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Abstract

We study linear g—difference-differential equations, under the action of a perturbation parameter
€. This work deals with a g—analog of the research made in [8] giving rise to a generalization of the
work [10]. This generalization is related to the nature of the forcing term which suggests the use of a
g—analog of an acceleration procedure.

The proof leans on a g—analog of the so-called Ramis-Sibuya theorem which entails two distinct
q—Gevrey orders. The work concludes with an application of the main result when the forcing term
solves a related problem.

Key words: asymptotic expansion, Borel-Laplace transform, Fourier transform, formal power series,
singular perturbation, g-difference-differential equation. 2010 MSC: 35C10, 35C20.

1 Introduction

The present work deals with the study of the solution wu(t, z,€) of a family of inhomogeneous
linear g—difference-differential equations of the form

dp

+1
Q(@Z)O'qu(t, z,€) = (Et)dDaqk2 Rp(0:)ult, z,€)

D-1
(1) + Z Z tdA’feAAvlagch,g(z, €)Re(0:)u(t, z,€) | +0qf(t,z,€).
/=1 YY)

Here, D, ko, dp are positive integers with D > 3, ¢ is a real number with ¢ > 1 and for every
1 <0< D-1, I is a finite nonempty subset of nonnegative integers whilst dy is a positive
integer. For each 1 </ < D —1 and A € I, we take dyy > 1 and Ay, > 0.

The elements @) and Ry, for 1 < ¢ < D, are polynomials with deg(Q) > deg(Rp) > deg(Ry)
for all 1 < ¢ < D — 1. The details on the properties satisfied by the previous constants and
polynomials involved in the equation under study are carefully described at the beginning of
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Section 5. We also give an example of a problem under study in the present work at the end of
Section 5.

The variable € acts as a perturbation parameter in the problem. We describe an asymptotic
meaning of the solutions and provide the existence of a formal solution to the main problem
with respect to this parameter (see Theorem 3).

For every v € R, the operator o) appearing in (1) stands for the generalization of the dilation
operator on the ¢ variable, with v = 1. More precisely, for any function ¢ given in a set H, o,
is defined by

o (9(t)) = g(q"t),

whenever the right-hand side makes sense, i.e. if ¢7t € H for all t € H. We will also consider the
natural extension of this definition to the formal framework in the following way: given a formal
power series f (2) = >0 fez" with coefficients in a set which is closed under multiplication
by real numbers (in our concerns, this set would turn out to be a complex Banach space), the
formal power series o] f is given by >/~ Q' fot

For every 1 < ¢ < D—1 and X € I, the function (2, €) is constructed as the inverse Fourier
transform with respect to z of a continuous function (m, €) — C ¢(m, €) defined in R x B, where
B is a neighborhood of the origin. As a matter of fact, ¢ ¢ is a bounded holomorphic function
defined in a horizontal strip in the variable z, say Hg (see (20)), times B.

The forcing term f(t,z,€) turns out to be a holomorphic function defined in 7 x Hg x &,
where T and £ stand for finite sector with vertex at the origin. In the sequel, we provide more
details on this function which is crucial in order to understand the interest of this work.

We choose 1 < k1 < ko, and put
1 1 1

Kk Ry
The construction of f(t, z, €) regards as follows. Let m — F,,(m, €) be a continuous function
for m € R and holomorphic with respect to € € B, for every n > 0. We assume the formal power
series F'(T,m,€) =), <o Fn(m,e)T™ is such that its formal g—Borel transform of order ki (see

Definition 4)
F,

n
n(n—1) T
2

¢k1 (T7 m, 6) = Bq;l/kl (F(Tv 2, 6))(7—) = Z

n>0 (g"/*)

is convergent in a neighborhood of the origin, D;, with respect to 7 variable. Moreover, we as-

sume there exists a finite family of directions (3),)o<p<c—1 such that ¢, extends holomorphically

to an infinite sector U, with vertex at 0 and bisecting direction 0,, with g—exponential growth

of order k; at infinity, uniformly with respect to € € B. We write 1/12?’ for this extension. This
last assertion states there exists an appropriate Sy (m) > 0 such that

k1 log? ]T\)

2 o <
g plvie ) < s (s (S50

for every T € Uy, with 7 ¢ Dy (see (74)).
One may apply the g—Laplace transform of order ki to 11}2? (see Lemma 5). Also, the de-
pendence on m lying in ¢y, (m) allows us to take the inverse Fourier transform on this variable

and define fap as the result of both transformations. Finally, regarding assumption 3) in Def-
inition 7, one may apply the change of variable 7 — et to define fo(t, z,€) := fo(te, z,€), as
a holomorphic and bounded function defined in 7 x Hg x &,. Here, &, is a finite sector with
vertex at the origin in the perturbation parameter, where the family (&,)o<p<c—1 is chosen to



determine a good covering in C* (see Definition 6). For a more detailed construction of these
elements, we refer to Section 5.

More precisely, we aim to study the solution u®¢(¢,z,¢) for 0 < p < ¢ — 1 of a family of
related problems regarding each direction of extendability associated to the forcing term, rather
than (1). We write

9D 41
Q(D:)oqu’ (t, z,€) = ()™ oy Rp(D:)u (¢, z,¢)
D-1
(3) + D theelaiglicy o(z,€)Ro(0:)u (t, 2, €) | + g f>(t, 2, €).
/=1 Aely

for each 0 < p < ¢ — 1 for the different equations under study.

Let us take a brief look at equation (1) (or equation (3)) and describe some concerns which
are important to understand the nature of the problem studied. Regarding the variable z in
equation (3), we have decided to split the right-hand side in two terms: a first term related to
Rp(0,) in which the degree of the operator exceeds those of the remaining terms, associated
to Ry(0,), 0 < ¢ < D —1. It is at this point where one of the g—Gevrey growth phenomena
regulating the equation arises. Indeed, the dilation operator of this term causes a g—Gevrey
phenomena of type ko to appear.

As a first attempt one is tempted to study an auxiliary problem in the Borel plane directly,
following the classical method of summability of formal solutions of different types of equations.
In this direction, regarding Proposition 7, one might try to: apply the ¢—Borel transform of
order ko at both sides of equation (1), study the resulting g—difference-convolution problem
(46) and obtain a solution to this problem having an adequate growth in 7 variable in order to
provide a solution to (1) via the analytic inverse operator, the g—Laplace transform of order ks.
However, this procedure, followed in the recent work [10], is not fruitful because of the growth
nature of the forcing term. Indeed, the application of g—Borel transform of order ko on the
forcing term gives rise to a formal power series which might have null radius of convergence.

The alternative procedure followed in this work is to split the summation procedure in two
steps. Firstly, we proceed with a ¢g—analog of Borel-Laplace summation method of a lower type,
x and attain the solution by means of an acceleration-like action. It is worth mentioning that
this idea is an adaptation of that in [8], to the ¢g—Gevrey case. Also, the idea of concatenating
formal and analytic g—analogs of Borel and Laplace operators in order to solve g—difference
equations appears in [3].

The present work continues a series of works dedicated to the asymptotic behavior of holo-
morphic solutions to different kinds of g—difference-differential problems involving irregular
singularities investigated in [5], [6], [9], [11]. These works can be classified in the branch of
studies devoted to study from an analytic point of view of g—difference equations and their
formal/analytic classiffication in [20], [13], [14], [15], [16]. It is worth pointing out another
approach in the construction of a g—analog of summability for formal solutions to inhomoge-
neous linear g—difference-differential equations based on Newton polygon methods, see [18], and
also the contribution in the framework of nonlinear g—analogs of Briot-Bouquet type partial
differential equations, see [21].

Let us exhibit the plan of the work.

We first state the definitions and some properties of the Banach spaces of functions involved
in the construction of the solution of equation (3). The elements of this spaces consist of
holomorphic functions defined in an infinite sector with vertex at 0 (resp. an infinite sector with
vertex at infinity and a disc at 0) subjected to a g—exponencial growth at infinity, with respect



to the first variable. Also an exponential decay at +oo is assumed in the real-valued variable
m (see Section 2). In Section 3, we recall some formal and analytic transformations such as
the formal g—Borel transform of a positive order, and the analytic g—Laplace transform of a
positive order. This transformations were introduced in the work [3] to construct meromorphic
solutions to linear g—difference equations from formal ones. In this section we also give a review
on the properties satisfied by inverse Fourier transform, F~!.
In Section 4.1, we consider the auxiliary equation
D 11
Q(im)o, U(T,m,e) = T%g,> " Rp(im)U(T, m, €)

(4)
D-1

1 o0
+ E E Tt eBre=dre o)1 / Cho(m —my, €)Re(im1)U (¢°T, my, €)dmy | + o,F(T,m,e).
=1 \)Xel, e

and study the resulting equation after the action of formal g—Borel transformation of order &
on an equation coming from (4):

k1 +ap+k1

. _ —dp/k
Qlim) (qU/kr )i (e =)z ks (r,m, €) = v/

(qL/F) o kD) (dp+hi—1)/2 1

Rp(im)wg, (T, m, €)

d
eAxe—dx e - dx otk 514_27175_1 1

+ Z (qL/F1)(dxetha)(dr e tha—1)/2 %a W

(Cre(m, €) " wy, (7,m, €))

Tk

(g1/F1 )k (k1=1)/2 Uy (

+ T, M, €).

For every 0 < p < ¢ — 1, we come to a novel auxiliary problem fixing v, := @Z)Z’l’ , and by means

of Proposition 10 we get the existence of a solution wa (1,m,¢€) of (5), which satisfies that

’ L —6iml rlog? |7 + 9|
sup |w,”(1,m,€)| < C 2 ——F——e exp | —————— +alog|r +4| |,
T€Up,UD h wk117 (1 + ‘mDM 2 log(Q)
meR

uniformly with respect to € € B, for some Cwap,g, a, i, 8> 0.
k

1
In Section 4.2, we study the action of formal g—Borel transform of order ks on an equation
obtained from (4). As it was pointed out above, one can not guarantee convergence of the
resulting element in a neighborhood of the origin, arriving at the formal problem

‘ k2 . ) rdp+k2
Q(im) (q/k2)ka(he—1)/2 Wk, (T,m, €) = Rp(im) (q1/k2)(dp+hk2)(dp+ha—1)/2

Wi, (T, M, €)

D—1 Ax—dx ¢ ~dx o+k2 Fy —M—l 1
€ ’ TN [ Ry -
! ; )\ZI: (q1/F2)(dx,etk2)(dreha—1)/2 7a (2m)1/2 (Cxe(m, €) + 1y, (1, m, €))
Th2 A
(6) - OEE) 73 By o (F (T, m, €)).

We substitute the formal power series Bq;l ke (F'(T';m, €)) by the acceleration of @bZi’ for each
0 < p < ¢—1 and study the resulting equation for each p. The role of the acceleration



operator is being played by g—Laplace transform of an adecquate order. Indeed, we substitute
Bq;l/kQ(F(T,m, €)) by Lg1/x(h = wZ’l’(h, m, €))(T), constructed in Lemma 5, for every 0 < p <
¢ — 1. By Proposition 11, we obtain a solution wzz of the previous problem by means of a fixed
point result in appropriate Banach spaces. This solution is defined in (Rgp USy,) xR x B, where

Rgp (resp. Sp,) stands for a finite wide sector (resp. an infinite sector) of bisecting direction d,,.
Indeed, one has

(7) sup |wZZ(T,m,e)\ <C o

1 2
o BIml oy (kz log”|7|
Wiy (1 + [m])#

+ vlog |t ) ,
21log(q) d

TE(RngSap)
meR
for some Cwap ,v > 0.
L)

We prove (Proposition 12) that wzz and £

a1, (T wZ’l’ (1,m, €)) coincide in the intersection of
their domains of definition. Consequently, £2§’ (T wZT (1,m,€)) can be extended to Rgp USs,.
In view of (7) and the choice of the domains associated to the good covering (€,)o<p<c—1 (see

Definition 7), one can define the function

2
1 w P (u,m, €
u® (t,z,€) := Fl <m — kz( )du) (2),

~—
7Tq1/k2 L'yp @ql/k2 (5) u

for every (t,z,¢) € T x Hg x &, for all 0 < p < ¢ — 1. Here L, stands for a ray from 0 to
infinity contained in Sy, see Theorem 1. The function u®»(t, z, €) solves (3) (see Theorem 1).

In the spirit of [3], the procedure we have followed can be summarized in some sense by the
composition of these operators:

Lait/ky © Lot/ © Bijw 0 Bijky = Last ky © Loy © By -

In the second part of Section 5 we study the difference of two solutions and obtain two different
results, depending on the geometry of the problem (see Proposition 13 and Proposition 14). The
previous results are applied in Section 6 to attain the main result of the work (Theorem 4), by
means of a novel two-level version of a g—analog of Ramis-Sibuya theorem (see Theorem 3),
namely, the existence of a formal power series

it 2. = 3 halt ) € FL]

m>0

with coefficients in the Banach space F of bounded holomorphic functions defined on 7 x Hg
with the supremum norm. This formal power series is a formal solution of

dp

L+l
Q(0:)oqu(t, z,€) = (et)™ oy Rp(0:)ilt, 2, €)

D—-1
+ Z Z tdkveeAA’fJgecA’g(z, €V Ry(D,)u(t, z,€) | + o f(t, 2 ¢€),
/=1 AELy

where f is the common asymptotic representation of f° with respect to the perturbation pa-
rameter ¢, as described in Lemma 9. The sense in which (¢, z, €) represents u°»(t, z, ¢) for all
0 < p < ¢ —1is detailed in Theorem 4.

The work concludes in Section 7 with an application of the main result when the formal
power series F'(T,m,€) is a solution of another related problem (see Theorem 5).



2 Banach spaces of functions and related results

Throughout the whole section we fix real numbers 5, > 0, ¢ > 1 and a. Some conditions on
these elements may be described when needed in the following constructions and results.
Through this section we assume Uy C C* := C\ {0} is a sector with vertex at the origin and
bisecting direction d € R. We also choose p > 0 and consider the disc centered at 0 € C with
radius p, notated by D(0,p) := {7 € C:|7| < p}. Let § > 0 and assume that the distance from
Uya U D(0, p) to the real number —§ is positive. We also take k > 0.
We denote D(0, p) the closure of D(0, p).

Definition 1 We denote E'xp‘(ikﬁﬂ a,p) the vector space of continuous complex valued functions
(r,m) — h(r,m) on Uy U D(0, p) x R, holomorphic with respect to T on Ug U D(0, p) such that

klog?|T 46
IR (s ) (1 ) == SUP (1+|m|)*e®ml exp (_og|7'| —alog|T + (5\) |h(T,m)| < 0.
PSP D00 21og(q)
meR

The set Exp‘(ik Buap) turns out to be a Banach space when endowed with the norm ||| 4 5 . .)-

The previous norm is a modified version of that used in the previous work [5], and by the
first author in [10]. Here, a shift on the variable 7 is needed in such a way that the elements

belonging to Expflk Bap) remain holomorphic and bounded in a neighborhood of the origin,

whilst g—exponential behavior at infinity is preserved.

Lemma 1 Let (7,m) — a(1,m) be a bounded continuous function defined on (UsUD(0,p)) xR,

holomorphic with respect to T on Ug U D(0, p). For every h(r,m) € Emp‘(ikﬂ# p)? the function

a(r,m)h(T,m) € Ewpflk,g,u,a,p) and

ol M)l ey < Co BTy
where C = SUD. ¢ (17,UD(0,p))meR la(T,m)].
Proposition 1 Let vy, > 0 such that
(8) 1 < ks
Then, there exists Co > 0 (depending on k, q, a,v1,72,0) with

Hﬂlaq_wf(ﬂm)H(k,ﬁ,u,a,p) < Co|[F (T m) kg ) -

for every f(T,m) € Exp?k,ﬁ,u,onp)'

Proof Let f € Expfl,c Bap)” One can write

_ klog? |7 + ¢|
a2 f(mm = sup  (1+[m|)eMexp <——a10g T+0| ) |r™
H q ( )H (kzﬁvu7a7p) 7_eUduﬁ(O’p)( | |) 2 log(q) ‘ ’ | |
meR
. klog? q%—i—é‘ T klog? q%—i—é‘ T s
B T e P R R e o




We observe that o, "2 (UyUD(0, p)) € UyUD(0, p). As a consequence, the previous expression
is upper bounded by

k(log?

9) [If(, m)”(k,ﬁ,u,a,p) sup  exp

T 2
qTQ—l—é‘—log |T+5|) ‘T|71 <‘T/q72 _|_5,>oz
T€U4UD(0,p) 2log(q)

|7+ 0]
For every T € Uy U D(0, p) one has

T

(10) log?

oz 5’ —log? [T +8| = log? |7 +8¢" | +1og*(¢"*) — 272 log(q) log |7 +8¢"* | ~log? |7 +0].

Let p1 = 2p. For every T € Sy with || > p1, standard calculations yield

ya
log? |7+ d¢7?| — log? |7+ 8| =log |(T 4+ 6¢"%) (T + 0)| log H_f%
6(g™ —1) 6(g” —1)
11 < 1 I 1+ — =)< 1 —
(11) < Corlog |7 Og( + T3 0] >_C220g\71 T < Cas,

for some Ca1, Ca2,Ca3 > 0 (depending on ¢,72,0). On the other hand, the function
7 log? |1 4 6¢72| — log? |7 + 4|

is continuous in the compact set D(0,p) U {r € Uy : |r| < p1}. This and (11) provide the
existence of Cy4 > 0 (depending on k, q,72,0) such that (10) is estimated from above by Cay —
27v21og(q) log |7+ d¢*?|. Taking into account these estimates, one derives the existence of Cos > 0
(depending on k, ¢, q,72) such that

|7+ 0q7|

o
Sar2| k2
[+ 4] ) I8¢

HT’Ylo'q_’YZf<T, m)H(k,B,u,a,p) < Oy Hf(T7m)H(k,,8,u,a,p) sup || (
T7eU4UD(0,p)

It is straight forward to check that

T4+ 9g72\* —k —k
sup |T|" | ——— | |7+ 90q7?| "7 <sup Cosx™ (x + dq7%) "2,
TEUdUE(O,p) ’T + 5| x>0

for some Cyg > 0. The result follows from here, in view of (8). O

Definition 2 We denote Eg ) the vector space of continuous functions h: R — C such that

1P ()l g,y = Slé%(l + [m[)! exp(Bm|)|h(m)| < oo.

The pair (Eg, ), H'H(ﬁ,u)) 15 a Banach space.

Lemma 2 Let hj : R — C be a continuous function for j = 1,2. Assume that suppmer|hi(m)|
is finite, and hy € Eg ). Then the product hihs € E(g ) and

() aml s < (500 1)) Wil



Proof It follows from the definition of the norm [-[| 5 - 0
Let hj : R — C be a continuous function for j = 1,2. Let @ € C[X]. One can define the
convolution product

[e.e]

hi(m) %9 hy(m) = / hi(m —m1)Q(im1)ha(myi)dm,, m e R,

—o0
whenever the integral converges, extending the classical convolution product for Q) = 1.
Proposition 2 Let Q,R € Clx] such that deg(R) > deg(Q), R(im) # 0 for every m €

R. Assume moreover that p > deg(Q) + 1. Given a continuous function b : R — C with
supper [b(m)R(im)| < 1, the space (E(g ), |ll(g,,) turns out to be a Banach algebra when

endowed with the product % defined by hy(m) *»Q hy(m) = b(m)hi(m) *@ ho(m) for every
m € R.

We refer to [7] for a proof of the previous result.

Proposition 3 Let Q, R,b be as in Proposition 2. We assume c¢(m) € Eg ). Then, for every

fe Expt(ik,ﬂ,u,a,p), the function ¢+>@ f € Exp[(ikﬁvuva»ﬂ) and
(12) |etm) 2 g(r,m)| < Cslle(m)ll g 1F (T 7)1 1)

(k7ﬁ7u7a7p)

for some C3 > 0 (depending on p,q, o, k, Q(X), R(X)).

ProofLet f € Exp‘(ik Bonp)” Regarding Proposition 2, it is direct to check that ¢(m)*>® f(r,m)

defines a continuous function in Uy U D(0, p) x R and holomorphic in Uy U D(0, p) with respect

to the variable 7. From the definition of the space Exp?k B a,p) ODE has

Hc(m) «>Q f(7,m) H

(k767u7a7p)
klog? |t + 6
< sup (1+ |m|*e’™ exp _w_alogh_i_(s‘
2lo
TEU4UD(0,p) g(q)
meR
|[R(im)b(m)| /°° - .
PP PA T 1 _ 1 pBlm—ma| _
] (O lmm e e m = myl|QGim )

e~ Blm—mi|g—Blmi|
(L+ [m —my|)#(1 + |mal)
From the hypotheses made on @ and R, there exist Cs1, C3o0 > 0 such that

< | (rm)| (1 + e —dm;

(13) |Q(im1)| < Cs1(1+ [ma)*5(@, |R(im)| = Csz(1 + [m]) e,

for every m € R. The triangle inequality, the estimates in (13), and Lemma 4 in [12] (or
Lemma 2.2 in [2]) yield the existence of C3 > 0 such that

(e lml (= (Qm ),
[Rim)| oo (L Tm = ma (1 + ]

C'31 —d o 1
14 < sup =2 (1 + |m|)* eg(@/ dmy < Cs,
(14 = e 032( i) oo (T4 [m — ma [)#(1+ [y [Jp—des@ 71 = 2

m1




for every m € R, provided that p > deg(Q) + 1. This proves (12). O

Let S4 be an infinite sector of bisecting direction d and Rg be a finite sector of bisecting
direction d. We take v € R.

We define another space of functions which will be useful in the sequel. It corresponds to
that of Definition 1 in [10].

Definition 3 Expilkﬁﬂy) stands for the vector space of continuous complex valued functions

(1,m) — h(r,m) on (SgU @) x R, holomorphic with respect to 7 on Sg U Rg such that

klog? |7| B

vlog|7| | |h(T,m)| < cc.
o L tog ) i)

1A m)ll g ey = sup (L [m]) e exp (_
TE€(S4URY) meER

The space Expflk B, turns out to be a Banach space when endowed with the norm ||| 5.,,.)-

The growth behavior of the elements in the space Exp‘(ik Buw) differs at 0, when compared to
the growth rate of the elements in Exp‘(ik Bp) AL the origin with respect to 7 variable. However,
both spaces share functions with the same growth at infinity.

We state some auxiliary lemmas in the shape as those enunciated for the space Exp‘(ik Bap)”

The proofs for these results are omitted, and they can be found in [10].

Lemma 3 Let (1,m) — a(r,m) be a bounded continuous function in Sy URiz x R, holomorphic

with respect to T on Sq URY. For every h(t,m) € Exp?kﬁlw), the function a(r,m)h(r,m) €
d

Eaply g1,y and

”CL(T, m)h(T7 m) ”(k,ﬁ,,u,u) < él Hh(T7 m) H(k,ﬁ,,u,u) )

where C; = sup la(T,m)].

T€(S4URE),meR

Proposition 4 Let v1,7v2,7v3 > 0 such that
(15) Y2 = ky3, i+ ky3 = .

Let a, () be a holomorphic function on SqURY, continuous on SdURig with (14+|7])"ay, (7)] < 1

for every T € (Sg U @) Then, for every [ € Expglkﬁﬂy), the function a, (1)7720q * f(1,m)
belongs to Expflk Buv) and there exists Cy > 0, depending on k,q,v,v1,7v2,73, such that

Ha’h (T)T'ngqi%f(ﬂ m)H(k,B,u,y) < 62 Hf(Ta m)”(k,ﬂ,,u,z/) :

Proposition 5 Let Q(X), R(X) and b be as in Proposition 2. We assume c(m) € Eg ).
Then, JjOT every f(r,m) € Exp?kﬁMW) the function c(m) *>@ f(r,m) € Ezp?k,,@,p,,l/) and there
exists Cs > 0, depending on Q(X), R(X), u,q,v, k, such that

etm) <@ pmm)| < Collem) s 117 g

(k,B,p,v)
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3 Review of some formal and analytic transforms

In the present section, we recall the definitions and main properties of some formal and ana-
lytic transforms. More precisely, we will be concerned with g—Borel, ¢—Laplace and Fourier
transforms. Throughout this section, E stands for a complex Banach space.

Let ¢ > 1 be a real number and k£ > 1 be an integer. The next definition and result can both
be found in [3], and also in the previous work [17].

Definition 4 Let a(T) = }_,~qa,T" € E[[T]]. We define the formal q—Borel transform of
order k of a(T') as the formal power series

n

A R T

n>0

We recall that for every v € R, the operator o, acting on E[[T]], stands for the generalized
dilation operator on T variable, ag (a(T)) = a(q"T) for every a(T) € E[[T]].
The proof of this result can be found in [10], Proposition 5.

Proposition 6 Let 0 € N and j € Q. Then, the following formal identity holds

7_0'

By (T TN (0) = o+ (Baap@))
for every a(T) € E[[T]].

At this point, we can recall the definition of a ¢—Laplace transform of order k, extending
that used in [5] for £ = 1, and introduced in the work [19]. It provides a continuous g—analog for
the formal inverse of Bq;l /i developed in [3]. The associated kernel of the ¢—Laplace operator
is the Jacobi theta function of order k defined by

_n(n-1)
l/k E q 2 x" R
nez

for x € C*, m € Z. This function solves the g—difference equation

m m(m+1)

(16) Oum(gkr) =q 2 20, /k(z),

for every z € C*. As a direct consequence of Lemma 4.1 in [5], extended for any value of k,
Jacobi theta function of order k satisfies that for every § > 0 there exists a positive constant
Cy,x not depending on 4, such that

klog? |z| 1/2
>
(17) ©,0(@)| = Cppdexp <2 o ) 272,

for every x € C* verifying |1 + xq% | > ¢, for all m € Z. This last property is crucial in order
for the ¢g—Laplace transform of order k£ to be well-defined.

Definition 5 Let p > 0 and Uy be an unbounded sector with vertex at 0 and bisecting direction
d e R. Let f: D(0,p) UUy; — E be a holomorphic function, continuous on D(0,p) such that
there exist constants K > 0 and o € R with

k log?
(18) 1@l < Kexp (572 1+ atogal)
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for every x € Uy, |z| > p and

(19) If(@)le < K
for all x € D(0,p). Take v € R such that e € Uy. We put Tk = log(g) [T>0(1 - .
q

n+1
k k

and define the q— Laplace transform of order k of f in direction v as

. 1 flu) du
Eq’l/k(f(x))(T) - Ta/k JL, @ql/k (%) u’

where L, stands for the set Rye" := {te" : t € (0,00)}.

The following results are stated without proof which can be found in [10], Lemma 4 and
Proposition 6. The first result studies the domain of definition of the g—Laplace transform of
order k whilst the second states a commutation formula of the ¢—Laplace operator of order k
with respect to some other operators.

Lemma 4 Let 6 > 0. Under the hypotheses of Definition 5, L’;’;l/k(f(x))(T) defines a bounded
and holomorphic function on the domain R7 5N D(0,r1) for any 0 <ry < q(%_o‘)/k/Q, where

er

T

'R%EZ{TGC*:H—F

| >4, foralerO}.

The value of Ez,l/k(f(x))(T) does not depend on the choice of v under the condition e" € Sy
due to Cauchy formula.

Proposition 7 Let f be a function satisfying the properties in Definition 5, and 6> 0. Then,
for every o > 0 one has

Too)(L S @)(T) = L], (WUZ—Z f(x)) (1),

Jor every T € R_ 5N D(0,71), where 0 <7y < q(%fa)/k/Q.
We are also making use of Fourier transform and some of its properties, in the spirit of [7, 10].

Proposition 8 Take p> 1,8 >0 and let f € E(g ). The inverse Fourier transform is defined
by

FD@) = oy [ fm)esp om) dm

for x € R, which can be extended to an analytic function on the strip

(20) Hg={z€ C:[3(2)| < p}.
Let ¢(m) = imf(m) € Eg 1) Then, we have
(21) F H)(z) = F H(9)(2),

for every z € Hp.
Let g € E(g ) and let p(m) = W(f % g)(m), the convolution product of f and g, for all

m € R. A direct application of Proposition 2 when choosing b= R = Q =1 allow us to affirm
that the function v is an element of Eg ). Moreover, we have

(22) FHOEF H9)(z) = FH)(2),
for every z € Hp.
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4 Formal and analytic solutions to an auxiliary convolution prob-
lem

Let 1 < ki < ko and D > 3 be integer numbers. Let x > 0 be defined by

1 1 1

23 = _
( ) K kl kg

We also take ¢ € R, ¢ > 1 and assume that for every 1 < ¢ < D — 1, I, stands for a finite
nonempty set of nonnegative integers.

Let dp > 1 be an integer. For every 1 < ¢ < D — 1, we consider an integer dy > 1 and for
each \ € Iy, we choose integers dy , > 1, Ay, > 0. In addition to that, we make the assumption
that

51 = 17 5@ < 5@+1 )

forevery 1 </ <D —1.
We make the hypotheses

d -1
(24) Are>dyy, 241>, dp +1>4
’ ’ ko ko
forevery 1 </ <D —1andall A € I;. Let Q,R;, € C[X], 1 <{ < D, with
(25) deg(Q) > deg(Rp) > deg(Ry), Q(im) #0, Rp(im) # 0,

foralll1 </ < D-—1and mée€R. Forevery 1 </ < D—1and all A € Iy, we choose the function
m > C)¢(m,€) in the space Eg , for some 3 > 0 and p > deg(Rp) + 1. In addition to that,
we assume all these functions depend holomorphically on € € D(0, ¢g) for some ¢y > 0, and also
the existence of a positive constant C’,\,g such that

(26) 1Cxe(m, ) 5, < Ot

for every € € D(0, ).

Let F(T,m,€) = 3,50 Fn(m,e)T™ be a formal power series in T" with coefficients in Eg
which depend holomorphically on e € D(0, €p).

We assume the formal power series qul/kl (F(T,m,€))(T) € Eg,ullr]], which depends holo-
morphically on € € D(0, ¢g). Moreover, we assume uniform bounds on the perturbation param-
eter in the domain of convergence. More precisely, we assume there exists Cr > 0, which does
not depend on € € D(0, ¢), such that

n(n—1)

(27) [ (ms )l g,u) < Crp™"q 8

The nature of BqJ/kl (F(T,m,e))(r) allow us to affirm that this function can be extended to
an unbounded sector of bisecting direction d, say Uy, under g—exponential bounds of k; type.
Again, we assume uniformity on the bounds for the perturbation parameter in the sense that,
if we denote this extension by 1)y, , then one has that

e~ Bl <k1 log? |7 + 4]
(1 + |m[)» 2log(q)

for some Cy, >0, 7 € Uy U D(0, p) and m € R, valid for all € € D(0, €).

(28) |Yr (7m0, €)] < Cyy, +alog|7+5) ,
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We consider the equation

dp

QUim)o,U(T,m,¢) = T2 " Rp(im)U(T,m,¢)
(29)

D-1

1 oo

+ Z Z Tt B e=dne CLE / Che(m —my, €)Re(imy)U (¢°T, my, €)dmy | + o,F(T,m,e).
=1 \)el, -

Proposition 9 Let Uy, € Eg ;) for

h € {0, 1,...,max{ d,\,g,dp}} ;

max
1<0<D—1,)€l,

depending holomorphically on € € D(0,€p). Then, there exists a unique formal power series

U(T,m,€) = 3,50 Un(m, )T € Eg )[[T]] which solves (29). The elements U, depend holo-
morphically on € € D(0,¢€).

Proof A formal power series U(T,m, €) = > n>0 Un(m, €)T™ provides a formal solution of (29)
if its coefficients satisfy the recursion formula
ap _
(30)  Q(im)Uyp(m,€)q" = Rp(im)Uy,—_q, (m, e)q( k2 —H) (n=dp)
D-1 )
Axe—=dxe 4 (n—dx,0)d¢
+ € q (212

/ C)\’g(m — mai, G)Rf(iml)UnfdA,g (ml, e)dm1
=1 \el, o

+ Fn(m,€)q",

for every € € D(0,¢p), and m € R. Holomophicity of Uy, (m,€) for every n > 0 comes from the
previous recursion formula and assumption (24). Moreover, regarding Proposition 2 together
with assumption (25), and Lemma 2 one derives Uy, (m, €) € E(g ) for every n > 0. O

As it was explained in the introduction, a procedure of Borel-Laplace summation on the
perturbation parameter is not valid in this framework from the growth nature of the source and
the nature of the singularities associated to the equation in e. This phenomena is treated in
in two steps: a first step in which Borel-Laplece summation procedure provides a holomorphic
solution with too large growth at infinity so that Laplace transform is not available; and a second
step, solving this difficulty, by means of an acceleration operator.

4.1 Analytic solutions for an auxiliary problem arising from the action of the
formal g—Borel transform of order k;

We commence with the first step in the procedure to follow. For that purpose, we multiply both
sides of equation (29) by T%' to get

dp 4y
QUim)T* o, U(T,m, ) = T 5,2 " Rp(im)U(T,m,e)
D-1

1 oo
+ Z T etk elae=de (om)i/2 / Cho(m —my, €)Re(im1)U (¢° T, my, €)dmy
=1 \ el 7r —o0

(31) + TM o, F(T, m,e).
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By applying the formal g—Borel transform of order k; at both sides of the equation (31) and
bearing in mind the identity described in Proposition 6, we arrive at

kl dD+k1

-
w, (T,m, €) = (qt/*1)(dp+ki)(dp+ki—1)/2 %q

Q(Zm)( 1/k1)k‘1(k1—1)/2

D/”RD(zm)wkl (1,m,€)

D-1 Are—daerda et 55_2 11
R
+Z Z (/1 )@+ (@ o= 27 W(Cx,é(m,e)* Cw, (T,m, €))
—1 )\GI[
(32)

Tk

+ (q1/k1)k1(k1—1)/21/’k1(

T, M, €).

Here, we have put
(33) W, (T, M, €) 1= l’;’q;l/kl(U(T, m,€))(T), Y, (T, m, €) := l’;’q;l/kl(F(T,m, €))(7).

The main aim of this section is to prove that wy, is indeed a holomorphic function in a
neighborhood of the origin in the variable 7, with values in F(g ,), and holomorphic with respect
to the perturbation parameter e. Moreover, wg, can be extended in 7 variable to an infinite
sector under g—exponential growth of k type.

A fix point theorem in an appropriate Banach space is studied.

Proposition 10 Let w > 0. Under the hypotheses made at the beginning of Section 4 on the
functions involved in the construction of the equation (32), if Rp and @ are chosen so that
Sup,,cr |f:€QD(§;2r)L|)| 18 small enough, and there exist small enough positive constants ka and Cy ¢

for every 1 <L < D —1 and all A € I, with

(34) Cae < Caes Cy < Gy »

then the equation (32) admits a unique solution wgl (T,m,€) in the space Ea:pflﬁ Boscp) such that

ngl (1, m, e)H(Hﬁ’“’aﬁp) < w for every e € D(0,€y). Moreover, this function is holomorphic with
respect to € in D(0, €).

Proof Let € € D(0, €).
Let H¥' be the map defined by

(ql/kl)kl(kl_l)/g 'TdD —dD/HM

k o
H (w(r,m)) = (qV/F1) (o +k)(dp+hi—1)/2 Tq Q(im) w(T,m)

D-1 Ao d/\g( 1/k1)k1(k171)/2 52,%7@,1 1 1
dx.e

+§1 /\GZIZ 1/k1)(dx,e+k1)(dx,z+k1—1)/2T L (27r)1/2Q(im)

(Cae(m, €) 1 wyy (,m, €))

1
+ kal (1,m,€)

Let @ > 0 and w(1,m) € Exp(ﬁﬁuap) with [[w(T, m)| (50,0 < @-

Taking into account (25) one can apply Lemma 2, and from Proposition 1, one gets

Rp(tm —dn /s
(35) H QDzm) 790 g A0S (7, m) < CoCrpo I10(r, M)l gy < CoCroa,

(K7ﬂ7u7a7p)
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for some Cy > 0, and where Cg,,q = sup,,cg |[Rp(im)|/|Q(im)|. Let 1 <¢ < D —1and X € .
Bearing in mind (24) and from Proposition 1 and Proposition 3 we have

(S,g—d)\é 1 1

Ay p—dx e dxge k1 C «Re
€ T Oq Q(zm) ( )‘7£(m7 6) Wk, <T7 m, 6))

(K, B, 1,0t,0)

A d Ay p—dx s A
A e—dxe SCQCSGOMZ /\’ZC)\,KW

< C2C3¢
(36)
< C2C3€0AA’£_dA’[C,\,zW7

HCA,f(m) 6) H (B,1) ||U)(T, m) H (K,8,11,00,p)

for every 1 < ¢ < D —1 and all A € I;. We recall éM is defined in (26).

The polynomial @ satisfies that Q(im) # 0 for all m € R. This entails that |Q(im)| > Cq
for every m € R, for some Cg > 0. We depart from 9y, € Exp( Exp( where
the inclusion is a continuous map. Then,

k1,8,m,0,p) = B,,0,p)

¢k1 (7—7 m, 6)

1 1 1
HQ(W’L) = CiQ 8 (s m, 6)”(5,5,#@,,)) < CiQkal < Cf@@pkl'

Regarding (35), (36)and (37), we get

(ql/kl)k}1(k:1—1)/2

(KB, 11,00,0)

k
HHEI(M(T’ ™)) (K, B,11,0,P) = (ql/’ﬂ)(dD+k1)(dD+k1—1)/2CQCRDQW
D—-1 Axe=daer 17k \k (k1 —1)/2
€0 (¢/") 1 1
+ CoC30\ ¢ + =—C

Now, we choose Cr,q, kal and ()¢ for every 1 </ < D —1 and X € I, such that

(ql/kl)kl(lﬂfl)/Q
( 1/k1)(dD+k‘1)(dD+k‘1fl)/2

CoCRrpomw

A)\z dAé( 1/k1)k1(k1 1)/2 1

1
+ Z Z (g/kr ) (@dx etk (dx ethi=1)/2 (277)1/2 G230 0w + Co kal sw
/=1 )\EI@

One derives that the operator H*' maps D(0,w) C Exp( into itself. Let wil,wil €

Bk, p)

with Hwle <wforj=1,2.

EXp( Bisonp)? (5, 8,1,00) —
Analogous estimates as before allow us to prove that

|k, (7 m)) = HE (f, (rm)

(H7ﬂ’u’a7p)
/kl)kl(kl 1)/2C2CRDQ
k1)(dD+k’1)(dD+k1 1)/2

H llﬁ (7—7 m) - w/%1 (T’ m) H (K,B,p,0,p)

( 1

= g7

D— Au dy, e( 1/k1)k:1(k1—1)/2 1
; Z (q1/kr)(dxethn)(drethi=1)/2 (27)1/2

)\EI@

1 (r,m) — w,%,l (7, m)”

(K’/B7/“L7a7p)

We choose Cr,,g and () for every 1 </ < D —1 and A € I, such that

(q1/k1)k1(k1—1)/2020RDQ AM du( 1k ykr (k1 =1)/2 1

(ql/kl)(dD+k1)(dD+k171)/2 Z Z 1/k1 d)\ [+I€1)(d>\ o+k1— 1)/2 ( )
l= 1)\6[5

1
7220300 < 5



16

and conclude that

1
ki, 1 ki, 2 1 2
[ k(o) = (o) k() i ) -
The closed disc D(0,w) C Exp‘(imﬁ%mp) is a complete metric space for the norm |||, 5 , o -

Then, the operator H*! is a contractive map from D(0, ) into itself. The classical contractive

mapping theorem states the existence of a unique fixed point, say wgl (1,m,€). Holomorphy of

w,‘f (1,m, €) with respect to € is guaranteed by construction, and also one has w,ﬁf (1,m,€) is a
1 1

solution of (32). O

The next step consists of studying the solutions of a second auxiliary problem, derived from
(29). Its solution is linked to that of (32) by means of some appropriate g—Laplace transform
which plays the role of an acceleration operator. The main aim of the following results is to
conclude that the acceleration of the function wgl obtained in Proposition 10 coincides with the
analytic solution of the novel auxiliary equation under study.

We first establish an accelerator-like result on the function v, , defined in (33).

Lemma 5 Let 0 > 0. The function
1 Vi, (u,m, €) du

.— prd =
(38) T = sz (Tvmv 6) T ‘CQ;l/ﬁ(h = wkl (h’ m, 6))(7) o 7Tq1/,€ Ly @ql/n (%) u

is analytic in the set R 5. Moreover, the function (T,m) + Yy, (T, m,€) is continuous for m € R
and T € R, 5, and depends holomorphically on € € D(0, ¢y). Moreover, there erist C¢k2 > 0 and
v € R such that

ko log? ||

(39) [Bra (7, €)] < Copy ™ (L4 [ml) ™ exp ( 2108(g)

+vlog ]T\) ,
for every T € R, 5, m € R and e € D(0, €p).
Proof We first rewrite (28).

Direct calculations allow us to affirm the existence of a constant Cy41, only depending on 9,
such that

k1 log? |7 + 6| k1 log® |7]
—— 4 alog|t+ 0| < ————— + alog|7| + Cu,
21080 TS gty Bl
for every 7 € Sy4. This entails (28) can be rewritten in the form
. —BIm| k1 log? |7|
e 1108~ | T
40 T,m,e)| < Cy, ————exp| ——— + alog|7| |,
(40) o (7,0 < Cup, o 0w (T o+ atos

for some constant C’wkl > 0. We recall that k; < k (see (23)) so that

~ e=BIml klog? |1
(41) ’wlﬂ (7_7 m, 6)‘ < kal <|

(L+ m 7P\ 2log(g)
This remains valid for all € € D(0, ), 7 € Uy and m € R. Moreover, for every 7 € D(0, p), the

functions log? |7 4 d| and log |7 + 6| are bounded from above. As a consequence, there exists
Cyy,, > 0 such that

—|—alog]7\> .

(42) |wk1 (7-7 m, 6)| < C’wkl )
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for every € € D(0,¢0), 7 € D(0,p) and m € R. In view of (42) and (41) one can follow the
construction described in Definition 5 in order to affirm that iy, is well-defined as considered
in (38). More precisely, given 6 > 0, (7,m, €) — Yy, (T, m, €) turns out to be a continuous and
bounded function defined in (R, ;N D(0,r1)) x R x D(0,¢€p) for any 0 <7y < q(1/2=2)/% /2 and
holomorphic with respect to 7 variable in R 451 D(0,r1). In addition to that, from (40) and
(17) one has

1 Vi (u,m, €) du

7Tq1/n Ly @ql/n (%) u

Efll?l/”(h = ¢k’1 (h,m, 6))(7’)’ =

(43) kal e—BIml ’TN‘I/2 /oo o (W e 10g(r)> 1 @
o (1 + \m|)“Cq,,@57rq1/n 0 QIOg(Q) nlogQ(ﬁ> 1/2 r
eXp 2log(q) "

for every 7 such that ’1 + #‘ > 6 forallr >0, meRand e € D(0,¢). One has

log(q)

P0=3/2 oy (lﬁ log’r  rlog’ (7”/|TD> _ o3/ exp (_ (k= k1)log?(r)  rlog® |T’>

2log(q) 2log(q) 2log(q) 2log(q)
This last equality and (43) allow us to write
22l (o, ()| <~ ] (—“g“)
’ (1+ [m| )1 Coed g1/ 2log(q)
S8 rlog |T — 2
(44) % / O3/ 2 exp <— (k= k1) log (7”)> dr.
0 2log(q)
Let 7 be chosen as above. We put m; = a — 3/2 + ﬁlézg(g', myp =my + 1/2, mig =mq + 2
and mo = 2";0;’?;), and study
1
/oo P T2 logQ(T)d,r _ / irmue—mg logZ(r)d,r + /OO irmme—mg logQ(r)dr
1/2 2 :
0 o T 1 T

For j = 1,2, the function = — h;(z) = 2™ exp (—m2log?(z)) attains its maximum value
2
m

for € [0,00) at xj90 = exp(%). One has h(zjo0) = exp(z,2). Direct calculations show the

existence of real constants Cyo, Cy3, with Cys > 0, only depending on k1, ko, ¢, such that

x ?log? ||
pme—mzlog?(r) g, < Oyolr|C23 exp ( r ) .
| I 21og(q) (< — 1)

Hence, (44) is estimated from above by

éwkle_ﬂ|m||7’1/2+043 ( rlog? ]T\) < 5210g2\7| )

Cyy 1+ [m))e - 21og(q) 2log(q)(k — k1)

for some Cyq > 0 only depending on ki, ks, q.
Then, (39) follows from the fact that

12
k—Fk

and by taking v = 1/2 + Cys. O

—K+

k27
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4.2 Analytic solutions for an auxiliary problem arising from the action of the
formal ¢—Borel transform of order k;

In the previous section, we have studied the problem arisen from the application of the formal
g—Borel transform of order k; to the equation (29). As a second step, we study a second
auxiliary equation coming from the application of the formal ¢—Borel transform of order ko to
the equation (29).

For that purpose, we multiply at both sides of the equality (29) by T%2 to get

dp

L +1
QUim)T*2a,U(T,m, ) = T 25,2 " Rp(im)U(T,m,¢)
D—1 . o
+ Z Z T etk Bae=dae 72 / Cho(m —my, €)Re(im1)U (¢°T, my, €)dmy
=1 \)\el, (27r) o
(45) +Tk26,F (T, m,e).

We take formal g—Borel transform of order ko at both sides of the previous equation. By
means of the property held by formal ¢g—Borel transform described in Proposicion 6, we get

‘ k2 . . rdp+k2
Q(im) (q/k2)ka(he—1)/2 Wk, (T,m, €) = Rp(im) (q1/k2)(dp+hka)(dp+ha—1)/2

Wi, (T, M, €)

o Ax,e—d dx ¢tk dx.e
eANe—dx e rdx etk 52_@_1 1 -
+z 1 AZI: (/) (k) (ko= 1) /27 W@u(mae)* Wy, (7,1, €))
(46)
Th2 -
+ (ql/k2)k2(k2—1)/2¢k2 (T’m7 6)7
where

Wiy (7,m, €) 1= By iy (U(T,m, €))(7), Uiy (T, €) 1= By jiy (F(T,m, €)) (7).

It is worth mentioning that we have assumed a g—Gevrey growth of order k; related to
the elements (F,(m,€))n>0 (see (27)). From the fact that ko > k;, one can only affirm that
@@;Q (1,m, €) is a formal power series in 7, with coefficients in the space E(g ). This point is
crucial to understand the cause of coming up to two different g—Borel-Laplace transformations
to attain our aims.

We now proceed to substitute this formal element by an acceleration of ,, named x,,
constructed in Lemma 5 and solve the equation arising from this substitution. Heuristically
speaking, an excessive type of growth in the transformation of length ko is reduced in two steps:
a first one related to k1 (k1 < ko) and a second step accelerating up to ko. The splitting of the
problem will help us to attain convergence.

Following this plan, we now consider the equation (46) in which Qﬁ/@ is substituted by %,
constructed in Lemma 5. Namely, we study the equation
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k‘z TdD +k2

T .
Wi, (T7 m, 6) = RD(Zm) (ql/kz)(dD-‘rk‘z)(dD-i-kz—l)/Q

Q(im) (q/k2)ka(he—1)/2

Wiy (T, M, €)

D-1 €A e—dx e dx otk 5‘37%71 1

(Cre(m,e) w1 W, (T, My €))

" = ); (ql/kz)(dx,ﬁkz)(dx,frk?*l)ﬂUq (2m)1/2
= 14

(47)

rk2

+ (ql/kz)kz(szl)ﬂd}kg(

T, M, €).

We now make this assumptions on Rp and Q). Let ng r, > 0 and dg r,, € R such that

Q(im)

48 S R
(48) RD(im)E Q.Rp, MENR,

where Sg g, is the unbounded set

SQ,rp = {z€C: 2] > TQ,Rp> |arg(z) — anRD‘ < 77Q7RD}'
We consider the polynomial

_ Q(im) Rp(im) d
(49) Fnlr) = (ql/k2)k2(/€2—1)/2 - (ql/k2)A(dD+k2)(4gD+k2—1) T,

and factorize it
) dp—1
Rp(im) T

(dp+ko)(dp+ks—1) H (T —aq(m)),
2 =0

Pyu(r)=—

(q'/*2)
with

QUim)| |, 1 jky Eptha)dptha=1) k(s -1\ /P 1 Q(im) 27l
p— —_— —1 — S — —_—
am) = (g gy 0 2 e \ V= gy 28 Rpimy ) Y an )
for every 0 <1 < dp — 1. Moreover, we establish some conditions on Sg g, with respect to Sy
and Rg. Indeed, let p; > 0 such that Rg - E(O7 p1) and assume

1) There exists M; > 0 such that
(50) 7 —q(m)] = Mi(1 + |7)),

for every 0 <1 <dp—1,allm € R and 7 € S;UD(0, p1). Indeed, in view of (48) and the
shape of ¢, one may choose g g, so that |g(m)| > 2p; for every m € R, 0 <1 <dp — 1.
In addition to that, g;(m) is a root of P,,,(7). This entails

ap _ Q(im) ( 1/k2)(dD+k2>(dD+k22—1>—k2<k2—1)

_ Llm) S
Rp(im) € 9Q.Rp

qe(m)
for every m € R, in view of (48). As a matter of fact, one can choose small enough 719 r,,
so that every gy(m) lies in a finite family of infinite sectors with vertex at the origin and
such that there exists d € R so that S; does have empty intersection with all such infinite
sectors.

Under these assumptions, one can choose Sy under the property that ¢;(m)/7 does not
belong to some open disc centered at 1 for every 0 <! <dp —1, 7 € S5 and m € R. This
configuration guarantees (50) is fulfilled.
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2) There exists My > 0 and Iy € {0, ...,dp — 1} such that

(51) |7 = e (m)] = Ma|gi, (m))],

for every m € R and 7 € S;U D(0, p1). Under assumption 1), we notice that for any fixed
0 < lp < dp—1, the quotient 7/g;, (m) has positive distance to 1, for every 7 € D(0, p1)USq,
and m € R. This implies (51) for some small enough Mo.

Under the previous situation, one derives

Bt (2mL W)“D*’“QWD“;-”-WQ-”)”dD

(dD+k2)(;D+k2*1) \RD(zm)\

[P ()| = M{P ™My

(q'/k2)
(52) x (14 |77 > Cp(rq,r,) P |Rp(im)|(1 + ||) ™7,

for some positive constant Cp, valid for every 7 € D(0, p1) U Sy and m € R.
Let RZ be a bounded sector with vertex at 0 and bisecting direction d. We assume RZ C

E(Ovpl)'

Proposition 11 Let w > 0. Under the hypotheses made at the beginning of Section 4 on the
elements involved in the construction of equation (47), under assumptions 1) and 2) above, if
there exist small enough positive constants CWQ e for 1 <0< D —1 and X € Iy such that

(53) Che < O Cry < Copy»

then, for every e € D(0,€g), the equation (47) admits a unique solution ’ng(T, m,€) in the space
Exp?k%ﬁ%y), for v € R determined in (39). Moreover, ngQ(T, m, E)H(k%ﬁ,#,y) < w, and this
function is holomorphic with respect to € in D(0, €).

Proof 3
We recall Cy ¢ and Cy, are stated in (26) and (39) respectively.
Let € € D(0,¢). We consider the map H*? defined by

)
Axe—dxerdre kg 1
e (Coe(m. €) " w(r, m))

HE (w(r, m)) = 3

B (7) =1 \ xel, (g

1 1
(qL/k2)ka(ka—1)/2 pm(T)ZZ)kg(T, m,e).

(54) +

Let w > 0, and take w(7,m) € Exp‘(ik%ﬁ%y) with [lw(7, m)| 4, 5, < @ Forevery 1 <2<

D —1 and X € I, we write

Axe—dxe So— At 4
€ A 0 TR C st
Pm(T) T 9q ( )"Z(m7 6> w<T’ m))
(55)
Are=dre  Cp(ro.py,) Y% Rp(im) Tduaag_ dki; -1 1

B N2 m, €) x w(r, m
B CP(TQ,RD)l/dD Pm(T) q RD(’LTTL) (C)\,E( ) ) ( s ))
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In view of the properties described at the beginning of Section 4, one can apply Proposition 5
to obtain that
(56)

(C,\,g(m, €) st w(T, m))

1 ~ ~ ~
a5 < Cs C)Hg w(T, m » < C3C>\’Zw7
H R (im) oy S OOy 1 50

for some Cs > 0, valid for every 1 < ¢ < D —1 and all A € I;. Let v, in Proposition 4 be the

CP(TQ7RD)1/dDRD(’L'm)

value dp — 1 and put a, (1) = e . From (52) one has |a,, ()] <

1
T (1+|7)*p 1
for every 7 € Sy U Rg and m € R. In addition to this, and bearing in mind (24), one can apply
Proposition 4 to conclude that

CP(TQ,RD)l/dD Rp (’Lm) de,eaée %26_1 1

Py (1) 7 Rp(im)

(C,\,g(m, €) «T% w(r, m))

(k2757#71’)

is bounded above by

Co < Cr03Ch yw < CrCly .

(k27571"7l/)

We observe that, without loss of generality, one can assume that Sg C R, ;.

Furthermore, as a consequence of (52) and (53), and taking into account that ¢y, € Expflk2 B uw)
in view of (39), one has

1 1 1
7¢k‘ (7-7 m, 6) = sup . ||1/)k: (Ta m, 6) H v
HP’“(T) 2 by CP(rQ.rp)Y™ mek [Rp(im)| = (k2. opi0)
= sup ; < sup .
Cp(ro.rp) % mer |Rp(im)| "2 = Cp(rg.py ) /% mew |Rp(im)] ¥+
The previous estimates allow us to affirm that
SN Axe—dxe
0263 pW4S
HE2 (w(,m H < w 0
H e (w( ) (k2,8,1,v) C'P(?“Q,R )l/dD 27) 1/2 ;/\GZIZ 1/k;2 (du+k2)(du+k2 1)/2
n 1 1 1 ¢
su :
(q 75252 ®2=072 Cp (1 1)) /AP ek [Rp(im)] "

We choose kaQ’Q\,Z for every 1 < /¢ < D —1 and A € I; such that

Axe—dxe
D D RS- A |
P\"Q,Rp =1 )\EIE
1 1 1 w

<=,
(ql/kz)kg(kg—l)/Q CP(TQ,R )l/dD ;%R \Rp(zm)\@’“? =9
This yields H’Hf?(w(T, m))H(kgﬁ,u,I/) < w. The operator H*?(w(r,m)) maps D(0,w) C

d ; ; 1 2 d : j
Exp(k%ﬁ%y) into itself. Let wy ,wj, € Exp(kzﬁ’u’y), with Hwiz2 H <wforj=1,2.

LNCNTRY)!
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Following analogous calculations as before we arrive at

H”Hi€2 (w/i2 (r,m)) — HEQ (w’%2 (7, m))H(kz,ﬁ B)

Axe—dxe 1 2
S T D) DR L
= Cp(ro.rp) 1/dD (2) 1/2 — (ql/kz)(dx,z+k2)(d/\,e+k2—1)/2

We choose (¢ for every 1 < ¢ < D —1 and A € I, such that

Axe—dxe

<

l\DM—l

CoCs Wi
Cp(ro.rp) 1/dD (27) 1/2 ; )%I:Z 1//€2 (dx,etk2)(dr et+ka—1)/2

and conclude

| ok, (7)) = HE2 (7. m))| ok, (7 m) =, (7 7) | 4

‘ (k2 ’57//'71/)
The closed disc D(0,w) C Expflk2 5, 15 @ complete metric space for the norm |||, 5.,,.,)-

The previous reasoning leads to the conclusion that the operator 7—[52 is a contractive map from
D(0,w) into itself. The classical contractive mapping theorem states the existence of a unique
fixed point, say ng (1,m,e€). Moreover,wﬁ2 (1,m, €) is a solution of (47) and also the holomorphy
of wgz (1,m, €) with respect to € is attained by construction. O

The next result provides the link between the acceleration of wgl, obtained in Proposi-
tion 10, and wgg determined in Proposition 11. Indeed, we prove they coincide as elements in

an appropriate Banach space.

Proposition 12 Let us consider the function wgl (1,m, €), constructed in Proposition 10, solving

(82). For every 6 > 0, the function

1 'w]il;l (ha m? 6) du
Tgi/e Jig qu/” (7) w

T L0 (Wi (Tym, €)== L0 (h = wil, (h,m, 6)) () =

defines a bounded holomorphic function in R, N D(0,7r1), with 0 <71 < q ~/% /2 (we recall
a € R is fizxed at the beginning of Section 4). Moreover, for every e € D(0,¢€p), the identity

(57) £g;1//{(wg1 )(T7 m? 6) = wgg (7—7 m7 6)

holds for 7 € S% m € R and ¢ € D(0,¢y), where p > 0 and Sg is a finite sector of bisecting
direction d.

Proof We recall wk € Exp( ) which implies there exists C’ikl > 0 such that

KB, 1,000

2
ngl (1, m, 6)H(ﬁ’ﬂ) < Csjkl ex <'%10g’7_+5|

2log(q)

for every 7 € D(0, p)UUy, € € D(0,¢€). Direct calculations entail the existence of C’ka ,C’f’ukl >0
such that

—l—alog|T+5|> ,

[wf, (rom. )| 5, < O,
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for every 7 € D(0, p), and

2
d /ﬁlog |7'|
k7m0 < €, 0 (el o).

for every 7 € Uy with |7| > p. Definition 5 and Lemma 4 guarantee that for every 6 >0

the function EZ 1 /H(wg1 (T,m,€)) defines a bounded holomorphic function in R, 5 N D(0,71) for

0<r < q(5 /”/2, and values in the space Eg ).
We now give proof of the identity (57). For this purpose, we consider equation (32) satisfied
by wgl (1,m, €) and divide both sides by 7%1. One has

. 1 d o o-p/k ] d
Q(l’m)( 1/k1)k‘1(k1—1)/2wk1 (rym,€) = (¢t/F1)(@dp+h)(dp+h—1)/2 73 0" R (im)uf, (r,m,
D-1 A o—dxordy 5e—¥—1 1

WR
" Z Z R O T T 5720 W(Cx,z(m, &)« wi (1,m,€))
(= )\EI[
(58)

1
AP G Vi

T, m,€).

We now take g—Laplace transform of order x and direction d at both sides of (58). In view
of Proposition 7, one has

(59) 'Cq 1/[{( dp 5 dD/nwgl(T m 6)) :( 1/n)dD(dD 1)/2 dDLq l/m(wlq(T m, 6))

Alos, for every 1 < £ < D —1 and A € Iy one has

dxe _1

Sp—
Loa/n <Td“"0q£ N (Onelmy )+ wf, (rm, 6)))

dxe
(60) = (ql/ﬁ)dk’[(d/\’z_l)/QTdkvéO'q_ﬁ_kée_lﬁd

q;l/n(cz\,f(mﬂ 6) Al wg (7_7 m, 6))

We now proceed to justify the change in the order of integration in the expression

d R d
ﬁq;l/H(CA,Z(m> €) ¥ wy, (1,m,€)).
For every m; € R and r > 0 we define the function

Che(m — ml)Rg(iml)wgl(reid, my, €)

@ 1/}@ (rezd> r )
for 7€ R, 51 D(0,r1), m € R and € € D(0, ).
Taking into account (26), Proposition 10 and (17), one has

(ma,r) = E(ma,r) =

~ log? zd+6 .
Oy pe~m=m1l8| Ry (imy ) |e=Almal 5| 7| 1/2 xP (% + alog |ret + (5\)

Cq,n(l + ’m - m1|),u(1 + |m1|)“ 7“3/25 & log? (ﬁ) ’
eXp 2log(q)

[2(ma,7)| <
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for mi € R, r > 0.
Integrability follows from identically reasoning as that were applied at (14) regarding inte-
grability with respect to variable m;, and the next estimates on the expression

1 2 idy § .
o (5 s 0

. nlogQ(L>
3/2 __2 A\l
rd/ exp( 2log(q) >

On one hand, if r > p, then (61) is bounded above by

(61)

2(r
7“_3/2(’/“ + 5)o¢ exp /ﬁjlog2(7“ + 5) B rlog <|T )
21og(q) 21og(q)

rlog? |7| 2 _ 2

_ I 32 4 )% exp <ff(10g (r+0) —log™(r)) | rlog(r)log |T|>
2log(q) log(q)

There exists Cs; > 0 such that log?(r + 6) — log?(r) < Cs; for every r > p, and under the

assumption that |7| < 71, the term 7~3/2(r 4+ §)® exp (M

log(q) ) is upper bounded by 74*2_
This yields integrability of (61) with resct to r.

log? ( %
On the other hand, if 0 < r < p, (61) is estimated from above by Cror—3/2 exp <—H;ig<(;))> ,

for some Cso > 0. This function is rewritten in the form

_ log®(r) rlog?|7| rlog(p) log 7|
Csor 3/ ex (—HJ exp| ——————|exp| ———F———7 ],
” P\ 210g(e) ) TP\ 210g(e) ) TP\ log(o)

which is integrable with respect to r, for r € [0, p).
The function Z(mq,r) is integrable in R x [0,00) for 7 € R ;5 N D(0,71), m € R and
e € D(0,¢€p). One can apply Fubini’s Theorem to conclude that

(62) 52;1/5(0/\,6(7’% €) i wg1 (1,m,€)) = C/\,f(m7 €) 1t Eg;l/m(wlccll)(Tv m,e),

T€R,;ND(0,7r1), m € Rand e € D(0, ).
By means of (59), (60), (62) and (38) one obtains that (58) is transformed from the appli-
cation of ¢g—Laplace transform of order x along direction d into

L (wd )(T,m, €) 1/k\dp(dp—1)/2
. ¢;1/k\" k1 5 1Ty _ (q ) 4 . J .
Q(Zm (ql/kl)kl(klil)/z N (ql/kl)(dD+kl)(dD+k1fl)/2T DRD(Zm)'Cq;l/m(wkl)(T)m’ 6)
D-1 Ay Z*d)\g< 1/n)d>\ o(dro—1)/2 _dx g —%-&-6@—1
_— iy — T 7% R, pd d

2| X @ emeE e (Ol ) L () (7, )

=1 eIy
(63)

1
+ (ql/kl)kl(kl—l)ﬂwk?(

T, M, €).

We multiply both sides of the equation by 7%2 (g'/k1)k1(k1=1)/2(g1/k2)=k2(ka=1)/2 1 obtain
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rhagd o (wi ) (1, m,€)
. 1/k\"k s 110y )
Q(Y’m) ( ql/éz)k2(2271)/2 = A(kla k?a Ky dD)TdD+k2RD (Zm)[’g;l//@(wg’l)(Tv m, 6)
D—1 A ; Td)‘vqu_ d}i\; +d,—-1 .
+ Z Z €M B(ky, ko, Kk, dy g) (27r)1/2 (Cre(m,€) * Ry ﬁq 1/n<wk1>(7—7 m,e€))
/=1 ely
(64) .
k2
+ (ql/kg)kz(krl)ﬂw@(ﬂm’ €),
h
where (ql/lﬁ)k‘l(k‘l—l)/z(ql/ﬁ)dD(dD—l)/Q
A(kr, k2, 5, dp) = (qt/k2)k2(k2=1)/2(g1/kr Y (dp+k1) [dp+h1—1) /2
and

(ql/kl)kl(kl71)/2(ql/ﬂ)d)\yg(dxygfl)/Q
(ql/kg)kz(kz—l)/2(ql/k1)(dx,z+k‘1)(dx,z+k1*1)/2 ’

forevery 1 </ <D —1and A € I,.
Standard computations allow us to prove that

B(kla k27 R, d)\,ﬁ)

A(kl, ko, K, dD) _ (ql/kQ)*(dD+k2)(dD+k2*l)/2, B(k’l, ko, K, d)\,é) _ (ql/kz)*(d,\,e+k2)(d>\,g+k271)/2'

Taking these values into (64) we observe that

. kQ’Cf]l 1/H(w;§1)(7-’m’ 6) - R . dD+k2£Z 1/n(wlc~cl1)(7—’ m, 6)
Qim (qVk2)kalba—D2 p(im) (qV/%2)(dp+ka)(dp+ha—1)/2
D-1 eAxe—dxerdx otka o 7d’?2£ !
T O'
+ Z )\Z]: 1/k2)(d)\’[‘FkQ)(d)\’[“er*l)/Q (271')1/2 (C)\ f(m 6) * Fe ‘Cq l/n(wk1)(7—7 m, 6))
= cl,
(65)

Th2

+ (q1/k2)k2(k2_1)/2¢k2<

T, m,€).

recovering equation (47). This yields [’Z;l /H(wgl)(ﬂm, €) is a solution of (47), for (r,m,¢€) €
(Ry5ND(0,m1)) x R x D(0, €o).

Let SY be a bounded sector of bisecting direction d such that S% C (Ry5 N D(0,71)) N Sa.
We recall this is always possible from the definition of R e One firstly observes that both,
EZ 1/m(u)/,ﬁ)(v' m, €) and wk (7,m, €) are continuous complex functions defined on S4xRx D(0, €)

and holomorphic with respect to 7 (resp. €) on S5 (resp. D(O €0)). This assertion can be checked
when regarding w,‘j (1,m,€) in Proposition 11, and for Eq 1 /H(w,‘fl)(r,m, €) from the properties

which are endowed by this function from w,Cl (7, m, €) which were pointed out in Proposition 10.

Let € € D(0,¢p) and put 2 = min{«, v}, where v is stated in Lemma 5. We define the aux-
iliary Banach space H g, 1,,0) consisting of all continuous complex functions (7,m) = h(7,m),
defined on Sg X R, holomorphic with respect to T variable in Sg, such that

kolog? | 7|
| (T, m)HH(a,u,@@) : sup (1 + |ml|)te exXp ( 210g(q)

TESé’l,mER

— Qlog\7’|) |h(T,m)| < oc.
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We observe that, for every e € D(0, ¢p), E;l;l/ﬁ(wgl)(ﬂ m, €) belongs to H(g , 1, o) because

sup

d d
‘Eq;l/m(wkl)(Tamae)H < 0.
TERdyglﬁlD(O,Tl)

(B,

This implies the existence of positive constants By (y,), Cr(w,) such that

L2 )7 m, )| < By (1 + [ml) e

ks log? 7]
2log(q)

for all 7 € S%m € R. Also, ng (7,m, €) belongs to H g, 1, 0) in view of (11), and also 9y, (7, m, €)
belongs to H(g , 1, 0) taking into account (39).

We conclude the proof of (57) by demonstrating that the operator #j, defined in (54)
admits a unique fixed point when restricted to the elements in certain closed disc in Hg , 1, 0),

< Cpuny (1 + Iml) e exp ( T Qlog |T|) |

whilst Eg 1 /K(wgl)(’i', m, €) and w,‘fQ (1,m, €) are both fixed points belonging to that closed disc in
Hg s, 0)-

For that purpose, one can state analogous results as Lemma 3, Proposition 4 and Proposi-
tion 5 when considering the Banach space H(g , 1,,0)- This result follows exact arguments as
there, so we omit the details. One can reproduce the same steps as in the proof of Proposition 11
to conclude that, if there exist small enough positive constants g‘% and (yofor 1 << D -1
and A\ € Iy such that (53) holds, then equation (47) admits a unique solution in the space
H g 1uks,0)- Bearing in mind that L'q 1/K(w,‘§1)(r,m, €) and fw,cclz(T,m, €) both solve (47) and be-
long to B(0,w) C H g, k,.0), they both coincide in the domain Sb xR x D(0,€), and the result
follows. O

Corollary 1 Under the hypotheses made on Proposition 12, for every m € R and € € D(0, €),
the function T +— Eq 1/H(w,‘f: (1,m,€)), holomorphic and bounded on the domain R, 5 N D(0,71),
can be analytically prolonged to an infinite sector of bisecting direction d, Sg, and there exists
C'w,C2 > 0 such that

ko 10g2 7]
2log(q)

for every T € Sy. Here, v is obtained in Lemma 5. In addition to that, the extension is
continuous for (m,e) € R x D(0,ey) and holomorphic with respect to € € D(0, €p).

(66) 5511;1/“(10,?1 (1,m,€))| < Cuy, (1 + Im|)"*eAIml exp < +vlog \7’|> ,

5 Analytic solutions of a linear g-difference-differential equation

Let ki, ko, D be positive integers such that k1 < ko and D > 3. Let x > 0 be defined by (23).
Let ¢ € R with ¢ > 1 and assume that for every 1 < ¢ < D — 1, I; is a finite nonempty subset
of nonnegative integers.

Let dp > 1 be an integer. For every 1 < ¢ < D — 1, we consider an integer d, > 1. In
addition, for each A € Iy, we choose integers dy, > 1, Ay, > 0. We make the assumption that

(67) 0p=1, 6p<dpy1

forevery 1 < ¢ <D — 1.
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We assume that

d)Hg dp —1

(68) Ay > dyy, +12> 4, +1>4
2 2
for every 1 </ < D —1and all A € I;. Let Q, Ry € C[X] with
(69) deg(Q) = deg(Rp) > deg(Ry), Q(im) #0, Rp(im) # 0,

forall1</<D—1and meR.
We require the existence of an unbounded sector

Sq.rp = {2 € C: |z| > rqrp, | arg(2) — d@.rp| < NMQ.Rp}
for some 7¢ r,,N0,rR, > 0, such that

Q(im)

i Rp(im)

S SQ,RD, m € R.

Definition 6 Let ¢ > 2 be an integer. Let £, be an open sector with vertex at the origin and
radius €y for every 0 < p < ¢ —1 and such that £ NE; # O for every 0 < j,k < ¢ —1 if and
only if |j — k| < 1 (under the notation & := &y) and such that U;;(I)E'p = U\ {0}, for some
neighborhood of the origin, U. A family (Ep)o<p<c—1 Satisfying these properties is known as a
good covering in C*.

Definition 7 Let (£,)o<p<c—1 be a good covering in C*. Let T be an open bounded sector with
vertex at 0 and radius r7 > 0. We make the assumption that

(71) 0 < egyrr <1, v+

kQ R 1_ k
log(r7) <0, a+——Ilog(egry) <0, eorm < q(z v)/kz o
log(q) (rr) log(q) (&orr) /
for v constructed in Lemma 5.
We consider a family of unbounded sectors Uy, with bisecting direction 0, € R and a family
of open domains Rgp = Rap 5N D(0,eorr), where

i

€
R%S:{TEC*:’l—F 7

r

> 6, for every r > 0} .

We assume d,, 0 < p < ¢ —1, are chosen so that some conditions are satisfied. On order to
enumerate them, we denote qo(m) the roots of the polynomial Pp,(7), defined in (49). We take
an unbounded sector with vertex at 0 and bisecting direction 0y, Sp,, 0 < p < ¢ —1; and we
choose p > 0 such that:

1) There exists My > 0 such that (50) holds for allm € R, 7 € Sy, UD(0, p), all0 <p <¢—1
and all0 <[ <dp —1.

2) There exists My > 0 and lp € {0,...,dp — 1} such that (51) holds for every m € R,
T € S5, UD(0,p), and all 0 < p < ¢ — 1.

3) For every 0 < p < ¢ — 1 we have Rgp ﬂRng # 0, and for allt € T and € € &y, we have
that et € Rgp. Here we have put Rgg = Rgo.
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The family {(Rap 5)o<p<c—1, D(0,p), T} is said to be associated to the good covering (Ep)o<p<c—1-

We consider a good covering (€,)o<p<c—1 and a family {(Rap 5)0<p<c—1, D(0, p), T} associated
to it. For every 0 < p < ¢ — 1 we study the next g—difference-differential equation

d
QO-)ogu (1, 2,€) = () Rp(@.)u (1, 2, ¢)
D-1
(72) + Ztdkv‘eAMagéckg(z,e)Rg(az)uD”(t,z,e) + 02 (t, 2, €).
=1 \\el,

The operator o, acts on variable ¢. The coeflicients ¢y ¢(z,€) with 1 << D —1and A € I,
and the forcing term f°(t, z, €) are constructed as follows. For every 1 </ < D —1and A € I,
and every integer n > 0, we consider the functions m +— C) ¢(m, €) and m +— F,(m, €) belonging
to the space Eg ), for some 3 > 0 and u > deg(Rp)+ 1. We assume all these functions depend
holomorphically on € € D(0, €y). Moreover, we assume there exist C~'>\,g, Cr > 0 such that (26)
and (27) hold for all 1 <4< D —1, A€ Iy, n >0 and € € D(0, ¢g).Then, we put

(73) exe(z,€) = FH(m e Cxe(m, €)(2),
which, for every 1 < /¢ < D—1, X € I, defines a bounded holomorphic function on Hg x D(0, €)

for any 0 < 8’ < . We assume the formal power series

n

-
Vi, (T,m, €) = EFme n(n7)7
1/k1)

n>0

which is convergent on the disc D(0, p), can be analytically continued with respect to 7 as a
function 7 ¢Z’1’ (7,m,€) on an infinite sector Uy, of bisecting direction 9, and 1&2’1’ (1,m,€) €
EXp?Zl,B,ﬂ,a,p) for some a > 0, and such that there exists C¢k1 > 0 with

(74) vz (rm, e <y,

(kl ,B,M,Ol,p)

which does not depend on € € D(0, ¢p). Lemma 5 guarantees the function

@Z}ZZ (7_7 m, 6) - ‘Czpl/,{

(h = Wy (hym, €))(7)

is an element of the space Exp?l’;2 i)’ for some v € R.
Moreover, we get a constant kaz > 0 with

(75) |etm.o)| < Gy

(/f2757lh'/)

for every e € D(0,e0). Without loss of generality, one can reduce the opening of sector Sy,

so that it might be considered the corresponding one involved in the definition of the space

Exp?” ) In view of the proof of Lemma 5, the constant ¢y, depends on (y, in such a way
2 1

k215),“‘)l/
that Cy,, (C¢k1) — 0 when ¢y, tends to 0. One can apply g—Laplace transform of order ks to

the function 1/},2’2’ in 7 variable and, in direction 9, and obtain that the function

(76) F(T,my€) i= L) (7= 40 (r,m, )(T),
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is a holomorphic function with respect to T" variable in the set Rap ;N D(0,r1) for any 0 < r; <
q(%fy)/kQ/Q_
We define the forcing term f°(t, z, €) by

(77) o (t, z,€) = F ! (m > F (et,m, 6)) (2),

which turns out to be a bounded holomorphic function defined on 7 x Hg x &, provided that
(71) holds.

The next results provide estimates of the difference of two consecutive solutions of the equa-
tion (72) with respect to the perturbation parameter. They can be of two different nature
depending on the existence or not of singularities of some auxiliary equation in between the
integration lines where the solutions of (72) are constructed. This phenomena, studied in the
sequel, turns out to be the reason for different levels to appear on the asymptotic behavior of
the solution with respect to the perturbation parameter.

We first describe the procedure to solve equation (72), and the nature of its solution, crucial
in the asymptotic behavior to be described afterwards.

Theorem 1 Under the construction made at the beginning of Section 5, assume that the con-
ditions (67), (68), (69) and (70) hold. Let (£,)o<p<c—1 be a good covering in C*, for which a
family {(RDP,S)OSPS—D D(0,p), T} associated to this covering is considered.
Then, there exist large enough rQ r,,, and constants Cy >0 and (x>0 for 0 <L <D —1
and \ € Iy such that if } 3
Cr <y, Cre <Oy,

then, for every 0 < p < ¢ — 1, one can construct a solution u®®(t,z,€) of (72), which defines a
holomorphic function on T x Hg x &, for every 0 < ' < B.

Proof Let 0 < p < ¢ —1 and consider the equation
D11
Q(im)o U (T, m,e) = T%¢,? " Rp(im)U (T, m,¢)
D-1 1 50
T | L TN T S / Cielm — ma, €) Re(imy)U (¢ T, my, €)dmy
=1 \ el —oo
(78) + 0 F% (T, m,€).

Under an appropriate choice of the constants ¢y and (3¢ for all 0 < £ < D —1 and X € I,
one can follow the constructions in Section 4 and the properties of ¢g—Laplace transformation
described in Proposition 7 in order to apply Proposition 11 and obtain a solution U° (T, m, €)
of (78). This function can be written as the g—Laplace transform of order ks in the form

1 wzz (U, m7 6) dU
T

u
Tai/ks JL,, Oy (T) u

(79) U (T,m,e) =

where L., = RyeV~1w C S»,U{0} is a halfline with direction depending on T'. Here, wzz (T,m,€)
defines a continuous function on (Rgp U Sy,) x R x D(0,€p), which is holomorphic with respect
to (1,€) in (Rgp U Sp,) x D(0,€) for every m € R. Moreover, it satisfies there exists C o, > 0

k2
such that

1 _ ko log? | 7|
80 % (1 m,€)| < C op— e Bimlg (+ 1o :
( ) |wk2 (T m 6)’ — wz;’ (1 + ‘m|)/"€ Xp 210g(q) vliog ’T|
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for some v € R. This is valid for 7 € Rgp U S;,, m € R and € € D(0,¢). Taking into account

Proposition 12, the function wzz (1,m, €) is the analytic continuation with respect to 7 variable
of the function given by

0
1 w,” (u, m, €) d
(81) T / kl( u );u,’
ﬂ—ql/n L 1 @ql/n (T) u

where L1 = ]R+e‘/_717?} C Sy, U {0} is a halfline with direction depending on 7, and analytic in
the set R, 50 D(0,71), for 0 < < q(%*a)/”/z for some o € R. The function wZ’l’(T,m, €) is a

continuous function defined on (D(0, p) U Up,) x R x D(0, €9) and holomorphic with respect to
(1,€) on (D(0,p) Ul,,) x D(0,€p) for every m € R. In addition to that, one has

0 1 Blm H10g2’7—+6|
(82) lw,? (T,m, €)] < Capme exp(mg(q)—i-alogh—i-ﬂ )

for some C o,,0 > 0, valid for every 7 € (D(0,p) Uls,), m € R and € € D(0,¢€p). Indeed, wZ’l’

k
is the extensiz)n of a function wy, (7, m, €), common for every 0 < p < ¢ — 1, which is continuous
on D(0,p) x R x D(0,¢) and holomorphic with respect to (7,¢) on D(0, p) x D(0, ).
The bounds attained in (80) with respect to m variable are transmitted to the function
U (T, m,€) described in (79). This guarantees one can define F~(m +— U (T, m,¢))(z) in
such a way that the function

u’r (t, z,€) :=F L (m s U (et,m, e )(z)

ume)du

83
(83) 1/27T1/k2/ L, 61/k2 % u

— exp(izm)dm,

defines a bounded holomorphic function on 7 x Hg x &y, in view of 3) in Definition 7.
The properties held by inverse Fourier transform, described in Proposition 8, allow us to
conclude that u® (¢, z, €) is a solution of the equation (72) defined on T x Hg X &,. O

Proposition 13 Let 0 < p < ¢ — 1. Under the hypotheses of Theorem 1, assume that the
unbounded sectors Uy, and Uy, , are wide enough so that Uy, N U, , contains the sector
= {7 € C* : arg(7) € [0p,0p+1]}. Then, there exist K1 >0 and Ko € R such that

UDP’aerl
ko
uPP L (t, 2 €) — uP(t, 2, € <Klexp<— log2e> e|%2,
W2 (5,7, €) — (1,7, )| oy o2l ) I
ko
84 forti(t, z,€) — fO7(t, 2,€)| < K exp (— log? e) ez,
(84 78,2, €) — (8,2, ) i 2%l I

for everyt € T, z€ Hp, and e € E, N Epy1.

Proof Let 0 < p < ¢ — 1. Taking into account that Uy,

construction of the functions U% and U%+! that L'a”l/n(w?l’)(r m, €) and Eqpfr/lﬁ(wap“)(r,m, €)

coincide in the domain (Rap ORDPH) xR x D(0, ). This entails the existence of wk’;’ap“ (1,m,e€),

i © Us, NUs,,,, we observe from the
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holomorphic with respect to 7 on Rg URg i1 continuous with respect to m € R and holomorphic

with respect to € in D(0, €g) which coincides with .Cq 1/H(wZi')(T, m,€) on Rgp x R x D(0, €p) and
»

also with £74! (w)] ") (1,mye) on RY L x R x D(0, ).

¢;1/k
Let p, be such that py, o, €77 C Rgp and py, 0, €77+ C Rgpﬂ. The function

7Dp+1

wpy ™ (uym, )

@q1/k2 (%)

is holomorphic on Ra URS L., forall (m, €) € Rx(E,NEp11) and its integral along the closed path
constructed by concatenatlon of the segment starting at the origin and with ending point fixed
at po,0,., €77, the arc of circle with radius py,,,, connecting py, o, €% with py, o €77+t C
Rgp .,» and the segment from py,5,,,e"7*™* to 0, vanishes. The difference u®»+1 — 4% can be
written in the form

U —

u®Pt(t, 2, €) — u®P (L, 2, €)

wZZH(U m, €) . du
= 1/2 o exp(izm)—dm,
( Mgl /k2 00 S Ly, 1, PP dp 11 q'/k2 (et) u
1 1 / / wk, P (u,m,€) (i )dud
-y —2———— exp(izm)—dm
(27‘()1/2 Tgi/ka J— LvaPap,ap_H @ql/k2 (%) U
(85)
LS S wp ™ (wmye) o du
+ 1/2/ / 2 exp(izm)—dm,
O s S S, o Oa (3) u
where L = [po,,, +00)e"i for j € {p,p+ 1} and Coopooy i1 pss 18 the arc of circle

g 7p0p,ap+1

connecting py, ,,, €% With py, o, ., €771 (see Figure 1).

Figure 1: Deformation of the path of integration, first case.

Let us put

w," M (u, m, € d
L= 72 / / Wiy - )exp(izm)—udm .
(2m / Tgt/ka L Ok, (%) u

Tp+1:P0p,0p1 1 q
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In view of (80) and (17), one has

C o

I < 11}192 ‘6t|1/2 /Oo e~ BIml—m3(2) dm
B Cq’k25(271')1/2 Tgt/k2 J —co (1 + |m’)ﬂ
2 ( Jul
[e'e) ko 1 2 . ]{7210g (?)
(86) x/ (M—i—l/log\uo lu|=3/2 exp _Z 4 d|ul.
Pop.oy 11 2log(q) 21og(q)

We recall that we have restricted the domain on the variable z such that |3(z)| < 8’ < 8. Then,
the first integral in the previous expression in convergent, and one derives

9 2 (|ul

I < CwZ§+1 (607"7‘)1/2 & ko 10g2|u| k2 log (|et|) v—3/2

P exp (P28 WY oy (2 AL gy
@YV wam 2log(q) og(q)

°p:%p+1

for some C' »,,, > 0. We derive
w
ka

2 ( ]yl
k2 log? M) k2 log <|€t\) ( ko 2 2 )
Pl S0 )Pl T 900y | T —1log? le| — 21og |e|log |t| — log? |t
p( 2log(q) P 21log(q) b 210g(q)( g” el g |e[log || g” [t])

k
X exp (k)gzq) (log |u| log |€| 4 log |u|log t)) .

From the assumption that 0 < ey <1 and 0 < rr < 1, we get
(87)

k __ky k _ky
exp | — 2 log el log |t] ) < |e[ P *B0T) exp [ 2 log |u|log]e| ) < |¢[etm B Pmops)
log(q) log(q)

fort €T, ec&NE, [ul > po,,

3,41, and also

exp k2 log |ullog|t| ) < \t\lq’éﬁlog(%’%ﬂ) if po,o,., <Jul <1
log(q) - P i =
k _ky
(88) exp (oo oglultog ) < uf ™07, it ju] > 1,

for t € T. In addition to that, there exists Kz ,papa,.,.0 > 0 such that

L]Og(pb o)
(89) sup x los(@) Pt exp | —
x>0

2 2
1 <K, .
210g(q) og (l‘)) = kQaPDp,Derlaq

_ In view of (87), (88), (89), and bearing in mind that (71) holds, we deduce there exist
K' ¢ R, K? > 0 such that

k2 log” [ul k2 log? (%> 2 k2 2 K!
pl—=—"—exp| ———F—% | [u]Y < K exp <— log e) el™,
(il ) 2logle) ) 2og(q) % ) 1

fort € T, r > po, 0,41, and € € &, N Epy1. Provided this last inequality, we arrive at
K2 Cw0p+1

(‘507“7’)1/2 e d|’LL‘ ko ol
I P2 / ex (— log? e> el X
LT Ot T, a2 P\ " 2log(q) ® el ) lel

op:Pp+1

~ ko 1
90 = K3exp <— log? e> X,
(90) oy ozl ) I

IA




for some K3 >0, forallt € T, z € Hg,and e € £, N Epya.
We can estimate in the same manner the expression

u,m, €
Iy = 1/2 / / ( ) exp(izm)d—udm .
ﬂ- l/kQ Ly, PPyt 9 qt/k2 (et) u

to arrive at the existence of K4 > 0 such that

~ ko 71
91 I, < K*exp (— log? e> el
(o1) 2 oy 081 ) Ie

forallt € T, z€ Hg, and € € £ N Ep1. We now provide upper bounds for the quantity

I3 := SN /OO/ wz;”ap“( ™, ) exp(izm)@dm
S e ) O (%) s

Cpap,ap+1 YP sy Yp+1 et

The estimates in (80) and (17) allow us to obtain the existence of CE};ZP 1 > 0 such that

)

33

Cgi,apﬂ 1 1/2 0 p—Blm|-mS(2) ko log
I3 < ——2 = / ——————dm| =] exp | -
@)1 7, Cq,@(;pw e @y

forallt € T, z € Hg, and € € £,N Ey41. We can follow analogous arguments as in the previous

steps to provide upper estimates of the expression

Falog? (2525 )

t1/2 exp | —
d 21og(q)
Indeed,
Popo
1/2 ko log” (Tfﬁ“) B k2 10g? (po,0,.1) F2l080opoy ) R2 10800,y
82 exp | = exp | — o L] ) (| T g
2log(q) 21og(q)

X exp <21:g2(q)(—10g2 le| — 21og || log |¢| — log? yt|)) It1/2

From the assumption 0 < ¢y < 1 we check that

k L H SO
exp | ————log |e|log |t] | < |e] Tog 12y 108 ( 7).
log(q)

fort € T, e € & NEypy1. Gathering (89), we get the existence of K% e R, K% > 0 such that

kQ 10g2 (pOPDerl) . I )
Y2 exp | - ) < R (g2 toe? )

2log(q) 21log(q)

to conclude that

~ ko o5
92 I3 < K exp (— log? e) el X7,
(92) 3 STocig) 271 ) e
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for some K7 >0, allte T, z€ H g, and € € €, N Ey11. We conclude the proof of this result in
view of (90), (91), (92) and the decomposition (85).

in order to obtain analogous estimates for the forcing term f°, one can follow analogous
estimates as for u% under the consideration of the estimates in (75). O

We now state the second situation one can find when estimating the difference of two con-
secutive solutions. For these purpose, we enunciate the next

Lemma 6 Let 0 < p < ¢—1. Under the hypotheses of Theorem 1, assume that Uy, NUs,, = 0.
Then, there exist Kpﬁ > 0, MpL € R such that
(93)

—Blm — K £
L) m0) = €3 ) o, ] < e Pl e (= tog? ] ) 114

for every e € (E,NEpy1), T € (Rgp N Rgp+1) and m € R.

Proof We first recall that, without loss of generality, the intersection RD ﬂRa 4, can be assumed

to be a nonempty set because one can vary § in advance to be as close to 0 as desired.
Analogous arguments as in the beginning of the proof of Proposition 13 allow us to write

Lo (W) (rom,€) = £, (i) (rm, €)

in the form

1 / wZ’f“(u,m,e)dfu
_ﬂ-ql/” Loyt 1P,y 11 6111/'£ (%) w’
1 / wZ’;(u,m,e)dﬁ
gt/ Lop.pop,ops1 @ql/N (%) u
o T mman
Tqt/n Cropop i1 M p1 @ql/“ (?) u

and C

Dop.o, i1 pp+1 L€ constructed in Proposition 13.
D 2 ’

where pr,aerl, L’vapbp,aerl ’ L'Yp+1»PDp,Dp+1
In view of (82) and (17), one has

If =

1 / w]ag]; (’LL, m, E) dj
L

u
Tqt/m WPoPOD Oyt eql/n (T) u

log? |re? P 44| i
R o~ Biml /OO o <W +aloglre™ +4]) g,
) )

= Cgd (L Im)r > L ri/?

o0 exp(” L T+ozlogr)
< Kz§,1|7|1/2(1+ ‘m|)_“e_5|m|/ 2Tog(q) dr

3/2
Pop 0pt1 exp ( log? (( ))) "
2 log(q
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for some Kzfl > 0. Usual calculations, and taking into account the choice of o in (71) one
derives the previous expression equals

o0 K log | 7| -
K5 7M1 + jm|) e =PIml exp <_ log? |T> / e a3/,

Pop,dpt1

K
21og(q)

which yields

95 £ < K£ (1 ~e—hBlm| " 10e?
( ) 1 = p,2( +|m’) e exp 210g(q) 0g ’T‘ )

for some KﬁQ > 0 Analogous arguments allow us to obtain the existence of K;é:,s > 0 such that

1 wzp“ (u, m, €) du c | K 9
(96) / — | S K51+ |m|)~He PlMl exp ~37 log” |7] ) .
Tqt/n Loy t1:p0p,0, 11 @ql/“ (?) u 0g(9)
We write
£ 1 / Wi, (u, m, €) du
2 = —_— | .
ﬂ-ql/K Cpap,ap+1 VP> Vp41 @ql/"i (%) u

Regarding (82) and (17), one derives that

rlog? |pop,0,,,q €0+ 0
[, szp e—BIm| |7 [1/2 rpi1 © < 5Toa() + alog|po,,., € + 6
ja— /
2

T e (L lmle )12 o 5 N G
EXP\ 27 logle)

0p,0p41
2 [ Popdpt1
e—BIml| x log ( 7]

—————— exp
(1 + |ml[)r 2 log(q)

do

with

C p 2

w 1 #1og*(po, 0,1 1 0)
K£ — o k1 p0p+1

p,4 |’Yp+1 ’Yp| 1/2 Cq7n~ Xp ( QIOg(q)

+a log(pbp,0p+1 + 5)) :
7Tq1/n p
Dprop-!—l

Let Kpﬁ’5 = K]f4 exp(—ﬁ';(q) log2(p0p70p+1)). It is straight to check that

rloglpop0,41)  o—BIm| r log? |7
97 Iﬁ < Kﬁ 1/2+W7 Y .
(97) 2 < KyslT] @+ [ml)* P\ 2 Tog(g)

From (95), (96) and (97), put into (94), we conclude the result. O

Proposition 14 Let 0 < p < ¢ — 1. Under the hypotheses of Theorem 1, assume that Uy, N
Usyry = (. Then, there exist K3 >0 and K4 € R such that

kl
? ? 2 K
u'PtL(t, z, € u'?(t, z,€)| < Kgexp (— log e> €74,

kq
98 O+1(t 2 €) — fOP(t, 2, €)| < K3ex <— log? e> e| K,
(98) £ 206) = 12(122) < Kyexp (g 1og? e ) |

foreveryt €T, z€ Hg, and e € E,NEpy1.
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Proof Let 0 < p < ¢—1. Under the assumptions of the enunciate, one can not proceed as in the
proof of Proposition 13 for there does not exist a common function for both p and p+ 1, defined
in Rgp U Rgp L, in the variable of integration, when applying g-Laplace transform. However, one
can use the analytic continuation property (81) and write the difference u®+! — u° as follows.
Let po,0,., be such that py,o,,, ¢ € R and po,o,,, €77 € Ry |, and let 6,11 € R be
such that py, o, ., e%2+1 lies in both Rg and RY i1 We write

u®P L (t, 2, €) — u®P (L, 2, €)

/ / AR LD YA
— xp(izm)—dm
(27 1/2 Mgt /ks Ly t1:00p,0, 11 © g'/* (Et) ! |
p(u,m,e) du
— k22 2 explizm) —dm
(2 1/2 Ty1/ky / /va P © 1/, ) u
1 1 /OO / QUZ?DPJA (U, m, 6) ( )d'LLd
- - exp(izm)—dm
(27T)1/2 Trql/k2 —o© Cp“paDerl’gP,val”Verl ®q1/k2 (%) “
+ 11/00 / w " (wm9) (2m) 2 dm
(27‘()1/2 Tgl/ky J—o0 JC o © q'/k2 (7) P u
Pop,0p41 9P, p+17pP €t
(99)
v 0 0
1 1 00 ,qu)fr/lﬁ (’wkiﬂrl)(T, m, 6) ﬁqpl/,{(wkf)('ra m, 6) X dud
BT 5 exp(zzm); m.
( Tgt/k2 Lo’pap!ap-&-l’ep,p-&-l g'/k2 (R)

Here, we have denoted Ly, p,,, | = [Pa,0,, +00)e™ for j € {p,p+1}, Cooproy i1 bpps1iprn 1S the

arc of circle connecting py, o,,, €77+ with py, o, +le“9ﬂvp+1, C is the arc of circle

Popdpta 70p,p+1 s Tp

connecting py, e with po, e Opp+1 = [0, po, 0, L, Jetlrr+1 ] as it is shown

in Figure 2.

? Lovpbp,ap_,_l 7917’17'5’1

0p+1 0p+1

Figure 2: Deformation of the path of integration, second case.

Following the same line of arguments as those in the proof of Proposition 13, we can guarantee
the existence of K7 > 0 and K¥ e R for 1 < j <4 and 5 < k < 8 such that
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R w (wme) o du
Jy = 1/2/ / —2 " exp(izm)—dm
(27T> Tql/ka J— L'Yp+1‘papvap+1 qu/kQ (5) !

2 k2 2 K5
<K — 1
< Krexp (52102 ) 1

0
1 1 oo w,r (u, m, € d
Jy 1= 1/2/ / Mem(izm)jdm
(271’) 7Tq1/k2 —00 L'yp,Pap,Dp+ © qt/k2 (et) u

N k o
< Kaexp (572 10g? ) 1

11 [ wr ™ (umye)  du
Js = EYRT Y P ” exp(izm)—dm
(271—) Tg/kz J—o0 C”apvap+1"9p,p+177p+l @ql/kQ (5) Y

A k o
< Kaexp (52102 ) 1

1 1 ™ w T (wymye)  du
Jy = 1/2/ / 2 - exp(izm)—dm
(271—) Tg!/k2 J =00 Cp%vaerl’Gp,erMp @ql/kQ (5) Y
~ kQ 2 f(S
(100) < Kyexp (— log |6|> €]
2log(q)
We now give estimates for
(101)
0 0 0
B 1 1 00 quﬂlﬁ(wkzlvﬂ)(u, m,e) — Eqpl/n(wkf)(u’ m,e) . dud
Js 1= Ty —— o @ exp(izm) —dm).
k2 Lo,pap’ap+1,9p,p+1 qt/k2 et

In view of Lemma 6 and (17), one has

Js <

L / A . oty exp (g log? ful) [ C|l| ||
m)YV2 7k, ) 14 |m|)* ko log?| 2 1/2 |u
7 * Cq7k2 6 exp 72 loglq) ’ | % |

We recall that z € Hg for some ' < . Then, there exists K3; > 0 such that

KEK31 e 1723/ 1/2 /pap o1 exp( TTog(q )log |u|> |u| M7 d|ul
5

< .
o= 12 o2 372
exXp | 2 log(Q)

(271')1/2 71'(11/k2 q.k2

We now proceed to prove the expression

/papv°p+1 exXp ( 210g(q) log ”U,‘) o < ]{31 10g2 | |> d|u|
Xp €l | ——7%
0 22| 2log(q) |u|3/2~ M5
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is upper bounded by a positive constant times a certain power of |e| for every € € (£, N Epr1)
and t € 7. This concludes the existence of K39 > 0 such that

k1
102 Js < K 61/2€Xp<— 1026>,
(102) 5 < Kaole| 2Toe(g) % €]

for every e € (§,NEpt1), t € T and z € Hgr.
Indeed, we have

exp og’le| | ————+
0 o 1022 (15) 2log(q) |u)3/2~ M5
XD\ 3 Toglg)

equals

103

( % oo el — 2 2|t|> /p ( (5t ka) o2, |>| e 3 M gy

exp og” €| — og” |e exp | ———log” |u| | |u| lesla Uu|.
21log(q) 2log(q) 0 2log(q)

Given m; € R and mg > 0, the function [0,00) > z — H(x) = 2™ exp(—mslog®(z)) attains
2

its maximum value at zo = exp(g;-) with H(z) = exp(%). This yields and upper bound for

the integrand in (103); the expression in (103) is estimated from above by

(Mg —3/2)*log(q) 1 k2 ) k2 E —3/2)
Pop0p41 eXp( - exp 210g(q)( — kg + ki) log” |e| | e[ ~FF2

Q(E—i—kg) K+ ko
1 k% ) kg(Mpﬁ—s/z)
— ko)l tl ) |t]  etE
<o (G (2~ Rlog? )
(104)
1 k3
—=— — ko)l log|t| ] .
o9 (o (2 — R ol o]

2
The second line in (104) is upper bounded for every ¢ because %ka < ko and also, one has an
upper bound for the third line in (104) is 1. Regarding (71), and taking into account that

k3
— ko =—k
it Eo 2 15
the expression (104) is upper bounded by
ko(ME —3/2)

K33 | €| rk+ko

for some K33 > 0. The conclusion is achieved.
The result follows from (99), (100) and (102).
The proof for the estimates of f° is analogous as that for u°». In this case, one has to take
into account (74), (75) and (77) to apply the same arguments as above.
O

Example: Let A > 0. An example of problem under study in this work is given by the
equation

0.(8, +iA)u(qt, z,€) = (et)0.u(q®t, 2, €) + tecy 1 (2, €)ulqgt, z, €)
+ t2630172(2, €)0.u(q*t, z,€) + flqt, z,€),
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with ¢1,1,c12 and f constructed following the procedure described at the beginning of Sec-
tion 5.

Here, D =3, Ry = 1, Ry = R3(v) = x and Q(z) = (z +i4)?R3(x). Every condition on the
constants are satisfied. Also, we observe that one can choose large enough A > 0 in order to
choose large enough rg ., > 0, with the only forbidden direction given by the negative real ray.

6 Existence of formal series solutions in the complex parameter
and asymptotic expansion in two levels

In the first part of this section, we develop a two-level g-analog of Ramis-Sibuya theorem. This
result provides the tool to guarantee the existence of a formal power series in the perturbation
parameter which formally solves the main problem and such that it asymptotically represents
the analytic solution of that equation.

This asymptotic representation is held in the sense of 1—asymptotic expansions of certain
positive order.

Definition 8 Let V' be a bounded open sector with vertex at 0 in C. Let (F,|-||p) be a complex
Banach space. Let g € R with ¢ > 1 and let k be a positive integer. We say that a holomorphic
function f :V — T admits the formal power series f(e) = >0 fn€" € Flle]] as its g—Gevrey
asymptotic expansion of order 1/k if for every open subsector U with (U \ {0}) C V, there exist
A,C > 0 such that

for every e € U, and N > 0.

N(N+1)
< CAN—Hq oL |6‘N+1,

N
F©) =) fne"
n=0

F

The set of functions which admit null g-Gevrey asymptotic expansion of certain positive
order are characterized as follows. The proof of this result, already stated in [10], provides the
g—analog of Theorem XI-3-2 in [4].

Lemma 7 A holomorphic function f : V — F admits the null formal power series 0 € F[[¢]] as

its q— Gevrey asymptotic expansion of order 1/k if and only if for every open subsector U with
(U\{0}) CV there exist constants K1 € R and Ko > 0 with

log? |e|) 1,

k
I < Koewp (570

foralle e U.
We recall the one-level version of the g—analog of Ramis-Sibuya theorem proved in [10].

Theorem 2 (q—RS) Let (F,||-||z) be a Banach space and (E)o<p<c—1 be a good covering in C*.
For every 0 < p <¢—1, let Gp(€) be a holomorphic function from &, into F and let the cocycle
Ap(€) = Gpy1(€) — Gp(e) be a holomorphic function from Z, = E,NEpy1 into F (we put & = &
and G. = Gy). We also make the further assumptions:

1) The functions Gp(€) are bounded as € tends to 0 on &, for every 0 < p <¢—1.
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2) For all 0 < p < ¢ —1, the function Ap(e) is g—exponentially flat of order k on Z,, i.e.
there exist constants C’; € R and Cg > 0 such that

k
A < C2|e|% exp ( - log?
1Ap(e)lle < Cylel™ exp { —530 s log”lel )

for everyee€ Z,, all0 <p <¢—1.

Then, there exists a formal power series G(€) € F|[e]] which is the common q— Gevrey asymptotic
expansion of order 1/k of the functions Gp(e) on &y, which is common for all 0 <p < ¢ —1.

The next result leans on the one level version of the g—analog of Ramis Sibuya theorem,
and states a two level result in this framework. It is straight to generalize this result to a higher
number of levels, but for practical purposes, we develop it just in two.

Theorem 3 Let (F,|-||p) be a Banach space and (E,)o<p<c—1 be a good covering in C*. Let
0 < k1 < kg, consider a holomorphic function G, : & — F for every 0 < p < ¢ —1 and put
Ap(€) = Gpti1(€) — Gple) for every e € Zy := Ey N Epy1. Moreover, we assume:

1) The functions Gp(€) are bounded as € tends to 0 on &, for every 0 < p <¢—1.

2) There exist nonempty sets Iy, Io C {0,1,...,¢ — 1} such that Iy U Iy = {0,1,...,¢ — 1} and
L NIy = 0. Also,

- for every p € I; there exist constants K1 > 0, M; € R such that

1A lp < Kl exp (— log? |e\) cez,

1
2log(q)

- and, for every p € Iy there exist constants Ko > 0, My € R such that

ko
Ay(e <K26M2exp<— 10g26>, € € Zy.
I185(6) < Kole i 1oE? I s

Then, there exists a convergent power series a(e) € F{e} defined on some neighborhood of the
origin and G*(€), G*(¢) € F[[€]] such that G, can be written in the form

Gp(e) = ale) + G}?(e) + Gz(e).

Gzl,(e) is holomorphic on &, and admits G’l(e) as its q— Gevrey asymptotz;c expansion of order
1/k1 on &y, for every p € Ir; whilst Gf,(e) is holomorphic on &, and admits G*(€) as its g— Gevrey
asymptotic expansion of order 1/ky on &,, for every p € Is.

Proof For every 0 < i < ¢, we define the functions Ag(e) € O(%;) for j =1,2, by

: Aq(e) ifiel;
J _ 1 J
Ai(e)_{ 0  ifie{0,1,....c—1}\

for € € Z;.

As an introductory lemma, we provide the following result without proof which can be found
in Lemma 8 of [10], and it rests on the arguments of Lemma XI-2-6 from [4].
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Lemma 8 Under the assumptions of Theorem 2, for every 0 < i < ¢ —1 and j = 1,2, there
exist bounded holomorphic functions ¥} : & — C such that

A{(e) = ‘I'g+1(€) - \I’g(e)v

or every € € 4; g €) = 4 €)). oreover, there exis m c I, for every m > 0, suc a

Z; (V! ) M th tom €F >0 h that
or every S1TsS 46— ana any ciosea proper sSuosector - , Wi veriexr a y ere exis
f 0<i<c¢—1and losed bsector W C &,, with vertex at 0, th st
Ky, My, > 0 with

R R (M+1)M
< Kp(M,)M T g 7N,

F

M
V()= > o™
m=0

for every e e W, and M > 0.

We now consider the bounded holomorphic functions a;(€) = Gi(e) — l(e) — U3 (¢), for all
0<i<¢—1,and e € &. By definition, for j = 1,2 and ¢ € I; we have

ai41(6) — ai(€) = Giga(€) — AL(€) = AX(€) = Gipa(e) — Gi(e) — Ay(e) = 0,

for € € Z;. Therefore, each a;(€) is the restriction on &; of a holomorphic function a(e), defined
on a neighborhood of the origin but zero. Indeed, a(e) is bounded on Up<i<c—1&; so the origin
turns out to be a removable singularity and, as a consequence, a(¢) defines a convergent power
series on the neighborhood of the origin (Up<i<c—1&;) U {0}.

One can finish the proof by rewriting

Gi(e) = a(e) + i (e) + ¥{(e),
and bearing in mind Lemma 8. O

We conclude this section with the main result in the work in which we guarantee the existence
of a formal solution of the main problem (72), written as a formal power series in the pertur-
bation parameter, with coefficients in an appropriate Banach space, say u(t, z,€). Moreover, it
represents, in some sense to be precised, each solution u°? (¢, z, €) of the problem (72).

This result is based on the existence of a common formal power series f (t, z,€) which is the
q—Gevrey asymptotic expansion of order 1/kq, seen as a formal power series in the perturbation
parameter € with coefficients in a certain Banach space, of every f° on &,.

From now on, F stands for the Banach space of bounded holomorphic functions defined on
T x Hg, with the supremum norm,where 3’ < j3, as above.

Lemma 9 Under the hypotheses on Theorem 1, there exists a formal power series

A

flt,z,0)=>" fm(t7z)%m!,

m>0

with i (t,z) € F for m > 0, which is the common q— Gevrey asymptotic expansion of order 1/k;
on &, of the functions f°, seen as holomorphic functions from &, to F, for all0 <p < ¢ —1.

Proof Let 0 < p < ¢ — 1. We consider the function f° constructed in (77), and define
G{;(e) = (t,z) — f°(t,z,€), which is a holomorphic and bounded function from &, into F.
Regarding (84) and (98), and taking into account that k1 < kg, we have that (98) holds for
every 0 < p < ¢—1. This yields the cocycle A£(e) = G]J;H(e) — G{;(e) satisfies the conditions of
Theorem 2 for k = k1, and one concludes the result by the application of Theorem 2. O
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Theorem 4 Under the hypotheses of Theorem 1, there exists a formal power series

i(t,z,€) = D h( tz e F[[€]],

m>0
formal solution of the equation
@+1
Q(0:)oqu(t, z,€) = (a‘)dDaqu Rp(0,)u(t, z,€)
D-1
(105) + [ DD theentolien (=€) Re(02 )it 2 €) | + ogf(t, 2 €).
=1 \\el,

Moreover, u(t, z,€) turns out to be the common q— Gevrey asymptotic expansion of order 1/k;
on &, of the function u®, seen as holomorphic function from &, into F, for 0 <p <¢—1. In
addition to that, u is of the form

ﬂ(ta 2 6) = (l(t, 2 6) + ﬂ1(2(:7 2 6) + ﬂQ(t 2 E)a

where a(t,z,€) € F{e} and uy1(t, z,€),Us(t, z,€) € F[e]] and such that for every 0 < p < ¢ —1,
the function u® can be written in the form

%(t,z,€) = alt, z,€) +ul" (t, z,€) + uy’ (£, 2,€),

where € — u?” (t,z,€) is a F-valued function that admits 01(t,z,€) as its g— Gevrey asymptotic
expansion of order 1/ki on &, and also € ugp(t,z,e) 15 a F-valued function that admits
Uo(t, 2, €) as its g— Gevrey asymptotic expansion of order 1/ky on &,.

Proof For every 0 < p < ¢—1, one can consider the function u%» (¢, z, €) constructed in Theorem 1.
We define Gp(e€) := (t,2) — up(t, z,€), which is a holomorphic and bounded function from &,
into F. In view of Proposition 13 and Proposition 14, one can split the set {0, 1,...,¢ — 1} in two
nonempty subsets of indices, I; and I with {0,1,...,¢ — 1} = I; U Iy and such that I (resp. I3)
consists of all the elements in {0, 1, ...,¢—1} such that Uy, MUy, ., contains the sector Uy, o, ,, as
defined in Proposition 13 (resp. U, NUp,,, = ). From (84) and (98) one can apply Theorem 3
and deduce the existence of formal power series G (¢), G2(€) € F[[¢]], a convergent power series
a(e) € F{e} and holomorphic functions G}(¢), G2(e) defined on &, and with values in IF such that

Gp(e) = ale) + G}D(e) + Gz(e),

and for j = 1,2, one has G%(e) admits G’j(e) as its ¢g—Gevrey asymptotic expansion or order
1/kj on &,. We put

Wt z,€) = > hm( t2) :a(e)+é;,(e)+é§(e).

m>0

It only rests to prove that (¢, z,€) is the solution of (105). Indeed, since u’® (resp. f°)
admits 4(t, z,€) (resp. f) as its g—Gevrey asymptotic expansion of order 1/k; on &,, we have
that

lim sup |0 u®(t, 2z, €) — hin(t, 2)| = 0,
€e—~0,e€Ep teT zGHB/

(106) lim — sup [ f(t, 2, €) — fu(t,2)| =0,
e—0,e€8p teT ZEHB/
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for every 0 < p < ¢—1and m > 0. Let p € {0,1,...,¢ — 1}. By construction, the function
(¢, z, €) solves equation (72). We take derivatives of order m > 0 with respect to € at both
sides of equation (72) and deduce that 0™ u® (¢, z, €) satisfies

d

m d d ka—i‘l m, 0
;00 (e9P)tP o Rp(0:)(0u)

Q)og Otz = 3

|
mi1+meo=m mi: m2
D—1 m!
: mi A dx.o(am dgqm, 0
+ Z > m(@ AN (9M2 ey (2, €)) Re(D:) 00t (D)
=1 Ael, mi+ma+mz=m
(107) + o7 1) (2, €),

for every (t,z,€) € T x Hz x E,. We let € — 0 in (107) and obtain the recursion formula

m' d dD
Q(@Z)Uqhm(t, Z) mt DO'q RDhm_dD(t, Z)
D—
m)!
(108) Z Z > 7m2|m3'tdu (02 0(2,0)) Re(92) 00 hiny (£, 2) + g fin(t, 2),
=1 Xl ma+ma=m—Ajy ’ '

for every m > max{dp, maxj<y<p_1xer, Ar¢}, and all (t,z) € T x Hg. Bearing in mind that
¢ (constructed in (73)) is holomorphic with respect to € in a neighborhood of the origin, in
such neighborhood one has

(109) ez, €) = Z Mem,

m!
m>0

for every 1 < ¢ < D —1 and X € I;. By direct calculations on the recursion (108) and (109) one
concludes that the formal power series u(t, z,€) = >, <o hm(t, 2)e™/m! is a solution of equation
(105). B

O

7 Application

Let D > 3 and k1 > 1 be integers. Let ¢ € R with ¢ > 1 and assume that for every 1 </ <D-1,
I, is a finite nonempty subset of nonnegative integers.

Let dp > 1 be an integer. For every 1 </ < D — 1, we consider § > 1 and for each A € I,
we take integers dy, > 1, Ay, > 0. We assume that

51 = 17 6( < 6€+1 9

for every 1 </ <D —1 and all A € I, and also

d dp —
(110) Ay >dyy, % +1> 4y, D
1 1

+1255a

forevery 1 < /<D —1, and all A € I,.
We consider Q,Ry € C[X] for all 1 < ¢ <D with

deg(Q) > deg(Rp) = deg(Re), Q(im) #0, Rp(im)# 0
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for every m € Rand all 0 </ <D — 1. We take 8 > 0 and p > deg(Q) + 1.

For every 1 </ < D — 1 and all X € I, the function m +— C, ¢(m, €) belongs to the space
Eg,y for some 8 > 0 and p > deg(Rp) + 1. In addition to that, we assume this functions
depend holomorphically on e € D(0, €g), and also the existence of apositive constant C A, such
that

(111) |Cxe(m, €) Cos,

g =
for every e € D(0, €p).

Let No > 0 be an integer. We choose F(T',m,¢€) = Zgio Fp(m,e)T" € Eg,)[[T]] which
depend holomorphically on € € D(0,¢p). We assume there exist positive constants Kg, T such

that
1

HFn(m’ 6)”(5,#) S K0T787

for every 0 < n < Np and € € D(0,¢€p). Under this last condition, Bq’l/kl (F(T,m,¢€))(r) is an

element of Exp? for some o« € R and p > 0, and every p, which will be denoted by

p
k1,B,4,0,p)
1,[12’1’ (1,m,€). Following the same arguments as in Lemma 5 in [10], one can check that

e~Alml <l<:1 log? |7 + 4|
(1 + [m) 21og(q)

for some Cy, > 0, valid for all € € D(0,€), 7 € Uy, U D(0, p) and m € R.

We consider k2 > k; as chosen in Section 4, and x determined by (23). From the fact that
the g—Laplace transform of some order provides an extension of the inverse operator for the
formal g—Borel transform of the same order when defined on monomials, it is direct to check
that

(112) [ (r.m, )| < Cy, + alog|r + 5|> ,

No
(113) ZFn(m7€)Tn = ﬁq;l/kzﬁq;l/nwzz(Ta m, 6)7
n=0

for every € € D(0,¢p), m € R.

We depart from the formal power series F/(T,m,€) = >, <, Fn(m,€)T", where F,(m,€) are
defined after (72), in Section 5, and assume that this formal power series formally solves the
equation

dp

L1
Q(im)a,F(T,m,e) = TP0,"  Rp(im)F(T,m,e)

D-1
_ 1 > .
+ Z Z TeeBre=dre 2m)i/2 /OO Coo(m — my, €)Ry(imy) F(¢°¢T, my, €)dmy
/=1 el B

(114) + o, F(T,m,e).
Proposition 15 Assume that F,(m,€) are fized elements in Es,) which depend holomorphi-
cally on € € D(0,¢), for

€<0,1,... dyy, d .
p { s Ly 7maX{1§€§rB§}l(,)\€Ie WA D}}

Then, there exists a unique formal solution power series F(T,m,€) =, ~q Fn(m,e)T™, where
m +— Fy(m,e) is an element of Eg ) which depend holomorphically on e € D(0, €).
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Proof By plugging the formal power series F(T',m,¢) into equation (114), one gets that its
coefficients satisfy the following recursion formula in order to be a formal solution of (114):

_ Rp(im) (%—H)(n—dD)—n

F,(m,¢) Qlim) Fr_ap(m,e€)
| D!
Ay —d dn(n—dy¢)—n
+ - eMe “ / Cie(m —my, €)Ry(im1)q F,_q, ,dmq
Q(zm) ; )\EZI 1/2 ) ( ) W4
1
—F
T Qim)

for every n > max{maxngSD_L)\eIZ d>\7g,dD}. In view of Lemma 2 and Proposition 2, the
coefficients F}, belong to F(g ), and depend holomorphically on € € D(0, ¢). O

We multiply equation (114) by T* and apply the formal g—Borel transform of order k1 on
both sides of the resulting equation. Regarding Proposition 6, we arrive at

. 7J<31 TdD-Hﬂ .
QUm) iyt 72 Vi (721 €) = e sy w172 1D (1) ¥ (70, €)

Ay e—dxedx etk 5,y 1
€ T = R,
+ Z Z 1//€1)(dx,e+k1)(dx,z+k1*1)/2gq 1 (2 7T)1/2 (C%f(mv €) ¥ P, (1,m, €))
/=1 )\EI@
(115)
Th
+ (ql/kl)kl(klfl)/2¢k1 (T,m,E),
where
TTL TL
Vi, (T,m, €) Z%F m,e) 1/k1)n(n 07z’ 1/)k1 T, M, €) Z:OF m,e€) 1/k1)n(n 072"
n n

We now make the additional assumption that there exists an unbounded sector
Sqrp = {# € C: |2| 2 rqRp, |arg(z) — doRrp| < NqRrp } -
for some ng g, > 0 and dq rp, € R such that

Q(im)

—_— R.
RD(zm) S SQ,R]): m e

We consider the polynomial

B Q(im) Rp(im) d
Pm(T) - (ql/kl)kl(kl—l)/Q o (ql/kl)(dDﬁLh)(;iDHﬁ*l) T,

and factorize it 4
Rp(im) >

Pm(7) = = PN NG S ) H (7 = qy(m)),
(q1/kr) 2 1=0
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with

(m) = |Q(im)| ( 1/k1)(dD+k1)(dD+k21*1)*’91(’91*1) 1/dp
A\ [Rp (im)]

1 Q(zm) 1/k (dp+k1)(dptky—1)—ky (k3 —1) 27l
1 — ) 1 22
X exp <\/ < ap 8 <RD ) (@) 2 tag ) )

for every 0 <! <dp — 1.
Moreover, we choose the family of unbouded sectors Uy, 0 < p < ¢, with vertex at 0, a small
closed disc D(0, p), established in Definition 7, and choose Sq ry, satisfying

1) There exists M; > 0 such that
[T —aq(m)| = Mi(1 + 7)),
for every 0 <l <dp—1,allmeRand 7 € Uy, UD(0,p), 0 <p < —1.
2) There exists My > 0 and [y € {0, ...,dp — 1} such that
[T — ag, (m)[ = Ma|q;, (m)],
for every m € R and 7 € D(0, p) U Up,, and all 0 <p < ¢ —1.

One can follow analogous steps as in (52) to conclude the existence of a constant Cp > 0
such that

(116) P(7)] > Cp(rqrp) " Rp (im)|(1 + 7)),
for every 7 € D(0, p) U Uy, forall0 <p <¢—1,and m € R.

Proposition 16 Let o > 0. Under the hypotheses made at the beginning of Section 7 on the
elements involved in the construction of equation (115) and (110), under assumptions 1) and 2)
above, and if there exist small enough positive constants C¢k g forl<l<D-1land el
1 b}
such that
Cohe < Cryp Cy,, < qukl,

then the equation (115) admits a unique solution 1/)2’17 (1,m, €) in the space Exp?zl )’ for some

v € R. Moreover, |¢Z’1’(T, m, E)H(kl,ﬂ,u,a) < w for every e € D(0,€), and this function is

holomorphic with respect to € in D(0, €g).

Proof The proof of this result follows analogous steps as those in the demonstration of Propo-
sition 11, so we omit it. O

Let F°(T,m,¢€) be defined in (76).
We put ¢y ¢(z,€) = F1(m — Cy(m,e), which is a holomorphic function defined in Hg x
D(0,¢€p), and
f(t,2,¢) = > F ' (m > Fu(m, e))(2)(te)",
n>0
which is a holomorphic function defined in D(0,r) x Hg x D(0, €p), for small enough r > 0.
One can apply F ! to (114) to deduce that f° is a solution of the equation
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Q(0:)oqfoP(t, z,€) = (et dDaq E RD(8Z)fDP(t,z,6)
D-1
(117) + D theeAhigdicy (2, ) Re(0:) 2 (t, 2,€) | + 0yf(t, 2,€).
/=1 Aely

Theorem 5 We assume the hypotheses of Theorem 1 and those stated in this section hold. We
denote

@+1 D—-1
P(t,z,€,0.,04) = Q(d,)a, — (et)¥P o>  Rp(d.) — D theetriglicy o(z,€)Re(0:) | |
=1 Aely
‘LD+1 D—-1
P(t,z,€,0,,0,) = Q(8.)o, — (et)¥c,*  Rp(d.) — D theeAnigdicy o(z,€) Ry(0:)
/=1 el

Then, the functions u®®(t, z,€) constructed in Theorem 1 solve the problem
(118) P(t, z,€,0,, aq)a(;lP(t, 2,605, 0)u’ (t,2,€) = 0 f(t, 2, €),

whose coefficients and forcing term f are analytic functions on D(0,r1) x Hg x D(0, €y). More-
over, the formal power series U(t, z,€), constructed in Theorem 4 formally solves equation (118).

Proof For the first part of the proof, one can check that F° (T ,m,¢), as defined in (76) is
an analytic solution of equation (114). This assertion comes from the equality (113) and the
application of the properties of the g—Laplace transform, stated in Proposition 7 in the same
manner as it has been done throughout the work, so we omit the details at this point. Then,
the first part of the result is straight from (117) and Theorem 1. In order to prove that (¢, z, €)
provides a formal solution of equation (118) one takes into account that u(¢, z, €) formally solves
equation (72) and that f (t,z,¢€), constructed in Lemma 9 formally solves equation

P(t7 Zv 6,8Z,O'q)f(t, Z, 6) = Uqf(tv 27 6)'
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