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Abstract. The approach of Lattice Topological Field Theories is used to describe
quantities which are independent of manifolds, and the same time Lattice Gauge
Theories are important to renormalize continuous theories. Therefore, the natural
connection between both theories can be made to understand physical topological
theories. In this work, we review the basic concepts of each theory and study gauge
theories coupled with matter fields in two-dimensional manifolds. In order to
proceed, we first describe a formalism in two and three dimensions which is based
on the idea of Kuperberg of defining a topological invariant in three dimensions
using Hopf algebras and Heegaard diagrams. This formalism is useful in the
context of our analysis because it allows to easily identify topological limits without
solving the model. Furthermore, we write the gauge model with matter fields
choosing the unitary gauge, working with finite groups, in particular with the
abelian group Zn and explaining the Z2 case in detail. We calculate partition
functions and Wilson loops for this group in different topological limits. We show
that there were cases in which the results depended on the triangulation although
in a trivial way, these cases are called quasi-topological.
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1. Introduction

In recent years, Topological Field Theories (TFT) have been advantageous for
understanding the non-perturbative structure of continuous models, such as string
theories to quantize gravity [GSW87a, GSW87b, Wit88]. Witten uses the Jones
polynomials to show the relevance of topological theories in physics, in particular
in connection with Quantum Field Theory (QFT) [Jon87, Wit89], which in turn
can be described as a lattice model when the continuum limit is taken. In such
models gravity is quantized following the prescriptions of loop quantum gravity
[Reg61, Iwa95, BDR11]. A relation between lattice models and topological theories
have been developed by Fukuma, Hosono, Kawai, Chung and Shapere (FHKCS) in
[FHK94, CFS94] , where the authors formulate a Lattice Topological Field Theories
(LTFT) in two and three dimensions. Moreover, it has been shown that their ideas
can be generalized [CKS98], being possible to go to a higher number of dimensions.
Thanks to the fact that on the lattice all scales are equivalent, the use of a LTFT
allows the study of the geometry and the algebraic structure of the corresponding
TFT even without recurring to the limiting procedure from discrete to continuum.

Topological invariants in physics or mathematics have direct relevance to topologi-
cal theories, they represent in fact quantities that can be calculated on a manifold M
independently of the metric or discretization used [Wit89] (in phys such quantities
correspond generally to the partition function). In the lattice there are several ways
to define topological invariants, such as: the Dijkgraaf-Witten invariants [DW90],
the Turaev-Viro invariants [TV92] and invariants constructed from Hopf algebras,
via Kuperberg method [Kup91], which is the case of the invariants that we use
in this paper. While Kuperberg defined topological invariants using Hopf algebras
for the three-dimensional case when the Hopf algebra is involutory, he later intro-
duced a generalization for the non-involutory case [Kup96]. Kuperberg invariants
for triangulations are represented by Heegard diagrams [PS97, Joh], and FHKCS
[FHK94, CFS94] showed that there exist a one to one relation between these and
semisimple algebras in the two-dimensional case and involutory Hopf algebras in
the three-dimensional case. Hopf algebras then connect Kuperberg invariants and
LTFT.

For a partition function Z over a manifold M to be topological invariant, it
has to be independent of the discretization or “triangulation” of the manifold M .
This means that for two different triangulations T1 and T2 the value found for the
partition function is the same, i.e., ZpM ,T1q “ ZpM ,T2q. When this happens, the
theory is called a TFT. Since the manifold is the same for both triangulations, there
must exist some way to go from one triangulation to the other in a finite number of
steps, a requirement satisfied by the Pachner moves [Pac78, Pac91, Rob05, DH12]
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that need to be taken into account in the construction of a LTFT. Finally, if Z
trivially depends on the size of the lattice it is said that the theory is a Quasi-
Topological Field Theory (QTFT) [YTSM09, Yok05, FPTS12, Ber12, Aza13].

On the other hand, we look back to Lattice Gauge Theories (LGT). These ap-
peared for the first time when Wegner wanted generalize the Ising model by placing
the spin variables, σplq, on the links of the lattice [Weg71]. Using this procedure, it
was shown that in this model there was no spontaneous magnetization and the phase
diagrams of the theory were not trivial [Kog79]. To distinguish the phases of the
model, Wegner introduced a gauge invariant quantity, W` “

ś

lP`

σplq around a closed

loop ` and it was enough to show the called area’s and perimeter’s law for different
energy regimes [GP96]. Formally, LGT were proposed by Wilson in [Wil74], using
the idea of lattice regularization of non-abelian gauge theory of a continuum theory.
One of his first results was that in a pure gauge theory (without matter fields) the
quarks are confined. This means that the energy to separate two charges increases
linearly with the distance between them making therefore impossible to create single
charges [FM83]. On the other hand, without gauge fields, the theory is topological
[Bou97]. In the case when gauge and matter fields are present, Wilson’s basic ideas
can not predict the existence of charges and consequently different methods in con-
densed matter were developed, such as the recent ones by Wen [Wen04, Wen03] and
others. In particular to classify the differents states of the matter at temperature
0°K, via topological order and quantum order, which are general propierties of states
to this temperature [LW05, LW06, BPT13].

As mentioned, LGT can generalize Ising models and methods of statistical me-
chanics can be used for solving them. At the same time, we know that despite
the formal simplicity of the Ising model, it is extremely difficult to find analytical
solutions for it. In the one-dimensional case the exact analytic value of the parti-
tion function (with and without external magnetic field) is known [Sal10], however,
when more dimensions are considered an analytical value is not known, except for
the two-dimensional case without external magnetic field for which an exact solu-
tion is available [Sei82]. In the presence of a magnetic field, the Ising model in two
dimensions is dual to a gauge theory coupled to matter fields. Finally, the three-
dimensional Ising model, is dual to a gauge theory with gauge group Z2 [YT07].

For the gauge-Higgs model in the two-dimensional case, with finite gauge group
G, the parameter space in the topological limit is represented by the figure 1. This

Figure 1. Parameter space.

diagram corresponds to coupling constants with positive sign and the dotted bound-
aries represent the limits βG,H Ñ 8. It is known that on the solid and dotted lines,
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an exact value for the partition function exists corresponding to the topological and
quasi-topological limits of the theory respectively.

Our purpose in this paper is to review lattice topological theories for finite groups
and apply it to extend the phase diagram of figure 1 using the gauge group Z2, for a
two-dimensional, orientable, connected and closed manifold M . We will make this
based in LTFT and LGT analyzing first the case of negative coupling constants in

Figure
2. Parameter
space. Cases
where the partition
function and the
Wilson loops are
calculable.

the topological limits. Then, we will observe what happens when coupling constants
with different sign are considered also in topological limits, a case that has not been
studied before. The resulting full phase diagram is shown in figure 2. We will get
an exact value for the partition functions and the expectation value of observables,
Wilson loops, in both the solid and dotted lines.

This paper is organized as follows.
In section 2 we review what is a lattice gauge theory in two and three dimensions

for finite groups. We recall which are the gauge transformations when gauge fields
are coupled with matter fields. We will also make a particular choice of gauge called
unitary gauge. We do this for the gauge group Zn and we write a gauge-Higgs action
for this instance. Making use of the formalism of Kuperberg [Kup91], we represent
two-dimensional and three-dimensional lattices in terms of curves.

In section 3 we discuss Lattice Topological Field Theories (LTFT). We describe
the formalism provided by FHKCS [FHK94, CFS94], for two-dimensional and three-
dimensional manifolds. We write the partition function and Wilson loops in terms of
contractions of certain tensors M,∆ and S, and we define the topological and quasi-
topological theories. In particular, the partition function coincides with the one
provided by Kuperberg. We show topological invariance in the language of curves,
i.e., we show the invariance by Pachner moves for the case where a two-dimensional
gauge theory is coupled with a matter field.

In section 4 we use character expansions to describe the gauge model for a general
finite group, in particular the dihedral group D6 and for Zn we find the curve that
describe the parameter space of the model. We show that for Z2 the coefficients
describing the pure gauge model γ0G and γ1G, are related by the hiperbola-equation
γ0Gγ

1
G “ 1, which is represented by the dotted curve in figure 3. The values where

the partition function is calculated correspond to the dotted line, βG “ 0 and solid
lines, βG Ñ ˘8. A similar graph is obtained for the pure Higgs model. We will
see that the parameter space of figure 3 can be extended for negative values of
the parameters γ0G and γ1G, for the Z2 case. Thus, the partition function and the
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Figure
3. Parameter
space. Cases
where the partition
function and the
Wilson loops are
calculable.

Wilson loops can also be calculated in regions of the parameter space which do not
correspond to any physical model and only carry a mathematical meaning.

Finally, in section 5 we summarize the results found for partition functions and
Wilson loops were found. Thanks to the diagrammatic and algebraic formalism
developed here and from other works in the same field, we expect that the methods
presented in this work lead to find interesting applications in the near future.

2. Lattice Gauge Theory

In this section, our goal is to explain the basis of the formalism introduced by
Wegner and Wilson in [Weg71] and [Wil74], respectively. First, we state the basic
definition of a lattice gauge theory taking the gauge group as finite. We present
the action of the theory when we consider gauge fields associated to matter fields.
Furthermore, we study the gauge transformations which satisfy the fact that the
action is gauge invariant. We define the expected value of observables, which are
constructed like gauge invariants and called Wilson loops. In the following sub-
section, we define a gauge-Higgs model for the discrete gauge group Zn, using a
particular gauge. Finally, we discuss about the formalism of colored curves for two-
dimensional manifolds, who is based in Heegaard diagrams, which are a tool for
studying three-dimensional manifolds.

2.1. Basic properties of a lattice gauge theory. A lattice is a discretization
of a manifold M composed by vertices v, links e and faces f . The vertices can be
thought as a finite set of points on the manifold, the links as lines that connect two
different points and the faces as surfaces that are bounded by a set of links joined
between them via vertices. In accordance with this, every link e has two vertices
in its boundary called tv1, v2u. In the same way, every face f has in its boundary
a sequence of links pe1, . . . , ekq, such that every link ei has one vertex in common
with the preceding link ei´1 and the other vertex in common is the link ei`1. It is
said that the link e is oriented if it is possible to distinguish the initial vertex speq
and the final vertex tpeq. Furthermore, it is said that the face f is oriented if it is
possible to choose a sequence of links in its boundary in a cyclic form [Rob05], see
figure 4(a). Finally, we say that the lattice is oriented when it is oriented in links
and faces at the same time. In order to define a gauge configuration, we consider a
group G where each link ei will be associated to the variable gei P G, as shown in
4(b). We recognize gei as the parallel transport operator of speiq to tpeiq [Wit91].
We now define the holonomy for the face f by ordering the links pe1, . . . , enq at the
boundary B of f [BDHK13]. We multiply the group elements associated to every link
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(a) Oriented link e, with
inicial vertex v1peq “

speq and final vertex
v2peq “ tpeq.

(b) Gauge configuration. (c) Loop with inicial point
P .

Figure 4. Construction of a discrete gauge theory.

pge1 , . . . , genq according to the cyclic order. The orientation of the links is induced
by the orientation of the face (and ge “ g´1e´1 where e´1 is the link with opposite
orientation to the link e) [BDR11]. We take the relative orientation face-link by
oipf, eiq “ ˘1 for every link ei around the face f . Explicitly, an holonomy is defined
as

(1) Uf ”
ź

ei PB2f

goipf,eiqei
.

When this is written, we choose an initial vertex to make a proper sequence of the
cyclical ordering of links.
Holonomies can be calculated also for composed polygons of many plaquetes as
follows (figure 4(c)): we choose some initial point P in the lattice such that it
coincides with the end point of a path. We take a particular direction through each
link where each one of these has associated an element of the group G. Then, we
note that the holonomy depends on the relative orientation path-link in expression
(1).

Let us now recall that the group G is divided into conjugacy classes by the following
relation: we say that x is in the same class of y if there is a g P G such that y “ gxg´1

and we write x „ y, because this is an equivalence relation. Using the last sentence,
we define ψ : G Ñ C as a class function ψpxq “ ψpyq where x and y are conjugate
elements of G. An important point about holonomies is that for a class function
ψ : Uf Ñ C, ψ is invariant under the set of gauge transformations, as we will
discuss in the subsection 2.2. The physical configuration of any gauge theory can be
described uniquely and faithfully by their holonomies. Indeed, holonomies can offer
a popular geometric structure of work for all fundamental forces of nature. Each
equivalence class of closed curves is called loop [GP96].

Clearly, when we define the action of the theory, this should be an invariant
function by cyclic permutations of the links, furthermore the action will be a function
of the holonomy, since the holonomy over each face is calculated without taking into
account the order of links on the boundary, because the initial vertex can be anyone.
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In addition, the action must be invariant by the conjugation of elements of the
group; without this condition, the action is not invariant by gauge transformations
(subsection 2.2). For this action, the orientation of the plaquete must be invariant
due to the fact that it has to be irrelevant, i.e., by changing the orientation of a
plaquete or link, the action should remain unchanged. Finally, the action must
also be independent of the initial and final links when we expect to calculate the
numerical value of each holonomy for each plaquete. With the conditions above, the
action for finite groups is defined as

(2) Sconf. faces “
ÿ

fPF

pψpUf q ` ψpU
´1
f qq,

where it is required that ψ Ñ C be a class function. However, it is clear that for
abelian groups all the functions are class functions [CO83].

Note that the action of the model (2) is trivially invariant by inversion of faces, i.e.,
by changing the orientation of a face f by its inverse, we obtain that the holonomy
Uf changes to U´1f . However, this term is considered in expression (2), so that the
numeric value does not change due to holonomies. Since ψpUf q is a class function,
it is certain that it is invariant by cyclic permutations, i.e.

ψpxyzq “ ψpx´1pxyzqxq “ ψpyzxq “ ψpy´1pyzxqyq “ ψpzxyq,

for all x, y and z P G. Thus, the holonomy over every face can be calculated starting
from any link around the boundary.

Let ρ be an unitary representation of G on a field F , i.e. a homomorphism ρ that
sends G to GLpn, F q, for any n, where the dimension of ρ is the integer n1. We can
redefine the action (2) as

(3) Sconf. faces “ ´β
ÿ

fPF

pαptrpρpUf qq ` trpρpU´1f qqq ` γq,

with ρpgq´1 “ ρpg´1q “ ρpgq:2 [JL01], β the coupling constant, α a nonnegative real
number and γ a real number, where α and γ have units such that their product with
β gives dimensionless. For G “ Z2 with α “ 1

2
, γ “ 0 we have the spin-gauge action

[Bha81] and for α “ ´γ
2
“ 1

2
the Wilson action [ID91].

Vertex variables or matter fields can be introduced in the following way [Sei82]:
the variable vi is a map which associates the site i of the lattice with some unitary

Figure 5. Matter fields defined on the vertices of the lattice.

vectorial space VH of finite size, which is an unitary representation of the gauge
group G (figure 5). The action for matter fields or Higgs fields, is defined as

(4) Sconf. links “ ´βH
ÿ

tspeq,tpequ

xvspeq, ρpgeqvtpeqy,

1GLpn, F q denotes the group of invertible matrices nˆ n with entries in F .
2The matrix A: references the conjugate transpose of the matrix A.
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where βH is the interaction term associated with the Higgs field and xv1, v2y “

<ptrpv:1v2qq P R is the inner product. The symbol tspeq, tpequ in (4), refers to nearest
neighbors.
Therefore, the full action is the sum of (3) and (4)

(5) Sconf. “ ´βG
ÿ

fPF

pαptrpρpUf qq ` trpρpU´1f qqq ` γq ´ βH
ÿ

tspeq,tpequ

xvspeq, ρpgeqvtpeqy,

where the indices G and H distinguish the gauge and Higgs fields respectively.
Adding terms, the partition function for finite groups has the form

(6) Z “
ÿ

conf.

eSconf. .

2.2. Gauge transformations. As in gauge theories in the continuum it can be
also defined a gauge transformation in the lattice [BDR11, Rob05, Mor83]. This is
given by a mapping ϑ : V Ñ G, that assignes an element h of the group G to each
vertex v. The gauge transformation for the links is defined as

(7) ge Ñ hspeqgeh
´1
tpeq,

where hv are the gauge group elements associated to the vertices of the lattice
(remember that speq is the initial vertex of link e and tpeq its final vertex). The
invariant gauge information is contained in the conjugacy class of Uf . For an “ori-
ented polygon”, a loop with initial point P of n links, we choose one direction as
in figure 6(a). Then we associate each link with gei and each vertex with hei , with
the constraint hen`1 “ he1 . We assume that all links are oriented, so each link
has an inicial vertex and a final vertex. We see that when the orientation coin-
cides (not coincides) with the orientation of the loop `, the signal oip`, eiq in (1) on

(a) Loop `. (b) Oriented links with la-
beled vertices.

Figure 6. Figure 6(a). Loop ` with some orientation. Figure 6(b).
Oriented links in the lattice.

the orientation of the loop-link is positive (negative). Therefore, the initial vertex
(with respect to loop) will be always found to the left of the transformation (7) (for
example if the orientation of the loop coincides with the orientation of some link,
teiu

n
i“1, then pheigeih

´1
ei`1
q1 “ heigeih

´1
ei`1

. On the other hand, for inverse orientation
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phei`1
geih

´1
ei
q´1 “ heig

´1
ei
h´1ei`1

). Consequently, when the two elements associated
with two consecutive links are multiplied, the result is

go1p`,e1qe1
go2p`,e2qe2

Ñ phe1,e2ge1h
´1
e2,e1

q
o1p`,e1qphe2,e3ge2h

´1
e3,e2

q
o2p`,e2q.

Additionally, tpe1q must coincide with spe2q because both links are united. Then

go1p`,e1qe1
go2p`,e2qe2

Ñ he1g
o1p`,e1q
e1

go2p`,e2qe2
h´1e3 .

By induction we obtain for 1 ď j ď n that

ź

ei P`

goip`,eiqei
Ñ he1

˜

ź

ei P`

goip`,eiqei

¸

h´1ej`1
for 1 ď i ď j.

Working for all links of the loop, hen`1 “ he1 , we prove the following lemma [ID91]

2.1. Lemma.
The product of fields along a closed curve ` “ e1e2 ¨ ¨ ¨ ene1 drawn on the lattice

U` “ Ue1e2Ue2e3 ¨ ¨ ¨Uene1

is transformed like
U` Ñ he1U`h

´1
e1
.

That is, it remains in the same conjugation class of the group.

2.2. Corollary.
For one oriented plaquete we take the orientation of the loop as the same of the pla-
quete. The gauge transformation Uf Ñ he1Ufh

´1
e1

makes that for one class function
ψ

ψpU 1f q “ ψpUf q.

I.e., the necessary condition for the invariance of the action that depends on the
faces (2).

Figure 7. Gauge transformation with Higgs field.

For the Higgs field we take the gauge transformation as (figure 7)

vipeq Ñ ρphipeqqvipeq, for all ipeq “ speq or tpeq,

and since ρ and vipeq are unitary representations, it is easy to see (using (7)), that
the Higgs field associated is invariant

xv1speq, ρpg
1
eqv

1
tpeqy “ v1 :speqρpg

1
eqv

1
tpeq

“ pρphspeqqvspeqq
:ρphspeqgeh

´1
tpeqqpρphtpeqqvtpeqq

“ v:speq
`

ρphspeqq
:ρphspeqq

˘

ρpgeq
´

ρph´1tpeqqρphtpeqq
¯

vtpeq

“ v:speqρpgeqvtpeq

“ xvspeq, ρpgeqvtpeqy.
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Summarizing, the gauge invariance is valid when the gauge transformations are
[Cre80, OHZ06]

ge Ñ hspeqgeh
´1
tpeq,(8a)

vipeq Ñ ρphipeqqvipeq, for all ipeq “ speq or tpeq,(8b)

as shown above.

2.3. Wilson loops. Observables in gauge theories need to be gauge invariant.
Therefore, it is useful to introduce a set of quantities in terms of which any gauge
invariant can be written. These objects are called Wilson loops which are gauge
invariant constructed, considering a closed loop ` and defining

(9) xW p`qy “

ř

conf

W p`qeSconf.

ř

conf

eSconf.
,

where W p`q “ χrpU`q. χr are the characters, that means, the traces of the corre-
sponding matrices in the irreducible representation. U` in (9) is the holonomy of the
link variables around the closed curve `.

In a pure gauge theory, for very large loops `, there are two possible limit behaviors
[GP96, OHZ06]3

(1) Area law. xW p`qy „ e´Kˆareap`q, for βG ! 1
(2) Perimeter law. xW p`qy „ e´K

1ˆperimeterp`q, for βG " 1.

2.4. The gauge-Higgs model. The gauge action with Higgs fields (α “ 1
2
, γ “ 0

in the expression (3)) can be written as

Sgauge-Higgs “ ´βG
ÿ

fPF

ˆ

1

2

`

trpρrpUf qq ` tr
`

ρr
`

U´1f
˘˘˘

˙

´βH
ÿ

tspeq,tpequ

<ptrpv:speqρrpgeqvtpeqqq.

For G “ Zn, the n irreducible representations denoted by tρru0ďrďn´1 in C are [JL01]

ρrpω
k
q “ e

2rkπ
n

i
p0 ď k ď n´ 1 e ω “ e

2π
n
i
q.

Furthermore, as stated in the previous section, each link e of each face f has an
associated member of the group Zn, therefore the representation is given by

(10) ρrpUf q “ exp

ˆ

2rk1π

n
i

˙

exp

ˆ

2rk2π

n
i

˙

¨ ¨ ¨ exp

˜

2rkNef π

n
i

¸

,

with Nef the number of links of the face f . In (10) 1 makes reference to the first
link where the holonomy begins to be calculated and Nef to the last link of the

3In general Wilson loops have two fundamental properties [GP96]

‚ The Mandelstam identities: these are relations between Wilson loops which reflect
the structure of a given gauge group.

‚ The reconstruction property: it can be reconstructed all the gauge invariant infor-
mation of a theory from the Wilson Loops.
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face. Since the irreducible representations have dimension 1 ˆ 1, the character of
the representation, trpρrpω

kqq “ χrpω
kq coincides with the representation. Hence,

we have that

χrpUf q ` χrpU
´1
f q “ 2 cos

˜

2rpk1 ` ¨ ¨ ¨ ` kNef qπ

n

¸

.

In this work, we use the faithful representation from the previous expression4, i.e.,
r “ 1. Given that each face has a certain number of links, the action is written as

Sgauge-Higgs “ ´βG
ÿ

f

cos

¨

˝

2π

n

Nef
ÿ

i“1

ki

˛

‚´ βH
ÿ

tspeq,tpequ

<ptrpv:speqe
2kπ
n

ivtpeqqq.

It follows that Higgs fields at the vertices represented by vi must be a matrix of size
1 ˆ 1 and also the gauge transformation vipeq Ñ ρphipeqqvipeq must be satisfied. We
choose vipeq “ ρphipeqq

´1 such that the field at each vertex be the unity. This gauge
fixation is equivalent to a pure gauge theory coupled to a field which is not gauge
invariant with coupling constant βH . This choice is called unitary gauge [Cre80].
We represent this as in figure 8. The “new” term of matter field can be written now

Figure 8. Configuration without matter fields at vertices.

as e
2k1π
n

ie
2kπ
n

ie´
2k2π
n

i, where k1 and k2 are integers (0 ď k1, k2 ď n´ 1). By cyclicity,
it is clear that this new term belongs to Zn, then the complete action is

(11) Sgauge-Higgs “ ´βG
ÿ

f

cos

¨

˝

2π

n

Nef
ÿ

i“1

ki

˛

‚´ βH
ÿ

l

cos

ˆ

2klπ

n

˙

.

For a two-dimensional manifold with gauge group Z2 decomposed into triangles,
the partition function was exactly calculated βH “ 0, and it can be shown that
this quantity depends only on the number of triangles with which the manifold is
discretized [Weg71, YT07]. The general case for Z2 is dual to the Ising model with
external field [Weg71, Kog79, Sav80], and it is well known than an exact value is
still elusive. Overall for the group Zn the analytic value is not known even for
βH “ 0. However, for βG “ 0 the value is easily found and the model is considered
topologically trivial [Bou97]. On the other hand, approaches by the Monte Carlo
method in the general case were found in various articles of the text [Reb83], and it
is shown that for nÑ 8 the behavior of the model is very similar to the Up1q. Our
purpose is to find numerical values of the partition function and the Wilson loops for
βH ‰ 0. For this reason, we consider the methods used in [YT07, FPTS12, Aza13,
BPT13], where there are some techniques for calculating the partition function of
three-dimensional manifolds, not for the general case βG,H ‰ 0, but within the limits

4In the case that each element of the group matches a distinct transformation, one says that
the representation is faithful [Tun85].
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βG,H Ñ ˘8 and other points. In this work, we aim for topological limits of the
gauge theory coupled with matter fields only for the two-dimensional case, because
the study for the three-dimensional case is more complicated and it is not studied
here.

2.5. Colored diagrams and Heegaard diagrams. Consider a triangularized
two-dimensional manifold M . We choose a plaquete oriented triangulation at faces
as links, figure 9(a). We associated each face with a closed black curve and each

(a) Oriented plaquete in
faces and links.

(b) Association of col-
ors to plaquetes. Face,
black closed curve. Gray
closed curve.

Figure 9. Association of colors to faces and links for a triangulation.

link with a closed gray curve perpendicular to the link, figure 9(b). The relative
orientation between the face and each link is determined by the intersection of their
respective curves (this will be explained in detail in the section 3). Thus, we have a

Figure 10. Two triangles connected by a link without representing
the orientations of faces and links. We note that the gray curve which
connects the two triangles seems to be in 3D. However, it was drawn
in this way in order to show that the curve is closed.

set of curves for faces and links denoted by b and g respectively. The rule for each
set of black or gray curves is simple: any curve can be crossed by itself and two
curves of the same color do not intersect. These two conditions are compatible with
the fact that every face of a triangulation and every link do not cross the other face
and any other link respectively. For representing two glued triangles (being homeo-
morphic a closed curve, as defined here, with a circle), we use circles connected by
a link (figure 10). Note that each triangle has three gray curves to denote its links,
and these in turn are connected to other black curves representing the neighboring
faces.

For the three-dimensional case, we consider the triangulation T of the manifold
M , oriented, closed, compact and connected, see figure 11(a) [Ber12, Aza13, Ale01,
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(a) (b) (c)

Figure 11. 11(a). Triangulation in 3D. 11(b). Regular neighbor-
hood of a 1-skeleton, handlebody Hg. 11(c). Part of a regular neigh-
borhood of a dual 1-skeleton, handlebody Hb. It is just a 3-ball of the
dual 1-skeleton.

Joh, BPT13]. It is well known that a regular neighborhood of a 1-skeleton S in
a three-manifold is a handlebody, Hg (figure 11(b))[Joh]. On the other hand, the
dual 1-skeleton to S , called S ˚, has also a regular neighborhood which is also a
handlebody, this will be called Hb (figure 11(c)). Furthermore, there is a handlebody

(a) (b)

Figure 12. 12(a). The handlebody Hg has associated finite set of
closed curves, g. 12(b). The handlebody Hb has associated finite set
of closed curves, b.

H of genus g, homeomorphic to Hg and Hb [Ale01, Joh]. Therefore, we note that
there is a finite collection of disjoint 2-disks, tD1, . . . , Dgu which are cut in a set
of disjoint 3-balls. We use Hg to represent the boundaries of these discs by gray
(dotted) curves (figure 12(a)). In a similar way, there is a finite collection of 2-disks,
tD11, . . . , D

1
gu which cuts Hb in a set of disjoint 3-balls. We represent the boundaries

of these disks by black curves (figure 12(b)). The set of gray curves is denoted by
g “ tg1, . . . , ggu and the set of black curves by b “ tb1, . . . , bgu.
Now, since H is homeomorphic to Hg and Hb there is a function φ such that maps
the gray closed curves g in Hg, in the handlebody Hb. The surface where both
finite finite closed curves are living will be called Σ, figure 13(a). Also there is a
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function ϕ such that maps the closed curves b in Hb, in the handlebody Hg. The

(a) (b)

Figure 13. 13(a). Heegaard diagram. 13(b). Dual Heegaard diagram.

surface where both finite closed curves are living will be called Σ1, figure 13(b).
The collections b “ tb1, . . . , bgu, g “ tg1, . . . , ggu motivate the following definition
[Ber12, Ale01, Joh]

2.1. Definition (Heegaard diagram). A Heegaard diagram is a triple D “ pΣ, b, gq,
where Σ is a surface of genus g closed, oriented and connected and

b “ tb1, . . . , bgu, g “ tg1, . . . , ggu

are two pairs of systems of disjoint closed curves on Σ such that the complements of
Yibi and Yigi are connected. The curves bi (resp. g “ tgku) are called black curves
(resp. gray) of the diagram. Note that the set bX g is finite and it can be supposed
that the curves meet transversely. The Heegaard diagram D is called oriented if all
black and gray curves are oriented.

The advantage of using curves is that we can employ them to obtain simpler
curves. For example, the Heegaard diagram 13(a) can be deformed continuously
for obtaining the figure 14(a). We represent the Heegaard diagram without surface,

(a) (b)

Figure 14. 14(a). Modified Heegaard diagram. The regions of gray
color are the holes in the surface. 14(b). Simplified Heegaard diagram.

like in figure 14(b). This diagram is called simplified Heegaard diagram. Diagrams
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corresponding to dual Heegaard diagram 13(b) can be obtained in a similar way. We
can note, that in the Heegaard diagram, the black closed curves are relationed with
the faces of the original triangulation and the gray closed curves with the links. This
representation of a manifold can be used to describe a theory in three-dimensions
[Kup91, BPT13].

As follows, we give the rules to know how the curves can be deformed. Formally,
it is said that two colored diagrams (for the two-dimensional case) or Heegaard
diagrams (for the three-dimensional case) are equivalent, if it is possible to obtain
one from one another with a finite sequence of the following moves [Ale01]:

‚ Homeomorphism of the surface: Let S and S 1 be closed, connected and
oriented surfaces. If S is homeomorphic to S 1, black curves (resp. gray)
on S are homeomorphic to black curves (resp. gray) on S 1. The colors of
the curves are equal.

‚ Orientation reversal: The orientation of black curves (resp. gray) is replaced
by its inverse. The inverse of the black curve bi is b´1i . Analogously, g´1j is
the inverse of the gray curve gj.

‚ Two point move: If the black curve intersects twice a gray curve, as in figure

(a) Before. (b) After.

Figure 15. Two point move property.

15(a), one can eliminate the crossing as it is shown in figure 15(b). The color
of each curve is invariant after separating them.

‚ Stabilization: Let T1 be a torus with genus one and let T2 be a torus of
genus greater than or equal to one, both with their respective black and gray
curves. If the black and gray curves of the two torus are disjoint, it can be
added or removed the torus T1.

‚ Sliding: Let C1 and C2 be two closed curves of the same color in a colored
diagram or Heegaard diagram over a surface S . Let b P S be the connection
between C1 and C2 as in figure 16(a). The curve C1 is replaced by the curve
C 11. The new curve C 12 is an isotopy of C2. The curve C 11 (resp. C 12) has the
same orientation of C1 (resp. C2) as it is shown in figure 16(b).

3. Topological and Quasi-Topological Theories

In mathematics, it is well known that each manifold M connected, closed and
orientable, can be triangularized in different ways. In the particular case of one
manifold with the topology of a torus, it may be sticked two triangles as it is shown
in figure 17(a). However, we could also describe the same torus by gluing three
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(a) Two curves of the same color glued
by a ribbon.

(b) Sliding.

Figure 16. 16(a). The curve C1 (resp. C2) has m (resp. n) crosses
with curves of different color. 16(b). After sliding the final curve C 11
(resp. C 12) has m` n (resp. n) crosses with curves of different color.

(a) Torus represented
by two triangles.

(b) Torus represented
by three triangles.

(c) Torus represented
by four triangles.

Figure 17. Three equivalent ways to represent a torus. Note that
we have to paste the links a and c, and also links b and d. All faces
and links are properly oriented.

or four triangles (see figure 17(b) and 17(c)). On the other hand, it has physical
interest to define invariant quantities of the topology, such as the partition functions
which should not depend on the triangulation of the discretized manifold, because it
is only a calculation tool. However, it is not necessarily so. It means that, the theory
may depend on the number of constituents of triangulation, such as: links, triangles
and tetrahedra. However, this dependence is trivial. In this section, we show how
one can build a theory which in principle does not depend on the lattice details. To
achieve this, we define topological theories and quasi-topological theories.

3.1. Topological Theories. Fukuma, Hosono, Kawai, Chung and Shapere provide
a formalism to describe lattice topological field theories in two and three dimensions
[FHK94, CFS94] and the basic ideas are described as follows: suppose a manifold
M with triangulation L . Let L be a lattice composed by a collection of oriented
polygons with faces joined by hinges. Now, we color the lattice by associating to each
face one element x of a set X (similar to the previous section where we associate
a gauge group G with the faces of a lattice using the holonomy). When this is
done, the rule which determines the weight for each polyhedron as a function of
coloreds of the faces is established. The partition function is the total sum of these
weights in all triangulations with their respective weights. In the three-dimensional
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(a) Polygons glued. (b) Hinges where polygones are
glued.

(c) Polygon decom-
posed into triangles.

Figure 18. Decomposition of a tridimensional lattice into faces and hinges.

case many faces can be glued with a hinge, which is an open neighborhood of the
line in which the faces stick together (see figure 18(a) and 18(b)). The theory
is described assuming that each polygon can be decomposed into triangles (figure
18(c)). Therefore, we can simply specify which are the weights of the triangles by
merely introducing the rule of gluing between triangles.

Now, we define the possible weight of a any face f : imagine a polygon as in
figure 19(a). We associate t o each link of the polygon an element ai of a group G
which can be finite or infinite, and we associate to each polygon a symmetric tensor

(a) Face with n links
has associated a tensor
Ma1a2¨¨¨an´1an

.

(b) Hinges with m
polygons glued. They
have associated a ten-
sor ∆b1b2¨¨¨bm´1bm .

Figure 19. Diagramatic representation of a face and hinge.

Ma1a2¨¨¨an´1an , being n the number of links of the polygon. We choose a cyclic tensor
M , i.e., Ma1a2¨¨¨an´1an “Ma2¨¨¨an´1ana1 “ ¨ ¨ ¨ “Mana1a2¨¨¨an´1 ; we perform a similar for
each hinge h, as it is shown in figure 19(b), i.e., we associate the tensor ∆b1b2¨¨¨bm´1bm ,
where m is the number of polygons which are glued by the hinge. The tensor ∆ is
also cyclical, i.e., ∆b1b2¨¨¨bm´1bm “ ∆b2¨¨¨bm´1bmb1 “ ¨ ¨ ¨ “ ∆bmb1b2¨¨¨bm´1 .
Being able to decompose polygons into triangles is the first condition to construct
a lattice topological theory. We have defined how polygons are glued and the two-
dimensional case is a simple one as it is shown in following example
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3.1. Example. Consider an oriented polygon of four links as shown in figure 20(a),
with tensor Mabcd (figure 20(d)) associated with it. Due that we have four links, this

(a) Face with
4 links.

(b) Two glued faces with one hinge. (c) Two glued faces with one hinge.

(d) Tensor associ-
ated to figure 20(a).

(e) Tensor asso-
ciated to figure
20(b).

(f) Tensor associated
to figure 20(c).

Figure 20. The way to stick two polygons with their respective tensors.

polygon can be decomposed into two triangles which are glued by means of a hinge.
Each triangle will have an associated tensor M with three indices and the hinge is
represented by the tensor ∆ with two indices. Therefore, the tensor Mabcd is written
as Mabx∆

xyMycd (figures 20(b) and 20(e)). Note that we are only contracting the
tensors by using the rule of indices between lower and upper indices for M and ∆
respectively. As it was stated, tensors M and ∆ are cyclically symmetric. However,
the relative orientation face-link must be taken into account when contracting ten-
sors. For this reason, we introduce the operator Syx whose function is to change the
direction of a link into a hinge. In figure 20(c), we change the orientation of a link
and we associate the contraction of tensors Mabx∆

xy1Syy1Mycd represented by 20(f).

The same rules for gluing are used for three-dimensional polygons remembering
that more than one face can be pasted on a hinge. When this is done, we define that
the partition function5 of the triangulation is ZpM ,T q “

řś

Mxyz∆
uvSwt , where

the sum is over all the labels, and the product is for all the elements f, h and its
orientations o. The partition function is topological invariant if it does not depend
on the triangulation, because the triangulation is merely a helpful tool, and in turn,
the results should not depend on it. Therefore, we have to connect in some way
two different triangulations of the same manifold, then the concept of moves is used
which satisfies all the mentioned requirements. These moves were discovered by
Pachner in the general case of n-dimensional manifolds. These have the important
property that if T1 and T2 are triangulations of the same manifold M , by using a
finite number of steps, we obtain the triangulation T2 starting from T1. In a similar
way, it is possible to obtain T1 from T2 [CKS98, Pac78, Pac91, Rob05]. The moves

5This function was defined in a two-dimensional case, for the three-dimensional a similar ex-
pression will be defined.
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(a) Pachner move (1,3), (3,1). (b) Pachner move (2,2).

Figure 21. Pachner moves in two-dimensional manifolds.

for the two-dimensional case are shown in figures 21(a) and 21(b). These are called
Pachner moves from (1,3) and (2,2), due to the number of triangles that are related.
For the three-dimensional case, we have more complicated moves, however, these
are not shown in this work because we are interested in a two-dimensional theory.
Different moves in three-dimensional can be found in [Ber12, Pac78] and moves in
four-dimensional are discussed in [CKS98, DH12].

Now, recall the formalism of colored curves provided in the previous section: each
face corresponds to a black curve and every link to a gray curve. Thus, taking into
account the number of faces and links, for the two-dimensional case, the Pachner

(a) Pachner move (1,3), (3,1). (b) Pachner move (2,2).

Figure 22. Pachner move like colored curves.

moves (1,3) and (2,2) are shown in figures 22(a) and 22(b). Note that the curves
are not representing the orientations of any of them. As we mentioned in section 2,
the Heegaard diagrams are the colored diagrams for the three-dimensional case and
the Pachner moves are a slightly more complicated than 22(a) and 22(b), because
these are based in glued multiple Heegaard diagrams. The basic Heegaard diagram
used for it, is shown in figure 14(b), which corresponds to a polygon with four faces
and six links.

As it was said before, in [FHK94, CFS94] and [CKS98] it can be found the tra-
ditional formalism to construct a lattice topological field theory. Basically, it is
necessary to consider that the set of polygons and hinges which represent the trian-
gulation T of a manifold M are cyclically symmetric, and that the Pachner moves
are satisfied. That was the reason for introducing the tensors M and ∆ besides
the face-link orientation represented by the tensor S. However, in order to use the
colored curves for our required computation of the partition function and Wilson
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loops, we will show in the following subsection that in fact the black and gray curves
are symmetric, contain the information of the orientation, and in addition satisfy
the Pachner moves.

3.2. Diagramatic formalism and colored diagrams. There is a one to one
relation between an associative semisimple algebra and a lattice topological field
theory in two dimensions while there is a one to one relation between an associative
Hopf algebra and a lattice topological field theory in three dimensions [FHK94,
CFS94, CKS98]. This shows a relation between topological invariance and Hopf
algebras. In [Kup91, Kup96] Kuperberg defines invariants when the Hopf algebra is
involutory (S2 “ 1) and non involutory (S2 ‰ 1), respectively. In this work we use
the algebra as involutory. For the two-dimensional case we can use an involutory
Hopf algebra because if trpS2q ‰ 0, the algebra is semisimple, see [LR95].

The basic properties of a Hopf algebra are explained as follows. We use the
diagrammatic language provided by Kuperberg which is useful to represent the basic
properties of such algebras [Kup91, KR99]. Once this is done, we diagrammatically
define tensors M,∆ and S [BPT13, Ale01].

3.2.1. Diagrammatic summary of Hopf algebras. We consider a vectorial space A
of finite dimension dimpA q “ n, such that its basis is denoted by tφgu

n
g“1. The

dual vectorial space is written as A ˚, with finite dimension dimpA ˚q “ n and basis
denoted by tφhunh“1. The relation between the two basis is given by the pairing
φhpφgq “ δhg , for g, h “ 1, . . . , n.

We recognize the product m : A bA Ñ A (resp. coproduct ∆ : A ˚bA ˚ Ñ A ˚)
associative (resp. coassociative), i.e. for elements of the basis φg, φh, φk P A (resp.
φg, φh, φk P A ˚), we have

rmpmb 1qspφg b φh b φkq “ rmp1bmqspφg b φh b φkq

(resp. r∆p1 b∆qspφg b φh b φkq “ r∆p1 b∆qspφg b φh b φkq). Furthermore, there
is e P A (resp. ε P A ˚), called the unity (resp. counity), such that for all φg P A
(resp. φg P A ˚), mpφg b eq “ mpe b φgq “ φg (resp. pφg b εq∆ “ pε b φgq∆ “ φg).
It is possible to write the product and coproduct using the basis φg through the

structure constants m k
ij and ∆jk

i

mpφi b φjq “ m k
ijφk,

∆pφiq “ ∆jk
i φj b φk.

Therefore m : A b A Ñ A and ∆ : A Ñ A b A . If additionally we have the
relation

∆pmpφi b φjqq ” mp∆pφiq b∆pφjqq

Ñ pφiφjq1 b pφiφjq2 ” pφiq1pφjq1 b pφiq2pφjq2,(13)

we state that the algebra A is a bialgebra. Finally, if there is an element S, called the
antipode, which satisfies for the product (resp. coproduct) Spφi ¨ φjq “ SpφjqSpφiq
(resp. Spφi b φjq “ Spφjq b Spφiq) and m ˝ pS b 1q ˝∆ “ m ˝ p1 b Sq ˝∆ “ e ˝ ε,
we invoked a Hopf algebra [CKS98, BJM10, LR88, GS96].
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Graphically, the structure of a Hopf algebra A in a field K is provided by the
product m : A bA Ñ A , the unity e : KÑ A , the coproduct ∆ : A Ñ A bA ,
the counity ε : A Ñ 1, and the antipode S : A Ñ A . These are represented as in

(a) (b) (c) (d) (e)

Figure 23. 23(a). Product. 23(b). Unity. 23(c). Coproduct. 23(d).
Counity. 23(e). Antipode. Diagramatic formalism of the elements of
a Hopf algebra.

figure 23. The outward arrows symbolize the product and are read counterclockwise
and the inward arrows symbolize a coproduct and are read clockwise. The structure

(a) (b)

Figure 24. Representation of tensors m k
ij and ∆jk

i , in figures 24(a)
and 24(b) respectively.

constants m k
ij and ∆jk

i for algebra and coalgebra are given by the figures 24(a) and

Figure 25. Relation between product and coproduct.

24(b). The relation of bialgebra, expression (13), is provided by figure 25. The
properties of antipode are diagrammatically represented by figures 26(a) to 26(d).
Hopf algebra properties can be shown using the diagrammatic formalism previously

(a) m ˝ pS b 1q ˝∆ “ e ˝ ε. (b) m ˝ p1b Sq ˝∆ “ e ˝ ε.

(c) Spφi ¨ φjq “ SpφjqSpφiq. (d) Spφi b φjq “ Spφjq b Spφiq.

Figure 26. Diagrammatic representation of antipode properties.

stated.
Let pρpφiqq

b
a be the regular representation of one element φi of the basis of alge-

bra; we write it as φi, in an abuse of notation. The trace is defined as trpφiq “
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(a) (b)

Figure 27. 27(a). Trace m j
ij . 27(a). Cotrace ∆ij

i .

ř

j

m j
ij “ m j

ij and it is diagrammatically represented in the figure 27(a). The cotrace

cotrpφjq “
ř

i

∆ij
i “ ∆ij

i , as in figure 27(b).

In this paper we use the following definition of the cointegral and integral elements
of algebra [Kup91, KR99]:

3.1. Definition (Cointegral and integral). The cointegral element λ P A is defined
as in the figure 28(a) and it can be a left or right cointegral. The figure 28(a)

(a) Cointegral λ. (b) Integral Λ.

Figure 28. Diagramatic representation of cointegral and integral el-
ements of algebra.

represents the left cointegral. Analogously, the integral is an element Λ P A ˚ such
that the condition drawn in the figure is satisfied. In the figure 28(b) we represent
the right integral.

For this work we use that the left and right cointegrals are equal [Kup91, LR88],
in particular for an involutory Hopf algebra, S2 “ 1, λ is represented in terms

(a) Tensor λ. (b) Tensor Λ.

Figure 29. Diagramatic representation of cointegral and integral el-
ements of algebra.

of the structure constants of the coproduct as in the figure 29(a). Similarly, Λ is
represented in terms of the structure constants of the product as in the figure 29(b).
The definition of cointegral, 29(a), and integral, 29(b), coincides with the definition
of cotrace and trace as it is shown in figures 27(b) and 27(a), respectively.

3.1. Lemma.
In an involutory Hopf algebra the tensor ∆ij

i m
k
jk is equal to the dimension of the

algebra (see figure 30).

Proof. We note that the cointegral can be represented by figure 31(a). We use the
integral property to obtain the figure 31(b). Placing the arrows with the same index
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Figure 30. Contraction ∆ij
i m

k
jk.

(a) (b) (c)

Figure 31. Proof of lemma 3.1.

we obtain the figure 31(c). Numerically, the last figure is
ř

j

eim j
ij “ trpφeq, where

φe is the identity matrix. So,
ř

j

eimj
ij “ n “ dimpA q and thus we had proven the

lemma. �

3.2.2. Tensors associated to curves. Through the associativity and coassociativity
of algebra, the tensors Ma1a2¨¨¨an and ∆b1b2¨¨¨bm can be defined diagrammatically as in

(a) Tensor Ma1a2¨¨¨an
. (b) Tensor ∆b1b2¨¨¨bm .

(c) Trace m j
ij . (d) Cotrace ∆ij

i .

Figure 32. Diagrammatic representation of tensors Ma1a2¨¨¨an and ∆b1b2¨¨¨bk .

diagrams 32(a) and 32(b), where there were defined the trace m j
ij and the cotrace

∆ij
j as in diagrams 32(c) and 32(d) [Kup91, KR99]. We note that combinations of

several tensors M and ∆ can be introduced by only placing the arrows according to
the rules of contraction of tensors. In particular we have of following lemma:

3.2. Lemma (Relation between M,∆ and S).
In an involutory Hopf algebra, S2 “ 1, we have that the contraction between tensors
M,∆ and S gives the dimension of algebra, figure 33.

Figure 33. Relation between tensors M,∆ and S.

This proof can be found in [Kup91]. Based in this last relation, we can show the
following results:
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3.3. Lemma.
In an involutory Hopf algebra, S2 “ 1, the following identities are satisfied:

(1) mi
ij “ m j

ij,

Figure 34. Tensors mi
ij and m j

ij are equal.

(2) ∆ij
i “ ∆ij

j ,

Figure 35. Tensors ∆ij
i and ∆ij

j are equal.

Proof. The basic idea is to use the above lemma. It is enough to proof the part 1 of
it and the part 2 can be proven in a similar way. By the lemma 3.2, we note that the

(a) (b)

(c) (d) (e)

Figure 36. Diagrammatic proof to show that tensors mi
ij and m j

ij are equal.

left part of the identity can be represented as in figure 36(a). Using the definitions of
tensors M and ∆ we represent 36(a) as 36(b), and with the associativity of algebra
we obtain the figure 36(c). However, with the property of the antipode, figure 26(b),
we obtain the figure 36(d). Finally using the unity property and contracting the
tensor ∆ with the counity ∆ij

i Ñ εj “ dimpA q, we have the figure 36(e). �

3.4. Lemma.
Tensors Ma1¨¨¨an and ∆b1¨¨¨bm represented by 32(a) and 32(b) respectively, are cyclic
symmetric.

Proof. The idea is to show that both tensors 32(a) and 32(b) can be represented
by the diagrams 37(a) and 37(b), respectively. For tensor Ma1a2¨¨¨an , the proof is
based on the associativity of the algebra, and we only need to note the sequence of
diagrams 38(a) and 38(b). We see that the last arrow to the left is the same as the
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(a) Tensor Ma1a2¨¨¨an
. (b) Tensor ∆b1b2¨¨¨bk .

Figure 37. Another diagrammatic representation of tensors
Ma1a2¨¨¨an and ∆b1b2¨¨¨bk .

(a) Definition of trace. (b) Associativity of algebra.

Figure 38. Diagrammatic proof of invariance of tensor Ma1a2¨¨¨an by
cyclic permutations of their indices.

first one in figure 38(b). Joining these two arrows, we proved the desired lemma.
For the tensor ∆b1b2¨¨¨bk , we use a similar argument with the coassociative of the
algebra. �

Using the two above lemmas, the associativity and coassociativity of algebra, it
is easy to show the following result:

3.5. Corollary.
The orientation of arrows in the product leaves invariant the tensors M and ∆, see
figures 39(a) and 39(b).

(a) Tensor Ma1a2¨¨¨an
. (b) Tensor ∆b1b2¨¨¨bk .

Figure 39. The orientation of arrows leaves invariant the product
and coproduct.

It can be seen that the lemma 3.4 ensures that tensors M and ∆ are cyclic, as we
expect, to describe polygons and hinges as in the preceding section [Ale01]. With
the tensorial notation previously defined, we can be provide a weight related to faces
(black curves) and links (gray curves) of a colored diagram or Heegaard diagram. We
naturally associate the tensor M to the black curves and ∆ to the gray curves. Since
every face and link are oriented, the black and gray curves should be also oriented.
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The tensor Ma1¨¨¨an associated with each black curve represents n crossings with gray
curves. Similarly, it is defined a tensor ∆b1¨¨¨bm associated with each gray curve, with
m the number of intersections with black curves. Note that M and ∆ are cyclic, no
matter the order of these crossings. Also, it is well known that the orientation of
the faces and links should not change the value of the partition function. Now, we
define how it is considered the relative orientation between black curves (faces) and
gray curves (links): let P be the intersecting point between curves6 and let ~tb and ~tg
be the tangent vectors to the black and gray curves in P . If n̂ is the normal vector
to the surface BM , we have two possible cases for the vectorial product ~tb ˆ ~tg and
contractions of tensors between M and ∆:

(1) n̂ and ~tb ˆ ~tg are parallel according to the right hand rule, figure 40(a).

(2) n̂ and ~tb ˆ~tg are antiparallel according to the right hand rule, figure 40(c).

(a) Crossing. (b) Associated
tensor.

(c) Crossing. (d) Associated tensor.

Figure 40. 40(a), 40(b). Intersections of curves with parallel direc-
tion and contraction of tensors. 40(c), 40(d). Intersections of curves
with antiparallel direction and contraction of tensors. We introduce
the antipode.

Note that we introduce the tensor S in 40(d) to represent the relative orientation
black-gray curve. In the case where the curves intersect twice as in figure 41(a), we
use the diagrams 40(b) and 40(d) to write the tensor 41(b)7.

(a) Two cross-
ings.

(b) Tensor associated
to interlaced curves.

Figure 41. Crossings and contraction of tensors.

6Remember that two curves of the same color do not intersect.
7The number of inward arrows in M (going out ∆) is the number of gray curves (resp. black)

crossing each black curve (resp. gray).
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So far, we have seen how it is possible to describe a lattice topological theory,
however, it has not been defined how is the contribution of tensors M and ∆. In
[FHK94], Fukuma, Hosono, and Kawai showed that all the physical information is
related to the center of the algebra considered. Let ρpφiq

k
j be a regular representa-

tion of an element φi of the algebra which will represented, as previously mentioned,
as φi. The tensor M is associated with the center of the algebra by the element z
and the tensor ∆ with the cocenter of the algebra denoted by ζ as follows

Ma1a2¨¨¨an “ trpzφa1φa2 ¨ ¨ ¨φanq,(14)

∆b1b2¨¨¨bk “ cotrpζφb1φb2 ¨ ¨ ¨φbmq,(15)

with φi and φj the elements of the basis of A and its dual A ˚ respectively [BPT13].
The generalized tensors M and ∆ provided by diagrams 32(a) and 32(b) are now

(a) General definition of M . (b) General definition of ∆.

Figure 42. The tensors M and ∆ are redefined using the center and
cocenter of algebra.

represented by figure 42. For z (resp. ζ) being an element of the center (resp.
cocenter), M (resp. ∆) is cyclically symmetric as expected when we build a Lattice
Topological Field Theory.

3.3. Partition function, Wilson Loops and topological invariance. We are
ready to define the partition function of the manifold M . Due to the polygons
are decomposed into triangles glued by hinges and each hinge can have pasted an
arbitrary number of polygons, the partition function for the manifold M with tri-
angulation T is naturally defined by

(16) ZpM ,T q “
ÿ

conf

ź

f

ź

e

ź

o

Mabcpfq∆
b1b2¨¨¨bkpeqSyxpoq,

where we use f and e to denote that the product is over all faces and links. The
product “o” means the product of all crossings with different orientation from the
normal vector to the surface BM . We write the partition function in the same way
followed in the three-dimensional case by Kuperberg [Kup91] and it is basically the
same as Chung, Fukuma and Shapere [CFS94]. The difference regarding the two-
dimensional case is that as it was described before hinges can be thought as links,
which can only stick two polygons8. I.e., the tensor ∆b1b2¨¨¨bk in (16) has only two
indices: ∆b1b2 . Now, it is well known that the relevant physical quantities depend
on the partition function, however, this one, for a manifold M , written as we did
above may or may not depend on the manifold of triangulation. We summarize this
in two cases:

8Only two different faces can share the same link.
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(1) Topological invariant: the partition function of each triangulation is
equal for two different triangulations T1,T2 of the manifold M , i.e., ZpT1q “

ZpT2q. This can be done by selecting (or finding) the weights z and ζ on
curves such that this condition is satisfied.

(2) Quasi-Topological invariant: the partition function depends on details
of the triangulations T1 and T2 of the manifold M . As in the topological
invariant case, we choose (or find) the weights z and ζ associated to curves
such that this condition is satisfied. In the quasi-topological case

ZpM ,T2q “ fpne1 ´ ne2 , nf1 ´ nf2 , nt1 ´ nt2qZpM ,T1q,

where nei , nfi and nti are the number of links, faces and tetrahedras (in the
three-dimensional case) of triangulation Ti respectively, and f a factor that
depends on the difference of the number of constituents for each triangula-
tion. Note that for the topological case f ” 1.

According to the paragraph above, the Wilson loops are now defined as follows

(17) xW p`qy “
1

ZpM ,T q

ÿ

conf

ź

f

ź

e

ź

o

W p`qMabcpfq∆
b1b2¨¨¨bmpeqSyxpoq,

where we take the partition function different from zero.
As it was stated, the invariance or quasi invariance of the partition function will

be satisfied by taking the elements of the center (resp. cocenter) of the algebra
of the group (resp. coalgebra). Thus, we associate a point to each black and gray
curve to denote the relation with the center and cocenter of the algebra, respectively
(figure 43). Since z is related with the black curves, this will provide information of
gauge fields residing on their faces. On the other hand, ζ is related to matter fields
or Higgs fields of section 2.4, where we choose the unitary gauge, vipeq “ ρphipeqq

´1,

Figure 43. Curves with weights.

such that matter fields lying on the vertices vanish and now these lie on the links.
As expected, all the information in the triangulation is provided by tensors M,∆

and S which are built from a Hopf algebra. However, it is still needed to show that
we can obtain a triangulation from another in a finite number of steps. As mentioned
earlier for triangulations, Pachner showed that one only need some moves for this
purpose. Then, we need to show that by using the language of colored curves we
get a triangulation T2 with diagram D2 from a triangulation T1 with diagram D1
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in a finite number of moves. By proving this, we are showing the invariance of the
partition function.

In the previous section, we saw the conditions for two colored diagrams or Hee-
gaard diagrams to be equivalent (see subsection 3.2 and the conditions on moves
2.5). Our goal is to show invariance and quasi invariance (unless scalar factors) of
the partition function using these conditions [Kup91, Ale01]. We suppose that each
black curve (resp. gray) has a weight associated with z (resp. ζ). However, it will
not stand for simplicity this weight as a point but just as a gray curve (resp. black)
in the diagrams and also in the statements of lemmas below.

3.6. Lemma (Homeomorphism of the surface).
Let S and S 1 be closed, connected and oriented surfaces. If S is homeomorphic to
S 1, black curves (resp. gray) on S are homeomorphic to black curves (resp. gray)
on S 1. The colors of the curves are equal.

This is equal to show that two homeomorphic surfaces have the same colored
diagram or Heegaard diagram9. Clearly the partition function (16) is invariant with
respect to this condition.

3.7. Lemma (Orientation reversal).
The orientation of black curves (resp. gray) is replaced by its inverse. The inverse
of the black curve bi is b´1i . Analogously g´1j is the inverse of the gray curve gj.

Proof. The proof is based on the cyclicity of tensors M and ∆. Consider a black
curve with three crossings with gray curves, as it is shown in figure 44(a) (a similar
proof can be done for a gray curve). For n crossings the proof is trivial following the
same procedure. The idea is to show that the tensor associated to figure 44(b) is

(a) First orien-
tation.

(b) Second ori-
entation.

(c) Tensor Ma1a2a3 associated to 44(a). (d) Tensor MSpa3qSpa2qSpa1q associated to 44(b).

Figure 44. Intersection of curves with first and second orientations
and diagram showing that Ma1a2a3 and MSpa3qSpa2qSpa1q are equal.

MSpa3qSpa2qSpa1q (figure 44(d)) and this is equal to Ma1a2a3 (figure 44(c)) which is the
associated tensor to figure 44(a). The tensor Ma1a2a3 in the figure 44(c) is equal to

9The proof of this effect can be found in [Joh] for Heegaard diagrams.
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(a) Tensor Ma1a2a3
and use of trace m j

ij . (b) Defining a´1
i “ Spaiq and

use S2 “ 1.

(c) Use Spabq “ SpbqSpaq
for a1 and a2.

(d) Use Spabq “ SpbqSpaq
for a´1

2 a´1
1 and a3.

Figure 45. Proofs that tensors Ma1a2a3 and MSpa3qSpa2qSpa1q are equal.

the sequence of steps, from the figure 45(a) to the figure 46(d). Step by step, we use
the facts that the algebra is associative and the antipode is an anti-homomorphism
of the product. Finally, the corollary 3.5 states that the orientation of the product
is invariant. So the tensors Ma1a2a3 and MSpa3qSpa2qSpa1q are equal. �

(a) b´1 “ Spbq. (b) Use Spabq “ SpbqSpaq
for a´1

3 pa´1
2 a´1

1 q and b´1.
(c) Use of associativity
of algebra.

(d) Joining the ar-
rows in the ends Ñ
MSpa3qSpa2qSpa1q.

(e) Changing the
orientation of the
product.

Figure 46. Proofs that tensors Ma1a2a3 and MSpa3qSpa2qSpa1q are equal.

3.1. Remark.
Due that we are taking the weight z on the black curve (resp. gray) as a gray curve
(resp. black), it seems that this is not taken into account. In this hypothesis we
need that the antipode on the weight z (resp. ζ), i.e. Spzq (resp. Spζq) be equal to
z (resp. ζ). We have the following result

3.8. Corollary.
Let z (resp. ζ) be the weight over a black curve (resp. gray), for topological invari-
ance we need that Spzq “ z (resp. Spζq “ ζ).

This ensures the invariance with respect to an orientation change. In the next
section it is calculated the weight associated with the gauge model, and this will
fulfill the mentioned condition.
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(a) Before. (b) After.

Figure 47. Two point move property.

3.9. Lemma (Two point move).
If the black curve intersects twice a gray curve, as in figure 15(a), one can eliminate
the crossing as it is shown in figure 15(b). The color of each curve is invariant after
separating them10.

Proof. The diagram associated with the figure 47(a) is represented by diagram 48(a).

(a) Tensor associated
with interlaced curves.

(b) Definition of tensors M and ∆.

(c) Use m ˝ pSb 1q ˝∆ “

e ˝ ε.
(d) Unity and
counity.

Figure 48. Two point move proof.

Using the property of the antipode m ˝ pSb 1q ˝∆ “ e ˝ ε, diagram 26(a), we obtain
diagrams 48(c) and 48(d) which are the tensors associated with the figure 47(b). �

3.10. Lemma (Stabilization).
Let T1 be a torus with genus one and let T2 be a torus of genus greater than or equal
to one, both with their respective black and gray curves. If the black and gray curves
of the two torus are disjoint, it can be added or removed the torus T1.

Proof. We consider the figure 49(a), which will be represented by the tensor 49(c).
We expect to unite the torus with black and gray curves to the torus of genus g ě 1.
We write the tensors associated before and after of the union, these are equal. �

A more interesting result is that in which the cointegral (resp. integral) property
is used.

10To say that the color of each curve is invariant is state that the weight of each curve does not
change.
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(a) Two torus which are separated by disjoint
black and gray curves.

(b) Two torus joined by black and gray curves.

(c) Tensors associated with curves before and
after the union of two torus, do not change.

Figure 49. Proof of stabilization, trivial.

3.11. Lemma (Cointegral (resp. integral) property).
Let be a black curve (resp. gray) whose weight is the cointegral (resp. integral)
(figure 50(a)), crossed by any number of gray (resp. black) curves. The cointegral
(resp. integral) can be replaced by a gray curve (resp. black), as shown in figure
50(b). We can separate the black curve (resp. gray) of other crosses, as in figure
50(c).

(a) Black curve with
weight the cointegral.

(b) Gray curve crossing
just one gray curve.

(c) Use of cointegral prop-
erty.

Figure 50. Cointegral property.

Proof of cointegral property. By the definition of cointegral (definition 3.1), tensor
51(a), we have that it can be related to a gray curve, so we obtain the figure 50(b).
Let n` 1 be the number of crossings of the black curve with gray curves; the tensor
associated to 50(b) is 51(b). By definition of M we have the tensor 51(c). Using the
cointegral property (definition 3.1), we have the tensors 51(d) to 51(e). We observe
that the tensor 51(e) is associated with the figure 50(c). To prove the integral
property we use similar arguments. �

3.12. Corollary.
For the cointegral λ, the diagrammatic configuration shown in figure 52(a) can be
represented as in figure 52(b).

Proof. We only apply the cointegral property on the black curve. �

3.13. Lemma (Sliding).
Let C1 and C2 be two closed curves of the same color in a colored diagram or Heegaard
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(a) Tensor λ,
associated to
gray curve.

(b) Tensor M with n` 1 inward arrows. (c) Definition of M .

(d) Definition of the cointegral. (e) Definition of the cointegral property
repeatedly. Tensor associated to 50(c).

Figure 51. Proof of the cointegral property.

(a) (b)

Figure 52. Black curve with weight λ which intersects just one gray curve.

diagram over a surface S . Let b P S be the connection between C1 and C2 as in
figure 53(a). The curve C1 is replaced by the curve C 11. The new curve C 12 is an
isotopy of C2. The curve C 11 (resp. C 12) has the same orientation of C1 (resp. C2)
figure 53(b).

(a) Two curves of the same color glued
by a ribbon.

(b) Sliding.

Figure 53. 53(a). The curve C1 (resp. C2) has m (resp. n) crosses
with curves of different color. 53(b). After sliding the final curve C 11
(resp. C 12) has m` n (resp. n) crosses with curves of different color.
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Proof. The proof will be made for the basic case in which the weight of the curve
to the right is trivial, i.e., z “ e, the unity. In subsection 3.5 we show that there
are other non-trivial weights with which we can also apply the sliding moves. It

(a) Form of tensors of
curves.

(b) Definition of M and unity e. (c) Integral property.

(d) Definition of M again. (e) Use of relation between product and co-
product.

Figure 54. First part of statement of the sliding property.

should follow diagrams 54(a) to 54(e), where there are used the definitions of the

(a) Definition of M and ∆. (b) Relation product and coproduct.

(c) Definition of ∆. (d) Analogously
by n crossings of
the previous step.

Figure 55. Second part of the demonstration of the sliding property.

tensor M and unity e and also, the relation between product and coproduct. Now,
in figures 55(a) to 55(d) it is used the ∆ definition repeatedly. Furthermore, the
relation between product and coproduct n times, where n is the number of crossings
of the original curve to the right. �

3.4. Topological invariance using curves. It is well know that Pachner moves
assure topological invariance. Therefore, our purpose is to show that these are
satisfied at least for the two-dimensional case using the moves described in the
previous subsection; a detailed demonstration for the three-dimensional case can
be encountered in [Ber12]. At the end of this subsection, we shall give all details
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(a) Pachner move (1,3), (3,1). (b) Pachner move (2,2).

Figure 56. Relation between the two diagrams Pachner move like
colored curves.

for the proof. Firstly, we merely show the relation between diagrams. Indeed, as
stated before in this section, the corresponding diagrams in colored curves for the
Pachner moves are represented by the figures 56(a) and 56(b). Using the moves for
curves, we obtain that the association between diagrams (1,3), is shown in figure 57.

Figure 57. Pachner move (1,3), (3,1).

Note that we have three additional diagrams, in the left part of this figure, to relate
both triangulations (two black curves crossing one gray curve and one isoloted gray
curve), this will be discussed below. On the other hand, for the (2,2) move, it will

Figure 58. Pachner move (2,2).

be shown that the equivalence between figures is hold, see figure 58.
As it was shown, the relation between diagrams in figure 57 has three additional

diagrams. These diagrams represent the difference in detail of both diagrams in
figure 56(a). The diagram to the right has 6 links and 3 triangles, and the diagram
to the left has 3 links and 1 triangle. Therefore, the additional three diagrams in



36 N.J.B. AZA AND F. DORESTY F.

the figure 57 represent the difference in details of both diagrams. This corresponds
to a quasi-topological behavior of the model using the kind of moves shown in this
work. To know the numeric value of the these isolated diagrams we remember that
in subsections 3.2.2 and 3.3 we associate to each closed black curve the tensor M ,
and the tensor ∆ to each closed gray curve; furthermore, we represent their weights
z and ζ respectively by points. In figure 59(a) it is represented one black curve

(a) (b) (c) (d)

Figure 59. Tensors associated with isolated curves with weight.

crossing just one gray curve, and its tensorial representation is given in figure 59(b),
in which using that S2 “ 1 and the lemma 3.2, we obtain the figure 59(d). This last
diagram has numeric value dimpA q

ř

h

zhSpζhq, however by corollary 3.8, Spζq “ ζ,

therefore the numeric value is dimpA q
ř

h

zhζh, where zh and ζh are the coefficients

that expand the center and cocenter respectively. On the other hand, by lemma
3.7 we know that by changing the orientation of one curve the partition function
is the same. To know the numeric value of one black curve with weight z, we
observe figures 60(a) and 60(b). The corresponding numeric value is

ř

h

zhm g
hg and

(a) (b) (c) (d)

Figure 60. Tensors associated with isolated curves with weight.

for one gray curve, figures 60(c) and 60(d), the numeric value is
ř

h

ζh∆
hg
g . Note that

following the corollaries 3.5 and 3.8 the orientation of the curves is not important.
This way, we proved the following lemma:

3.14. Lemma.
Each isolated curve, black or gray, and each pair of crossing curves, black with gray,
has a numeric value independent of the orientation of each curve.

Following the definition of quasi-topological invariant in the partition function,
two different triangulation T1 T2 of a manifold M are related by

(18) ZpM ,T2q “ fpne1 ´ ne2 , nf1 ´ nf2 , nt1 ´ nt2qZpM ,T1q,

where nei , nfi and nti are the number of links, faces and tetrahedras (in the three-
dimensional case) of triangulation Ti respectively, and f a factor that depends on
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the difference of the number of constituents for each triangulation. So, it is possible
to take the function f according to paragraph above, as follows

(19) f “ γ
ne2´ne1
1 γ

nf2
´nf1

2 ,

where γ1, γ2 real parameters, in principle non-negative. Therefore, the corresponding
partition functions for two different triangulations are related for tγ1, γ2u ‰ 0 by

ZpM q “
ZpM ,T2q

γ
ne2
1 γ

nf2
2

“
ZpM ,T1q

γ
ne1
1 γ

nf1
2

,

where ZpM q is called topological partition function because it is independent of
triangulation. For the three-dimensional case the topological partition function is
given by the form [FPTS12, Ber12, BPT13, YTSB07]

ZpM q “
ZpM ,T2q

γ
ne2
1 γ

nf2
2 γ

´nt2
3

“
ZpM ,T1q

γ
ne1
1 γ

nf1
2 γ

´nt1
3

,

with γ1, γ2, γ3 real parameters, in principle positives.
To complete this subsection, we prove the topological invariance under Pachner

moves using the formalism of colored curves and their moves; in particular the two
point move and the sliding move. On each black and gray curve, we do not represent
the elements of the center and the cocenter of the algebra. However, each time we
make the sliding move we assume that the element of the center or cocenter, allows
this. Furthermore, we do not put the orientation because we are supposing that
the lattice is oriented. The same technique is used to show topological invariance
in more dimensions. However, we have to clarify that in dimensions higher than 3,
the number of curves make very difficult to vefify topological invariance due to the
number of Pachner moves that we need.

3.4.1. Move (1,3).

Proof. By definition, the Pachner move (1,3) is the reverse of move (3,1). Thus, we start

from the triangulation which has three triangles and six links (figure 61(a)), denoted by

p3, 6q and colored diagram 61(b), to another which has a triangle and three links, and it

will be denoted by p1, 3q, as in figure 61(c) and colored diagram 61(d). Firstly we use the

sliding move, lemma 3.13, to the upper black curves, figure 62(a). We repeat the sliding

move, but now on the lower black curve in the graph, figure 62(b). We use two point move

and then we obtain the figure 62(c). We make move sliding on the lower gray curves and

we have 62(d). We use two point move, and the gray curve is now in the black curve, as

it is shown in figure 62(e). We do sliding between the two gray curves which intersect the

same black curve, and then we can remove one of these, figure 62(f). We make now sliding

of the gray curve crossing two black curves 63(a). Using two point move, we obtain the

figure 63(b). Now, each gray curve crossing a black curve can move freely on the black

curve as in figure 63(c). We make sliding over the gray curve crossing two black curves,

figure 63(d). We use two point move to get the diagram 63(e). We note that in the last

diagram there is a black curve which crosses only one gray curve. It can be removed from

the diagram because it does not intersect with any other curve. Doing the same for other

gray curve, we have the figure 63(f). We note that the final diagram is equivalent to a
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(a) Three triangles
that divide a larger
one.

(b)

(c) One triangle. (d)

Figure 61. Representation of triangles 61(a) and 61(c) in colored curves.

(a) (b) (c)

(d) (e) (f)

Figure 62. First part of the statement of Pachner moves (1,3) in
colored curves.

triangle with three links: two black curves, each one crossed by a gray curve, and a gray

curve. �

3.4.2. Move (2,2).

Proof. The proof is again based on sliding move. Considering the diagram 64(c) which

is originated from diagram 64(a). First, we make a sliding move on the left black curve,

figure 65(a). Then, we recall that the gray curve which intersects only a black curve can

move freely through it, as in figure 65(b). We move the sliding between gray curves and

we obtain the figure 65(c). Making two point move we find the figure 65(d). Making

sliding again, it is removed the black curve which crosses only one gray curve. After that,
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(a) (b) (c)

(d) (e) (f)

Figure 63. Second part of the statement of Pachner moves (1,3) in
colored curves.

(a) Two
triangles
glued “hori-
zontally”.

(b)

(c) Two tri-
angles glued
“vertically”.

(d)

Figure 64. Representation of two triangles 64(a) and 64(c) glued
together in colored curves 64(b) and 64(d).

we extract these curves and the figure 65(e) is obtained. The same steps are followed for

the other triangulation, and as a result we have an equality between graphs. �
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(a) (b) (c)

(d) (e)

Figure 65. Diagrammatic proof of Pachner moves (2,2) in colored curves.

3.5. Group algebra. So far, we have the most general formalism for a topological
theory. We only chose a Hopf algebra, pA,m,∆, S, e, εq and we were able to show
Pachner moves which imply topological invariance, except by multiplicative factors.
However, the goal is to work with discrete groups, therefore it is natural introduce
the group algebra defined below [JL01, pag. 53].

3.2. Definition (Group algebra). Let G be a finite group whose elements are g1, . . . , gn,
and let F be a field (R or C).
A vectorial space over F with φg1 , . . . , φgn as a basis, is called vectorial space FG.
The elements of FG are all elements of the form

ř

gPG

λgφg “ λgφg, where the rules of

addition and multiplication by a scalar in FG are naturally given by: if

u “ λiφi and v “ µiφi

are elements of FG, and λ P F , then

u` v “ pλi ` µiqφi and λu “ pλλiqφi.

Since G is a finite group of order n, dimFG “ n.

The product of two elements φg, φh of the basis is provided by φgφh “ φgh, where
the product gh is the same of the group G. For consistency, the structure constants
of the product

mpφg b φhq ” φgφh “ m k
ghφk,

are given by m k
gh “ δpgh, kq. The identity element is written unambiguously as

e “ φe, where e P G is the identity of group G. The group algebra is a Hopf algebra
if the following relations are satisfied

pφgφhqφk “ φgpφhφkq,

∆pφgq “ φg b φg,

∆pφgφhq “ ∆pφgq∆pφhq,

εpφgφhq “ εpφgqεpφhq

Spφgq “ φg´1 .
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The structure constants of the coproduct and antipode are

∆hk
g “ δpg, hqδpg, kq,(20)

Shg “ δpg, h´1q(21)

The diagram representing the property ∆pφgq “ φg b φg corresponds to the figure

Figure 66. Homogeneous element aplied to the coproduct.

66, in which the element φg of the basis will be called an homogeneous element of
the group algebra.

3.3. Definition. In the case of the group algebra FG, the elements of the center of
it will be provided by

ZpFGq “ tz P FG : zr “ rz for all r P FGu,

with z “ tgφg for some coefficients tg P F, @g P G. It is easy to verify that if all
tg are equal to t P F then the element t

ř

gPG

φg belongs to ZpFGq. In the particular

case t “ 1, we are making reference to the cointegral element of the algebra, see
definition 3.1 [BPT13].

3.15. Proposition.
Let φg be a homogeneous element of the group algebra and we define the diagram
67(a) for simplicity. Then ∆, can be modified as in figure 67(b).

(a) Definition Ñ φg Ñ. (b) ∆ modified.

Figure 67. Proposition.

Proof. Considering the sequence of figures 68(a) to 68(e), we prove the desired result.
�

3.6. Abelian groups. Let us contemplate show other useful properties for discrete
abelian groups in the group algebra. Since we have a great interest in the Zn group
a “direct” application of it will be obtained in the following section.

We know that tensors M and ∆ can be expressed in terms of the center z and
cocenter ζ of an algebra, and we previously mentioned that these are represented by
points on the black and gray curves. In the case of the group G be commutative, the
Hopf algebra in the group algebra is commutative and cocommutative. Knowing
that the move sliding implies topological invariance, we want to know what happens
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(a) (b) Definition Ñ φg Ñ. (c) Relation product and co-
product.

(d) Homogeneous element
aplied to coproduct.

(e) Asso-
ciativity.

Figure 68. Proof of proposition 3.15.

with the weights of the curves after this move. The lemma 3.13 states that it is
possible to make the sliding for curves of the same color when the weight of one of
them is trivial. However, the following lemma is valid when the groups are abelian
and the sliding move is applied over a black curve with weight, φg, a homogeneous
element.

3.16. Lemma (Sliding over homogeneous elements).
Let G be an abelian group with φgPG the basis of the group algebra. Let C1 and C2 be

(a) Two black curves connected by a rib-
bon.

(b) Sliding.

Figure 69. 69(a). The black curve C1 (resp. C2) has m (resp. n)
crosses with gray curves (resp. black curves). 69(b). After sliding the
final curve C 11 (resp. C 12) has m`n (resp. n) crosses with gray curves
(resp. black curves).

two closed black curves with weights z and φg respectively, figure 69(a). The curve
C1 is replaced by the curve C 11 with weight zφg. The new curve C 12 is an isotopy of
C2. The curve C 11 (resp. C 12) has the same orientation of C1 (resp. C2) figure 69(b).

Proof. The proof is similar to the sliding for the trivial case of the black curve to
the right, lemma 3.13. However, in this situation the weights are represented as
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(a) Shape of tensors of
curves.

(b) Definition of M and counity e. (c) Integral property.

(d) Definition of M . (e) Use of definition Ñ φg Ñ.

Figure 70. First part of proof of sliding property.

points in the figures. Another difference is that for the proof of lemma 3.13, the
center was considered as a gray curve. Now, the elements of the center are explicitly
represented. We associate with each tensor M the element of the center as shown
the figure 70(a) and then we follow the steps to figure 70(d). Finally we use the

(a) Use proposition 3.15. (b) Definition Ñ φg Ñ.

(c) Definition M . (d) Follow the
steps in figure 55.

Figure 71. Second part of the statement of the sliding property.

proposition 67 from 71(a) to 71(d). �

Another property that can be shown is the following lemma:

3.17. Lemma.
Consider the diagrammatic configuration 72(a). It is equivalent to figure 72(b), here
ζ is an element of cocenter of the algebra, which can be written as ζ “

ř

h

ζhφ
h.

Thus, the element φ´1g Ñ ζ is ζg´1.
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(a) (b)

Figure 72. Figure of lemma 3.17.

Proof. To prove this lemma we write the tensor associated to each curve and then
we use proposition 3.15. �

4. Gauge-Higgs model in the topological limits

In section 2 we described the traditional formalism when it is defined a gauge
theory with matter fields. In this section, we use the unitary gauge which makes
that the variables related with the matter field do not lie on the vertices, but in fact,
lie on the links of the lattice of discretized manifold M . Also, in section 3 we did a
rundown of how a lattice topological theory can be constructed. We define tensors
M and ∆ which provide information of faces and links of the triangulation T ,
and the tensor S which provides the relative orientation face-link in their crossings.
Furthermore, we showed the invariance of the partition function in the representation
of oriented black and gray curves, which are associated to faces and links respectively.
But even defining the partition function and the Wilson loops, we did not calculate
explicitly any of them.

In this section we calculate explicitly partition functions and Wilson loops of
two-dimensional manifolds for the gauge-Higgs model with gauge group Z2. We
do this remembering that the information of triangulation of the manifold M is
contained in the weights of black and gray curves. As we mentioned, these weights
are related to the center and cocenter of a Hopf algebra. We shall show that the
weights associated to gray curves, which are in the cocenter of algebra, are related
to the center of algebra, in such a way that we can replace this weight by one black
curve with weight in the center of the algebra. Thus, by knowing only an expression
of the center of the group, we can fully describe the gauge-Higgs model. As follows,
we define what is a topological limit, and we see that for Z2, the partition function
is topological or quasi-topological. Finally, we calculate the expected value of the
observables, Wilson loops, using the formalism of curves shown here.

4.1. Character expansions and center of group. In section 2 we state that for
a finite group G, the action for a pure gauge model is given by expression (3)

S “ ´β
ÿ

fPF

pαptrpρpUf qq ` trpρpU´1f qqq ` γq,



ON LATTICE TOPOLOGICAL FIELD THEORIES WITH FINITE GROUPS 45

where Uf is the holonomy for each face. Let r denote the representation in trpρpUf qq,
such that the action can be written in terms of the character χrpUf q “ trpρpUf qq.
The weight associated with the partition function related with the gauge fields is
(without loss of generality we take γ “ 0)

Wgaugepfq “
ź

f

e´αβpχrpUf q`χrpUf qq.

Let MpUf q “ e´αβpχrpUf q`χrpUf qq be the class function, i.e. MphUfh
´1q “MpUf q for

all h P G. So, it is possible to expand MpUf q in terms of the k irreducible characters,
χ1, . . . , χk of the group G

(22) MpUf q “
ÿ

r

M rχrpUf q,

where M r are real numbers. In order to obtain these last terms, we use the following
theorem (we take all irreducible representation as unitaries) [JL01, page 161]:

4.1. Theorem.
Let χ1, . . . , χk be the irreducible characters of a finite group G. Let g1, . . . , gk be
representatives of the conjugacy class of G. The following relations are satisfied for
any r, s P t1, . . . , ku.

(1) Ortogonality relation between rows:

k
ÿ

i“1

χrpgiqχspgiq

|CGpgiq|
“ δpr, sq.

(2) Ortogonality relation between columns:

k
ÿ

i“1

χipgrqχipgsq “ δpr, sq|CGpgrq|.

Where CGpxq is the centralizer of x in G, this is, the set of elements g P G that
commute with x.

On the other hand, we shall prove the following lemma [Fer14]:

4.1. Lemma.
Let χ1, . . . , χk be the irreducible characters of a finite group G. The following relation
is satisfied for all elements f, h P G

(23)
ÿ

gPG

χrpgfqχspghq “ nδrsχrpfh
´1
q.

Proof. We use the relation of ortogonality of irreducible unitary representation ma-
trices Dpgq ji of the group G

(24)
ÿ

gPG

Drpgq
l
i Dspgq

m

j “
n

dr
δrsδijδlm,

where n and dr are the dimension of the group and irreducible representation r,
respectively [Ham89]. We write the expression (23) as

ÿ

gPG

χrpgfqχspghq “
ÿ

g,i,j

Drpgfq
i
i Dspghq

j

j ,
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where we have used that g Ñ gf , so we write

ÿ

gPG

χrpgfqχspghq “
ÿ

g,i,j

Drpgq
i
i Dspgf´1hq

j

j “
ÿ

g,i,j,k

Drpgq
i
i Dspgq

k

j Dspf´1hq
j

k .

Using the ortogonality relation (24) we obtain

ÿ

gPG

χrpgfqχspghq “
ÿ

i,j,k

n

dr
δrsδijδikDspf´1hq

j

k

“
ÿ

i

nδrsDspf´1hq
i

i

“ nδrsχrpfh
´1
q,

because the representation is unitary, and we had proven the lemma. �

With the above lemma we find the coefficients M r in (22) to obtain

(25)
ÿ

Uf

MpUf qχspUf q “
ÿ

r,Uf

M rχrpUf qχspUf q ÑM r
“

1

n

ÿ

Uf

MpUf qχrpUf q.

For consistency, we note thatMpUf q is the contraction between tensorsMa1a2¨¨¨aNef
|aiPBf∆

b1b2¨¨¨bk
ś

i

Syixi

defined in (16), where for each link ai we associate an element g of a group G, and
there is an antipode when the relative orientation face-link is reversed.

We recall that the partition function in the formalism of Heegaard diagrams de-
pends of weights on the faces and links (16). However, due to the weight of faces
associated with black curves, this is associated with the center of the gauge group
G. Since it is a finite group, every element of the center z P ZpFGq can be written
as [JL01]

(26) z “
ÿ

i

zici, where ci “
ÿ

gPCi

φg

with Ci the conjugacies class of the group G and zi complex numbers. Also, as
mentioned above, the contraction between tensors Ma1a2¨¨¨aNef

|aiPBf∆
b1b2¨¨¨bk

ś

i

Syixi

(where ai are links around the face f and each gi is an element of the group G
associated with the link) must coincide with MpUf q. In the group algebra we have
(expressions (14), (20) and (21))

Ma1a2¨¨¨aNef
|aiPBf∆

b1b2¨¨¨bk
ź

i

Syixi “ trpzφg1 ¨ ¨ ¨φgNef
q∆g1g11 ¨ ¨ ¨∆

gNef
g1Nef

ź

i

Syib1i

“ tr

¨

˝z

Nef
ź

i

φ
g
oipf,eiq
i

˛

‚

“ trpzφUf q,
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with Uf “
Nef
ś

i

g
oipf,eiq
i the holonomy around of the face f . Using the expression (26)

we obtain

Ma1a2¨¨¨aNef
|aiPBf∆

b1b2¨¨¨bk
ź

i

Syixi “
ÿ

i

zitrpciφUf q “
ÿ

i

ÿ

gPCi

zitrpφgφUf q.

For the group algebra trpφgφUf q “ trpφgUf q “ nδpgUf , eq “ χrpgUf q for some repre-

sentation r. Since Ma1a2¨¨¨aNef
|aiPBf∆

b1b2¨¨¨bk
ś

i

Syixi “MpUf q we have

MpUf q “
ÿ

i

ÿ

gPCi

ziχrpgUf q.

Multiplying both sides by χspUf q and adding all the group elements we find
ÿ

Uf

MpUf qχspUf q “
ÿ

i

ÿ

gPCi

zi
ÿ

Uf

χrpgUf qχspUf q

“
ÿ

i

ÿ

gPCi

zinδrsχrpgq,

where we used the lemma 4.1. In the last sum we can take a representative element
gi P Ci such that the number of elements in the conjugacy class Ci is |Ci|. So, we
have

n
ÿ

giPG

zi|Ci|χrpgiq “
ÿ

Uf

MpUf qχrpUf q.

Multiplying both sides by χrpgjq and adding all the representative characters r

n
ÿ

giPG

zi|Ci|
ÿ

r

χrpgiqχrpgjq “
ÿ

Uf

MpUf q
ÿ

r

χrpU
´1
f qχrpgjq.

Finally, we use the ortogonality relation for columns of theorem 4.1, where we note
that U´1f must be in some conjugacy class such that the element gk is its represen-
tative element

n
ÿ

giPG

zi|Ci|δpi, jq|CGpgjq| “
ÿ

gk

Mpg´1k qδpi, kq|CGpgiq| “Mpg´1i q|Ci||CGpgiq|,

where in the last expression we have used the fact that M is a class function and
that the number of elements in the conjugacy class Ck is |Ck|. We obtain that the
coefficients zi are given by zi “ 1

n
Mpg´1i q. However MpUf q “MpU´1f q, therefore the

coefficients are

(27) zi “
1

n
Mpgiq.

This last expression gives the weight related with a pure gauge, for a general fi-

nite group such that MpUf q “ e´αβpχrpUf q`χrpUf qq. For example, we know that the
dihedral group [JL01]

G “ D6 “ xa, b : a3 “ b2 “ 1, b´1ab “ a´1y
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has elements, g “ t1, a, a2, b, ab, a2bu, and the representative elements of its conju-
gacies classes are,

1G “ t1u, aG “ ta, a2u, bG “ tb, ab, a2bu.

Then, since the characters of D6 are real numbers, see table 1, we have that the

1 a b

χ1 1 1 1

χ2 1 1 ´1

χ3 2 ´1 0

Table 1. Characters for the group G “ D6.

coefficients which expand the center have the form (α “ 1
2
ˆunits such that their

product with β gives dimensionless)

zgD6
“

1

6
e´βχrpgq, such that z “

ÿ

iPD6

zi
ÿ

gPCi

φg.

Now, we know that D6 has three irreducible characters, therefore we write the center
for each one of these as

z “
1

6
pφ1 ` φa ` φa2 ` φb ` φab ` φa2bq; for r “ 1

z “
1

6
e´βφ1 `

1

6
e´βpφa ` φa2q `

1

6
eβpφb ` φab ` φa2bq; for r “ 2

z “
1

6
e´2βφ1 `

1

6
eβpφa ` φa2q `

1

6
pφb ` φab ` φa2bq; for r “ 3.

We note that the first of the above expressions coincides with the definition of
the cointegral multiplied by a constant given by the definition 3.3. The other two
expressions for the center of the group for the particular action of gauge pure can
be used to describe the theory, however, we use the second expression because it has
each term dependent of β.

For the Zn case, recalling the action for the gauge-Higgs field with gauge group
found in section 2

(28) Sgauge-Higgs “ ´βG
ÿ

f

cos

¨

˝

2π

n

Nef
ÿ

i“1

ki

˛

‚´ βH
ÿ

l

cos

ˆ

2klπ

n

˙

,

where every ki P t0, 1, . . . , n´1u. As previously mentioned, the term field spin-gauge

is due to the holonomy in all faces. We recognize MpUf q “ ´βG cos

˜

2π

n

Nef
ř

i“1

ki

¸

.

Following the expression (27), we find that the coefficients expanding the center are
given by

(29) zh “
1

n
eβ cosp 2hπn q,
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where h now corresponds to the representative element of each conjugacy class. I.e.,
the center is

(30) z “
1

n

n´1
ÿ

h“0

eβ cosp 2hπn qφh.

Taking the expression (25), the characters are given in terms of coefficients which
expand the center of group

(31) M r
“

n´1
ÿ

h“0

zhω´hr “
1

n

n´1
ÿ

h“0

eβ cosp 2hπn qω´hr.

We notice that this center z, associated to faces, has a similar relation in the case
of links, by the expression (28). However, we have to be careful, because the in-
formation on the links is associated with the center of coalgebra or cocenter and
not to the center. In the next subsection, we will show how to obtain the physical
information, in the regular representation, of the triangularized manifold M using
only the elements z of the center of group G.

4.1. Remark.
We can note that the coefficients describing the model, pure gauge or pure Higgs,

are given by rγk “ 1
n
eβ cosp 2kπn q for k “ t0, 1, . . . , n ´ 1u. So, the relation between

them is found by multiplying these terms in order to obtain

rγ0rγ1 ¨ ¨ ¨ rγn´1 “
1

nn
e
β
n´1
ř

k“0

cosp 2kπn q
“

1

nn
,

due to the fact that
n´1
ř

k“0

cos
`

2kπ
n

˘

“ 0. Normalizing, we take rγk “ nγk and we have

(32) γ0γ1 ¨ ¨ ¨ γn´1 “ 1,

this is the expression which describes the model.

4.2. Remark.
In the remark 3.1 we assure that Spzq “ z, to have topological invariance with
respect to the orientation of the black curve b. We see this for our z which describes
the gauge-Higgs model. Indeed, we can write z as expression (26)

z “
ÿ

i

zici, where ci “
ÿ

gPCi

φg,

such that z is written following the expression (27), zi “ 1
n
Mpgiq “

1
n
Mpg´1i q

z “
1

2n

ÿ

i

¨

˝Mpgiq
ÿ

gPCi

φg `Mpg
´1
i q

ÿ

g´1PC 1i

φg

˛

‚.
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Therefore, the antipode Spzq for the group algebra is

Spzq “
1

2n

ÿ

i

¨

˝Mpgiq
ÿ

gPCi

φg´1 `Mpg´1i q
ÿ

g´1PC 1i

φg´1

˛

‚

“
1

2n

ÿ

i

¨

˝Mpgiq
ÿ

g´1PCi

φg `Mpg
´1
i q

ÿ

gPC 1i

φg

˛

‚,

but this last expression coincides with z, then Spzq “ z, which is the required
condition.

4.2. Partition function and Wilson loops with matter fields. In order to
study gauge fields coupled to matter, we have to check the relation between these
two fields. In section 3 we stated that the information contained in gray curves,
which are associated with the links, depends on the elements ζ of the cocenter of
the algebra A . However, the following lemma will show that it can be replaced
the weight associated with a gray curve by one black curve which has a weight that
belongs to center of the algebra.

4.2. Lemma.
Consider the group algebra A , and a gray curve with weight ζ “ ζhφ

h as in figure
73(a). The weight ζ can be replaced by a black curve with weight z “ zhφh, as it is

(a) Gray curve with weight
ζ.

(b) Gray curve with one
additional black curve with
weight z.

Figure 73. Equivalence between gray curves.

shown in figure 73(b). The relation between the elements zh of z and the coefficients
ζh of ζ is given by zh “ 1

dimpA q
ζh´1.

Before the proof of lemma 4.2, we will recall the meaning of the term diagram-
matic, as follows: imagine a gray curve g with weight ζ and n crossings with black
curves biPt1,2,...,nu, with weights zi as in figure 73(a). Originally g had n crossings
with black curves and in turn, each black curve bi have several intersections with
gray curves. The lemma states that it can be added a black curve with weight z,
but it will only have a crossing; therefore the partition function of Kuperberg for a
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manifold M with triangulation T (expression (16))

ZpM ,T q “
ÿ

conf

ź

f

ź

e

ź

o

Mabcpfq∆
b1b2¨¨¨bkpeqSyxpoq,

will be

(33) ZpM ,T q “
ÿ

conf

ź

f

ź

e

ź

o

MabcpfqNbk`1
pf1q∆b1b2¨¨¨bkbk`1peqSyxpoq.

Note that the the differences between both partition functions are the extra face
f1 and the ∆ associated to the hinges. Npf1q is the tensor associated with the new
black curve and this has an element associated with the center z1, which in general
is different from the z associated with the original black curves. ∆b1b2¨¨¨bkbk`1 implies
to add another polygon to each hinge.

According to the mentioned above, the Wilson loops for a loop ` must be

xW p`qy “
1

ZpM ,T q

ÿ

conf

ź

f

ź

e

ź

o

W p`qMabcpfqNbk`1
pf1q∆b1b2¨¨¨bkbk`1peqSyxpoq,

where W p`q “ χrpU`q. χr are the characters and U` is the holonomy of links variables
around the closed curve `. Considering for simplicity a two-dimensional manifold
M and supposing that the orientation of the loop is arbitrary. Let ` be a loop, with

Figure 74. Loop with links κi.

origin at P and with the set of links κp`q “ tκ1, . . . , κnu as it is shown in figure
74. Let G be the gauge group and we suppose that the lattice M is oriented. The
holonomy over the loop ` is (see expression (1))

U` “
ź

κi P `

g
oip`,κiq
ki

,

with oip`, κiq “ ˘1 the relative orientation loop-link, and ki the element represen-
tative to link κi. χrpU`q is given by

χrpU`q “ χr

˜

ź

κi P `

g
oip`,κiq
ki

¸

,
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so, it is natural to define the covariant tensor W r
k1k2¨¨¨kn

” χrpU`q, so that the Wilson
loops are written as

xW p`qy “
1

ZpM ,T q

ÿ

conf

ź

f

MabcpfqNbk`1
pf1q

ź

e Rκp`q

∆b1b2¨¨¨bkbk`1peq(34)

ź

κj Pκp`q

∆b1b2¨¨¨bkbk`1kjpeqW r
k1k2¨¨¨kn

ź

o

Syxpoq,

where each covariant index W r
k1¨¨¨kn

is contracted with the additional index kj in

∆b1b2¨¨¨bkbk`1kjpeq [FPTS12]. The meaning of the latter term is that links κi belonging
to loop `, would seem to add a polygon to the manifold M , see figure 75, therefore

Figure 75. Loop in a regular triangular lattice.

we represent the loop with a dark gray color. Note that it is not necessary to locate
the source of the loop because this is arbitrary. The polygon in figure 75 will have
associated an element of the center

zW “
ÿ

i

ziWci where ci “
ÿ

gPCi

φg,

and the index W denotes the weight associated to the Wilson loop. To find the
elements ziW which expand the center, we make use of expression (27), noting that
in our case, according with (35) the weight Mpgiq is ∆b1kipeqW r

ki
. Therefore,

ziW “
1

n
W r
ki
“

1

n
χr

ˆ

´

g
oip`,kiq
i

¯´1
˙

“
1

n
χr

´

g
´oip`,kiq
i

¯

,

since we assume that the orientation of the loop over the lattice is arbitrary, we have

(35) ziW “
1

n
χrpgiq.

The last expression is a generalization of the paper [FPTS12], where Z2 was used
as the only group considered for the three-dimensional case. As an example, for the
dihedral group D6 we obtain

zW “
1

6
pφ1 ` φa ` φa2 ` φb ` φab ` φa2bq; for r “ 1

zW “
1

6
φ1 `

1

6
pφa ` φa2q ´

1

6
pφb ` φab ` φa2bq; for r “ 2

zW “ ´
1

3
φ1 `

1

6
pφa ` φa2q; for r “ 3.
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In the case of Zn, the coefficients ziW, have the form

ziW “
1

n
pωrqki ,

where ω “ e
2π
n
i and r, ki “ t0, 1, . . . , n´ 1u. Using again the faithful representation

r “ 1 to obtain (subsection 2.4)

(36) zW “
1

n

´

φ0 ` e
2π
n
iφ1 ` ¨ ¨ ¨ ` e

2pn´1qπ
n

iφn´1

¯

.

Lemma 4.2. The tensor related to the gray curve is given by the diagram 76(a). We

(a) Gray curve with weight ζ and m cross-
ings with black curves.

(b) Relation between the tensors M,∆
and S.

(c) We use the relation of figure 76(b). (d) Definition of M with weight z.

(e) Definition of z in figure 76(d). (f) z written in terms of the coefficients.

Figure 76. Diagrammatic proof of lemma 4.2.

use the lemma 3.2 (figure 76(b)) for the inward arrows in ζ and we write the tensor
explicitly as diagrams. Algebraically

zh “
1

dimpA q

ÿ

g,k

∆h,gSkg ζk

in the group algebra ∆h,g “ δph, gq and Skg “ δpg, k´1q, then

zh “
1

dimpA q

ÿ

g,k

δph, gqδpg, k´1qζk “
1

dimpA q
ζh´1 .

�

In the three-dimensional case, the lemma states that it is equivalent to add an-
other face to each hinge as stated earlier. However, for the two-dimensional case
where each link has originally two faces glued to it (figure 77(a)) when one more
face is added, we would obtain a three-dimensional model. The new face can be
considered perpendicular to the plane, as shown in figure 77(b). Note that the col-
ors of perpendicular faces are different from the original this is due that they have
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(a) Two-dimensional lattice. Links
with weight gluing two polygons.

(b) Three-dimensional lattice.
Links with weight gluing three
polygons.

Figure 77. Equivalence between a two-dimensional lattice with
weights in the links and a three-dimensional lattice without weight
in the links.

a different weight associated (element of center). The original faces give the gauge
fields and new polygons gives of the Higgs fields.

4.3. Partition function and Wilson loops for a two-dimensional lattice.
Let us define the partition function for a two-dimensional lattice formed only by
triangles (three links per triangle), figure 78(a). As it was stated, gauge fields are

(a) Two-dimensional lattice. Edges with
weight gluing two polygons.

(b) Three-dimensional lattice. Edges
without weight gluing three polygons.

(c) Tensors figure 78(a). (d) Tensors figure 78(b)

Figure 78. Equivalence between a two-dimensional lattice with
weights on the links and a three-dimensional lattice without weight
on the links.

related to faces and matter fields to the links of triangulation. In the same way,
faces and links are related to the elements z from the center and ζ of the cocenter
respectively (as it is shown in figure 78(a), and the related tensorial diagram is
shown in figure 78(c)). On the other hand, for the finite gauge group G we find that
for the group algebra, the element z of center is provided by

z “
1

n

ÿ

i

Mpgiqci, where ci “
ÿ

gPCi

φg.
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This expression gives all the information related to the faces of the triangulation.
However, the lemma 4.2 states that for the special case of the group algebra the
information in the links is also provided by elements of the center of the group, figure
78(b). To distinguish between the elements of the center related to faces (gauge
fields) and the links (Higgs field) we call zG the elements of center associated with
black curves (faces) and zH the elements of center associated with the black curves
which intersect only a gray curve (link), figure 78(b) (tensorial diagram 78(d)). For
a manifold M without boundary, with triangulation T , we note that each hinge
has three glued faces. Therefore, the partition function of Kuperberg (33) in this
instance will be

(37) ZpM ,T q “
ÿ

conf

ź

f

ź

e

ź

o

MabcpfqNb3pf
1
q∆b1b2b3peqSyxpoq.

For the case of Wilson loops, we draw a loop ` over the lattice, as in figure 75, and

Figure 79. Representation in the language of colored curves of a
two-dimensional manifold with loop `. Each curve has an associated
weight. All black curves have weights related to the center of algebra.
Faces: zG. The dotted black points related to links: zH . The Wilson
loop: zW.

this will have the equivalent diagram in colored curves of figure 79. Note that in this
diagram the weight associated with the loop ` is denoted by zW and the orientation
of each curve is not considered. Finally, in accordance with the mentioned above,
the expected value of observables, Wilson loops, is given by

(38) xW p`qy “
1

ZpM ,T q

ÿ

conf

ź

f

ź

e

ź

o

W p`qMabcpfqNb3pf
1
q∆b1b2b3peqSyxpoq.

4.4. Calculation of the partition function and Wilson loops in the topo-
logical limits for Zn; detailed case, Z2. So far, we showed the mathematical
formalism needed to find partition functions over manifolds. Our goal is to calculate
partition functions as general as possible form using the diagrammatic representa-
tion provided here. Let us recall that for the group Zn with the group algebra we
showed several useful properties such as the lemmas 3.16, 3.17, in addition each of
the general moves 2.5 defined in section 2, were proved as lemmas (see lemmas 3.6
to 3.13) in section 3.
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Figure 80. Two-dimensional lattice model.

In first instance we remember that the expression (30), which gives the center (for
the gauge field zG and for the matter field zH) in terms of the elements of the group

(a) (b)

(c)

Figure 81. Two-dimensional gauge pure model.

Zn, is

zG,H “
1

n

n´1
ÿ

h“0

eβG,H cosp 2hπn qφh.

We note that for βG,H Ñ 0, the element of the center will be zG,H “
1
n

n´1
ř

h“0

φh, that

is, the cointegral element divided by n. If we take βH Ñ 0, the figure 80 is modified
to figure 81(a), where λ is the cointegral element of algebra A . Using the cointegral
property, lemma 3.11, we obtain the figure 81(b). However, following the lemma 3.14
we know that isolated black and gray curves have as numerical value the dimension
of algebra. Thus we obtain a gauge pure model, as expected [Kog79, YT07], see

(a) (b)

Figure 82. Representation of pure Higgs for two-dimensional case.

figure 81(c). On the other hand, for βG Ñ 0, we have that the figure 80 will be
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modified by the figure 82(a). Using again the cointegral property we obtain the
diagram 82(b), where Nf and Ne are the number of faces and links respectively.
However, we know that a gray curve crossing just a black curve, has a numeric value
which is equal to the dimension of algebra A , then the factor 82(b) dependent on
the number of faces is 1. For the term depending only on links, we see that tensors
are provided in figure 83(a). Remember that φg Ñ ε : εpφgq “ 1 for all g P G. Since

(a) Tensors. (b) Use property of
cointegral.

Figure 83. 83(a). Diagrammatic representation of tensors of a black
curve with weight zH and one gray curve. 83(b). Trivial tensors.

ε is a linear operation, the numerical value on the left part of the figure 83(b) in
terms of the coefficients of the center is

εpzHq “
1

n

n´1
ÿ

h“0

eβH cosp 2hπn q.

Thus, the numerical value of the partition function for a manifold M with triangu-
lation T in pure Higgs case is

ZpM ,T q “

˜

n´1
ÿ

h“0

eβH cosp 2hπn q

¸Ne

,

and this result coincides with Salinas [Sal10, page 91] where Z2 is the considered
group. We obtain that the partition function explicitly depends on the number
of links of triangulation, and now it is possible to state that the model is quasi-
topological as defined in expressions (18) and (19).

In this paper, we observe the behavior of the partition function and Wilson loops
for the group Z2 in the limits βG,H “ 0˘, βG,H “ ˘8, because as we will see, the
partition functions in these situations can be calculated using moves over the col-
ored curves, which means that the partition function is invariant or quasi-invariant
topological. Thus, these limits are called topological limits of the theory. Note that
the center for Zn in the limit β Ñ 8 is

z “
1

n
lim
βÑ8

n´1
ÿ

h“0

eβ cosp 2hπn qφh

“
1

n

˜

n´1
ÿ

h“1

lim
βÑ8

eβ cosp 2hπn qφh

¸

.

The roots ωh, h “ 0, . . . , n ´ 1 are around the unitary circle. Thus, by taking
cos

`

2hπ
n

˘

we have P positive values, negative values N and Z 1 null values (zeros),
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with P `N ` Z 1 “ n. Then, the center will be provided by

z “
1

n
Pγ

ÿ

h

φh,

where γ Ñ 8 and the sum is over h such that cos
`

2hπ
n

˘

ą 0.

Partition function for Z2. To obtain partition functions for Z2, we note that the
two-dimensional model is represented in figure 84. Now, it is not necessary to orient
the curves, since the relative orientation face-link is not required (the inverse element

Figure 84. Two-dimensional gauge-Higgs model for Z2.

of one element of basis φg is itself). Note that the center of the group is provided
by the gauge and Higgs fields as

zG,H “
1

2

1
ÿ

h“0

eβG,H cosphπqφh “
1
ÿ

g“0

rγgG,Hφg,

where the coefficients rγgG,H are positive real numbers. Writing the term φg of the

basis as p0, . . . , 1
loomoon

pg`1q th position

, . . . , 0q, we have zG,H “ prγ0G,H , rγ
1
G,Hq, with rγ0G,H and

rγ1G,H the coefficients which expand the basis tφ0, φ1u. Let us calculate the partition
functions for different z. For example, when βG,H “ ˘8, the centers will be given
by

zG,H “

#

rγ0G,Hφ0, if βG,H Ñ 8

rγ1G,Hφ1, if βG,H Ñ ´8
“

#

prγ0G,H , 0q, if βG,H Ñ 8

p0, rγ1G,Hq, if βG,H Ñ ´8
.

I.e., the centers will have the form zG,H “ rγgG,Hφg where the Einstein sum notation
is not used. Considering several cases for the centers:

‚ zH “ rγhHφh: the model in figure 84, will be represented by figure 85(a). Since

(a) (b)

Figure 85. Two-dimensional for zH “ rγhHφh.

the center is a homogeneous element multiplied by a constant, we use the
lemma 3.17 in order to obtain the figure 85(b). Note that the weight of each
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curve associated with one “triangle”, black curve, has a multiplicative factor
φ´3h due that this has three links. In Z2, the weight is zGφ´3h “ zGφh,
therefore, the term associated to each black curve is

trpzGφhq “
ÿ

g

rγgGtrpφg`hq “ 2rγgGδpg ` h, 0q “ 2rγgGδpg, hq.

On the other hand, the dependent factor of number of links is 2rγhH . Then,
the partition function is

(39) ZpM ,T q “ p2rγgGδpg, hqq
Nfp2rγhHq

Ne .

Calling γg,hG,H “ 2rγg,hG,H we find finally

ZpM ,T q “ pγgGq
NfpγhHq

Neδpg, hq.

I.e., the partition function is quasi-topological, see subsection 3.3 and ex-
pressions (18) and (19).

‚ zG “ rγgGφg and zH “ 1
2
pφ0 ` φ1q: the model in figure 84 is a gauge pure

model. This is represented by figure 81(c) for Zn and by the figure 86(a) for
Z2. Since the weights are homogeneous elements, we use the sliding move,
lemma 3.16, having the figure 86(b). We note that the cointegral property
can be used, lemma 3.11, to remove the black curve connected to the gray

(a) (b)

Figure 86. Gauge pure model with homogeneous elements like weights.

curve inside the greater closed curve. Now, the cointegral contributes with
a factor of 2 and the constant rγgG is still present. So, each face contributes
with a factor of 2rγgG. Since we have Nf faces, the partition function is

(40) ZpM ,T q “ pγgGq
Nf ,

where γgG “ 2rγgG. Once again, the partition function is quasi-topological.
‚ zG “ rγgGφg and zH “ rγ0Hφ0` rγ1Hφ1: we shall show the existence of a numeric

value in terms of a numerical series, without find it explicitly. It was shown
in [YTSM09] that if the Pachner move (2,2) is satisfied, the partition func-
tion has numeric value which corresponds to a numerical serie. Then, our
porpuse is to show that it is satisfied the Pachner move (2,2). To achieve
this we recall the Pachner move in figures 87(a) and 87(b). We note that in
each case the link that is gluing both triangles has a vertical and horizontal
position, respectively. The basic idea is to show the equivalence between
both diagrams starting from the diagram 87(a) to diagram 87(b). Indeed,
we apply sliding move of the curves with weight φg, similary to figure 86(b),
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(a) (b)

Figure 87. Pachner move (2,2).

but with a general zH . After this, we make sliding move of black curve with
weight zH “ rγ0Hφ0 ` rγ1Hφ1 over the right black curve and we note that we
could remove this. We make similar moves when both triangles are glued
by the horizontal link, and we would obtain that both final diagrams are
equivalent.

Up to this point it was calculated the partition function for several elements of the
center, which have the form z “ pγ0, γ1q, where the γg are positive parameters.
However, in general, it can be calculated the partition function for general elements
which have the form z “ pγ0, γ1q, where the γg are real parameters not necessarily
positive, as was mentioned in subsection 3.4. This means that, as in the previous
case we had elements of the center in the form γG,Hφg for γG,H positive; however,
in the general case these coefficients can also be negative. In this way, we can also
find partition functions when the coefficients have opposite sign, i.e., these could
be calculated for an element of the center given by 1

2
p1,´1q. We shall show that,

indeed, it can be found the partition function for elements of the center of the form
zG,H “

1
2
p1,´1q. In order to achieve this, we use the following lemma:

4.3. Lemma.
Let b be a black curve with n crossings with gray curves, tgiuiP1,...,n.

(1) The diagram of b with weight z “ z1 ` z2 is the sum of individual diagrams
of b with weight z1 and the same black curve b with weight z2.

(2) The diagram of b with weight z1 “ αz with α P C is equal to b with weight z
multiplied by α.

Proof. The proof is due to the linearity of the trace. We have for b with n crossings
with gray curves g, trpzφa1 ¨ ¨ ¨φanq “ trpz1φa1 ¨ ¨ ¨φanq ` trpz2φa1 ¨ ¨ ¨φanq. For the
second part, we know that trpαzφa1 ¨ ¨ ¨φanq “ αtrpzφa1 ¨ ¨ ¨φanq. �

Considering the previously lemma, it can be shown the following result:

4.4. Lemma.
We consider Z2 with φ0 and φ1 the basis of the group algebra. Let C1 and C2 be
two black closed curves with weights λ1 “ φ0 ´ φ1 and z “ α0φ0 ` α

1φ1 (α0, α1 P C)
respectively, figure 88(a). The curve C1 is replaced by the curve C 11 with weight λ1.
The new curve C 12 is an isotopy of C2 with weight z´ “ α0φ0 ´ α

1φ1. The curve C 11
(resp. C 12) has the same orientation of C1 (resp. C2), figure 88(b).
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(a) Two black curves connected by a rib-
bon.

(b) Sliding.

Figure 88. 88(a). The black curve C1 (resp. C2) has m (resp. n)
crosses with gray curves (resp. black curves). After sliding the final
curve C 11 (resp. C 12) has m ` n (resp. n) crossings with gray curves
(resp. black curves).

Proof. The point of the proof is to separate the right curve as the sum of two graphs.
The first has weight α0φ0 and the second α1φ1. Then we apply sliding move under
homogeneous elements, lemma 3.16, and we note that the second graph will have
weight φ1λ

1 “ ´λ1. We apply linearity and we obtain the desired result. �

The lemma above will be very useful in the calculation of Wilson loops for Z2.
However, for the moment we use it to calculate partition functions. We consider the
first case in which zG “

1
2
pφ0´φ1q “

1
2
λ1, figure 89(a). Then we make use of lemma

4.4 to obtain the figure 89(b), where λ is the cointegral. Finally we use the cointegral
property to remove curves with weight 1

2
λ, which contribute to a numeric value of

1
2
trpφ0`φ1q “ 1. We note that we have a black curve with weight zH “ rγ0Hφ0`rγ1Hφ1

(a) (b)

Figure 89. Black curves relationed with the faces, these have weight
zG “ λ1.

connected to a gray curve, which contributes with a numeric value εpzHq “ γ0H ` γ
1
H

multiplied by 2, see figure 83(b) (pure Higgs model). The important fact to note
is that the sliding move eliminates a link, so we can apply the sliding moves in
the whole lattice, and the end we will end up with a black curve with weight 1

2
λ1,

and numerical factor 1
2
trpφ0 ´ φ1q “ 1. So, we obtain that for zG “

1
2
p1,´1q and

zH “ prγ
0
H , rγ

1
Hq the partition function is

(41) ZpM ,T q “ 2Ne
`

rγ0H ` rγ1H
˘Ne

.

This result coincides with the Higgs pure model, zG “
1
2
p1, 1q, for Z2.

So far, we found explicitly the partition function for several limits, however we
need to state their physics meaning. Indeed, we wrote the model in terms of the



62 N.J.B. AZA AND F. DORESTY F.

(a) Gauge parameters. (b) Higgs parameters.

Figure 90. Regions where the partition function was calculated for
coupling constants βG,H reals and positive parameters γ. These are
represented by the continuous and pointed lines.

coefficients γG,H , see remark 4.1 of subsection 4.1. For the particular case of Z2, we
have that the coefficients describing the model are relationed by the equation of the
hyperbola γ0G,Hγ

1
G,H “ 1, see figures 90(a) and 90(b). However, as it was mentioned,

this is equivalent to write the center of the group as zG,H “ pγ0G,H , γ
1
G,Hq. In the

gauge pure case, zH “ p1, 1q, Wegner found its value, and several methods can be
used to obtain it [Weg71, YT07, Aza13]. This result is

(42) ZpM ,T q “ 2NepcoshpβGq
Nf ` sinhpβGq

Nfq,

which can be thought as quasi-topological, due that it depends on details of triangu-
lation, however, it does not satisfies the condition of expression 18. The pointed line
in figure 90(a) represents the limit when βG Ñ 0˘ and we note that for values above
this line, we have the paramagnetic case (βG Ñ ´8). On the other hand, for values

HH
HHHHzG

zH γHp1, 0q γHp0, 1q
1
2
p1, 1q pγ0H , γ

1
Hq

γGp1, 0q pγ0Gq
Nfpγ0Hq

Ne 0 pγ0Gq
Nf ›

γGp0, 1q 0 pγ1Gq
Nfpγ1Hq

Ne pγ1Gq
Nf ›

1
2
p1, 1q pγ0Hq

Ne pγ1Hq
Ne 1 pγ0H ` γ

1
Hq

Ne

pγ0G, γ
1
Gq pγ0Gq

Nfpγ0Hq
Ne pγ1Gq

Nfpγ1Hq
Ne Ξ z

Table 2. Partition functions for differents γG,H ě 0.

below this line we have the ferromagnetic case (βG Ñ 8) [FPTS12, Aza13]. In the
case for βH , the meaning in figure 90(b) is similar. Topological limits are represented
by the axis γ0G,H (as an element of the center zG,H “ γG,Hp1, 0q) and γ1G,H (as an
element of the center zG,H “ γG,Hp0, 1q), and are βG,H Ñ 8 and βG,H Ñ ´8 respec-
tively. We note that the parameters are positive and these are consistent with the
literature [Kog79, Sei82, MMS79]. The table 2 shows the results for several values

of the positive parameters γg,hG,H . In the table 2, the symbol › denots the existence
of a possible numeric value in power series, which was not explicitly calculated. The
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HHH
HHHzG

zH γHp1, 0q γHp0, 1q
1
2
p1, 1q 1

2
p1,´1q pγ0H , γ

1
Hq

γGp1, 0q X X X X ›

γGp0, 1q X X X X ›

1
2
p1, 1q X X X X X

1
2
p1,´1q X X X X X

pγ0G, γ
1
Gq X X X z z

Table 3. Partition function for differents γG,H .

symbol Ξ represents the expression of the partition function calculated by Wegner,
(42). On the other hand, the symbol z makes reference to the points where it was
not possible to find a numeric value; this corresponds to the general case of the
gauge-Higgs model. We note that other topological limits could be calculated and
we made this explicitly; now, the parameters γg,hG,H are reals, positive and negative.

The table 3 contains different cases of parameters γg,hG,H , and the symbol X is used

(a) Gauge parameters. (b) Higgs parameters.

Figure 91. Regions where the partition function is calculable. These
are represented by solid and dotted lines.

to denote those cases where the numeric values of the partition function were cal-
culated. The symbol › denots the existence of a possible numeric value in power
series, and we use the symbol z to denote those cases where it was not possible to
obtain any numeric value. The graphs are represented in 91(a) and 91(b).

Wilson loops for Z2. Following the expression (36), in the case of Z2, the weight
associate to the loop ` will be [FPTS12]

(43) zW “
1

2
pφ0 ´ φ1q.
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Figure 92. Loop in a regular triangular lattice.

As it was stated, in terms of colored curves with weights, the figure 92 is represented
by the figure 93, and as previously mentioned, each curve has a weight associated to
it. Only black curves belonging to links are represented by dotted black points and
weights zH . We may note that the new curves with weight zW, seems to intersect
these points but we know that two curves of the same color can not cross, which

Figure 93. Representation in the language of colored curves of a
two-dimensional manifold with loop `. Each curve has an associated
weight. All black curves have weights related to the center of algebra.
Faces: zG. The dotted black points related to links: zH . The Wilson
loop: zW.

would be contradictory. In fact, these geometrical objects do not intersect, and the
diagram is showed in that way for simplicity. A part of the diagram 93 corresponds
to figure 94. Knowing the form of zW, we make several choices for the weights zG,H ,

Figure 94. Lattice with Wilson loop.

as we did in the case of partition functions. Let us first vary the element of the center
zH , related to the matter field. First, the topological limits zH “ rγhHφh, with rγ0H and
rγ1H limits for βH “ ˘8, respectively. Second in βH “ 0, that is, zH “

1
2
pφ0 ` φ1q:
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‚ zH “ rγhHφh: the diagram is shown in figure 95(a). Since the center is a

(a) (b)

Figure 95. Diagram corresponding to the calculating of Wilson
loops for zH “ rγhHφh.

homogeneous element multiplied by a constant, we use the lemma 3.17 to
obtain the figure 95(b). Note that the weight of each curve associated to one
triangle, has a factor φ´3h due that it has three links glued to it. For the
Wilson loop, the factor which multiplies the weight is φ´NWh, where NW is
the number of links where the loop is crossing. Since we are using the group
Z2, the weights are zGφ´3h “ zGφh and zWφ´NWh “ zWφNWh, respectively.
Thus, the term associated to each face is

trpzGφhq “
ÿ

g

rγgGtrpφg`hq “ 2rγgGδpg ` h, 0q “ 2rγgGδpg, hq

and the loop

trpzWφNWhq “
1

2
ptrpφ0φNWhq ´ trpφ1φNWhqq “ δp0, NWhq ´ δp1, NWhq.

Note that for h “ 0, the numeric value is 1. For h “ 1, the numeric value
depends on whether NW is even or odd. For NW even, we have again 1. For
NW odd, we have ´1. This is summarized as follows:

trpzWφNWhq “

#

1, if h “ 0, for all NW

p´1qNW , if h “ 1, for all NW,

where the factor depending on the number of links is 2rγhH . Calling γg,hG,H “

2rγg,hG,H we have that the numerator in (35) is
#

pγgGq
NfpγhHq

Neδpg, hq, if h “ 0, for all NW

p´1qNWpγgGq
NfpγhHq

Neδpg, hq, if h “ 1, for all NW.

With (39) we obtain that the Wilson loops are given by

xW p`qy “

#

p´1qgNW , if g “ h, for all NW

undefined, in other cases.

‚ zH “
1
2
pφ0`φ1q: the diagram is shown in 96(a), this weight is the cointegral

element divided 2. We can extract each curve with this weight, by using
the cointegral property, lemma 3.11. The numerical factor which contributes
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(a) (b)

Figure 96. Diagram corresponding to the calculation of Wilson
loops for zH “

1
2
λ.

to the weight of the links is 2 divided into 2, i.e., we have to calculate the
Wilson loops in the case of a pure gauge model, figure 96(b). However, in
[GP96], Gambini and Pullin showed that, for high temperatures, βG ! 1,
the behavior has the form

(44) xW p`qy “ e´fpβGqareap`q

where fpβGq “ ´ lnptanhpβGqq and areap`q is the number of elementary
plaquetes inside of the loop `. For low temperatures, βG " 1, the dependence
of xW p`qy is in relation to the perimeter of the loop [OHZ06], and the methods
of this paper lead us to the same result. We take β “ 0 and β “ 8, for the
limit of high and low temperatures respectively:

βG “ 0 If zG “
1
2
pφ0 ` φ1q, by the cointegral property we can extract all black

curves relationed with the faces of triangulation. Now, the loop will
cross NW links. So, the loop will have NW gray curves crossing it. The
curves for the loop do not cross, and these taken from the diagram and

(a) (b)

(c)

Figure 97. Diagram corresponding to the calculation of Wilson
loops for zG “ zH “

1
2
λ.

have numerical factor 2, as it is shown in figure 97(a). Using again
the cointegral property we extract one by one the gray curves until
one of them is missing. Finally we have a black curve with weight
zW “ 1

2
pφ0 ´ φ1q “

1
2
λ1 crossed by one gray curve, and this tensor

is represented in figure 97(b). We use again the cointegral property
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and we obtain the tensor of figure 97(c), where zW Ñ ε contributes as:
εpzWq “

1
2
pεpφ0q ´ εpφ1qq “ 0, therefore the Wilson loop is simply 0.

Note that βG “ 0 in expression (44) is also zero.
βG “ ˘8 If zG “ rγgGφg, we make the move sliding, lemma 4.4, over each face.

We know that the weight of each face will change as well, originally
zG “ rγgGφg, figure 98(a), after sliding is z´G “ p´1qgrγgGφg, figure 98(b);
we can do this under each face. At the end, we have that the faces

(a)

(b)

Figure 98. Diagram corresponding to the calculation of Wilson
loops for zG “ rγgGφg and zH “

1
2
λ.

inside the loop will change their weight if β “ ´8, or g “ 1. The fact
is that we can factor the signal Nf.W times, where Nf.W is the number
of faces within the Wilson loop. Wilson loops have the same value of
the partition function (40), except for the factor p´1qNf.W . Found so the
Wilson loop has a value

xW p`qy “ p´1qgNf.W .

This expression would appear to have the form of the area’s law to high
temperature limits, βG “ 0. However, we note from figures 98(a) and
98(b) that for every face that adds (removes) inside the loop, the loop
will cross a link more (less). So it actually can be written Wilson loops
as

xW p`qy “ p´1qgNW ,

which has the form of perimeter’s law [FPTS12].
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Now, for zH fixed, we vary the element of the center zG, associated with the gauge
fields. Within the topological limits zG “ rγgGφg, with rγ0G and rγ1G limits as βG “ ˘8,
respectively. After, for βG “ 0, i.e. for zG “

1
2
pφ0`φ1q. Finally for zG “

1
2
pφ0´φ1q:

‚ zG “ rγgGφg: The diagram is shown in figure 99(a). Even without finding

(a) (b)

Figure 99. Diagram corresponding to the calculation of Wilson
loops for zG “ rγgGφg.

explicitly the partition function in this situation, the argument is the same
as for the limits βG “ ˘8 from the previous part, in which the center a
homogeneous element do sliding move, lemma 4.4, under each face. We
know that the weight of each face will change as well: originally zG “ rγgGφg,
figure 99(a), after sliding move is z´G “ p´1qgrγgGφg, figure 99(b). But we note
that the isolated black curve has numeric value 1 and we factor signals. The
Wilson loops have the same numerical value of the partition function, if it is
not zero, except for the factor p´1qgNW , then

xW p`qy “
p´1qgNW

ZpM ,T q
ZpM ,T q “ p´1qgNW .

‚ zG “
1
2
pφ0 ` φ1q: the diagram is represented in figure 100(a). By the cointe-

gral property black curves relationed to the faces can be extracted from the
diagram. The links which do not intersect the loop leave the leave the dia-

(a) (b) (c)

(d) (e) (f)

Figure 100. Diagram corresponding to the calculation of Wilson
loops for zG “

1
2
λ.
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gram, the others remain therein as shown in figure 100(b). We make sliding
move of the loop with weight zW “ 1

2
pφ0 ´ φ1q, over each black curve with

weight zH “ rγ0Hφ0`rγ1Hφ1, figure 100(c) (The links which do not intersect the
loop leave the diagram, the others remain therein as shown in figure 100(b)).
After sliding move the weights will change to z´H “ rγ0Hφ0´rγ

1
Hφ1. Making two

point move by applying the move sliding the following NW ´ 1 black curves,
we have the figure 100(d). Now, the numeric value of one black curve with
weight, glued with a gray curve, is calculated using the tensor represented
in 100(e) and 100(f). For the curves with weight zH the numeric value is
two times εpzHq “ rγ0H ` rγ1H and for the curves with weight z´H is two times
εpz´Hq “ rγ0H ´ rγ1H . Then, the Wilson loop using (41) is

xW p`qy “
2NW prγ0H ´ rγ1Hq

NW 2Ne´NW prγ0H ` rγ1Hq
Ne´NW

2Ne prγ0H ` rγ1Hq
Ne

“
prγ0H ´ rγ1Hq

NW

prγ0H ` rγ1Hq
NW

,

for rγ0H ‰ ´rγ
1
H .

‚ zG “
1
2
pφ0 ´ φ1q: The diagram is shown in figure 101(a) and we use the

sliding move to the loop on each face. The weight of each face is zG “
1
2
λ1,

and it is the weight of the loop as well. By lemma 4.4, we know that the
weights on each side will change to z´G “

1
2
λ. At the end of the process we

have figure 101(b). By cointegral property the black curves related to faces
can be extracted from the diagram. After disconnecting the Nf.W faces inside

(a)

(b)

Figure 101. Diagram corresponding to the calculation of Wilson
loops for zG “

1
2
λ1.
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(a)

(b) (c)

Figure 102. Diagram corresponding to the calculation of Wilson
loops for zG “

1
2
λ1.

the loop, we note that the Nf.W links within the loop connecting the faces
are isolated, as it is shown in figure 102(a). Now, we could choose one face
f and do sliding move under each face glued to it via a link. Certainly, the
black curve with weight zG “

1
2
λ1, will change to be z´G “

1
2
λ. Then, we

can extract that curve, and we make sliding move until extracting all black
curves. However, note that each time we apply the sliding move the face f
will have more and more links crossing it. At the end we have figure 102(b),
where Ne ´ Ne.W. Finally, we make again sliding move as in figure 100(c)
until arriving at figure 102(c). Recalling from left to right the weights of
each of the curves in figure 102(c): 1

2
2 “ 1, for the first three; 2prγ0H ` rγ1Hq

and 2prγ0H ´ rγ1Hq for the last two set of curves. The value of Wilson loops
using (41) is

xW p`qy “
2Ne.W prγ0H ` rγ1Hq

Ne.W 2Ne´Ne.W prγ0H ´ rγ1Hq
Ne´Ne.W

2Ne prγ0H ` rγ1Hq
Ne

“
prγ0H ´ rγ1Hq

Ne´Ne.W

prγ0H ` rγ1Hq
Ne´Ne.W

,

since NW “ Ne ´Ne.W, the result is xW p`qy “
prγ0H´rγ

1
Hq

NW

prγ0H`rγ
1
Hq

NW
and it is satisfied

for rγ0H ‰ ´rγ
1
H . As expected, the result is quasi-topological and depends on

the usual form of the Wilson loops.
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Previously, we analyze the meaning of partition functions using this to also study
the values found for Wilson loops. However, this becomes more difficult in this latter

HHH
HHHzG

zH γHp1, 0q γHp0, 1q
1
2
p1, 1q 1

2
p1,´1q pγ0H , γ

1
Hq

γGp1, 0q 1 undefined 1 1 1

γGp0, 1q undefined p´1qNW p´1qNW p´1qNW p´1qNW

1
2
p1, 1q 1 p´1qNW 0 undefined

pγ0H´γ
1
Hq

NW

pγ0H`γ
1
Hq

NW

1
2
p1,´1q 1 p´1qNW 0 undefined

pγ0H´γ
1
Hq

NW

pγ0H`γ
1
Hq

NW

pγ0G, γ
1
Gq 1 p´1qNW z z z

Table 4. Numeric values of Wilson loops for differents γG,H .

case, because there are three possible values of the center of the center of algebra.
Certainly, the values of the γ, for Wilson loops which could have some physical
meaning, correspond to real positive numbers. In most of cases it was confirmed
the perimeter’s law. However, there is a “physical” case where the expected value
of Wilson loop is zero. It ocurred when the coupling constant βG was zero in a pure
gauge model, βH “ 0, which coincides with Wilson in relation with the confinament
of quarks [Wil74]. Other values of Wilson loops were considered undefined since we
obtain divergences when performing their explicit calculation. In the case where the
parameters γ could have any real value, there were found numeric values which can
be found in table 4. Inside of it, the symbol z is used to denote those points for
which it was not possible to obtain any value for Wilson loops. Figures representing
the numeric values of Wilson loops in topological limits, are shown in figures 103(a)
and 103(b).

The description based in curves here discussed is important due that it may be
used to characterize models satisfying topological properties. In [BPT13], the weight
on curves describes anyonic excitations in the lattice, such as the Kitaev’s toric code
[Kit03], in this work the transfer matrix is represented in terms of curves, and there
are also being studied generalizations for other models. Matter fields are introduced
in the vertex of the lattice without using a representation different from regular
representation, in order to describe the dynamics of p1`1q and p2`1q models, with
matter fields. Finally, we observe that the methods using curves as well as thoser
showed here, can be useful to study phases of matter, thus as in other parallel
works, for example [LW06, BMD08, DK13], which use also graphs to understand
the behavior and properties of dynamical of models.

5. Outlook

We presented in this paper a review of the basic concepts of LGT in two and
three dimensions for finite groups. In order to do this, we recall the basic definitions
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(a) Gauge parameters. (b) Higgs parameters.

Figure 103. Regions where the expected value, Wilson loops, were
calculated. The real parameters γ are represented by continuous lines
and pointed lines.

of gauge transformations for gauge and Higgs fields in a lattice, and we define a
gauge-Higgs action model for the Zn case, which can be generalized for any finite
group when the unitary gauge is chosen. The latter recalls the colored-Heegaard
diagrams, for a two-dimensional and three-dimensional discretized manifold, respec-
tively, where the curves must satisfy five different moves in order to be deformed,
and also to obtain equivalent colored-Heegaard diagrams.

On the other hand, we remember LTFT for two and three dimensions, and we
show topological invariance in a two-dimensional theory, where we state the Pachner
moves, (1,3) and (2,2), using colored curves, where there are gauge and Higgs fields
associated with black and gray curves respectively. We define the partition function
and the Wilson loops for a topological and quasi-topological theory for a special
kind of tensors M,∆ and S, which are intimately related with Hopf algebras, and
use the fact that the physical information is related with the center and cocenter of
the Hopf algebra used. The procedure is similar for the three-dimensional case, and
can be generalized for higher dimensions, taking the corresponding Pachner moves
in each dimension.

We also show that the information of a gauge pure model can be described using
the elements of center z of the gauge group considered. For this purpose, it was
used the group algebra, and we show that all the information of the gauge-Higgs
model can be described only by z. This is performed to specify that the partition
function and Wilson loops with matter fields, it is equivalent to add one more face
to the triangulation, however this latter will have a different weight. This lead us
to provide a general Wilson loop’s weight for a finite group. Finally, we calculate
the partition function and Wilson loops in topological limits for the special case of
Z2, in a two-dimensional lattice, where we conclude the following results: the trivial
dependence on the triangulation for the partition function, the dependence on the
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area’s or perimeter’s laws for Wilson loops, and a topological dependence on real
parameters γ0H and γ1H for the Higgs pure case.

In the end, we hope that methods used here, about describing topological invari-
ance using curves, may be useful in order to find topological limits without solving a
specific model for any compact group. Furthermore, the approach in this work may
be useful to understand topological theories, as well study dynamical of observables
in condensed matter, using a different representation of the regular representation
to describe matter fields, and classify the topological phases of models.
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Teotônio-Sobrinho for his assistance with the perspective of the work. He also
thanks to CAPES for supporting this work. The authors thank to Michele Fontanini
for his iluminating ideas, and also to USP, Brazil and U of Manitoba, Canada.

References
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