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Abstract

We construct an anisotropic, degenerate, fractional operator that never-

theless satisfies a strong form of the maximum principle. By applying such

an operator to the concavity function associated to the solution of an equa-

tion involving the usual fractional Laplacian, we obtain a fractional form of

the celebrated convexity maximum principle devised by Korevaar in the 80’s.

Some applications are discussed.

1 Introduction

The celebrated convexity maximum principle was proved by Nick Korevaar [13, 14]
to answer a question posed by his advisor, prof. Robert Finn, concerning convexity
of capillary surfaces in convex pipes. Korevaar’s idea gave birth to a number of
subsequent contributions, especially due to Kawohl [8, 9] and Kennington [10, 11,
12]. To be more specific, in order to prove the convexity of a continuous function
u(x) in a convex domain Ω ⊂ R

N , N ≥ 1, the concavity function

C(x, y) = 2u(x+y

2
)− u(x)− u(y), x, y ∈ Ω (1.1)

was introduced (see [9, p. 113, (3.30)]). One may also deal with the function
c(x, y, λ) = (1− λ) u(x) + λu(y)− u((1− λ) x+ λy) for x, y ∈ Ω and λ ∈ [0, 1] as
in [12, p. 687], but we prefer to keep λ = 1

2
for simplicity. This is enough because

u(x) is continuous.
The convexity of u(x) in Ω is equivalent to the inequality C(x, y) ≤ 0 in the

Cartesian product Ω2 = Ω × Ω. In order to prove this inequality, the first step
amounts to exclude that C(x, y) attains an interior, positive maximum, i.e., to prove
a maximum principle. This is the reason why such kind of result became known as
convexity maximum principle. Concerning the method of proof, in the mentioned
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papers the conclusion is obtained by contradiction, arguing at an interior point
(x0, y0) where the concavity function supposedly becomes extremal. In [6], instead,
an elliptic degenerate inequality satisfied by C(x, y) is constructed, starting from
the equation satisfied by u(x). For instance, if a function u ∈ C2(Ω) is a classical
solution of the torsion equation −∆u = 1 in Ω, then the following equality holds:

N
∑

i=1

(

∂2C

∂xi ∂xi

+ 2
∂2C

∂xi ∂yi
+

∂2C

∂yi ∂yi

)

= 0 in Ω2. (1.2)

Equation (1.2), although degenerate, implies a maximum principle (see [6]). In-
dependently of the method used for excluding that C(x, y) has interior positive
maxima, in order to conclude that C(x, y) ≤ 0 in the whole domain Ω2 it is nec-
essary to ensure that C(x, y) ≤ 0 at the boundary of Ω2, i.e., when at least one of
x, y lies on ∂Ω (here we are assuming u ∈ C0(Ω)). Unfortunately this turns out to
be a difficult task, not only from a technical point of view, but also because the
claim is false, even in very simple cases. For instance, if Ω is a smooth, convex,
bounded domain, then the solution v of

{

−∆v = 1 in Ω

v = 0 on ∂Ω
(1.3)

is known to be power-concave in the sense that the function

u(x) = v
1
2 (x) (1.4)

is concave (see [9, p. 120, Example 3.4] and [12, p. 697, Remark 4.2.1]). Thus,
the point of view is slightly changed. In fact, thanks to the exponent 1

2
in (1.4),

the gradient Du becomes infinite along ∂Ω, and this implies that the concavity
function C(x, y) cannot attain a negative minimum on ∂(Ω2). Hence, if u were
not concave, the function C(x, y) would attain a negative minimum in the interior
of Ω2. Furthermore, a minimum principle holds (see [9, p. 116, Theorem 3.13] and

[12, p. 691, Theorem 3.1]). It follows that the minimum of C(x, y) over Ω
2
equals

zero, and therefore
√

v(x) is a concave function.
Different approaches have also been used for proving that solutions of elliptic

PDE’s are convex or concave: for instance, comparison of u(x) with its convex
envelope [2] and constant-rank Hessian theorems [15].

Problem (1.3) also provides an example where all strategies for proving concav-
ity must necessarily fail. Indeed, let Ω ⊂ R

2 be an equilateral triangle. In this case
the solution v is known explicitly, and we have Dv = 0 at each vertex of ∂Ω: there-
fore the (positive) function v is not concave. Nevertheless, since v is power-concave,
then its level sets are convex: this was initially proved by Makar-Limanov [17] in
dimension 2 (see also [1, 16]).

In the present paper we extend the convexity maximum principle to continuous
functions u ∈ C0(RN) satisfying the equation

(−∆)s u(x) = f(u) in Ω, (1.5)
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where (−∆)s, s ∈ (0, 1), is the fractional Laplacian

(−∆)s u(x0) = cN,s P.V.

∫

RN

u(x0)− u(x)

|x0 − x|N+2s
dx (1.6)

= cN,s lim
ε→0+

∫

|x0−x|>ε

u(x0)− u(x)

|x0 − x|N+2s
dx.

Here P.V. stands for principal value, and the constant cN,s (which is found, for
instance, in [3, Remark 3.11]) is given by

cN,s =
4s sΓ(N

2
+ s)

π
N
2 Γ(1− s)

.

A continuous function u : RN → R is a solution of (1.5) if the integral in (1.6)
converges for all x0 ∈ Ω, and if the equation in (1.5) is satisfied pointwise. To
give an idea of the applications of the tools developed afterwards, let us quote a
statement that holds under rather simple assumptions on f(t).

Theorem 1.1 (Convexity maximum principle, sample statement 1). Let u ∈
C0(RN) be a solution of (1.5) in a convex, bounded domain Ω ⊂ R

N , N ≥ 2.
Suppose that the function f(t) in (1.5) is monotone non-increasing and convex. If
C(x, y) ≤ 0 for all (x, y) 6∈ Ω2, then C(x, y) ≤ 0 in all of R

2N .

We also put into evidence the following surprising property of convex functions
in two variables satisfying equation (1.5) in a (possibly unbounded, or even very
small) convex domain Ω.

Theorem 1.2 (Convexity maximum principle, sample statement 2). Let s ∈ [1
2
, 1),

and let u : R2 → R be a convex function in the plane satisfying equation (1.5) in
a convex domain Ω. Suppose that the function f in (1.5) is negative, and that
−1/f(t) is a convex function. If there exist two distinct points x0, y0 ∈ Ω such that

u(x0+y0
2

) = u(x0)+u(y0)
2

, then the graph of u over R
2 is a ruled surface.

The convexity maximum principle is obtained by showing that C(x, y) satis-
fies a degenerate inequality (see Section 4) extending (1.2) to the fractional case.
The inequality is constructed by introducing in Section 2 a convenient degenerate
operator, denoted by (−∆A)

s, which is proved to satisfy the maximum principle.
The computation of (−∆A)

s C in terms of (−∆)s u is done in Section 3. The two
sample statements given above are proved in the last section.

Equations posed in the exterior of a convex body K have also been considered
in the literature: confining ourselves to fractional operators, we mention that the
solution of















(−∆)
1
2 u = 0 in R

N \K;

u = 1 in K;

lim
|x|→+∞

u(x) = 0

is shown to have convex level sets in [18].
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2 Degenerate anisotropic fractional Laplacian

The following definition introduces a linear, non-local operator, denoted by (−∆A)
s,

which includes the fractional Laplacian as a special case. Apart from being non-
local, such an operator may also be degenerate due to the fact that the domain
of integration A(x0) indicated in (2.1) is allowed to have lower dimension than
the whole space. Accordingly, a degenerate strong maximum principle holds (see
Theorem 2.2).

Definition 2.1. (Degenerate anisotropic fractional Laplacian) Let G be an open
subset of R

m, m ≥ 1. For x0 ∈ G, choose an affine subspace A(x0) ⊂ R
m of

positive dimension k = k(x0) ≤ m passing through x0. The operator (−∆A)
s is

defined as follows:

(−∆A)
sw(x0) = ck(x0),s P.V.

∫

A(x0)

w(x0)− w(x)

|x0 − x|N+2s
dHk(x0)(x) (2.1)

provided that the integral in the right-hand side is well defined. The notation
dHk(x0) represents the k(x0)-dimensional Hausdorff measure.

When k(x) ≡ m, i.e., when A(x) = R
m for all x ∈ G, the operator (−∆A)

s is
non-degenerate and coincides with the usual fractional Laplacian (−∆)s. In such a
case, a strong minimum principle is found in [7]. Apart from considering the more
general case 0 < k(x) ≤ m, here we also put into evidence that the conclusion
propagates to the whole space (see Remark (4)).

Theorem 2.2 (Anisotropic strong maximum principle). Let k be any function from
G to the set { 1, . . . ,m }, and let A be a function that associates to every x ∈ G
a k(x)-dimensional affine subspace A(x) ⊂ R

m. Let w : Rm → R be an upper
semicontinuous function satisfying

(−∆A)
s w(x) ≤ b(x)w(x) in G (2.2)

where b : G → R is any real-valued function.
(i) Assume that G is bounded, w ≤ 0 in R

m \G, and b ≤ 0 in G. Then w ≤ 0
in all of R

m.
(ii) If w ≤ 0 in all of R

m, and if w(x0) = 0 at some x0 ∈ G, then w(x) = 0
for all x ∈ A(x0).

Remarks. (1) Claim (ii) holds even though G is unbounded, and irrespectively
for the sign of b.

(2) The two claims may be used together: indeed, under the assumptions of
Claim (i), it follows that w is non-positive and therefore Claim (ii) applies.

(3) The degeneracy of the operator (−∆A)
s for k < m reflects on Claim (ii):

indeed, from the equality w(x0) = 0 it is not possible to deduce w = 0 in all of Rm

as in the non-degenerate case k(x0) = m.
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(4) The non-local character of the operator (−∆A)
s, for k ≤ m, also appears in

Claim (ii): the claim asserts that w(x) = 0 for all x in the affine subspace A(x0),
i.e. even though x 6∈ G and independently from the geometry (connectedness)
of G. By contrast, a similar result does not hold for the Laplacian. For example,
if −∆u ≤ 0 in an open set Ω ⊂ R

N , and if u = 0 on ∂Ω and u(x0) = 0 at some
x0 ∈ Ω, then the function u may well be negative in some connected component
of Ω distinct from the one containing x0.

Proof of Theorem 2.2. Claim (i). If w were positive somewhere in G, then, by the
compactness of G and using the fact that w ≤ 0 in R

m \ G, w would reach its
(positive) maximum at some x0 ∈ G. By (2.1) we may write

(−∆A)
s w(x0) ≥ ck(x0),s P.V.

∫

G∩A(x0)

w(x0)− w(x)

|x0 − x|N+2s
dHk(x0)(x)

+ ck(x0),s

∫

A(x0)\G

w(x0)

|x0 − x|N+2s
dHk(x0)(x).

The first integral is non-negative because w(x0) = maxw. Concerning the second
integral, we have omitted P.V. because x0 is interior to G. Furthermore, since
k(x0) > 0 and G is bounded, the difference A(x0) \ G has an infinite k(x0)-
dimensional measure. This and w(x0) > 0 imply that the second integral is strictly
positive. Consequently, we get that (−∆A)

s w(x0) > 0. However, b(x0) ≤ 0 by
assumption, hence b(x0)w(x0) ≤ 0, thus contradicting (2.2). Thus, we must have
w ≤ 0 in all of Rm, as claimed.

Claim (ii). Suppose, by contradiction, that w(x1) < 0 at some x1 ∈ A(x0).
Then, by upper semicontinuity, there exists ε1 > 0 such that −w(x) ≥ ε1 for
all x in the ball B1 = B(x1, ε1). By reducing ε1 if necessary, we may assume that
x0 6∈ B1, thus avoiding singularities in the second integral below. Recalling that
w(x0) = 0, we may write

(−∆A)
sw(x0) ≥ ck(x0),s P.V.

∫

A(x0)\B1

−w(x)

|x0 − x|N+2s
dHk(x0)(x)

+ ck(x0),s

∫

B1∩A(x0)

ε1
|x0 − x|N+2s

dHk(x0)(x).

As before, the first integral non-negative because now w ≤ 0 in R
m. Furthermore,

the second integral is strictly positive because the intersection B1 ∩ A(x0) has a
positive k(x0)-dimensional measure. Hence we get (−∆A)

sw(x0) > 0. However,
since b(x0)w(x0) = 0, a contradiction with (2.2) is reached. Thus, we must have
w(x) = 0 for all x ∈ A(x0), and the proof is complete.
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3 Fundamental expansion

In order to investigate the convexity of a solution u of (1.5), we will apply the
operator (−∆A)

s introduced in (2.1) to the concavity function C(x, y). To this aim
we let m = 2N and k(x) = k(x, y) ≡ N . Furthermore, in the present section we
suitably choose the subspace A(x) = A(x, y) and give an expression of (−∆A)

sC
in terms of (−∆)s u. To this purpose, we start from a spectral analysis of the
matrix M in (3.2). Such a matrix was used in [6] as the characteristic matrix of
a local operator to be applied to C(x, y). It is worth recalling that the idea of a
rotation of the coordinate frame in order to give a PDE a more convenient form
goes back to d’Alembert, who investigated the wave equation (see [5, p. 216]).

Proposition 3.1 (Spectral analysis). Let I be the N×N unit matrix, N ≥ 1, and
let σ, τ be two real numbers such that σ2 + τ 2 > 0. Furthermore, let ω ∈ [0, 2π) be
the angle determined uniquely by

cosω =
σ√

σ2 + τ 2
, sinω =

τ√
σ2 + τ 2

. (3.1)

Then, the 2N × 2N symmetric matrix M = M(σ, τ) given by

M =

(

σ2 I στ I
στ I τ 2 I

)

(3.2)

is transformed into a diagonal matrix by means of the orthogonal, symmetric ma-
trix P = P (ω) defined as follows:

P =

(

(cosω) I (sinω) I

(sinω) I (− cosω) I

)

. (3.3)

More precisely, we have

P TM P = (σ2 + τ 2)

(

I 0
0 0

)

,

where the exponent T denotes transposition, and 0 is the N × N null matrix.
The matrix M(σ, τ) has two distinct eigenvalues: the eigenvalue λ0 = 0 and the
eigenvalue λ1 = σ2+τ 2, each one of multiplicity N . The corresponding eigenspaces
V0(ω) and V1(ω) are given by

V0(ω) =
{

(x, y) ∈ R
2N
∣

∣

∣

(

x

y

)

= P
(

0
η

)

, η ∈ R
N \ {0}

}

;

V1(ω) =
{

(x, y) ∈ R
2N
∣

∣

∣

(

x

y

)

= P
(

ξ

0

)

, ξ ∈ R
N \ {0}

}

.

Proof. All claims are easily verified by computation.
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We can now prove the following fundamental lemma, which gives an expansion
of (−∆A)

sC in terms of (−∆)s u provided that A is defined as in (3.4).

Lemma 3.2 (Fundamental expansion). Let u : RN → R be a continuous function
such that the fractional Laplacian (−∆)s u(x) is well defined for all x in a convex
domain Ω ⊂ R

N , N ≥ 1. Fix x0, y0 ∈ Ω, and let z0 = (x0+y0)/2. Choose an angle
ω ∈ [0, 2π) and define the N -dimensional affine subspace A ⊂ R

2N as follows:

A = (x0, y0) + V1(ω) (3.4)

=
{

(x, y) ∈ R
2N
∣

∣

∣

(

x

y

)

=
(

x0

y0

)

+ P
(

ξ

0

)

, ξ ∈ R
N \ {0}

}

.

Then

(−∆A)
s C(x0, y0) = 2

(

| cosω+sinω|
2

)2s

(−∆)s u(z0) (3.5)

−| cosω|2s (−∆)s u(x0)− | sinω|2s (−∆)s u(y0).

Proof. Since the operator (−∆A)
s is linear, and by (1.1), we start by computing

(−∆A)
sw(x0, y0), where w(x, y) = u(z) and z = x+y

2
. By means of the matrix

P = P (ω) defined in (3.3), we perform the change of variables
(

x

y

)

=
(

x0

y0

)

+ P
(

ξ

0

)

and find

(−∆A)
s u(x+y

2
)|(x0,y0) = cN,s P.V.

∫

A

u(z0)− u(z)

|(x0, y0)− (x, y)|N+2s
dHN(x, y)

= cN,s P.V.

∫

RN

u(z0)− u(z0 +
cosω+sinω

2
ξ)

|ξ|N+2s
dξ.

In the case when cosω+sinω = 0, we immediately obtain (−∆A)
s u(x+y

2
)|(x0,y0) = 0.

Otherwise we take z = z0 +
cosω+sinω

2
ξ as the new variable of integration. Since

dz = ( | cosω+sinω|
2

)N dξ, we arrive at

(−∆A)
s u(x+y

2
)|(x0,y0) =

(

| cosω+sinω|
2

)2s

cN,s P.V.

∫

RN

u(z0)− u(z)

|z0 − z|N+2s
dz

=
(

| cosω+sinω|
2

)2s

(−∆)s u(z0).

Note that the last equality collects the case cosω + sinω = 0 as well. To pro-
ceed further, let us compute (−∆A)

s w(x0, y0) where the function w, different from
before, is given by w(x, y) = u(x). Denote by π1(x, y) = x the first canonical
projection over RN . Using again the change of variables

(

x

y

)

=
(

x0

y0

)

+P
(

ξ

0

)

we find

(−∆A)
s u(π1(x, y))|(x0,y0) = cN,s P.V.

∫

A

u(x0)− u(x)

|(x0, y0)− (x, y)|N+2s
dHN(x, y)

= cN,s P.V.

∫

RN

u(x0)− u(x0 + (cosω) ξ)

|ξ|N+2s
dξ.
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If cosω = 0 we immediately obtain (−∆A)
s u(π1(x, y))|(x0,y0) = 0. Otherwise we

use x = x0 + (cosω) ξ as the new variable of integration. Since dx = | cosω|N dξ,
we arrive at

(−∆A)
s u(π1(x, y))|(x0,y0) = | cosω|2s cN,s P.V.

∫

RN

u(x0)− u(x)

|x0 − x|N+2s
dx

= | cosω|2s (−∆)s u(x0).

The equality above continues to hold when cosω = 0. Finally, a similar computa-
tion shows that (−∆A)

s u(π2(x, y))|(x0,y0) = | sinω|2s (−∆)s u(y0), where π2(x, y) =

y is the second canonical projection over RN . The lemma follows.

4 A non-local inequality

We establish a non-local inequality of the form (2.2) satisfied by the function C(x, y)
in the set G = Ω2. More precisely, we give conditions on the function f in (1.5)
sufficient to obtain such an inequality through the expansion (3.5). We state for
first the general assumption (4.1), then we discuss some special cases where such
an assumption holds.

Lemma 4.1 (Non-local inequality). Let Ω be a convex domain in R
N , and let u be a

(continuous) solution of (1.5). Denote by U = { t ∈ R | t = u(x) for some x ∈ Ω }
the interval described by u(x) as x ranges in Ω. Suppose that for every couple of
real numbers t1, t2 ∈ U there exists an angle ω = ω(t1, t2) ∈ [0, 2π) such that

2
(

| cosω+sinω|
2

)2s

f( t1+t2
2

)− | cosω|2s f(t1)− | sinω|2s f(t2) ≤ 0. (4.1)

Then for every (x0, y0) ∈ G we may define the N -dimensional affine subspace
A = A(x0, y0) ⊂ R

2N by letting ω = ω(u(x0), u(y0)) in (3.4), and we have

(−∆A)
s C(x0, y0) ≤ b(x0, y0)C(x0, y0) for all (x0, y0) ∈ G (4.2)

where the coefficient b(x0, y0) is given by

b(x0, y0) =







2
(

| cosω+sinω|
2

)2s
f(u(

x0+y0
2

))−f(
u(x0)+u(y0)

2
)

C(x0,y0)
, C(x0, y0) 6= 0;

0 C(x0, y0) = 0.

Proof. The conclusion follows from Lemma 3.2 by using assumption (4.1) and the
identity

2
(

| cosω+sinω|
2

)2s

f(u(z0)) = 2
(

| cosω+sinω|
2

)2s

f(u(x0)+u(y0)
2

) + b(x0, y0)C(x0, y0).
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Remarks. (1) If the function f is monotone non-increasing then b(x, y) ≤ 0
in G. The last inequality is an assumption of Claim (i) of the maximum principle
(Theorem 2.2).

(2) Assumption (4.1) is satisfied if f(t) ≥ 0 for all t ∈ U . This is readily seen
by letting ω(t1, t2) =

3
4
π for all t1, t2 ∈ U , so that cosω + sinω = 0.

(3) If f is a convex function (hence, in particular, if f is constant) then assump-
tion (4.1) holds with ω(t1, t2) ≡ π

4
.

A further condition implying (4.1) involves the harmonic concavity of the function
g = −f . For the present purposes, it is convenient to adopt the following definition:

Definition 4.2. (Harmonic concavity) A non-negative function g defined in an
interval U ⊂ R is harmonic concave if

g( t1+t2
2

) ≥ 2 g(t1) g(t2)

g(t1) + g(t2)

for every t1, t2 ∈ U such that g(t1) + g(t2) > 0.

If g is concave, then it is harmonic concave (see [12, p. 688]). In comparison
to the definition in [6, 11, 12], the present one is restricted to the case g ≥ 0:
this because we will consider the power function g2s−1 in the proof of the following
proposition. In the realm of continuous, non-negative functions, all the mentioned
definitions coincide. Continuity enters in this equivalence because the definition
here (as well as in [6]) involves just the middle point t1+t2

2
instead of the whole

interval λ t1 + (1− λ) t2, λ ∈ (0, 1), as in [11, 12]. Finally, it is worth recalling that
a positive continuous function g is harmonic concave if and only if 1/g is convex.

Proposition 4.3. Suppose s ∈ [1
2
, 1). If f(t) ≤ 0 for all t ∈ U , and if the function

g = −f is harmonic concave, then (4.1) holds.

Proof. Fix t1, t2 ∈ U . If f(t1) = f(t2) = 0, we may take ω arbitrarily and (4.1)
holds because f( t1+t2

2
) ≤ 0. For later purposes we choose ω = 5

4
π. If, instead,

f(t1) + f(t2) > 0, then we let ω ∈ (3
4
π, 7

4
π) be the angle determined by (3.1) with

σ = f(t2) and τ = f(t1). Since |σ + τ | = −σ − τ , the target condition (4.1) may
be rewritten as

(

−σ−τ
2

)2s

g( t1+t2
2

)− |σ|2s g(t1)+|τ |2s g(t2)
2

≥ 0. (4.3)

If either |σ| = g(t2) = 0 or |τ | = g(t1) = 0, then (4.3) trivially holds. Otherwise,
since g is harmonic concave, in order to prove (4.3) it is enough to check that

(

g(t2)+g(t1)
2

)2s−1

g(t1) g(t2)− (g(t2))2s g(t1)+(g(t1))2s g(t2)
2

≥ 0.

Dividing by g(t1) g(t2) we get the equivalent inequality
(

g(t2)+g(t1)
2

)2s−1

− (g(t2))2s−1+(g(t1))2s−1

2
≥ 0,

which holds true because the power function a2s−1 with s ∈ [1
2
, 1) is concave in the

variable a > 0.
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5 Applications

Let us prove the two sample statements given in the Introduction. We start proving
the following, generalized form of Theorem 1.1, which also applies to non-convex
functions f(t).

Theorem 5.1. Let u ∈ C0(RN) be a solution of (1.5) in a convex, bounded do-
main Ω. Suppose that the function f(t) in (1.5) satisfies (4.1) and is monotone
non-increasing when t ranges in the interval U , image of the domain Ω trough the
function u. If

u(x+y

2
) ≤ u(x)+u(y)

2

whenever x, y 6∈ Ω, as well as when x ∈ Ω and y 6∈ Ω, then u is convex in R
N .

Proof. The assumptions on u imply C(x, y) ≤ 0 in R
2N \Ω2, those on f imply that

C satisfies inequality (4.2) in the bounded domain G = Ω2, with b ≤ 0. Since Ω is
bounded, the theorem follows from Claim (i) of Theorem 2.2.

The statement in Theorem 1.2 is a special case of the following, which makes
use of the notion of harmonic concavity.

Theorem 5.2. Let s ∈ [1
2
, 1), and let u : R2 → R be a convex function in the

plane satisfying equation (1.5) in a convex domain Ω. Suppose that the function f
in (1.5) is non-positive and harmonic concave. If there exist two distinct points

x0, y0 ∈ Ω such that u(x0+y0
2

) = u(x0)+u(y0)
2

then the graph of u over R
2 is a ruled

surface.

Proof. Observe, firstly, that since u is convex by assumption then whenever C(x, y)
= 0 the graph of u contains the line segment whose endpoints are (x, u(x)), (y, u(y))
∈ R

N+1. This will be repeatedly used in the sequel.
In order to prove the theorem, let us apply the fractional convexity maximum

principle. The assumptions on f imply that C(x, y) satisfies inequality (4.2) in
G = Ω2. The assumptions on u imply C(x, y) ≤ 0 in R

4, and there exists (x0, y0) ∈
G such that C(x0, y0) = 0. Hence by Claim (ii) of Theorem 2.2 we have

C(x, y) = 0 for all (x, y) ∈ A = A(x0, y0). (5.1)

The two-dimensional affine subspace A ⊂ R
4 is given by (3.4), where the angle ω is

chosen as in the proof of Proposition 4.3: if f(u(x0)) = f(u(y0)) = 0 then ω = 5
4
π,

otherwise ω is determined by (3.1) with σ = f(u(y0)) and τ = f(u(x0)). Since
f ≤ 0 by assumption, we get ω ∈ [π, 3

2
π]. In conclusion, by (5.1) we may write

C(x, y) = 0 for all x, y ∈ R
2 given by

{

x = x0 + (cosω) ξ

y = y0 + (sinω) ξ
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as ξ ranges in R
2. Letting ξ = λ (x0 − y0) for λ ∈ R, and recalling the initial

observation, we see that the graph of u contains the whole straight line passing
through (x0, u(x0)) and (y0, u(y0)).

Now let us turn our attention to the points x1 ∈ R
2 such that x1 6= x0+λ (x0−y0)

for every λ ∈ R. Since cosω and sinω cannot vanish simultaneously, without
loss of generality suppose cosω 6= 0. Then every x1 as above is given by x1 =
x0+(cosω) ξ1 for a convenient ξ1 ∈ R

2, which in its turn defines a particular point
y1 = y0 + (sinω) ξ1. Since cosω, sinω ≤ 0, and since x0 6= y0 by assumption, we
have y1 6= x1. Arguing as before we get that the graph of u contains the whole
straight line passing through (x1, u(x1)) and (y1, u(y1)). Since x1 is arbitrary, the
graph of u is a ruled surface, as claimed.

Let us conclude the paper by explaining why the present method cannot be
used to prove that the solution to

{

(−∆)s u = −1 in Ω;

u = 0 in R
N \ Ω,

(5.2)

where Ω is a smooth, convex, bounded domain, is concave in Ω. Essentially, the
present method fails because the solution u of (5.2), which is positive in Ω and
vanishes outside, is not concave in the whole space. Nevertheless, in view of the
results in [19] concerning the boundary behavior of u, we may expect that the
restriction of u to the domain Ω is concave.
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