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1 Introduction

Nonlocal reaction-diffusion equation

∂u

∂t
=
∂2u

∂x2
+ au2(1− J(u))− σu, (1.1)

where

J(u) =

∫ ∞

−∞
ϕ(x− y)u(y, t)dy

describes various biological phenomena such as emergence and evolution of biological species
and the process of speciation in a more general context [19], [20]. An important property
of nonlocal reaction-diffusion equations equations is that they have solutions in the form of
periodic travelling waves [5], [9], [10], [12]. Such solutions do not exist for the usual (scalar)
reaction-diffusion equations.

In this work we will prove the existence of a new type of solutions of this equation in the
form of stationary pulses. We will consider equation (1.1) in the stationary case,
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w′′ + aw2(1− J(w))− σw = 0. (1.2)

Here x ∈ R, a and σ are positive constants,

J(w) =

∫ ∞

−∞
ϕ(x− y)w(y)dy, ϕ(x) =

{
1 , |x| ≤ N
0 , |x| > N

,

N is a positive number. We will prove that for N sufficiently large equation (1.2) has a
positive solution w(x) ∈ C2(R) with the limits

w(±∞) = 0. (1.3)

Instead of a step-wise constant function ϕ(x) we can consider any other bounded even non-
negative integrable function such that it depends on a parameter and locally converges to 1
as the parameter tends to some given value.

Let us note that if the kernel ϕ(x) is replaced by ψ(x) = ϕ(x)/(2N), then it converges
to the δ-function as N → 0. In the limiting case equation (1.2) becomes a usual reaction-
diffusion equation for which existence of pulses can be easily proved analytically. Existence
of pulses for all sufficiently small N can be proved by a perturbation technique similarly to
travelling waves [2], [3]. Thus, existence can be proved for all sufficiently small N . However
pulse solutions are unstable in this case because they are unstable for the limiting reaction-
diffusion equation. We will consider here their existence for sufficiently large N . In this case
they can be stable.

Nonlocal Fisher-KPP equation, which is similar to equation (1.1) with nonlinearity u(1−
J(u)), also has solutions in the form of simple and periodic travelling waves [1], [4], [6], [8]
- [12], [14], [16], [21]. However solutions in the form of standing pulses are unlikely to exist
for this equation. Spike solutions are studied for some reaction-diffusion systems [13], [15],
[17], [22], [23].

The method of proof of the existence of pulses is also based on the perturbation technique.
If we formally replace the integral J(w) in (1.2) by the integral I(w) =

∫∞
∞ w(y)dy, then

the existence of solutions for this limiting equation can be easily proved. Hence we can
expect that there exists a solution for sufficiently large values of N . We will use the implicit
function theorem which implies invertibility of the linearized operator. We will prove it using
the Fredholm property, index and solvability conditions of the operators under consideration
[18], [19]. These properties of the operators will be used in the last section to study existence
of stationary pulses of a system of two equations arising in population dynamics.
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2 Existence of pulses for the scalar equation with non-

local consumption

2.1 Existence in the case of the global consumption

In order to prove the existence of solutions of problem (1.2), (1.3) we will consider the
equation

w′′ + aw2(1− I(w))− σw = 0, (2.1)

where

I(w) =

∫ ∞

−∞
w(y)dy.

By the change of variables w → w/a, h = 1/a we can reduce it to the equation

w′′ + w2(1− hI(w))− σw = 0. (2.2)

We will analyze the existence of classical solutions w(x) which satisfy the following properties:

w(x) > 0, x ∈ R, w(x) → 0, x→ ±∞, w(x) = w(−x). (2.3)

Set

c = 1− h

∫ ∞

−∞
w(y)dy (2.4)

and consider the equation

w′′ + cw2 − σw = 0. (2.5)

For each fixed positive c, there exists a unique solution of this equation satisfying (2.3).
Its existence can be easily proved by the analysis of the phase plane of the system of two
first-order equations,

w′ = p, p′ = −cw2 + σw

or by the explicit integration of the equation

dp

dw
=

1

p

(
−cw2 + σw

)
(see below). Let us note that since σ > 0, then this solution exponentially decays at infinity.
Denote this solution by wc(x). Substituting it into (2.4), we obtain the equation

c = 1− h

∫ ∞

−∞
wc(y)dy. (2.6)
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Denote by w1 the solution of (2.5) with c = 1. Then wc = w1/c and we can write (2.6) as

c2 − c+ h

∫ ∞

−∞
w1(y)dy = 0. (2.7)

This equation has two solutions if

h

∫ ∞

−∞
w1(y)dy <

1

4
. (2.8)

We note that for every σ fixed, solution w1(x) of (2.5) with c = 1 exists and it is independent
of h. Let us take a positive value of h which satisfies condition (2.8). Then equation (2.7)
has two solutions, c1 and c2, such that 0 < c1 < 1/2 < c2 < 1. If h→ 0, then c1 → 0, c2 → 1.
Therefore,

wc1(x) → ∞, wc2(x) → w1(x), h→ 0.

The first convergence occurs uniformly on every bounded interval, the second uniformly in
R.

Denote h0 = 1/(4
∫∞
−∞w1(y)dy). Then condition (2.8) is satisfied for h < h0, and there

are two solutions of equation (2.2).

Theorem 2.1. For any value of h such that 0 < h < h0, there are two positive solutions of
equation (2.2) exponentially decaying at infinity.

In the case of a > 24
√
σ we have the two pulse solutions of equation (2.1) given by the

formula

w1,2(x) =
3σ

2ac1,2 cosh2
(√

σ
2
x
) , c1,2 =

1

2
±
√

1

4
− 6

a

√
σ .

If a = 24
√
σ, then the two solutions coincide. Finally, for 0 < a < 24

√
σ, there are no real

valued pulse solutions.

2.2 Operators and spaces

Consider Hölder spaces E = C2+α(R) and F = Cα(R), 0 < α < 1 and weighted spaces Eµ

and Fµ defined as follows:

Eµ = {u : uµ ∈ E, ∥u∥Eµ = ∥uµ∥E}, Fµ = {u : uµ ∈ F, ∥u∥Fµ = ∥uµ∥F}.

As a weight function we take µ(x) = 1 + x2. Set

Aϵ(w) = w′′ + aw2(1− Jϵ(w))− σw,

A0(w) = w′′ + aw2(1− J0(w))− σw,
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where

Jϵ(w) =

∫ x+1/ϵ

x−1/ϵ

w(y)dy, J0(w) =

∫ ∞

−∞
w(y)dy.

We will consider the operator Aϵ for ϵ > 0 and ϵ = 0 as defined above. We can extend it for
negative ϵ by symmetry, Aϵ = A−ϵ, ϵ < 0. It is a bounded and continuous operator acting
from Eµ into Fµ. We will show that it is continuous with respect to ϵ.

Lemma 2.2. For any δ > 0 there exists ϵ0 such that

∥Aϵ(w)− A0(w)∥Fµ < δ, ∀ϵ, w, 0 < ϵ ≤ ϵ0, ∥w∥Eµ ≤M, (2.9)

where ϵ0 can depend on M .

Proof. We have

A0(w)− Aϵ(w) = aw2(Jϵ(w)− J0(w)).

Set

g(x) = µ(x)w2(x)(Jϵ(w)− J0(w)).

We should estimate the Hölder norm of the function g. Let us begin with the uniform norm.
Since

|µ(x)w(x)| ≤M, |w(x)| ≤ M

µ(x)
,

then we have the estimate

|Jϵ(w)|, |J0(w)| ≤M1

with some positive constant M1. Hence for any δ > 0 we can choose x0 > 0 such that

|g(x)| ≤ δ for |x| ≥ x0.

We will now obtain a similar estimate for |x| < x0. We have

g(x) = −µ(x)w2(x)

(∫ x−1/ϵ

−∞
w(y)dy +

∫ ∞

x+1/ϵ

w(y)dy

)
. (2.10)

We can choose ϵ0 such that for any ϵ ≤ ϵ0 the estimates

∣∣∣∣µ(x)w2(x)

∫ ∞

x+1/ϵ

w(y)dy

∣∣∣∣ < δ

2
,

∣∣∣∣∣µ(x)w2(x)

∫ x−1/ϵ

−∞
w(y)dy

∣∣∣∣∣ < δ

2
, ∀|x| ≤ x0

hold. Hence we have the estimate
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sup
x∈R

|g(x)| ≤ δ. (2.11)

Next, we should estimate the expression

H = sup
x1,x2∈R

|g(x1)− g(x2)|
|x1 − x2|α

.

Obviously, it is sufficient to consider the case where |x1 − x2| < 1. We can proceed as before
and consider either |x| > x∗ for some x∗ sufficiently large or |x| ≤ x∗. In the first case, H
is small since µ(x)w(x) and the integrals in (2.10) are bounded in the Hölder norm while
w(x) → 0 in the Hölder norm as |x| → ∞. In the second case, we use the fact that the
integrals converge to 0 in the Hölder norm as ϵ→ 0. The lemma is proved.

�
In what follows we will also consider the subspaces of the spaces Eµ and Fµ which consist

of even functions:

E0
µ = {u ∈ Eµ, u(x) = u(−x), ∀x ∈ R}, F 0

µ = {u ∈ Fµ, u(x) = u(−x), ∀x ∈ R}.

If w ∈ E0
µ, then Jϵ(w) is also an even function and Aϵ(w) ∈ F 0

µ . Therefore we can consider
this operator acting from E0

µ into F 0
µ .

2.3 Linearized operator

Consider the linearized operator to the operator A0(w),

Lu = u′′ + 2auw0(1− I(w0))− aw2
0I(u)− σu

for some w0 ∈ Eµ, and the formally adjoint operator

L∗v = v′′ + 2avw0(1− I(w0))− aI∗(v)− σv,

where

I∗(v) =

∫ ∞

−∞
w2

0(x)v(x)dx.

We will consider the operator L acting from Eµ into Fµ and the operator L∗ from H2
∞(R)

into L2
∞(R) [18]. The norms in these spaces are given by the equality:

∥u∥L2
∞(R) = sup

i
∥ϕiu∥L2(R), ∥u∥H2

∞(R) = sup
i

∥ϕiu∥H2(R),

where ϕi is a partition of unity. The operator L and L∗ are linear bounded operators in the
corresponding spaces. They satisfy the relation
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∫ ∞

−∞
v(x)(Lu)dx =

∫ ∞

−∞
u(x)(L∗v)dx.

Let w0(x) be an even positive solution of equation (2.1). Set u0 = −w′
0. Differentiating

this equation, we obtain

L0u0 ≡ u′′0 + 2au0w0(1− I(w0))− σu0 = 0.

Since I(u0) = I∗(u0) = 0, then Lu0 = L∗u0 = 0. Hence u0 is the eigenfunction corresponding
to the zero eigenvalue of both operators.

The eigenvalue λ = 0 of the operators L0 : E → F is simple. Indeed, if there are two
linearly independent bounded eigenfunctions, then all solutions of the equation L0u = 0 are
bounded as their linear combination. However it has exponentially growing solutions.

We can now summarize the spectral properties of the operator L0. Its essential spectrum
lies in the left-half plane. Its principal eigenvalue is simple and positive, and the correspond-
ing eigenfunction is positive, according to the standard Sturm-Liouville theory. It has a
simple zero eigenvalue with the eigenfunction u0(x) = −w′

0(x) which is positive for positive
x and negative for negative x. It can be verified that it does not have other positive eigen-
values except for the principal eigenvalue since u0(x) has a unique zero at the the origin.
These properties remain true for more general nonlinearities.

Lemma 2.3. If I(w0) ̸= 1/2 (a > 24
√
σ), then the equation L∗v = 0 has a unique, up to a

constant factor, solution u0.

Proof. Suppose that v0 is an eigenfunction corresponding to the zero eigenvalue of the
operator L∗. Then

v′′0 + 2av0w0(1− I(w0))− aI∗(v0)− σv0 = 0.

Multiplying this equality by w0 and integrating, we obtain

−
∫ ∞

−∞
v′0w

′
0dx+ 2aI∗(v0)(1− I(w0))− aI(w0)I

∗(v0)− σ

∫ ∞

−∞
v0w0dx = 0. (2.12)

Since w0 is a solution of equation (2.1), we multiply the equation

w′′
0 + aw2

0(1− I(w0))− σw0 = 0 (2.13)

by v0 and integrate:

−
∫ ∞

−∞
v′0w

′
0dx+ aI∗(v0)(1− I(w0))− σ

∫ ∞

−∞
v0w0dx = 0. (2.14)

Subtracting this equation from equation (2.12), we get

I∗(v0)(1− I(w0))− I(w0)I
∗(v0) = 0.
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If I(w0) ̸= 1/2, then I∗(v0) = 0. Hence v0 is an eigenfunction of the operator L0 correspond-
ing to the zero eigenvalue. Since this eigenfunction is unique up to a constant factor, we get
v0 = u0.

�

Remark 2.4. We proved in Section 2.1 that I(w0) = 1/2 corresponds to the bifurcation
point where solutions of equation (2.1) appear due to a subcritical bifurcation. For these
values of parameters, the zero eigenvalue of the operator L∗ is double, because of the bifur-
cation and of the invariance with respect to translation. The previous lemma affirms that
outside of the bifurcation point this eigenvalue is simple.

Lemma 2.5. If I(w0) ̸= 1/2 (a > 24
√
σ), then equation Lu = 0 has a unique solution

u = u0 in Eµ.

Proof. The operators L : Eµ → Fµ and L
∗ : H2

∞(R) → L2
∞(R) satisfy the Fredholm property

and have the zero index. It follows from Lemma 2.3 that the equation L∗v = 0 has a unique
solution. Therefore, since the index equals zero, the nonhomogeneous equation L∗v = f has
a unique solvability condition.

Suppose that equation Lu = 0 has two linearly independent solutions u0, u1 ∈ Eµ. Then
equation L∗v = f has at least two solvability conditions. Indeed, we can choose a function
f ∈ L2

∞(R) such that ∫ ∞

−∞
f(x)u0(x)dx = 0,

∫ ∞

−∞
f(x)u1(x)dx ̸= 0.

If equation L∗v = f has a solution, then we multiply this equation by u1 and integrate over
R. We get∫ ∞

−∞
(L∗v)u1dx =

∫ ∞

−∞
v(Lu1)dx = 0,

∫ ∞

−∞
(L∗v)u1dx =

∫ ∞

−∞
fu1dx ̸= 0.

This contradiction proves the lemma.
�

It follows from the lemma that a real eigenvalue of the linearized operator cannot cross
the origin and change stability of the solution.

2.4 Existence in the case of nonlocal consumption

We will prove existence of solutions of equation (1.2) by the implicit function theorem. We
consider the operator Aϵ(w) : E

0
µ → F 0

µ . It is bounded and continuous. We suppose that the
equation A0(w) = 0 has a solution w0. Conditions of the existence of solutions are given in
Section 2.1.

Let us consider the Fréchet derivative of the operator Aϵ(w):

A′
ϵ(w)u = u′′ + 2aw(x)(1− Jϵ(w))u− σu− aw2(x)Jϵ(u).
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Lemma 2.6. The operator A′
ϵ(w) is continuous with respect to w and ϵ in the operator

norm.

The proof of the lemma is standard and we omit it.

Lemma 2.7. If I(w0) ̸= 1/2 (a > 24
√
σ), then the operator A′

0(w0) : E
0
µ → F 0

µ is invertible.

Proof. Consider the equation

A′
0(w0)u = f (2.15)

for an arbitrary f ∈ F 0
µ . Since f is an even function and u0 is odd, u0(x) = −w′

0(x), then
equality ∫ ∞

−∞
f(x)u0(x)dx = 0

holds. It is the unique solvability condition for equation (2.15). Indeed, since it is a Fred-
holm operator with the zero index and its kernel has dimension 1 (Lemma 2.5), then the
codimension of its image is also one-dimensional. Therefore equation (2.15) has a solution
u1 ∈ Eµ.

Since A′
0(w0)u0 = 0, then any function vk(x) = u1(x) + ku0(x) is a solution of this

equation for any real k. Let us verify that only one of them belongs to E0
µ. Since f(x)

and w0(x) are even functions, then along with solution u1(x), the function u1(−x) is also
a solution of this equation. Set z(x) = u1(x) − u1(−x). Since z(x) is a solution of the
homogeneous equation, then

u1(x)− u1(−x) = k1u0(x), (2.16)

where k1 is a constant. Then it is possible to choose a number k2 such that the function
vk2(x) = u1(x) + k2u0(x) is even. Indeed, from the equality vk2(x) = vk2(−x) we get

u1(x) + k2u0(x) = u1(−x) + k2u0(−x).

Since u0(x) is an odd function, from the last equality and (2.16) we obtain k2 = −k1/2.
Hence we proved that there exists an even solution of equation (2.15). Let us verify that
it is unique. If there are two such solutions z1(x) and z2(x), then their difference satisfies
the homogeneous equation. Hence z1(x)− z2(x) = k3u0(x). Since the difference of two even
function is an even function, and u0(x) is an odd function, then this equality can hold only
for k3 = 0. Hence the two even solutions coincide.

Thus equation (2.15) has a unique solution in E0
µ for any f ∈ F 0

µ . By the Banach theorem,
the operator A′

0(w0) has a bounded inverse.
�

The main result of this section is given by the following theorem.

Theorem 2.8. Let a > 1/h0, where h0 is defined in Theorem 2.1. Then equation (1.2) has
an even positive solution decaying at infinities for all N sufficiently large.
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Proof. Consider the operator Aϵ(w) : E0
µ → F 0

µ . It is bounded, continuous and equation
A0(w) = 0 has a solution w0. The Fréchet derivative A′

ϵ(w) is a bounded linear operator,
continuous with respect to w and ϵ in the operator norm. Finally, the operator A′

0(w0) is
invertible. By the implicit function theorem equation Aϵ(w) = 0 has a unique solution from
E0

µ in the vicinity of the function w0 for all ϵ sufficiently small.
�

Let us note that under the conditions of the theorem, equation (2.1) has two pulse solutions.
Theorem 2.8 affirms the existence of pulse solutions of equation (1.2) in the vicinity of these
solutions.

3 System of nonlocal equations

In this section we consider the system of equations

d1u
′′ + auv(1− I(u)− I(v))− σu = 0, (3.1)

d2v
′′ + auv(1− I(u)− I(v))− σv = 0 (3.2)

which describes the distribution of a population in the space of phenotypes. Here u is the
density of males, v is the density of females. The second term in the left-hand sides of these
equations is the reproduction rate which is proportional to the product uv and to available
resources (1 − I(u) − I(v)). The last terms are their mortality. It is assumed that both
parents have the same phenotype. We will look for a positive solution of this system with
the limits at infinities

u(±∞) = v(±∞) = 0. (3.3)

Diffusion terms in these equations correspond to genetic variability which shows how the
phenotypes of offsprings differ from the phenotype of parents. If d1 = d2, then taking the
difference of two equations, we get u = v. In this case we can reduce the system of equations
to the scalar equation (2.1). However these two coefficients can differ from each other since
genetic variability of males is usually greater than that of females. We will prove here the
existence of solutions of problem (3.1)-(3.3) in the case where the difference between diffusion
coefficients is sufficiently small.

We write system (3.1), (3.2) in the form

u′′ + a0uv(1− I(u)− I(v))− σ0u = 0, (3.4)

v′′ + aϵuv(1− I(u)− I(v))− σϵv = 0, (3.5)

where a0 = a/d1, σ0 = σ/d1, aϵ = a0 + ϵ, σϵ = σ0 + ϵ. If ϵ = 0, then u = v = w/2, where w is
a solution of the equation
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w′′ +
a0
2
w2(1− I(w))− σ0w = 0, w(±∞) = 0. (3.6)

Consider next the system linearized about w for ϵ = 0:

ũ′′ +
a0
2
ũw(1− I(w)) +

a0
2
ṽw(1− I(w))− a0

4
w2(I(ũ) + I(ṽ))− σ0ũ = 0, (3.7)

ṽ′′ +
a0
2
ũw(1− I(w)) +

a0
2
ṽw(1− I(w))− a0

4
w2(I(ũ) + I(ṽ))− σ0ṽ = 0. (3.8)

Set z = ũ− ṽ. Taking the difference of these two equations, we get the equation for z:

z′′ − σ0z = 0, z(±∞) = 0.

Therefore z ≡ 0 and ũ ≡ ṽ. Hence system (3.7), (3.8) can be reduced to the single equation:

ũ′′ + a0ũw(1− I(w))− a0
2
w2I(ũ)− σ0ũ = 0. (3.9)

It coincides with the equation obtained as the linearization of equation (3.6). Due to Lemma
2.5 it has a unique solution ũ0 ∈ Eµ if a0 > 2/h0. Hence system (3.7), (3.8) also has a unique
even solution ũ = ṽ = ũ0. Similar to Lemma 2.7 we can now conclude that the corresponding
operator is invertible on the subspace of even functions. We can now formulate the existence
theorem.

Theorem 3.1. Let a0 > 2/h0, where h0 is defined in Theorem 2.1. Then system (3.4), (3.5)
has an even positive solution decaying at infinities for all ϵ sufficiently small.

The proof of this theorem is similar to the proof of Theorem 2.8.
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[19] V. Volpert. Elliptic partial differential equations. Volume 2. Reaction-diffusion equa-
tions. Birkhäuser, 2014.
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