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1 Introduction

The Hom-polytope and Tensor-polytope are on the one-hand at the most
fundamental for the study of the category of polytopes. And, while the facets
of the Hom-polytope and the vertices of the Tensor are inherent from their
definition, very little is known about the quantities of the vertices of the Hom-
polytope nor the facets of the Tensor product. These are difficult to derive,
often numbering in the thousands, and the slightest perterbation of vertex
risks miscounting the number of objects in the resulting structure.
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This paper rests heavily on cluster analysis, since intuitively, if extra ob-
jects are created by the error of computation, then the extra objects should be
“nearby” enough to the actual object to form well-defined and stable clusters.
The clustered data can also provide valuable information regarding the relative
maginitude distance of the vertices, and the angles of the facets. The software
Polymake [3] was used to collect information for the approximate calculations,
using rationally-approximated regular-polygons, triangle through decagon, for
both Hom and Tensor. Then a thourough cluster-analysis was performed on
this data using the script written in Perl, via the use of six personal comput-
ers running simultaneously. All of the clustering data is presented, as well as
expected values for the quantities of vertices and facets.

Next, the concept of the standard matrix is extended to arbitrary dimen-
sionality, adding layers of computation, whose purpose is to construct a graph-
ical representation of a Tensor. The idea of the hypercube-matrix arose nat-
urally as the result of an in-depth examination of the Riemann Tensor from
Einstein’s Theory of Relativity, which is used to describe the curvature of
space-time. As such, I will be using as a motivating source Misner, Thorne,
and Wheeler’s Gravitation [6]. The Hypercube matrix was invaluable in aid-
ing the visualization of the Riemann Tensor, as well as relating it to topics in
linear algebra. The Tensor is a prevalent mechanism in physics. Furthermore,
its connections to linear algebra are unmistakable. When viewed as a transfor-
mation, a hypercube matrix is an n-linear function with n vectors as inputs,
and the desired number of outputs, as vectors. This new type of matrix is
capable of adding “layers” of computation to the flat matrices to form a cube-
matrix. Then, layers of cube-matrices are added to form hypercube matrices,
and so-on, capable of addressing as many input and as many output vectors
as desired.

The idea of adding dimensionality and generality to the concept of matrix
could prove invaluable, not only in the applied realm of Physics; also in other
fields. For example, the hypercube matrix could be used to analyze multiple
aspects of risk in finance at one time, beyond the mere two variables often
used at present. Similarly, one could analyze the multiple-correleation instead
of compairing correlations pair-wise in statistics.

This article builds on concepts from Abstract and Linear Algebra, Poly-
topal Geometry, and General Relativity.

1.1 Preliminaries

For the background information as it pertains to Convex Polyhedral Geometry,
the reader is referred to Polytopes, Rings, and K-theory [4]. For a concise
overview of background, see [2]. For a good exposition of Tensor algebra, the
reader is referred to Dummit and Foote [5].

The polytope which is generated as the convex-hull of a set of points is
denoted conv(x1,x2, . . . ,xn).
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The affine-hull of a set S is aff(S) := {
n∑
i=1

λixi : λi ∈ R ∧
∑n
i=1 λi = 1}

An affine space A is a subset of a vector-space V such that it is closed under
affine-combinations, that is, if A = aff(A). I claim that this is equivalent to A
being equal to a translated subspace U of V , that is, there exists x ∈ V and
∃U < V such that A = U + x. The dimension is denoted dimA = dimU .

Theorem 1 The following are equivalent, and each type of object can be ex-
pressed as the other.

(1) Let U be a vector-subspace of V , and x ∈ V . Then x+U := {x+u|u ∈
U};

(2) The affine hull, aff(X), for X ⊂ V .

Proof (1)⇒ (2) : Begin with a space of the form x+ U . Let
n∑
i=1

λi(x+ ui) be

an affine combination of elements of x+ U . Then:

n∑
i=1

λi(x+ ui) =

(
n∑
i=1

λi

)
x+

n∑
i=1

ui = x+

n∑
i=1

ui ∈ x+ U.

Hence x+ U is closed under affine combinations.

(2) ⇒ (1): Now assume that x ∈ X and without loss of generality, 0 /∈
aff(X). Let U = lin(X). It is shown that aff(X) = x+ U .

(⊆): Let
n∑
i=1

λixi ∈ aff(X). Then:

n∑
i=1

λixi = x+

(
n∑
i=1

λixi

)
−

(
n∑
i=1

λi

)
x = x+

(
n∑
i=1

λi(xi − x)

)
∈ x+ U.

(⊇): For
n∑
i=1

µiui ∈ lin(X), each ui = a(xi − x)∃a ∈ R, xi ∈ X. Let

γi = aµi. Then:

x+

n∑
i=1

µiui = x+

n∑
i=1

γi(xi − x) = 1 · x+

(
n∑
i=1

γixi

)
−

(
n∑
i=1

γi

)
x ∈ aff(X).

The join of two polytopes in their ambient vector-spaces, P ⊂ V and
Q ⊂W , is join(P,Q) = conv[(x, 0, 0), (0, 1, y)|x ∈ P, y ∈ Q] ⊂ V ⊕R⊕W . In
Section 3, I will prove a result utilizing multiple join-layers.

P,Q, andR will denote polytopes unless otherwise specified. The n-dimensional
standard simplex is ∆n := conv(e1, e2, . . . , en+1). The set of facets of a poly-
tope is denoted F(P ), and the set of vertices is vert(P ). Define the dimension
of a polytope, dimP (aff). The number of elements in a set S is denoted #S.

The standard regular polygon is Pn := conv(1, ζn, ζ
2
n, . . . , ζ

n−1
n ) ⊂ C ∼=

R⊕ R, where ζn = cos(2π/n) + i sin(2π/n).
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2 Cluster Analysis

Definition 1 Let ε > 0 be given. V = {v0, v1, . . . , vn} is a finite collection
of vectors. Γ = {P0, P1, . . . , Pm} is a finite collection of sets. Then Γ is an
ε-clustering of V if it satisfies the following properties:

1.
m⋃
i=0

Pi = V.

2. ∀P,Q ∈ Γ, P ∩Q = ∅.
3. ∀P ∈ Γ,∀x ∈ P,∀y ∈ V, ||x− y|| < ε if and only if y ∈ P

If a clustering Γ exists, then it is unique. There may not be a valid cluster-
ing Γ for a given set V and ε > 0. As far as this project is concerned, one issue
is that no valid clustering may exist for a given ε, and another issue is that a
valid clustering may or may not accurately represent the geometric objects in
question.

If additional objects are created by virtue of imprecision, it makes sense
that the artifacts would be nearby, or “clustered” about the actual object.
If clustering vertices, then the extra points will appear in balls, or clusters
around the actual vertex. Similarly, if artificial facets are created because of
imprecision, then the normal vectors will be nearby the normal vectors for the
actual facet. Clustering therefore should reveal this if it occurs.

Additionally, clustering can give us some information regarding the dis-
tance, or spacing of the vertices, or the angles of the facets, of the objects
if some vertices or facets are nearby eachother enough to cluster, while the
others are not.

Below is the ε-clustering algorithm I used, and it is better than previous
methods which might have been used in [1] since it automatically tests for
stability over the full-range of possible values for ε.

Begin with P0 = Bε(v0) ∩ V.∀x, y ∈ P0\v0,∀z ∈ V \P0, if ||x − y|| > ε or
||x− z|| ≤ ε, then ε does not determine a valid cluster.

At step m, the index set Im ⊂ {1, . . . , n} is defined as follows: Let i ∈ Im,

if vi ∈ V \
(
m−1⋃
i=0

Pi

)
. Let k = min<(Im), and Pm = Bε(vk) ∩ V . Verify:

∀x ∈ Pm\vk, ∀y ∈ V \Pm, that ||x− y|| ≤ ε if and only if x, y ∈ Pm.
Continue until V is exhausted or determine that ε does not determine a

valid clustering.
The above describes the main clustering algorithm. To determine which ε’s

to attempt for a clustering, let εmin = min(||x− y|| : x, y ∈ V ), and similarly,
εmax = max(||x − y||). For a reasonable number of increments, test each
εmin ≤ ε ≤ εmax, for which:

ε = εmin + n · εmax−εmin

increments
, n ∈ N.

This will reveal clusters which are stable for ranges of ε. The program I
wrote (in Perl) is given in the section “coding.”
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3 Tensor Polytope

Definition 2 [1] Let P ⊂ V and Q ⊂ W be polytopes in their ambient
vector-spaces. Then, the Tensor polytope is defined as follows:

P ⊗Q := conv({(x⊗ y, x, y)|x ∈ P, y ∈ Q}) ⊂ (V ⊗W )⊕ V ⊕W .

Proposition 1 #F(∆n ⊗ P ) = (n+ 1) ·#F(P ).1

Proof Let P join2

:= join(P, P ), and P joinn+1

:= join(P joinn

, P ).

It is clear that ∆n
∼= {∗}join

n+1

, where ∗ is a single point.
From [1], we know that P ⊗ join(Q,R) ∼= join(P ⊗Q,P ⊗R).

Then, one sees that ∆n⊗P ∼= P⊗{∗}joinn+1 ∼= (P⊗{∗})joinn+1 ∼= P joinn+1

.
Observe that join(P,Q) has #F(P ) + #F(Q) facets. Assume that:

#F(P joinn

) = n · #F(P ). Then P joinn+1

= join(P joinn

, P ), which has
n ·#F(P ) + #F(P ) = (n+ 1) ·#F(P ) facets. �

Corollary 1 R2⊗R2 ∼= R4 in the vector-sense by (a, b)⊗(c, d) 7→ (ac, ad, bc, bd).2

3.1 Results

The following data was acquired using an approximation of Pm, Pn. Then the
normal vectors for the facets of Pm⊗Pn were calculated in Polymake [3]. The
vectors were all normalized, and then the clusters were analyzed. Since εmin >
10−4 is fairly large, this indicates that it is likely that the number Polymake
returns is accurate for the number of facets. If a stable clustering occurs nearby
εmin then this indicates that the cluster is more likely to be meaningful than a
stable clustering that is far-distant. It is also possible (unlikely) that the count
is an underestimate.

The results of this section are summarized in the following table. Note the
symmetry of the table indicated by the slashes (The results in italics come from
experimental results, whereas the results in normal type are from theoretical
results):

1 This conjecture was given to me as “definitely true,” but without proof, by Prof. Gube-
ladze.

2 This is a restriction of the well-known fact from Algebra.
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⊗ 3 4 5 6 7 8 9 10

3 9 12 15 18 21 24 27 30
4 / 24 60 144 308 592 1044 1720
5 / / 135 630 1295 2440 4185 4470
6 / / / 552 3738 6000 9666 15900
7 / / / / 2415 14840 23625 36433
8 / / / / / 8656 45576 63680
9 / / / / / / 30231 115110
10 / / / / / / / 59520

Table 1 Polymake expected values for F(P ⊗Q)

All of the data gathered on the clusters for the P ⊗Q objects is presented
below. Note a count of zero facets indicate that there were points outside
the ball that should be inside, or that there are points within the ball that
are further than ε away from one another, i.e. not a true clustering for those
epsilons. Pn⊗P10 was too large to cluster in the time that I had for n = 8, 9, 10.
P8 ⊗ P9 took about one month to perform a cluster-analysis with the use of
five separate machines.

P8 ⊗ P10 P9 ⊗ P10 P10 ⊗ P10

εmin .00138732359204731 .000797084921839763 .00542680509773397

P5 ⊗ P6
ε−min=0.0383328864892567
ε-max=1.68205636874513

Step-size: 0.00164372348225587

#Facets ε-range #steps
630
622 0.0383328864892567 1
570 0.0399766099715126 to 0.0416203334537685 2
510 0.0432640569360244 to 0.140243742389121 60

P5 ⊗ P7
ε−min= 0.0407936726679516
ε-max=1.64713823746133

Step-size: 0.00160634456479338

#Facets ε-range #steps
1295
1291 0.0407936726679516 1
1155 0.042400017232745 to 0.0456127063623318 3
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P5 ⊗ P8
ε-min: 0.0450047826869534
ε-max=1.63781178762196

Step-size: 0.00318561400987001

#Facets ε-range #steps
2440
2439 0.0450047826869534 1
2280 0.0481903966968234 to 0.0513760107066935 2

0 0.0545616247165635 to 0.0800465367955236 9
1960 0.0832321508053936 to 0.0959746068448736 5

P5 ⊗ P9
ε-min=0.0301225372572608
ε-max=1.64816724197138

Step-size: 0.00161804470471412

#Facets ε-range #steps
4185
4181 0.0301225372572608 1
4005 0.0317405819619749 to 0.0349766713714032 3

P6 ⊗ P8
ε-min=0.0163436463610595
ε-max=1.65276163564236

Step-size: 0.0016364179892813

#Facets ε-range #steps
6000
5968 0.0163436463610595 1
5808 0.0179800643503408 to 0.0228893183181847 4

0 0.024525736307466 to 0.0539812601145295 19
4368 0.0556176781038108 1

P6 ⊗ P9
ε-min=0.00711292873183818
ε-max=1.62442465524836

Step-size: 0.00161731172651652

#Facets ε-range #steps
9666
9658 0.00711292873183818 1
9450 0.0087302404583547 to 0.0103475521848712 2

P6 ⊗ P10
ε-min= 0.017650476323911
ε-max=1.64333514750996

Step-size: 0.000406421167796512

#Facets ε-range #steps
15900
15884 0.017650476323911 1
15660 0.0180568974917075 to 0.018463318659504 2
15420 0.0188697398273005 1
15300 0.019276160995097 to 0.0204954244984866 4

P7 ⊗ P7
ε-min=0.0891378230057438
ε-max=1.6459131980079

Step-size: 0.00155677537500216

#Facets ε-range #steps
2415
2407 0.0891378230057438 1
2219 0.0906945983807459 to 0.103148801380763 9
2023 0.104705576755765 to 0.120273330505787 11
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P7 ⊗ P8
ε-min=0.003094540237951
ε-max=1.65834000577096

Step-size: 0.000662098186213202

#Facets ε-range #steps
14840
14838 0.003094540237951
14728 0.0037566384241642 to 0.00574293298280381 4
14504 0.00640503116901702 1
14280 0.00706712935523022 to 0.00772922754144342 2

P7 ⊗ P9
ε-min=0.00464412345966292
ε-max=1.64349512595472

Step-size: 0.000409712750623765

#Facets ε-range #steps
23625
23621 0.00464412345966292 1

0 0.00505383621028668 to 0.00546354896091045 2
23121 0.00587326171153421 to 0.00669268721278174 3

P7 ⊗ P10
ε-min=0.00032227625071186
ε-max=1.63597432199261

Step-size: 0.0016356520457419

#Facets ε-range #steps
36433
36425 0.00032227625071186
35593 0.00195792829645376 1
35313 0.00359358034219565 1
34476 0.00522923238793755 1

P8 ⊗ P8
ε-min=0.0434146529645682
ε-max=1.67437215161989

Step-size: 0.00081547874932766

#Facets ε-range #steps
8656
8592 0.0434146529645682
8400 0.0442301317138958 to 0.0458610892125511 3
8144 0.0466765679618788 to 0.0491230042098618 4

P8 ⊗ P9
ε-min=0.0010008709135947
ε-max=1.6490067843067

Step-size: 0.00082400295669655

#Facets ε-range #steps
45576
45560 0.0010008709135947
44856 0.00182487387029125 to 0.0026488768269878 2
44136 0.00347287978368435 1
43848 0.0042968827403809 1

0 0.00512088569707745 1
42984 0.005944888653774 1
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P9 ⊗ P9
ε-min=0.00433288203872405
ε-max=1.64100254203561

Step-size: 0.00163666965999689

#Facets ε-range #steps
30231
30227 0.00433288203872405
28935 0.00596955169872094 1
28287 0.00760622135871783 to 0.0108795606787116 3
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4 Hom-polytope

Definition 3 A map f : P → Q is affine if it preserves barycentric coordi-
nates:

f

(
n∑
i=1

λixi

)
=

n∑
i=1

λif(xi) :

n∑
i=1

λi = 1, λi ∈ R,xi ∈ P.

The Hom-polytope is Hom(P,Q) := {f : P → Q|f is affine}.
Also, let aff(P,Q) := {f : aff(P )→ aff(Q)|f is affine}
It is not difficult to see that for vector spaces V and W , aff(V,W ) is a

vector-space. For affine spaces A ⊂ V and B ⊂ W , one sees that aff(A,B) is
an affine subspace of aff(V,W ), whose dimension is dim(aff(A,B)) = dimA ·
dimB + dimB.

Proof Let A = U + x0 and B = W ′ + y0, where U,W ′ are subspaces of V and
W respecitvely.

Let πU : V → U be the linear projection mapping, and π = πU +x0 : V →
A be the affine projection (Notice that π2 = π). Also let ι : B → W be the
identity embedding. Then the embedding aff(A,B) → aff(V,W ) defined by
f 7→ ι ◦ f ◦ π makes aff(A,B) into an affine subspace of aff(V,W ) [1].

Let L(U,W ′) be the set of linear maps U →W ′, and B a basis of L(U,W ′).
Let C be a basis for W ′. Then, let Ω be the vector space generated by B ∪ C.
We want to show that Ω + y0 = aff(A,B)

(⊆) : Let f(u) + (w + y0) ∈ Ω + y0, f extends to a linear map V → W ,
and w + y0 ∈W , hence f(u) + (w + y0) ∈ aff(A,B).

(⊇) : Let f(x) + b ∈ aff(A,B). Then f(x) + b is the restriction of an affine
map V → W , f(x) + b = f(u+ x0) + b = f(u) + (f(x0) + b). Since f(0) = 0,
f(x0) + b ∈ B, hence f(x) + b ∈ Ω + y0.

Recall that dimL(U,W ) = dimU · dimW = dimA · dimB.
Then #(B ∪ C) = dimA · dimB + dimB, as desired.

In particular, dim(aff(P,Q)) = dimP · dimQ+ dimQ.

Theorem 2 [1] Hom(P,Q) is a polytope in aff(P,Q), the facets are described
by:

F(Hom(P,Q)) = {H(v, F )|v ∈ vert(P ), F ∈ F(Q), H(v, F ) = {f ∈ Hom(P,Q)|f(v) ∈ F}}.

Also, dim Hom(P,Q) = dimP dimQ+ dimQ.

Proof ∀F ∈ F(Q),∃ϕF ∈ Hom(Q,R+) such that kerϕF = F (see Figure 1)
[1].

Let ϕF,v : aff(P,Q)→ R defined by f 7→ (ϕF ◦ f)(v),∀v ∈ vert(P ) [1].
It is not difficult to see that ϕF,v is affine.
We begin by showing that Hom(P,Q) =

⋂
F,v

{f ∈ aff(P,Q)|ϕF,v(f) ≥ 0}.

⊆: Let f ∈ Hom(P,Q), F ∈ F(Q), v ∈ vert(P ). If f(v) ∈ F, then
ϕF,v(f) = ϕF (f(v)) = 0. If f(v) ∈ Q\F , then ϕF,v(f) > 0.
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Fig. 1 Example construction of ϕF

⊇: Let f ∈ aff(P,Q) such that ∀F ∈ F(Q),∀v ∈ vert(P ), ϕF,v(f) ≥ 0.
Assume by way of contradiction that ∃v ∈ vert(P ) such that f(v) /∈ Q (see
Figure 2).

Let y ∈ Interior(Q). Then the line-segment [f(v), y] passes through a
facet F of Q. ϕF is affine, non-negative on [f(v), y] ∩ Q := [y′, y], and zero
on [f(v), y] ∩ F . Then, ϕF is negative on [f(v), y′), and since 0 > ϕF (f(v)) =
ϕF,v(f), this is a contradiction.

Since all of vert(P ) maps into Q by f , we have f(P ) ⊂ Q, and f ∈
Hom(P,Q).

Next, since for a support hyperplane H, H ∩ P is a facet of P if and only
if it is not contained in any other proper face of P , it remains to show that for
each particular (F, v), there is an element unique to that facet.

Let P
onto→ [0, 1] be a mapping such that v 7→ 0 and P\v onto→ (0, 1].

Also, let [0, 1]
embeds→ Q such that 0→ Interior(F ) and (0, 1]→ Interior(Q).

Let f be the composition of these two maps. Then f : P → Q such that
f(v) ∈ Interior(F ) and f(w) ∈ Interior(Q) ∀w ∈ vert(P )\v.

Hence, f ∈ kerϕF,v\
⋃

F(Q)\F,vert(P )\v
kerϕG,w [1].

To see that dim(Hom(P,Q)) = dimP dimQ+dimQ, Interior(Hom(P,Q)) =⋂
F,v

{f ∈ aff(P,Q)|ϕF,v(f) > 0} 6= ∅ and is open. Hence Hom(P,Q) is full-

dimensional [1], and dim(Hom(P,Q)) = dim(aff(P,Q)) = dimP dimQ +
dimQ.

4.1 Results

I was able to reproduce the vertex quantities found in [1] for n,m = 3, . . . , 8,
as well as extend them to n,m ≤ 9, 10. In [1], the authors find stability for
10−3 ≤ ε ≤ 10−4. However, in my results, the εmin was invariably greater than
10−2 for n,m ≤ 8, meaning the points were spaced further apart than the
clusters found in [1]. It is unclear if my method exactly mirrors the method that
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Fig. 2 Some examples of affine images.

was used there. It is possible that stability was found because there was only
one point within each cluster, a sort of false-positive result. It is also possible
that the rational approximations I used are simply more precise, and so the
objects were not viewed as being distinct when the polygons were placed into
polymake, and the resulting vertices were placed into the matrix. Regardless,
it is clear that the results presented here represent a marked improvement
when compared with the original results.

Hom(Pm, Pn) n = 3 4 5 6 7 8 9 10

m = 3 27 64 125 216 343 512 729 1000
4 15 36 125 138 371 360 801 750
5 63 144 165 696 987 1408 1809 1480
6 33 64 305 180 1141 1040 1665 1960
7 129 256 915 1308 1001 3312 1336 3114
8 75 100 485 414 2079 1144 1502 1951
9 237 400 1355 1824 3913 1535 1590 1787
10 153 144 525 756 2597 3248 7389 3080

Table 2 Polymake expected values for vert(Hom(P,Q))

The vertices are then clustered using the clustering algorithm, and results
are presented below:

Hom(P4, P8)
ε−min=0.507305936153988

ε-max=2.8284271248
Step-size: 0.00232112118864601

#Vertices ε-range #steps
360
328 0.507305936153988 1
296 0.509627057342634 to 0.583902935379307 32
264 0.586224056567953 to 0.662821055793272 33
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Hom(P4, P9)
ε−min=0.20573706381088
ε-max=2.78545696138793

Step-size:0.00257971989757705

#Vertices ε-range #steps
801 0.203157343913303 1
785 0.20573706381088 1
657 0.208316783708457 to 0.252172021967267 17

Hom(P4, P10)
ε−min=0.330792269092958
ε-max=2.82842712481603

Step-size:0.00499526971144614

#Vertices ε-range #steps
750 0.325796999381512 1
734 0.330792269092958 1
670 0.335787538804405 to 0.38074496620742 9
630 0.385740235918866 to 0.530603057550804 29

Hom(P5, P9)
ε−min=0.0340145455377996
ε-max=2.70873731833382

Step-size: 0.00534944554559204

#Vertices ε-range #steps
1809 0.0286650999922076 1
1805 0.0340145455377996 1

0 0.0393639910833916 to 0.098207892084904 11
1269 0.103557337630496 to 0.194497911905561 17

Hom(P6, P7)
ε−min=0.01519146347549
ε-max=2.65792796852489

Step-size: 0.0026427365050494

#Vertices ε-range #steps
1141
1133 0.01519146347549 1
1057 0.0178341999805394 to 0.0733316665865768 21
973 0.0759744030916262 to 0.0997590316370708 10
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Hom(P6, P8)
ε−min=0.171213249503796
ε-max=2.71163385580301

Step-size: 0.00254042060629921

#Vertices ε-range #steps
1040
1036 0.171213249503796 1

0 0.173753670110095 to 0.239804605873875 26
752 0.242345026480174 to 0.249966288299072 4

Hom(P7, P6)
ε−min=0.0263622373165557
ε-max=2.53431645299447

Step-size: 0.0100318168627117

#Vertices ε-range #steps
1308 0.016330420453844
3300 0.0263622373165557
1224 0.0363940541792674 to 0.0865531384928256 6

Hom(P7, P8)
ε−min=0.0135340558993126
ε-max=2.69453400350058

Step-size: 0.00268099994760127

#Vertices ε-range #steps
3312
3308 0.0135340558993126 1

0 0.0162150558469138 to 0.0242580556897176 4
2864 0.0269390556373189 to 0.0644730549037367 14

Hom(P7, P10)
ε−min=0.010596164571308
ε-max=2.70759126132689

Step-size: 0.00539399019351116

#Vertices ε-range #steps
3114 0.00520217437779688
3113 0.010596164571308

0 0.0159901547648192 to 0.0321721253453527 4
2634 0.0375661155388638 to 0.075324046893442 8
2574 0.0807180370869531 to 0.0861120272804643 2

Hom(P8, P7)
ε−min=0.0179855033449858
ε-max=2.61356423524859

Step-size: 0.0012977893659518

#Vertices ε-range #steps
2079
2063 0.0179855033449858 1
1967 0.0192832927109376 to 0.0218788714428413 3
1855 0.0231766608087931 to 0.0244744501747449 2

0 0.0257722395406967 to 0.0452390800299737 15
1631 0.0465368693959255 to 0.0543236055916364 7
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Hom(P8, P9)
ε−min=0.0166180319420024
ε-max=2.71893208974682

Step-size: 0.00540462811560963

#Vertices ε-range #steps
1502 0.0112134038263927
1486 0.0166180319420024 1
1470 0.022022660057612 1
1454 0.0274272881732216 to 0.0436411725200505 4

Hom(P8, P10)
ε−min=0.0645885690432305
ε-max=2.7393655462301

Step-size: 0.00534955395437373

#Vertices ε-range #steps
1951 0.0592390150888568
1949 0.0645885690432305 1

0 0.0699381229976043 to 0.075287676951978 2
1855 0.0806372309063517 1

Hom(P9, P3)
ε−min=0.195210464007939
ε-max=1.78671407978536

Step-size: 0.00318300723155485

#Vertices ε-range #steps
237 0.192027456776384
233 0.195210464007939 1
183 0.198393471239493 to 0.312981731575468 37

Hom(P9, P6)
ε−min=0.0941939428330602
ε-max=2.48727707044292

Step-size: 0.00478616625521972

#Vertices ε-range #steps
1824 0.0894077765778405
1816 0.0941939428330602 1
1716 0.09898010908828 to 0.122910940364379 6

0 0.127697106619598 to 0.161200270406136 8
1644 0.165986436661356 to 0.180344935427015 4

Hom(P9, P10)
ε−min=0.0941939428330602
ε-max=2.48727707044292

Step-size: 0.00478616625521972

#Vertices ε-range #steps
1787 0.0377804871635288
1783 0.0404618235078826

0 0.0431431598522364 to 0.0619125142627131 8
1607 0.0645938506070669 to 0.0672751869514207 2

Hom(P10, P7)
ε−min=0.0404883634274083
ε-max=2.56518854471618

Step-size: 0.00504940036257755

#Vertices ε-range #steps
2597 0.0354389630648307
2589 0.0404883634274083
2457 0.0455377637899858 to 0.065735365240296 5
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Hom(P10, P9)
ε−min=0.00414489157101909

ε-max=2.6996916909301
Step-size: 0.00134777339967954

#Vertices ε-range #steps
7389 0.00279711817133955
7381 0.00414489157101909
7209 0.00549266497069863 to 0.00684043837037816 2
6849 0.0081882117700577 to 0.0122315319690963 4
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5 The Hypercube Matrix

5.1 Definitions

Let n ∈ N be a natural number and let I be the interval [1, n]. Define the
hypercube by the Cartesian product of m of these intervals:

Hypercube= I × · · · × I =
m∏
j=1

I.

Define the hypercube matrix by introducing a lattice-structure Hyper-
cube

⋂
Zm, and label each of the entry-coordinates (α1 . . . αm), where αj =

1, . . . , n for j = 1, . . . ,m. Each coordinate entry will have a value A(α1 . . . αm),
often A(α1 . . . αm) ∈ R is real, but it could also be abstracted to complex or
field etc. This matrix is denoted JA(α1 . . . αm)K, or equivalently, JA(α1 . . . αm)Kα1...αm ,
when the index is not immediately clear.

One multiplies by an n-vector in the j-th direction:

JA(α1 . . . αm)K⊗j [u1u2 . . . un] =

u

v
∑
αj

A(α1 . . . αm) · uαj

}

~

α1...αj ...αm

Here the overline on the αj indicates that the jth direction has collapsed,
that is, the resulting index does not have a j-th coordinate.

You can also take the abstract analogue of a rectangular-prism. Let the
intervals: I1 = [1, n1], I2 = [1, n2], . . . , Im = [1, nm], where ni ∈ N are natu-
ral numbers for i = 1, 2, . . . ,m. Define the prism polytope by the Cartesian
product of these m intervals:

Prism = I1 × I2 × · · · × Im =

m∏
j=1

Ij

Let n = max (n1, n2, . . . , nm), and construct the Hyper-matrix (h-matrix)
by creating a lattice Prism

⋂
Zn, and labeling each entry (α1α2 . . . αm) for

αj = 1, 2, . . . nj and j = 1, 2, . . . ,m. The result will be an n1 × n2 × · · · × nm
matrix!

H-matrix multiplication can be defined ⊗(i, j) for h-matrices, provided
they match along certain dimensions. I am leaving this remaining work to the
reader.

5.2 Motivating Example

The Metric Tensor of Box 1.3.IV.B of [6], this result is seen in elementary
Linear algebra because it can be represented by a traditional matrix. In usual
Euclidean coordinates, start with a separation vector ξ pointing from point A
to B.
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Then the separation coordinates are:

ξ1 = x1(B)− x1(A)

ξ2 = x2(B)− x2(A)

As we know from Pythagoras, the metric traditionally used to measure
the length of ξ in Euclidean coordinates is |ξ|2 = (ξ1)2 + (ξ2)2 = ξ · ξ (the
dot-product). In matrices, this is:

[ξ1 ξ2] ·
[
1 0
0 1

]
·
[
ξ1

ξ2

]
The Kronecker-Delta: δαβ =

{
1 α = β

0 α 6= β

So, in linear-equation, the above metric tensor is:

ξ · ξ =
∑

α,β=0,1

δαβξ
αξβ

In localized Lorentz space-time coordinates (x0, x1, x2, x3), where x0 is the
time coordinate, and the X1, X2, X3 are space coordinates, the distance metric
is given: 〈ξ, ξ〉 = −(ξ0)2 + (ξ1)2 + (ξ2)2 + (ξ3)2. In matrices:

[ξ0 ξ1 ξ2 ξ3] ·


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ·

ξ0

ξ1

ξ2

ξ3



Here ηαβ =

{
−1 α = 0 = β

δαβ otherwise
, and the index I = {α, β = 0, 1, 2, 3}, the

linear equation for the Lorentz metric tensor is:

〈ξ, ξ〉 =
∑
I

ηαβξ
αξβ
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5.3 Example: Basic cube-matrix

In this example, I use the cube-matrix the represent a Tensor with two vector
inputs, and a two-dimensional output: g(u,v) = [r0, r1]. This matrix has three
axis, α, β, γ, and its entries are represented equivalently by Aαβγ = αβγ =
(αβγ). To keep this motivating example simple, I will be using the index
I = {α, β, γ = 0, 1}, one can see that this example can be extended to a larger
index (depths by columns by rows).
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r0 = (000)u0v0 + (010)u1v0 + (001)u0v1 + (011)u1v1

r1 = (100)u0v0 + (110)u1v0 + (101)u0v1 + (111)u1v1

In bi-linear-equation form this is g(u,v) = [r0, r1], and rα =
∑
β,γ

Aαβγu
βvγ .

5.4 Hypercube matrix applied to The Riemann Tensor

As can be seen in equation (1.10) of §1.6 of [6], let the index I = {α, β, γ, δ =
0, 1, 2, 3}. Then, there is the Riemann Tensor, which has three 4-vectors as
inputs, a 4-vector as outputs, and can be represented as trilinear functions:

r = Riemann(u,v,w)⇔ rα =
∑
β,γ,δ

Rαβγδu
βvγwδ

The 4-cube matrix I have constructed to represent this equation has four
axis, with each entry Rαβγδ = (αβγδ). The cube matrix meant to represent

r3 I have chosen to put on the back, so all of its entries are obscured. Also,
many of the entries on the other three cubes are obscured. There are a total
of 4× 4× 4× 4 = 256 entries, meant to describe the curvature of space-time.
Vector u is multiplied in the β direction, v in the γ direction, and w in the δ
direction. The α direction is the only one of the four that does not collapse,
and the result is an output of a 4-vector r. Each component of this result is
represented trilinearly by the expression in equation (1.10).
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6 coding

My method for sections 3 and 4 is as follows: First run these scripts within
Polymake [3]. The first produces approximations for the Tensor-polytope, the
second produces approximations for the Hom-polytope.

use application "polytope";

# Takes user input for which polygons to Tensor.

use Math::Complex; use Math::Trig;

print "Will now calculate Tensor(Pn,Pm):\n";

declare $count=1;

declare $n;

declare $m;

print "Enter n=";

chomp($n=<>);

print "Enter m=";

chomp($m=<>);

print "Now calculating Tensor(P$n,P$m)\n";

# Calculates vertices of the Polygon.

sub poly {

declare $zeta=Math::Complex->new(cos 2*pi/$_[0],sin 2*pi/$_[0]);

declare $zeta2=$zeta;

declare @polygon=(1);

for (declare $i=1;$i<$_[0];$i++){

push(@polygon,$zeta2);

$zeta2=$zeta2*$zeta;

}

print "Polygon $count=conv(@polygon)\n";

return(@polygon);

}

declare @poly1=poly($n);

$count++;

declare @poly2=poly($m);

# Calculates vert(PnPm)={(vw,v,w)|vvert(Pn),wvert(Pm)} under the identification R^2R^2R^4 by (a,b)(c,d)|->(ac,ad,bc,bd)

# Also note that for some reason polymake needs an extra dimension, which accounts for the 1 as the first entry.
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declare @vertices;

declare $v=new Vector<Float>([1,0,0,0,0,0,0,0,0]);

for (declare $j=0;$j<$n;$j++){

for ($i=0;$i<$m;$i++){

$v=[1,Re($poly1[$j])*Re($poly2[$i]),Re($poly1[$j])*Im($poly2[$i]),Im($poly1[$j])*Re($poly2[$i]),Im($poly1[$j])*Im($poly2[$i]),Re($poly1[$j]),Im($poly1[$j]),Re($poly2[$i]),Im($poly2[$i])];

push(@vertices,$v);

}

}

# Now put the vertices into a matrix

declare $matrix=new Matrix<Float>(\@vertices);

# Now create the polytope object PnPm, and look at its facets

# P10P10 takes about half an hour and returns 59520 facets before clustering.

declare $p=new Polytope<Float>(POINTS=>$matrix);

print "Number of facets before applying the theoretical epsilon-clustering method: ";

print $p->N_FACETS . "\n";

$matrix=$p->FACETS;

open FILE, ">matrix.txt" or die $!;

print FILE $matrix;

close FILE;

use application "polytope";

# Takes user input for which polygons to take the Hom.

use Math::Complex; use Math::Trig;

print "Will now calculate Hom(Pn,Pm):\n";

declare $count=1;

declare $n;

declare $m;

print "Enter n=";

chomp($n=<>);

print "Enter m=";

chomp($m=<>);

print "Now calculating Hom(P$n,P$m)\n";
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# Calculates vertices of the Polygon in Complex.

sub poly {

declare $zeta=Math::Complex->new(cos 2*pi/$_[0],sin 2*pi/$_[0]);

declare $zeta2=$zeta;

declare @polygon=(1);

for (my $i=1;$i<$_[0];$i++){

push(@polygon,$zeta2);

$zeta2=$zeta2*$zeta;

}

print "Polygon $count=conv(@polygon)\n";

return(@polygon);

}

declare @poly1=poly($n);

$count++;

declare @poly2=poly($m);

declare $v=new Vector <Float>(1,0,0);

declare @array;

for (my $i=0;$i<$n;$i++) {

$v=new Vector <Float>(1,Re($poly1[$i]),Im($poly1[$i]));

push(@array,$v);

}

declare $matrix=new Matrix <Float>(\@array);

declare $p=new Polytope <Float> (POINTS=>$matrix);

@array=();

for (my $i=0;$i<$m;$i++) {

$v=new Vector <Float>(1,Re($poly2[$i]),Im($poly2[$i]));

push(@array,$v);

}

$matrix=new Matrix <Float>(\@array);

declare $q=new Polytope <Float> (POINTS=>$matrix);

declare $r=mapping_polytope($p,$q);

$p=new Polytope <Float> ($r);

$matrix=$p->VERTICES;
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open FILE, ">Hom.txt" or die $!;

print FILE $matrix;

close FILE;

# apply clustering algorithm

The next step is to normalize the output vectors from Polymake:

#!/usr/bin/perl

#puts the text file into a matrix

open FILE, "matrix.txt" or die $!;

while (defined (my $line = <FILE>)) {

my @tmp = split(’ ’, $line);

push(@facet, [@tmp]); }

close FILE;

#normalizes the vectors

use Math::Orthonormalize qw(:all);

$n=scalar(@facet);

for (my $i=0;$i<$n;$i++) {

my $vector=$facet[$i];

$vector=normalize($vector);

my @tmp=@$vector;

push(@normalized,[@tmp]);

}

# saves normalized matrix to text

open FILE, ">normalized.txt" or die "cannot create normalized";

for (my $j=0;$j<$n;$j++) {

for (my $i=0;$i<9;$i++){

print FILE $normalized[$j][$i] . "\t";

}

print FILE "\n";

}

close FILE;
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Finally, the main clustering algorithm is given below, and the data is col-
lected:

#!/usr/bin/perl

open FILE, "normalized.txt" or die $!;

while (defined (my $line = <FILE>)) {

my @tmp = split(’ ’, $line);

push(@facet, [@tmp]); }

close FILE;

print "************************************\n";

print "Welcome to Epsilon-Cluster\n";

print "By Andrew Dynneson\n";

print "************************************\n";

print "\n\nEnter number of dimensions:\n";

$d=<>;

$n=scalar(@facet); # number of vectors

sub distance {

my $x=$_[0];

my $y=$_[1];

my $distance=0;

for (my $i=0;$i<$d;$i++) {

my $a=$facet[$x][$i];

my $b=$facet[$y][$i];

my $c=$a-$b;

$distance=$distance+$c*$c;

}

$distance=sqrt($distance);

return($distance);

}

print "Enter how fine you like the epsilon increments to be:";

$increment=<>;

print "Would you like to enter the Epsilon-Range manually? [no]:";

$char=<>;

chomp($char);
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if (lc($char) eq ’y’) {

print "Epsilon Min:";

$emin=<>;

print "Epsilon Max:";

$emax=<>;

}

else {

$emax=0;

$emin=distance(0,1);

for (my $i=0; $i<$n-1;$i++) {

for (my $j=$i+1;$j<$n;$j++) {

my $dis=distance($i,$j);

if ($dis>$emax) {$emax=$dis;}

if ($dis<$emin) {$emin=$dis;}

}

}

}

open FILE, ">result.txt" or die "cannot create result";

$ninc=$increment+1;

print FILE "Number of vectors to cluster=$n\t Number of increments=$ninc\n";

print FILE "eMin=$emin;\t eMax=$emax\n";

my $a=$emax-$emin;

$increment=$a/$increment;

print FILE "Step-size=$increment\n\n";

$epsilon=$emin;

# Skip checking emin? (i.e. already checked it on the first pass)

# $epsilon=$emin+$increment;

# print FILE "# Facets\t Epsilon\n";

print FILE "# Vertices\t Epsilon\n";

$bound=$emax+$increment;

while ($epsilon<$bound) {

close FILE;

open FILE, ">>result.txt" or die "cannot create result";

$k=0; # placeholder that determines where to begin the next partition.

$counter=0; # number of partitions (result)
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@P=(); # Partitions

$l=0; # holds the outcome of the tests

while ($k<$n) {

@Q=($k);

@C=(); # Complement

for (my $j=0;$j<$n;$j++) {

if ($j!=$k) {

my $dis=distance($k,$j);

if ($dis<=$epsilon) {push(@Q,$j);}

else {push(@C,$j);}

}

}

for (my $h=1;$h<scalar(@Q);$h++) { # tests to see if there are points outside the ball that should be in the cluster

my $x=$Q[$h];

for (my $j=0;$j<scalar(@C);$j++) {

my $y=$C[$j];

my $dis=distance($x,$y);

if ($dis<=$epsilon) {$l=2;}

last if $l==2;

}

last if $l==2;

}

if ($l==2) {

print $epsilon . ": invalid partition; points lying outside ball\n";

print FILE "-1\t";

}

last if $l==2;

if ($l==0) { # tests to see if there are two points inside the ball that are too far away from eachother.

for (my $i=1;$i<scalar(@Q)-1;$i++) {

my $x=$Q[$i];

for (my $j=$i+1;$j<scalar(@Q);$j++) {

my $y=$Q[$j];

my $dis=distance($x,$y);

if ($dis>$epsilon ) {$l=3;}

last if $l==3;

}

last if $l==3;

}

}

if ($l==3) {

print $epsilon . ": invalid partition; points inside ball are further than epsilon\n";

print FILE "-2\t";
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}

last if $l==3;

push(@P,@Q);

$counter++;

# Find the next k

my $t=0;

my $y=$counter;

while ($t==0 && $y<$n) {

$t=1;

foreach (@P) {

my $x=$_;

if ($x==$y) {$t=0;}

last if $x==$y;

}

if ($t==0) {$y++;}

}

$k=$y;

}

if ($l==0) {

print "$epsilon: $counter Facets\n";

print FILE $counter . "\t";

#if ($counter==1) {$one=1;}

}

print FILE $epsilon . "\n\n";

$epsilon=$epsilon+$increment;

# This ends the scan at the first instance of the entire data set being clumped into a single cluster (i.e. you set the emax manually to be much larger than the data set).

# last if $one==1;

}

close FILE;

References

1. Contois Bogart and Gubeladze, Hom-Polytopes, Math. Z., Vol. 273, pp.1267-1296 (2013)
2. Andrew Dynneson, Tensor product of polygons, Thesis: San Francisco State University

(2012)
3. Ewgenij Gawrilow and Michael Joswig, polymake: a framework for analyzing convex

polytopes, Polytopes-Combinatorics and Computation (Gil Kalai and Gunter M. Ziegler,
eds.), Birkauser, pp. 43-74 (2000)



Tensor polytopes, Hom polytopes, Hyper-matrices and data clustering 29

4. Winfried Bruns and Joseph Gubeladze, Polytopes, rings, and K-theory. Springer Mono-
graphs in Mathematics, Springer, Dordrecht (2009)

5. David S. Summit and Richard M. Foote, Abstract algebra, third ed., John Wiley and
Sons Inc., Hoboken, NJ (2004)

6. Misner, Thorne, Wheeler, Gravitation. W.H. Freeman and Company (1973).


