/2)‖D(∆K ◦ H)‖ρ−8σ · ‖D−1H‖ρ−8σ

≤ Cσ−(1+s+d/2)‖D−1H‖ρ−σ · ‖∆K ◦ H‖ρ−6σ,s

and

‖DK◦ϕ[K+, µ+] ◦ H+‖ρ−12σ,s ≤ Cσ−(s+d/2)‖DK ◦ ϕ[K+, µ+] ◦ H+‖ρ−10σ

≤Cσ−(s+d/2)‖DK ◦ H‖ρ−8σ ≤ Cσ−(s+d/2)‖DK ◦ H‖ρ−σ,

one has

‖DK+◦ϕ[K+, µ+] ◦ H+‖ρ−12σ,s

≤ ‖DK ◦ ϕ[K+, µ+] ◦ H+‖ρ−12σ,s + ‖D∆K ◦ ϕ[K+, µ+] ◦ H+‖ρ−12σ,s

≤ Cσ−(s+d/2)‖DK ◦ H‖ρ−σ + Cσ−(1+s+d/2)‖D−1H‖ρ−σ · ‖∆K ◦ H‖ρ−6σ,s.

(xii)

‖Drµ+∆µ ◦ (K + ∆K) ◦ H+‖ρ−12σ,s · ‖∆K ◦ H+‖ρ−12σ,s

≤ Cσ−(2s+d)‖Drµ+ ◦ K+ ◦ H+‖ρ−10σ · ‖∆K ◦ H‖ρ−6σ

≤ C‖Dr‖D∗ · σ−(2s+d)‖∆K ◦ H‖ρ−6σ,s.

(xiii) ‖∂µrµ+∆µ ◦ (K + ∆K) ◦ H+ · ∆µ‖ρ−12σ,s ≤ C‖∂µr‖D∗ · ε.
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(xiv)

‖(∂KKϕ[K+, µ+] · (∆K)⊗2) ◦ H+‖ρ−12σ,s

≤ ‖D2rµ+∆µ ◦ (K + ∆K) ◦ H+ · (∆K ◦ H+)⊗2‖ρ−12σ,s

≤ Cσ−(s+d/2)‖D2r‖D∗ · ‖∆K ◦ H+‖2ρ−12σ,s

≤ C‖D2r‖D∗ · σ−(3s+3d/2)‖∆K ◦ H‖2ρ−6σ,s,

(xv)

‖(∂Kµϕ[K+, µ+] · ∆K) ◦ H+∆µ‖ρ−12σ,s

≤ ‖D∂µrµ+∆µ ◦ (K + ∆K) ◦ H+ · ∆K ◦ H+‖ρ−12σ,s · |∆µ|

≤ Cσ−(s+d/2)‖D∂µr‖D∗ · ‖∆K ◦ H+‖ρ−12σ,s · |∆µ|

≤ C‖D∂µr‖D∗ · σ−(2s+d)‖∆K ◦ H‖ρ−6σ,s · ε,

(xvi)

‖∂µµϕ[K+, µ+] ◦ H+(∆µ)⊗2‖ρ−12σ,s ≤ ‖Dµµrµ+∆µ ◦ (K + ∆K) ◦ H+‖ρ−12σ,s · |∆µ|
2

≤ C‖Dµµr‖D∗ · σ−(s+d/2) · ε2,

(xvii) Since

‖D2∆K ◦ ϕ[K+, µ+] ◦ H+‖ρ−12σ,s ≤ Cσ−(s+d/2)‖D2∆K ◦ H‖ρ−8σ

≤ Cσ−(s+d/2)‖[D2(∆K ◦ H) − D∆K ◦ H · D2H] · (D−1H)‖ρ−8σ

≤ Cσ−(s+d/2){‖D2(∆K ◦ H)‖ρ−8σ + ‖D∆K ◦ H‖ρ−8σ · ‖D2H‖ρ−2σ} · ‖D−1H‖2ρ−σ
≤ C‖D2H‖ρ−2σ · ‖D−1H‖3ρ−σ · σ

−(2+s+d/2)‖∆K ◦ H‖ρ−6σ,s

and

‖D2K ◦ ϕ[K+, µ+] ◦ H+‖ρ−12σ,s ≤ Cσ−(s+d/2)‖D2K ◦ ϕ[K+, µ+] ◦ H+‖ρ−10σ

≤ Cσ−(s+d/2)‖D2K ◦ H‖ρ−8σ

≤ Cσ−(s+d/2)‖D2K ◦ H‖ρ−2σ,

then

‖D2K+ ◦ ϕ[K+, µ+] ◦ H+‖ρ−12σ,s

≤ ‖D2K ◦ ϕ[K+, µ+] ◦ H+‖ρ−12σ,s + ‖D2∆K ◦ ϕ[K+, µ+] ◦ H+‖ρ−12σ,s

≤ Cσ−(s+d/2)‖D2K ◦ H‖ρ−2σ + C‖D2H‖ρ−2σ · ‖D−1H‖3ρ−σ · σ
−(2+s+d/2)

× ‖∆K ◦ H‖ρ−6σ,s

which is bounded if ε is sufficient small.

�
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In Proceedings of the International Congress of Mathematicians (Helsinki,
1978), pages 811–820. Acad. Sci. Fennica, Helsinki, 1980.

[KH95] Anatole Katok and Boris Hasselblatt. Introduction to the modern theory of
dynamical systems, volume 54 of Encyclopedia of Mathematics and its Ap-
plications. Cambridge University Press, Cambridge, 1995. With a supple-
mentary chapter by Katok and Leonardo Mendoza.

[Kri14] Tibor Krisztin. Analyticity of solutions of differential equations with a
threshold delay. In Recent advances in delay differential and difference equa-
tions, volume 94 of Springer Proc. Math. Stat., pages 173–180. Springer,
Cham, 2014.

[LdlL09] Xuemei Li and Rafael de la Llave. Construction of quasi-periodic solutions
of delay differential equations via KAM techniques. J. Differential Equa-
tions, 247(3):822–865, 2009.

[LS07] Jian Liu and Jianguo Si. Analytic solutions for a class of differential equa-
tion with delays depending on state. Applied Mathematics and Computation,
186(1):261 – 270, 2007.

[LY12] Xuemei Li and Xiaoping Yuan. Quasi-periodic solutions for per-
turbed autonomous delay differential equations. J. Differential Equations,
252(6):3752–3796, 2012.

[Mey75] K. R. Meyer. The implicit function theorem and analytic differential equa-
tions. In Dynamical systems—Warwick 1974 (Proc. Sympos. Appl. Topol-
ogy and Dynamical Systems, Univ. Warwick, Coventry, 1973/1974; presented
to E. C. Zeeman on his fiftieth birthday), pages 191–208. Lecture Notes in
Math., Vol. 468. Springer, Berlin, 1975.

[MKW14] F. M. G. Magpantay, N. Kosovalić, and J. Wu. An age-structured popula-
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