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Here we propose a general relativistic quantum éwark for mistrustful cryptography that
exploits thefascinating connection of quantum non-locality apeécialtheory ofrelativity with
cryptography.The underlying principle of unconditional securigytwo-fold quantum non-local
correlations: first entanglement swapping and tted@portation. The proposed framework has
following remarkable and novel features. (i) Helpslefining a new notion of oblivious transfer
where both the data transferred and the transfgtipo remain oblivious(ii) The confidentiality
and integrity of the data transferred is guarantgethe actions of sender and receiver in their
own secure laboratories instead of sending data woisy channels. (iii) It directly leads to
unconditionally secure and deterministic two-sidew-party computation which is currently
considered to be impossible. (iv) the two-party patation turns out to be asynchronous ideal
coin tossing with zero bias which has not beeneadd previously. (v) The same framework
implies unconditionally secure bit commitment. Fiywawe conjecture here that the combination
of quantum non-locality and theory of relativity discussed here is complete and sufficient to
solve all the mistrustful cryptographic tasks sebur

quantum cryptography*®?® where causal structure of Minkowski space time or

impossibility of superluminal signaling gives powerrelativistic quantum cryptography in
defining tasks that are not possible in non-reistiv setting, especially in mistrustful
cryptography. These interesting developments giwréhér hope for defining a more general
setup in relativistic quantum theory that would befficient to solve all the mistrustful
cryptographic tasks securely.

Kilian showed that classical oblivious tranéféf (OT) is a basic building block for
other mistrustful cryptographic protocols, for eydey two-party secure computatiGhs
However, since computationally hard classical proke can be broken, various protocols for OT
have also been proposed that are based on noivigtiatquantum mechanitsand relativistic
quantum theor. In existing non-relativistic quantum OT protocasly data remains oblivious
to Alice while she can be well aware of Bob’s pasit On the other hand, in relativistic OT
protocof?, the data can be completely determined by Alicdernghe remains ignorant about the
position of Bob.

Moreover, in all previously proposed OT protoc@sp cannot be certain that the data he
received has not been altered during the protddehce, currently it is known that 1-out-of-2
oblivious transfer and deterministic two-sided tparty secure computations (TPSC) are
impossible in classical/non-relativistic quantunyptography>¢ These impossibility results
have also been extended to relativistic quantumptography’. However, relativistic
cryptography gives hope for secure implementatibmandeterministic two-sided TPSC and
hence variable-bias coin tossifigMoreover, asynchronous ideal coin tossing is issfidle in

I n the last few years, researchers have shown gredtement in the area of relativistic



classical/non-relativistic quantum cryptographwhile only synchronous ideal coin tossing is
possible if impossibility of superluminal signalifgyconsidered.

Furthermore, bit commitment is another very impari@nd basic cryptographic protocol
that is impossible in classical/nor-relativisticamtum cryptograpHy™® but has been proved to
be possible in relativistic quantum ther§"?® These no-go theorems show the limits of
classical/non-relativistic quantum cryptography lelgossibility results show that relativity adds
its weight, and hence gives more power, towardsigma cryptography to evade such no-go
theorems.

At this point, we would like to discuss an impottgmantum mechanical concept, non-
locality, which has an interesting connection wattyptography and cryptanalysis. Non-local
Einstein-Podolsky-Rosen (EPR) type correlatfénsolves the very basic ingredient of
cryptography, QKI¥, that gives unconditionally secure means for gecmmmunications
between distant parties. On the other hand, inrasgtul cryptography, a dishonest party can
exploit the non-locality (EPR types quantum attit&scheat successfufy/***3

In this work, we exploit the fascinating connectonf quantum non-locality and
relativity with cryptography and show that the conabion of relativity with non-locality favors
cryptography rather than cryptanalysige define a general relativistic quantum framewionrk
mistrustful cryptography and show that the proposathework proves to be a building block
for many interesting mistrustful cryptographic maals that are considered to be impossible. For
example, it directly leads to (i) a new notion ol @here both the data transferred and the
transfer position remain oblivious, (ii) determtnistwo-sided TPSC, (iii) asynchronous ideal
coin tossing (zero bias), (iv) bit commitment, guylsecure quantum secret sharing. In fact, the
framework is sufficient to solve all the mistrustiiryptographic tasks unconditionally secure
against Lo- Chau attacks”®

Non-locality and relativistic mistrustful quantum cryptography
In a general framework of relativistic quantum dography proposed by Adrian Kent,
background space time is approximately Minkowskil aommunicating parties are not the
individuals but are agencies having distributednéggéhroughout the space time. The agencies
are assumed to have fixed secure sites in a ghatial frame and can communicate with each
other by sending quantum/classical signals at inglatr speed, c=1. Moreover, the agencies have
unlimited powers of information processing andadint technology (quantum computers) and
are restricted from cheating by principals of quamtheory only. If one of the agencies sends a
guantum/classical signal from point,@), then after some fixed time t > 0, the ligheli
separated agents from the sender in some givetiainiegame can receive the signal on a special
sphere of radius t and centerec.at

For simplicity, we suppose here that Alice is atividual while Bob has three agents; R,
B; and B at the relevant points in Minkowski space-timeisTéssumption does not provide any
advantages to Bob over Alice in the framework. Moes, even if Alice manages agents at
specific space time positions, it will not give ey advantages over Bob. We also assume Bob
and his agents can communicate quantum informagcarely with each other. However, all the
guantum/classical channels between Alice and Bebiresecure. Both parties have powers of
instantaneous computation and time for informapiootessing at their secure sites is assumed to
be negligibly small. Finally, the proposed framekv@ purely relativistic quantum mechanical
and does not require any secure classical chanoissical information can be publically
announced.



All the mistrustful cryptographic tasks can be igmpkented with following procedure:
Suppose Bob and Alice are at (0,0) ard) (point of Minkowski space time while Bob’s agent
R, B; and B are at arbitrary space-like separated positionsionk to Alice. Alice only knows
the directions where Band B can receive the data, they are light-like sepdratem Alice, but
not their exact positiond8Bob shares a secret entangled systsn I7aQ s with Alice. Bob
also prepares another secret entangled systenia @ #r and sends/a to Alice while#r to R
such that both Alice and R recei#g and#r simultaneously. That is, Alice, Bob and R share a
systems =44 3R denoted by = HaQ Hz @ Hn @ Hr only known to Bob.

Alice then performs Bell state measurem&@BSM) by applying local Bell operator (
G,01) on (HAQHA) R (HeQHR) . She keeps her measurement resyuf, [1{0001101%} secret.
As a result, Bob’s and R’s systems get entari§leR] 1#:® Hz. Now Bob prepares a quantum

state|¢>, applies transformationg**U" corresponding to data,u, he wants to send and

teleporté® the quantum state to R by applying local Bell apar s, 01 on (| ¢> QR Hz)QHz. The

non-locally correlated system remains totally random to R. Instantly R measurississtemg.
and sends the outcome to Alice. Alice preparesstiae quantum system corresponding to
received classical information from R, applies Hert unitary transformations“sU" (or
UYay’™t ) and sends to eitherBor B,. The local transformations“=U (or UYau'™ )
applied by Alice determine the data (commitmeng ghsending to Bob. Simultaneously, she
announces her BSM resulfu, . Bob validates the actions of Alice if she rephathin time and
her announcement is consistent with non-local quantorrelations between BSM results of
Alice, Bob and shared quantum systemm = HaQHeQ HaRHr. Bi measures the received
guantum system from Alice in the pre-agreed basissends the outcome to Bob. Now Bob can
find the information about Alice’s data as comesnfrthe specific code discussed below.
Underlying principle of unconditional security ihig framework is two-fold quantum non-local
correlations: first entanglement swapping and tieéeportation.

To make the analysis simple, we assume in theofeste discussion thatf = (C%)®*
each subspace of; is 2-dimensional complex space. That is, ba®#s= (C)®(C? and
HA@Hr = (CH® (C?) are 2-qubit maximally entangled systems with Balbis

_[0)un) + (-2 [Df10 uy)
)= N (2)

whereunandu, LI{0,1}and O denotes addition with mod 2.

|umun

Procedure-|
Let's suppose Alice and Bob agree on a code: ifdserS (Alice/Bob) applies unitary

transformation, o,, o,, or g,0, on a quantum systeq‘w}D}[S, he/she is actually giving input
data 00, 01, 10 or 11 to the systemy respectively. That is, transformatian 0{I,o,}
correspond to classical datauy ={000% (or classical bits=u,Ouy ={01}) while those of
o,{o,,0,0,} correspond to classical datiauy ={101% (or classical bits=u, Ouy ={10}). As
a result, data will be transferred by the actiofissender and receiver in their own secure
laboratories instead of sending data over noisyméls.

This procedure-l solves the problem of OT, deteistim two-sided TPSC, and
asynchronous ideal coin tossing with zero biaseffder wants to send data, to the receiver,



he/she will apply Pauli transformatiorg O{cssoss o0y "} on the shared quantum state
|¢)0{+,-} with receiver. We would like to highlight here thatsoy|¢)=oy:0,"%|g) if
|#)0{+,-} where we ignore the overall phase factor. We sfaitiés procedure for OT where

Alice is the sender while Bob is the receiver. BHagne procedure will be applicable for two-
sided TPSC and asynchronous ideal coin tossing tidzussed latter.

Oblivious transfer

OT was originally defined by Rabin where sendeiid@)l sends a 1-bit message to the receiver
(Bob) who can only receive the message with prdipalsio more than haff. The security of
the protocol relies on the fact that Bob can fildl whether or not he got the 1-bit message from
Alice after the completion of protocol but Alicennains oblivious about it. In a related notidn,
out-of-2 OT, Alice sends two 1-bit messages to Bdio can only receive one of them and
remains ignorant about the other while Alice reraagmtirely oblivious to which of the two
messages Bob receiv@d® It is shown later by Crépeau that both of thesgions of OT are
equivalent®.

Our proposed procedure-l helps in defining a newonoof OT where receiver Bob
remains oblivious about both the data transferretithe transfer position; he may know both the
transferred messages but remains oblivious abeugeéhuine one. On the other hand, the sender
Alice cannot learn the transfer position even aftex protocol is completed. Moreover, Bob
accepts the data only if he is certain that dasadeane from Alice, by measuring time lapse and
testifying non-local quantum correlations estaldstihrough local operations. Finally, in our
secure OT protocol, Alice cannot change the datastarted with otherwise Bob rejects the
protocol — that is something not possible in a#l previously proposed OT protocols. Explicit
procedure-| for OT is described below:

(1). Bob secretly prepares an EPR pais,) D#®#s and sends first qubit to Alice.

(2). Bob prepares another EPR anUr>D}[A'®}[R and sends fist qubit to Alice while second
qubit to his agent R such that both Alice and Requbits|uy) and|u,) simultaneously.

(3). After time t=/c, Alice receiveguy)and performs BSM on qubitsi,) and |uy) in his
possession and gets two classical bits, wsay [1{0001101% . This measurement projects the
qubits|u,) and|u, ) into one of the four possible Bell stategu, ) D#s® 74 instantly, unknown
to both Alice and Bob.

(4). At the same time t, Bob prepares a qiti{+-}in the agreed Hadamard basis, applies
Pauli transformation, O{o 0w o0y "} corresponding to datau, he wants to send and
teleports the stateb|¢> to R. As a result, R’s half of the shared Beltats becomes one of the
corresponding four possible stat¢g) = g,0,|¢) where o, 0{l,0,,0,,0,0,} unknown to
everyone. R measures his system and sends outgotaéilice. In fact, Bob (R) has transferred
the datau,u, encoded ing,, to Alice where she remains oblivious about the daten after
receivingy . We would like to mention here that as for aswblis transfer is concerned, from

Alice to Bob, there would be no requirement of sfanmationo, from Bob’s side; it serves
purely the purpose of TPSC, coin tossing and qurasicret sharing to be discussed later.



(5). Instantly, Alice prepares corresponding quantuate|41/), applies unitary transformations

corresponding to her input datg 0{oy20y# 0520, "¢} on|y) and immediately sends the state
@) = 04|¢) = 0,0i04|$) 2

to either B or B, over insecure quantum channel between them. Adice’s choice of sending

state|¢') to By or By is totally random. Simultaneously she publicallpannces values afyu, .

(6). Suppose Bob and one of his agenteBeive the information from Alice at timés andt,

respectively. If valuesuy,u, are consistent with swapped entangled sdagm& and
correspondingo; and Alice replied within allocated time, Bob veedi that Alice is fair
otherwise aborts the protocol. Here, for each vafueu,, , there will be unique Bell staqebur>
and hence unique; as shown in table 1 and table 2.
(7) B measures the received staté) in {+,-} basis, and sends the result and tigéo Bob.
Bob can check that whether Alice’s transformatisrconsistent with her announcement or not.
If uuy {0003 she should have applied, 0{I,o,} on|y¢) while o, 0{0,,0,0,} in case of
uuy O{1013 . As a result, Bob can find that eitheyu, 0{000% (or u,u, 0{101%}) but remains
ignorant about the specific classical datalhit, /a=u, O u, Alice has sent.

I would like to mention here that modification ofiroprotocol for computational basis
{01} is straightforward where both parties agree thiaeAwill apply unitary transformations
o, 0{0y20y% 0, "oy#} on the stat@y) where oyeoy @) =0, "oy |¢) if |¢)0{01} where
we ignore the overall phase factor. These operatimynAlice guarantee that Bob can get only
following information: eithero, O{l,0,} or o, 0{o,,0,0,} but not the exact Pauli operator.
That is, Bob can successfully guess either Alice $ent qubiu,u, 0{001G or u,u, 0{011%
but not the definite data.

Security analysis

We show that the power of two-fold quantum non-ocarrelations and special theory of
relativity bounds both parties to remain fair amtl @& cording to the agreed codes: use genuine
transformations, priorly agreed basis, and respatidn allocated times.

Security against Alice
In our OT protocol, cheating Alice means she cdunydto get following information during or
after the protocol: (I) try to know the specifictda,, Bob has transferred (ll) want to know the

position of B with certainty or (Ill) try to alter her BSM resul,u, (from u,u, 0{000% to
uuy 0{101% ) after gettingyy from R and convince Bob for joint measurement owmeo
|@') = o,0,0|¢) of her choice. As for as Bob’s data is concerneliteAcannot find the exact
value even after the protocol is complete — theéesyss = HaQ HeQ@ Ha @ Hr BSM results of
Bob and|¢> is completely unknown to her. On the other hahe, @so remains ignorant about

transfer position since the proposed protocol dm¢sllow her to compute time lapse and hence
distance of the receiver; both Bnd B do not communicate with Alice during the protocol.
Can Alice choose Mayers and Lo-Chau att&tk&or other strategies and try to cheat by

altering values ofi,u, after she has made BSM on qul$i1§> and|ua'>? Answer is NO; Bob
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will detect cheating Alice with probability=1. She can try following strategies: (i) If she
receives resulyy from Bob’s agent R, then prepares different stabe, hence applies/announce

different values otu,u, , this procedure guarantees Bob to detect her idgesince Bob’s agent

R knowsy . (ii) If she delays and do not apply BSM on qutl)il§> and|ua'>, she will receive
teleported statéy) = ;03| ¢) from Bob and single biti. from R. Both of these results are useless
for Alice to cheat, cannot get any information abow,) or |o;) and hence non-local
correlations. (iii) Instead of sending a single iqjirbthe statey) 0{+,-} , suppose Alice prepares
an entangled quantum systegs) where

) =2 Alai) B) 3)
|
and sends systefi§ ) to Bob. Even then, she cannot cheat by enfocingtBajet valid non-local

correlations by applying unitary transformations|a{) .

As we have stated earlier, underlying principlain€onditional security in the proposed
framework is two-fold quantum non-local correlasoriirst entanglement swapping and then

teleportation. That is, for each value @t , there will be unique Bell sta1ebur> and hence
unique ;. Let's consider a simplest possible situation friarst row of table 1 and first, fifth
and ninth column of table 2. Suppdsgu,) =00, |uyU,) =00 and u,u, =00 then |uyy, ) =00.
Now if BSM result of Bob isu,u, =11 while teleportingoy|¢)to R, theno; = 0,0, . If Alice
tries to cheat by announcing different values wfiy, =011011 then Bob will extract
|upty ) =011011 and hence different; = o,,0,,1 .

Note here, that if Alice gets,u,; =00 and announces,u, =01, it will not be considered
as successful cheating since for the case considé@ve |y) = 0,0,0y|¢) = 0,0p|#) . Similarly,
if Alice gets u,uy =10 and announces,u, =11, it will generately) = o,0y|#) = | ,0y|#) . As a
result both Alice and Bob will get same outco[mé}. In conclusion Alice should not be able to

changeuyuy from uyuy 0{000% to u,uy, 0{101%) after gettingy from R and she cannot do this
in our proposed procedure.

| uaUp )| ug, ) (UaUy )| Uply )
00) [0g) | [on[od) | [10)[10) | [1D[1] | ©O)|od) | ©Ep[0] | @0)[10) | aD|1y
00)[07) | [09[00) | [10[1D | [1D10) | ©O)[o7) | ©D[00) | @ [1D) | (D [10)
00)[10) | [0D |13 | [10)|og) | [19[0D | ©O)[10) | OD[1D | @Y [o0) | @D[ol)
00 [13 | [0D[10) | [10 [0 | [11]00) | OO 1) | OD[10 | @O [0D) | @I ]|o])

Table 1. Entanglement swappingBell state shared between Alice and Bob|u'§1b> and
between Alice and R ikua,ur>. This table shows all possible initial states wfa@gled particles
|uauy Yluyu, ) and corresponding outcomes of Alice’s BSM,uy)|upy, ) . For example, if
|ualy )|ugu, ) =|00)11) then swapped entangled paiu, ) would be in one of the four possible

Bell sates]11), |10), |01) and|00) corresponding to BSM result of Aliagu, as 00, 01, 10, and
11 respectively.



Bob BSM R
etk UpUy @) = 0,04|9)
joo) | 0C[01[10] 11 au|#) 0,0|8) | o.008) | 0,0.0,/9)
o) | 0C |01 10] 11 | oguayp) | au|d) | 0,0:0|¢) | 0.00/9)
j10) | 0C | 01|10} 11 | o,0,¢) | 0,0.000) op| @) 00| @)
11y | 0C | 01110 11 | g,0,0u|¢) | o,0h|0) 00| 9) op| @)

Table 2: Teleportation:This table shows all possible Bell statagur> swapped between Bob
and R due to BSM of Alice, Bob’s BSM results on/ls part of the entangled pair and state
op|¢) and corresponding possibilities of stﬁte on the R’s side. For example, if Bob and R
have share entangled state|a!§> and BSM result of Bob is 10 then R will have state
|y)=0,0.0,|¢) on his side.

Finally, Alice cannot cheat successfully by hidingr position or delaying in sending
|z//'>. If Alice performs BSM from position P (distangaway from Bob) and later tries to cheat
by responding to Bfrom different position P', it would not help hat all. She will have to
respond within allowed time and within this timgda she cannot get any useful information
about non-local correlations generated or positdnB;. In conclusion, non-local quantum

correlations and relativistic quantum cryptogragbyces Alice to remain fair and perform
agreed actions within time.

Security against Bob
In our proposed framework, security against Bos iefollowing two requirements: (I) although
it is necessary for Bob to know exact values oc&k BSMu,u, but he must not be able to

know the definite unitary transformatian, 0{os2o ,o2gr-""} Alice has applied. (I1) Before
or during the protocol, Bob should not know theipos where Alice will send the data.
Since Bob knows EPR paifs,u,) and|uyu, ), he can find exact values of Alice’s BSM

u,u, during the protocol by measuring swapped entangEgu,u, ). Bob’s agents then can

send an arbitrary quantum state and Alice’s wiplydback without knowing her BSM result has
already been revealed. Moreover, even if Aliceals &nd announce exact values of her BSM

Uy, Bob cannot differentiate between Alice’s transfations oy=oy or gb2oy " on |¢)
sinceoyaoy @) =oveoy U |y).

Furthermore, before or during the protocol, Bobnmnpredict in advance about the
position where Alice will send the data. The choatdransfer position is totally random and
Bob can only know the transfer position omeg one of B or B, (who are space-like separated)
receives the data from Alicklence the proposed OT protocol is completely setore Bob; he

will not learn the transfer position until the pyobl is completed and will remain oblivious
about the data Alice has sent.

Two-sided two-party secur e computation

Two-sided TPSC enables two distant parties Aliack Bob to compute a functidn(a,b) wherea
andb are inputs from Alice and Bob respectively. Thetpcol is said to be secure if it fulfils
following security requirements: (i) both Alice aBabb learn output of (a,b) deterministically.
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(ii) Alice learns nothing about Bob’s inpbtand (iii) Bob learns nothing about Alice’s inpat
The impossibility or no-go theorems for secure paoty computations are based on possibilities
that one party, say Bob, can also comgugeb’) whereb' LI{by,b,,....}. That is, Bob can cheat
by computing the value of the functidrfor all of his inputsb’ and hence violate the security
requirement of single input from each paitp>® has shown that Bob can do this by applying
unitary transformations on his own quantum systémrhat is, the systeri kept by Bob must
be an eigenstate of the measurement operator thatsés for computing (a,b). Being an
eigenstate 3 remains undisturbed by Bob’s measurement that me&egputation off (a,b’)
feasible.

However, our proposed procedure-l discussed forc@T easily evade such attacks and

results in secure and deterministic two-sided TR8@inction f (0,,0,;|¢)) where o, and gy,
are unitary transformations on quantum syst&#r #HaQ HsQ Ha Q@ Hr applied by Alice and
Bob respectively. According the code, when Alicel 8ob apply these transformations |¢j\
they actually provide inputi,uy - 0, and uuy — 0, to the shared quantum system
respectively. At the end of the computation, bahips know the same definite outcome
f(Ua,Ub;|¢>)=0an0'b|¢> 4)

where g; comes from the shared quantum sysfém

Bob’s inputuyu, remains totally random to Alice even after measmmrmfaiab|¢>.
Similarly, Bob remains oblivious about Alice’s intpu,u, . Finally both Alice and Bob get same
outcome of functionf (aa,ab;|¢>) deterministically. As we have shown earlier, neitiAdice
nor Bob can cheat by altering quantum sysigi= o;03|#) , both parties know the resujt and
Alice’s  transformation o, on |¢)=0,0,|¢) generates the final outcome

f(aa’ab;|¢>) =Jaaiab|¢> .

Ideal quantum coin tossing

Coin tossing’ is another fundamental primitive function in commiuation that allows distant

mistrustful parties to agree on a random data. @mssing is said to be ideal if it follows:

1). Ideal coin tossing results in three possible@mesy: v, = +,y. = - ory, = invalid.

2). Outcomey,. andy. occurs with equal probability. = P.= 1/2 and both parties A and B have

equal cheating probabilitiesl?;,A = PyB =P,, which means that the coin tossing is fair.

3). If both parties are honest, the outcome invalid never occurd?. = 0.

4). If any one of the parties is dishonest, theouie invalid occurs with probabili®. = 1.
Proposed procedure-l is in fact an asynchronousl igigantum coin tossing where both

parties have equal resource and the protocol offers bias. That is, it fulfils all the security
requirements of ideal coin tossirg: = P.= 1/2, zero cheating probabilities for Alice andBp

PyA = PyB =0), P.= 0 if both parties are honest ard=1if any one of the parties tries cheating.

Procedure-l|
This procedure solves the cryptographic task ofirgebit commitment with following code: In

the commitment phase, Alice applies same unitagsfiormations on both EPR pairfu,u,)
and|u,u, ) and then performs BSM and gets two hits, . By doing this, she commit herself to



the bit valuea=0 if u;=0anda=1if u, =1. That is, ifuyu, {0003, she is committed to bit
a=0 and ifuyuy 0{1013, she is committed to b#=1. In the revealing phase, she announces
both her commitment (BSM) and unitary transformagio she applied before BSM.

Bit commitment

A bit commitment is a cryptographic scheme betwiwen mistrustful parties, committer (Alice)
and a receiver (Bob), where Alice commit her tgac#ic bit b in the commitment phase. In this
phase or during the scheme, Bob should not be tabéxtract the bit value. In the revealing
phase, however, it must be possible for Bob to kribg genuine bit value b with absolute
guarantee when Alice reveals the committed bitAlnge should not be able to change her mind
about the value of the bit b. Explicit procedukrél bit commitment is described below:

(1). Bob secretly prepares an EPR bg'urb> and sends first qubit to Alice.

(2). Bob prepares another EPR qagur> and sends fist qubit to Alice while second qubihis
agent R such that both Alice and R receive qubif$ and|u,) simultaneously.

(3). After time tx/c, Alice receiveé,ua'>, applies secret Pauli transformationon both qubits
|ua> and|ua'> and performs BSM and gets two classical bits, say 0{0001101% , her
commitment. This measurement projects the qubjfsand|u,) into one of the four possible
Bell statesj upl, ) instantly, unknown to both Alice and Bob.

(4). At the same time t, Bob prepares a qupjt{+-}in the agreed Hadamard basisd
teleports the stat|s¢> to R. If BSM result of Bob isiu, while teleporting the state, then R’s
half of the shared Bell's state becomes one ottreesponding four possible statgs = a;|¢).

R measures his system and sends outagne Bob.

(5). In the revealing phase, Alice announces idiertdf o and values oti,u; and hence her
commitmenta .

(6). If valuesuyu, are consistent with swapped entangled 41@1@) and corresponding, ,
Bob verifies that Alice’s commitment is genuine ethise detects cheating Alice.

Let’'s consider the previous situation again. Supqung>=OO, |ua,u,>=00 , Alice
appliesg; =1 and getsu,u,; =00 . The swapped state will be th{anp)ur>=00. Now if BSM
result of Bob isu,u,y =11, theng; =o,0, . If Alice tries to cheat by announcing differeaues
of 0 =0,,0,,0,0, andu,u, =011011then Bob will extrac1ubu,> =011011 and hence different
o, =0,,0,,1 . In short, if Alice alters values from,u, =00 to u,u, =10 (or uyu, =11), Bob
will extract g, ={o,,1} and hence differery . Finally, can Alice cheat by applying on only
one qubit/u,) (or |uy)) or o on |u,) and o’ on |uy)? It can be seen from table 1 and 2 that

answer is again NO.

Proposed bit commitment scheme has very interestisgect that after making
commitment, committer can wait for indefinite tinbefore revealing it. Both committer and
receiver extract non-locally correlated classioébtimation in the commitment phase that can be
stored and revealed whenever they want. They doneet of quantum memory for storing
guantum data for long term bit commitment.



Procedure-l11
Let's suppose that R is not an agent of Bob bushethird party then procedure-I prove to be
quantum secret sharing schéfres shown below.

Quantum secret sharing

In procedure-lll, EPR paliuaub> is known to both Alice and Bob while paiila'ur> Is known to

R and Bob only. Here Bob will be the sender whiled and R will be receivers (with at least
on trustful). R measurq$/> and gets information of while Alice have BSM resulti,u, . If

they meet in causal future of light cone and setity ) to Bob, Bob helps them to decode
his secreto, by announcing required information about sharedntjua system;. Detailed

guantum secret sharing protocol based on propoaetefvork and its generalization to N party
will be discussed in our future work.

Discussion

We defined a general relativistic quantum frameworkmistrustful cryptography based on non-
local quantum correlations and theory of relativithe proposed framework determines the
actions of both parties through two-fold non-logahntum correlations; entanglement swapping
and then teleportation. These correlations are f@eskecure mistrustful cryptographic protocols
then. Moreover, impossibility of superluminal signg is used for insuring timely responses.

In our relativistic procedure-l, new OT notion, thexeiver remains ignorant about the
transferred data; he can only get certain inforoma@bout the data but not its exact identity.
Moreover, the transfer position remains oblivioastlie sender throughout the protocol while
receiver can find the exact position only when he/eceives the datdhe sender is guaranteed
that the receiver can gain specific information wbilve data that logically follows from the
protocoland know the transfer position only if the proto®lcompleted and the receiver acts
fairly. Moreover, if the receiver completes the tpml successfully, he will be certain that the
transferred data has come from the legitimate serides oblivious data transferred from the
sender to the receiver depends on the actions tf fparties in their own secure laboratories
instead of sending the actual data encrypted bryesk&eys over noisy channelsloreover, the
confidentiality and integrity of the data is guaesd. The receiver rejects the data if the sender
tries to modify it after the protocol has beentsir

The procedure-1 generated through interesting coatigin of non-locality and theory of
special relativity gives then solution of longstaryd problems in mistrustful cryptography;
unconditionally secure and deterministic two-siddISC and asynchronous ideal coin tossing
with zero bias. Interesting and fascinating comtiamaof EPR type quantum correlations with
causal structure of Minkowski space time show tbegr of relativistic quantum cryptography
in defining tasks that are considered to be impbs$n non-relativistic cryptography.

With little modification, procedure-I turns out b® procedure-Il and Il which came up
with unconditionally secure bit commitment and quamsecret sharing respectively. Procedure-
Il has many interesting aspects like unconditisedurity and indefinite time for commitment.
Both committer and receiver extract non-locally retated classical information in the
commitment phase that can be stored and revealedenvbr they want. They do not need of
guantum memory for storing quantum systems.

Although it is standard in mistrustful quantum dography that both the parties have
efficient quantum technologies (quantum computdhe proposed relativistic quantum
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framework can be reliably implemented without remg quantum computer. Both parties can
calculatef(aa,ab;|¢>) securely with existing quantum technologies; phd&tectors without

needing long term quantum memokfowever, even having quantum computers, neithdy par
can cheat successfully.

Finally, we conjecture here that the combinatiorgontum non-locality and theory of
relativity as discussed here is complete and safftcto solve all the mistrustful cryptographic
tasks securely. We hope this work would open neectbns in quantum information, quantum
computation, quantum cryptography and their conoestwith special theory of relativity. On
the other hand, proposed protocols are purely guambechanical where both input and output
data is associated with unitary transformationdiegmn quantum systems. Hence, it would in
return prove to be helpful in developing our untmrding about the true description of the
world, the quantum theory.
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