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Abstract

From quantum mechanical first principles only, we rigorously study the time–evolution of a N–level atom

(impurity) interacting with an external monochromatic light source within an infinite system of free electrons

at thermal equilibrium (reservoir). In particular, we establish the relation between the full dynamics of the

compound system and the effective dynamics for the N–level atom, which is studied in detail in [1]. Together

with [1] the present paper yields a purely microscopic theory of optical pumping in laser physics. The model

we consider is general enough to describe gauge invariant atom–reservoir interactions.

1. Introduction

Optical pumping is an important method in laser technology to produce the so–called “inversion of population”

of some optically active (quantum) system, as for instance impurities in crystals. Such an inversion is then used

to obtain optical amplification through stimulated emission of photons. We aim to derive the phenomenon

of optical pumping by (i) being coherent with the phenomenological description of physics textbooks and

experimental facts, (ii) starting from first principles of quantum mechanics only, and applying mathematically

rigorous methods to study microscopic models.

We analyzed in [1] the effective time–evolution of a N–level atom (an impurity) interacting with an external

monochromatic light source within a host environment (reservoir), which is represented by an infinite system of

free fermions at thermal equilibrium. The external monochromatic light source is a time–periodic classical field

stimulating transitions between two energy levels of the impurity. We showed [1] from this effective dynamics

how an inversion of population of energy levels of the impurity can appear and derive a dynamical law for the

evolution of populations under the influence of the external oscillating field (optical pumping). We proved [1]

that a generalization of the celebrated Pauli master equation, used in all standard textbooks on laser physics,

correctly describes the time–evolution of populations. In contrast to the usual Pauli equation, this generalization

takes memory effects into account. This proof uses [1, Theorem 3.3], which states that the restriction of the

full unitary dynamics (of the impurity–reservoir–pump system) to the N–level atom is properly described – up

to small corrections for moderate pump strengths – by an effective non–autonomous time–evolution involving

atomic degrees of freedom only. The detailed proof of this assertion, which is not performed in [1], is the main

issue of the present paper.

Thus, together with [1], the results presented here give a complete microscopic derivation of optical pumping

and the induced inversion of population from quantum mechanical first principles only. Indeed, to our knowledge

there is only one framework in which aspects of laser phenomenology has been mathematically rigorously

analyzed from first principles, namely for some versions of the Dicke model [2], see [3, 4, 5, 6]. Nevertheless,

Dicke–type models are based on two–level atoms whereas the phenomenology of lasers as described in physics

textbooks is based on three– or four–level atoms [7]. Moreover, they cannot explain the inversion of population

at finite number of impurities. For more details, see [1, Section 1] as well as [8, Chap. 11]. Note that so–called

“one–atom lasers” are object of recent research, both experimentally and theoretically. See for instance [9]. In

a future work, we aim to couple the impurity–reservoir–pump system considered here to a cavity (few–mode

bosonic field) in order to study light amplification in such devices, directly from the microscopic quantum

dynamics.
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The derivation of the effective atomic dynamics is conceptually similar to what is done in [1, Section 4],

but technically more involved: We represent the non–autonomous evolution as an autonomous dynamics on

some enlarged Hilbert space of periodic functions (Floquet–Howland method). Next, we perform an analytic

translation G(θ) of the generator G of the autonomous dynamics and prove that the dynamics driven by both

operators coincide with each other when restricted to the atomic subspace. We then study the discrete spectrum

and eigenspaces of G(θ) through Kato’s perturbation theory [10]. Finally, by using the inverse Laplace transform

for strongly continuous semigroups together with Kato projections, we analyze the action of the semigroup

{eαG(θ)}α≥0 on vectors of the atomic subspace. This analysis leads to the main result of the paper, that is,

Theorem 3.1. Notice that, as compared to the model used in [1] to illustrate the microscopic origin of the

effective dissipative dynamics of the impurity, we consider here a more general atom–reservoir coupling in order

to include gauge invariant interactions. The results of [1] only concern the effective dynamics of the impurity

and are very general. They also hold for such more physical microscopic interactions.

The paper is organized as follows. In Section 2 we introduce the microscopic model. Then, in Section 3 we

define the dynamics of the impurity–reservoir–pump system and state our main result (Theorem 3.1), which

is proven in Section 4. Finally, Section 5 is an appendix briefly reviewing, for the reader’s convenience, some

useful mathematical objects.

Notation 1.1

To simplify notation, we denote by C,D ∈ R+ generic positive and finite constants. Note that these constants

do not need to be the same from one statement to another. A norm on space X is denoted by ∥ · ∥X . A similar

notation is used for scalar products in Hilbert spaces. 1X denotes either the identity of a C∗–algebra X or the

identity operator acting on X .

2. The host environment–impurity–light source microscopic model

For completeness and to fix notations, we recall below the setting of [1]. We keep the discussions as short as

possible and refer to [1, Sections 2–3] for details.

2.1 The host environment as a thermal reservoir of free fermions

Let h1 := L2(R3) and E : R3 → R be any measurable rotationally invariant function that, up to some diffeo-

morphism, behaves like |p|. In the sequel, to simplify discussions, we set E(p) = |p|. Define the (multiplication)

operator h1 = h1(E) on h1 by f(p) 7→ E(p)f(p). Let VR be the CAR C∗–algebra generated by the annihilation

and creation operators a(f), a+(f) := a(f)∗, f ∈ h1, acting on the antisymmetric Fock space F−(h1) and ful-

filling canonical anti–commutation relations. The dynamics of the reservoir is given by the strongly continuous

group {τRt }t∈R of Bogoliubov automorphisms on VR uniquely defined by the condition:

τRt (a(f)) = a(eith1f), f ∈ h1, t ∈ R . (2.1)

δR denotes the symmetric derivation generating τRt . The initial state of the reservoir ωR at inverse temperature

β ∈ R+ is the unique
(
τR, β

)
–KMS state (thermal equilibrium state).

2.2 The impurity as a N–level atom

Let d ∈ N and B(Cd) be the finite dimensional C∗–algebra of all linear operators on Cd and take any self–

adjoint element Hat = H∗
at ∈ B(Cd) with Hat /∈ R1B(Cd) ⊂ B(Cd). Eigenvalues and eigenspaces of Hat are

denoted by Ek ∈ R and Hk ⊂ Cd, k ∈ {1, . . . , N} (N ≥ 2), respectively. Ek is chosen such that Ej < Ek

whenever j < k. The dimension nk of the eigenspace Hk is the degeneracy of the kth atomic level. Then, the

free atomic dynamics is given by the group τat := {τatt }t∈R of automorphisms of the C∗–algebra B(Cd) defined

by

τatt (A) := eitHatAe−itHat , A ∈ B(Cd) , (2.2)

for all t ∈ R.
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Let ωat be any faithful state on B(Cd) and denote by ρat ∈ B(Cd) its unique density matrix, i.e.,

ωat(A) = TrCd (ρat A) , A ∈ B(Cd) .

For any inverse temperature β ∈ R+, the thermal equilibrium state of the (free) atom is the (Gibbs) state

g
(β)
at ≡ gat associated to the density matrix

ρg :=
e−βHat

TrCd (e−βHat)
. (2.3)

The triplet (Hat, πat,Ωat) stands for the standard GNS representation of ωat:

Hat :=
(
B(Cd), ⟨·, ·⟩Hat

)
(2.4)

with

⟨A,B⟩Hat
:= TrCd(A∗B) , A,B ∈ B(Cd) , (2.5)

while

Ωat := ρ
1/2
at ∈ Hat and πat (A) = A−→ , A ∈ B(Cd) . (2.6)

Here, for any A ∈ B(Cd), the left and right multiplication operators A−→ and A←− are respectively defined on B(Cd)

by

B 7→ A−→B := AB and B 7→ A←−B := BA . (2.7)

Note that the dynamics of the atom defined by (2.2) can be represented in the Schrödinger picture of Quantum

Mechanics through the Lindbladian

Lat := −i
(
Hat−−→− Hat←−−

)
= −i[Hat, · ] = −L∗

at (2.8)

acting on the Hilbert space Hat since, for all t ∈ R,

ωat

(
τatt (A)

)
= ⟨etLatΩat, πat(A) e

tLatΩat⟩Hat , A ∈ B(Cd) .

Define the sets

tϵ := {(j, k) : Ej − Ek = ϵ} ⊂ {1, 2, . . . , N} × {1, 2, . . . , N} (2.9)

for each eigenvalue

ϵ ∈ σ(iLat) = {Ej − Ek : j, k ∈ {1, 2, . . . , N}} . (2.10)

Here, σ (A) denotes the spectrum of the operator A. Furthermore, for all ϵ ∈ σ (iLat), denote by P
(ϵ)
at ∈ B(Hat)

the orthogonal projection on Hat associated to the eigenspace of iLat with eigenvalue ϵ. B(Hat) stands for the

set of all linear operators on Hat.

2.3 The uncoupled reservoir–atom system

Define the C∗–algebra V := B(Cd)⊗VR. Then the free dynamics of the atom–reservoir compound system is

given by the strongly continuous group τ := {τ t}t∈R of automorphisms of V defined by

τ t := τatt ⊗ τRt , t ∈ R . (2.11)

The generator of this dynamics is the symmetric derivation denoted by δ and acts on a dense sub–∗–algebra
Dom(δ) of V. The initial state of the atom–reservoir system is

ω0 := ωat ⊗ ωR . (2.12)

As the state ω0 is faithful, the map V × V → C,

(A,B) 7→ ω0(A
∗B) ,



4

defines a scalar product on V. For any fixed inverse temperature β ∈ R+, set ωat := g
(β)
at and let the Hilbert

space H(β) be the completion of V with respect to (w.r.t.) the above scalar product. P̃
(β)
at stands for the

orthogonal project on H(β) with (finite dimensional) range

ran(P̃
(β)
at ) = B(Cd)⊗ 1VR ⊂ V ⊂ H(β) .

As ran(P̃
(β)
at ) ⊂ V ⊂ H(β), the restriction P̃

(β)
at to V defines a projection P

(β)
at ≡ Pat on V. Notice that in the

sequel we identify ran(P
(β)
at ) = B(Cd)⊗ 1VR ⊂ V and B(Cd).

2.4 Classical optical pump

Define

Hp := hp + h∗p ∈ B(Cd)

for some hp ∈ B(Cd) satisfying

ker (hp)
⊥ ⊆ H1 := ran (1 [Hat = E1]) ,

ran (hp) ⊆ HN := ran (1 [Hat = EN ]) .

Here, 1 [Hat = E] stands for the orthogonal projection on the eigenspace of Hat with corresponding eigenvalue

E. The coupling of the optical pump to the atom is represented by a time–dependent perturbation of the form

η cos(ϖt)Lp , ϖ := EN − E1 > 0 , t ∈ R ,

to the atomic Lindbladian Lat. Here,

Lp := −i
(
Hp−→
− Hp←−

)
= −i[Hp, · ] = −L∗

p (2.13)

and η ∈ R is a coupling constant.

2.5 Field form factors of the atom–reservoir interaction

Let K,m ∈ N and, for any κ = {1, . . . ,K}, let {f (κ)ℓ }mℓ=1 ⊂ h1 be a family of rotationally invariant functions,

i.e., f
(κ)
ℓ (p) = f

(κ)
ℓ (|p|) for all p ∈ R3 and ℓ ∈ {1, . . . ,m} with f

(κ)
ℓ : R+

0 → C. For all κ = {1, . . . ,K} and

ℓ ∈ {1, . . . ,m}, the complex–valued functions g
(κ)
ℓ and g

(κ)#
ℓ on R are respectively defined by

∀x ∈ R : g
(κ)
ℓ (x) := |x|

(
1 + e−βx

)−1/2


f
(κ)
ℓ (x) , x ≥ 0 ,

f
(κ)
ℓ (−x) , x < 0 ,

(2.14)

and

g
(κ)#
ℓ (x) := ig

(κ)
ℓ (−x) , x ∈ R . (2.15)

We assume the following:

Assumption 1

There is rmax > 0 such that g
(κ)
ℓ and g

(κ)#
ℓ have an analytic continuation to the strip R+i(−rmax, rmax) and

satisfy

sup
y∈(−rmax,rmax)

{∫
R
(|g(κ)ℓ (x+ iy)|+ |e−

β
2 (x+iy)g

(κ)#
ℓ (x+ iy)|)2dx

}
<∞ .

[The factor e−
β
2 (x+iy) in this assumption is, by mistake, missing in the condition below [1, Eq. (2.16)].]

To satisfy this condition one may, for instance, choose the functions f
(κ)
ℓ (x) as linear combinations of terms

of the form |x|2p−1 exp(−Cx2) with p ∈ N0. Finally, at any fixed inverse temperature β ∈ R+ of the fermionic

reservoir and for any κ = {1, . . . ,K}, let {f (κ,β)ℓ }mℓ=1 be the family of functions R→ R+
0 defined by

f
(κ,β)
ℓ (x) := 4π

∣∣∣x f
(κ)
ℓ (|x|)

∣∣∣2
1 + e−βx

= 4π
∣∣∣g(κ)ℓ (x)

∣∣∣2 . (2.16)
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2.6 Atom–reservoir interaction

For all κ ∈ {1, . . . ,K} choose a finite collection {Q(κ)
ℓ1,...,ℓk

}mℓ1,...,ℓk=1 ⊂ B(Cd) satisfying(
Q(κ)

ℓ1,...,ℓκ

)∗
= Q(κ)

ℓκ,...,ℓ1
.

Then, the atom–reservoir interaction is implemented by the bounded symmetric derivation λδat,R with coupling

constant λ ∈ R and

δat,R := i
K∑

κ=1

m∑
ℓ1,...,ℓκ=1

[
Q(κ)

ℓ1,...,ℓκ
⊗ Φ(f (κ)

ℓ1
) · · ·Φ(f (κ)ℓκ

), ·
]
. (2.17)

Here, for all f ∈ h1,

Φ(f) :=
1√
2
(a+(f) + a(f)) = Φ(f)∗ ∈ B(F−(h1)) . (2.18)

For any normed space X , B(X ) stands for the set of all linear bounded operators on X .
To simplify discussions, without loss of generality (w.l.o.g.), we assume:

Assumption 2 P
(β)
at δat,RP

(β)
at = 0.

This technical condition is not essential for the results below and does not exclude most physically relevant

atom–reservoir couplings.

For all ε ∈ R+, define the linear operator L(ε)
R ∈ B(Hat) by

L
(ε)
R :=

∑
ϵ∈σ(iLat)

(
P

(ϵ)
at P

(β)
at δat,R(1−P

(β)
at )(ε+ iϵ− δ)−1(1−P

(β)
at )δat,RP

(β)
at P

(ϵ)
at

)∗
. (2.19)

Recall that we identify the spaces ran(P
(β)
at ) = B(Cd) ⊗ 1VR ⊂ V and B(Cd). Note further that ε, ϵ ∈ R and

σ(δ) ⊂ iR. [δ generates a group of contractions, i.e., ±δ are generators of semigroups of contractions.] From

the analyticity assumptions on the field form factors of the atom–reservoir interactions, one shows that the

following limit exists:

LR := lim
ε↘0

L
(ε)
R ∈ B(Hat) ≡ B(B(Cd)) . (2.20)

See for instance Lemma 4.13. It is known that, in this case, the limit LR is the generator of a completely

positive group, see for instance [11, Section 6.1]. By the Stinespring theorem,

LR = −i
(
HLamb−−−−→− HLamb←−−−−

)
+ Ld , (2.21)

where HLamb = H∗
Lamb ∈ B(Cd) and Ld has the form

Ld(ρ) =
∑
α∈A

(2VαρV
∗
α − V ∗

αVαρ− ρV ∗
αVα) , ρ ∈ Hat ,

for some fixed Vα ∈ B(Cd), α ∈ A, |A| <∞. Here, HLamb is the so–called atomic Lamb shift and Ld ∈ B(Hat) is

the effective atomic dissipation. The atom–reservoir interaction yields an effective atomic dynamics generated

by Lat + λ2LR (without pump). Notice furthermore that HLamb commutes with the atomic Hamiltonian Hat.

Explicit expressions for HLamb and Ld in terms of the microscopic couplings Q(κ)
ℓ1,...,ℓκ

and f
(κ)
ℓ are quite

cumbersome in the general case but can straightforwardly be obtained. In the simplest non–trivial case, i.e., if

Q(κ)
ℓ1,...,ℓκ

≡ 0 for κ ≥ 2 and the family of functions (form factors) {fℓ}mℓ=1 ≡ {f (1)ℓ
}mℓ=1 ⊂ h1 is orthogonal, we

obtain the following: Let {Ṽ (ℓ)
j,k }j,k,ℓ ⊂ B(Cd) be the family of operators defined by

Ṽ
(ℓ)
j,k := 1 [Hat = Ej ] Qℓ 1 [Hat = Ek] (2.22)



6

for j, k ∈ {1, 2, . . . , N} and ℓ ∈ {1, 2, . . . ,m}. Then, the atomic Lamb shift HLamb ∈ B(Cd) is the self–adjoint

operator defined by

HLamb = −1

2

∑
ϵ∈σ(iLat)\{0}

∑
(j,k)∈tϵ

m∑
ℓ=1

d
(ℓ)
j,kṼ

(ℓ)∗
j,k Ṽ

(ℓ)
j,k . (2.23)

The real coefficient

d
(ℓ)
j,k := PP

[
f
(1,β)
ℓ (·+ (Ek − Ej))

]
is the principal part PP[f ] of the function f ≡ f

(1,β)
ℓ (·+ (Ek − Ej)). See (2.16) for the definition of f

(1,β)
ℓ .

Meanwhile,

Ld :=
1

2

∑
ϵ∈σ(iLat)

∑
(j,k)∈tϵ

m∑
ℓ=1

c
(ℓ)
j,kL

(ℓ)
j,k , (2.24)

where c
(ℓ)
j,k := πf

(1,β)
ℓ (Ek − Ej) ≥ 0 and

L
(ℓ)
j,k (ρ) := 2Ṽ

(ℓ)
j,k ρṼ

(ℓ)∗
j,k − Ṽ

(ℓ)∗
j,k Ṽ

(ℓ)
j,k ρ− ρṼ

(ℓ)∗
j,k Ṽ

(ℓ)
j,k , ρ ∈ Hat . (2.25)

Note that these expressions for HLamb and Ld appear in the heuristic derivation of the time–dependent Lind-

bladian given in [1, Section 6.1]. See also [12, 1.3. Remarks.].

To control Rabi oscillations (caused by the optical pump, whose strength is of order O(η)) via the effective

atom–reservoir interaction λ2LR we assume:

Assumption 3 (Moderate optical pump)

For some fixed constant C ∈ R+ and all coupling η, λ ∈ R: |η| ≤ Cλ2.

Moreover, we impose 0 to be a non–degenerated eigenvalue of η
2Lp + λ2LR with some non–trivial real spectral

gap, that is, more precisely,

max
{
Re {w} |w ∈ σ

(η
2
Lp + λ2LR

)
\{0}

}
≤ −λ2C < 0

with C ∈ R+ being some fixed constant not depending on λ and η. This allows the study of the dynamics of

the atom at large times. By [1, Lemma 6.3], the following assumption on the dissipative part Ld of LR suffices

to ensure the above spectral property:

Assumption 4 (Irreducibility of quantum Markov chains)

The family {Vα}α∈A ⊂ B(Cd) satisfies ( ∪
α∈A

{Vα}
)′′

= B(Cd)

with M ′′ being the bicommutant of M ⊂ B(Cd).

This last assumption highlights the role played by dissipative effects of the reservoir on the atom in order to

get an appropriate asymptotic evolution of populations of atomic levels. For further discussions, see [1, Section

3.2].

From now on, we assume Assumptions 1–4 to be satisfied.

3. Microscopic Dynamics

Let

δ
(λ,η)
t := δ + η cos(ϖt)δat,p + λδat,R , t ∈ R , (3.1)

with λ, η ∈ R and

δat,p := i[Hp ⊗ 1VR , · ] .
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Recall that the generator of the group τ := {τ t}t∈R (2.11) is the symmetric derivation δ, while δat,R is defined

by (2.17). Therefore, the time–dependent symmetric derivation δ
(λ,η)
t corresponds to a bounded and smooth

(w.r.t. t ∈ R) perturbation of δ. For all λ, η ∈ R, the (non–autonomous full) microscopic dynamics is defined

by the unique strongly continuous two–parameter family {τ (λ,η)t,s }t≥s of ∗–automorphisms of V satisfying the

evolution equation

∀s, t ∈ R, t ≥ s : ∂tτ
(λ,η)
t,s = τ

(λ,η)
t,s ◦ δ(λ,η)t , τ (λ,η)s,s := 1V , (3.2)

on the (time–constant) domain of δ
(λ,η)
t . The existence, uniqueness and strong continuity of the two–parameter

family {τ (λ,η)t,s }t≥s is shown by standard arguments, see Proposition 4.1 and Definition 4.2.

The time–evolving state of the compound system is then given by

ωt := ω0 ◦ τ (λ,η)t,0 = (ωat ⊗ ωR) ◦ τ (λ,η)t,0 , t ∈ R+
0 .

The restriction of this state to the atomic degrees of freedom yields a time–dependent atomic state defined by

ωat (t) (A) := ωt(A⊗ 1VR), A ∈ B(Cd) , (3.3)

for all t ∈ R+
0 . The corresponding family of density matrices of {ωat (t)}t∈R+

0
is denoted by {ρat (t)}t∈R+

0
.

The aim of this paper is to prove [1, Theorem 3.3]. This amounts to study the orthogonal projection

PD (ρat (t)) of the atomic density matrix ρat (t) on the subspace

D ≡ D(Hat) := B(H1)⊕ · · · ⊕ B(HN) ⊂ Hat (3.4)

of block–diagonal matrices. In other words, we analyze the density matrix

PD (ρat (t)) =
N∑

k=1

1 [Hat = Ek] ρat (t) 1 [Hat = Ek] (3.5)

for any t ∈ R+
0 . In fact, we compare the above time–evolving density matrix with the unique solution of the

following (effective) atomic master equation on Hat:

∀t ∈ R+
0 :

d

dt
ρ(t) = L

(λ,η)
t (ρ(t)) , ρ(0) = ρat (0) ≡ ρat ∈ Hat . (3.6)

Here, for any λ, η, t ∈ R, L(λ,η)
t is a time–dependent Lindbladian defined on Hat by

L
(λ,η)
t := Lat + η cos(ϖt)Lp + λ2LR , (3.7)

see (2.8), (2.13) and (2.20)–(2.21).

Since the Lindbladian L
(λ,η)
t is continuous in time and generates a Markov completely positive (CP) semigroup

at any fixed t ∈ R, there is a continuous two–parameter family denoted by {τ̂ (λ,η)t,s }t≥s ⊂ B(Hat) of CP trace–

preserving maps satisfying the evolution equation:

∀s, t ∈ R, t ≥ s : ∂tτ̂
(λ,η)
t,s = L

(λ,η)
t ◦ τ̂ (λ,η)t,s , τ̂ (λ,η)s,s := 1Hat .

For any initial condition ρat ∈ Hat on has:

ρ(t) = τ̂
(λ,η)
t,0 (ρat) , t ∈ R+

0 .

The main interest of the initial value problem (3.6) is that – at small couplings – its solution ρ(t) accurately

approximates, for all t ∈ R+
0 , the true density matrix ρat (t) of the time–dependent state ωat (t) on the subspace

D ((3.4), space of populations of the atomic energy levels):

Theorem 3.1 (Validity of the effective atomic master equation)

Assume that ρat ∈ D and let ε ∈ (0, 1). The unique solution {ρ(t)}t≥0 of the effective atomic master equation

(3.6) and the atomic density matrix {ρat (t)}t≥0 satisfy the bound

∥PD (ρat(t)− ρ(t))∥Hat
≤ Cϖ,ε |λ|1−ε

for some constant Cϖ,ε ∈ R+ depending on ϖ, ε, but not on the initial state ωat of the atom and the parameters

t, λ, and η, provided |λ| is sufficiently small.
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Note that [1, Theorem 3.3] asserts the above bound with ε = 0 but for the special case K = 1. We prove here

the slightly weaker bound with ε ∈ (0, 1), for technical simplicity. [To get the bound for ε = 0 one may improve

the estimate (4.112).]

4. Technical Proofs

The remaining part of the paper is devoted to the proof of Theorem 3.1, which is concluded in Section 4.7.

We essentially follow [12], where the notion of C–Liouvilleans has been first introduced. The setting of [12] is

extended here to allow time–dependent C–Liouvilleans.

4.1 Existence of the non–autonomous dynamics

Recall that the generator of the group τ := {τ t}t∈R (2.11) is the symmetric derivation δ. Then, any time–

dependent and self–adjoint family {Wt}t∈R ⊂ V defines a family of symmetric derivations

δWt := δ + i[Wt, · ] , t ∈ R . (4.1)

If {Wt}t∈R ∈ C1(R,V), then such time–dependent derivations generate a unique fundamental solution

{Ws,t}s,t∈R, which is in our case a family of ∗–automorphisms of V. By fundamental solution, we mean here

that the family {Ws,t}s,t∈R of bounded operators acting on V is strongly continuous, preserves the domain

Dom(δWt) = Dom(δ) ,

satisfies

W·,t(A) ∈ C1(R; (Dom(δ), ∥·∥V)) ,
Ws,·(A) ∈ C1(R; (Dom(δ), ∥·∥V)) ,

for all A ∈ Dom(δ), and solves the corresponding Cauchy initial value problem

∀s, t ∈ R : ∂sWs,t = −δWs
◦Ws,t , Wt,t = 1V , (4.2)

in the strong sense on (Dom(δ), ∥·∥V):

Proposition 4.1 (Non–autonomous C∗–dynamics–I)

If {Wt}t∈R ∈ C1(R,V), then there is a unique evolution family {Ws,t}s,t∈R of ∗–automorphisms with the fol-

lowing properties:

(i) It satisfies the cocycle property, also called Chapman–Kolmogorov property,

∀t, r, s ∈ R : Ws,t = Ws,rWr,t .

(ii) It is the fundamental solution of (4.2).

(iii) It solves in the strong sense on (Dom(δ), ∥·∥V) the abstract Cauchy initial value problem

∀s, t ∈ R : ∂tWs,t = Ws,t ◦ δWt , Ws,s = 1V .

(iv) If {Wt}t∈R is periodic with period T > 0, then

∀s, t ∈ R, p ∈ Z : Ws,t = Ws+pT,t+pT .

Proof. See proof of [16, Proposition 5.4] to arrive at Assertions (i)–(iii). In fact, one has [16, Eq. (5.24)], that

is,

Ws,t (A) := τ−s

(
Vt,sτ t(A)V

∗
t,s

)
(4.3)

for any A ∈ V and s, t ∈ R, where Ut,s ∈ V is given by the absolutely convergent series

Vt,s := 1V+
∑
k∈N

ik
∫ t

s

ds1 · · ·
∫ sk−1

s

dskτsk (Wsk) · · · τs1 (Ws1) (4.4)
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in the Banach space (Dom(δ), ∥·∥Dom(δ)). Here, ∥·∥Dom(δ) stands for the graph norm of the closed operator δ.

In particular, if {Wt}t∈R is also periodic with period T > 0, τ−pT (Vt+pT,s+pT ) = Vt,s and we obtain Assertion

(iv) by using Equation (4.3). 2

Then, the microscopic dynamics (3.2) corresponds to the following definition:

Definition 4.2 (Non–autonomous C∗–dynamics–II)

The non–autonomous dynamics {τ t,s}t≥s is defined by τ t,s := Ws,t for t ≥ s, provided {Wt}t∈R ∈ C1(R,V).

Indeed, by construction, this family is the (unique) solution of the abstract Cauchy initial value problem

∀s, t ∈ R : ∂tτ t,s = τ t,s ◦ δWt , τ s,s = 1V ,

in the strong sense on (Dom(δ), ∥·∥V).

4.2 Time–dependent C–Liouvilleans1

Assume first that the initial state ω0 (2.12) is of the form

ω0 = gat ⊗ ωR ,

where gat is the (Gibbs) state corresponding to the density matrix ρg (2.3). Denote by (Hat, πat,Ωat,g) and

(HR, πR,ΩR) GNS representations of respectively gat and ωR. Let H := Hat ⊗ HR, π := πat ⊗ πR and

Ωg := Ωat,g⊗ΩR. Observe Ωg is cyclic because it is the tensor product of cyclic vectors and hence, (H, π,Ωg) is

a GNS representation of ω0. An important property of the initial state ω0 is that it is faithful. In particular, π

is injective. So, to simplify notation, π (A) and π (V) are identified with A and V, respectively. The weak closure

of the C∗–algebra V ⊂ B(H) is the von Neumann algebra V ′′ denoted by M. The state ω0 is a (τ , β)–KMS

state, where {τ t}t∈R is the one–parameter group of ∗–automorphisms on V defined by (2.11). By [14, Corollary

5.3.9], the cyclic vector Ωg is separating for M, i.e., AΩg = 0 implies A = 0 for all A ∈ M. The state ω0

on V extends uniquely to a normal state on the von Neumann algebra M and {τ t}t∈R uniquely extends to a

σ–weakly continuous ∗–automorphism group on M, see [14, Corollary 5.3.4]. Both extensions are again denoted

by ω0 and {τ t}t∈R, respectively. Because ω0 is invariant w.r.t. {τ t}t∈R, there is a unique unitary representation

{Ut}t∈R of {τ t}t∈R by conjugation, i.e.,

∀t ∈ R, A ∈M : τ t (A) = UtAU
∗
t ,

such that UtΩg = Ωg. As t 7→ τ t is σ–weakly continuous, the map t 7→ Ut is strongly continuous. Therefore,

there is a a self–adjoint operator Lg with Ut = eitLg for all t ∈ R. In particular, Ωg ∈ Dom(Lg) and Lg

annihilates Ωg, i.e.,

LgΩg = 0 . (4.5)

Moreover, Lg is related to the generator δ of the group {τ t}t∈R by the following relations:

{AΩg : A ∈ Dom(δ)} ⊂ Dom(Lg) ⊂ H (4.6)

and

∀A ∈ Dom(δ) : Lg (AΩg) = δ (A)Ωg . (4.7)

The self–adjoint operator Lg is named the standard Liouvillean of the ∗–automorphism group {τ t}t∈R.

The (Tomita–Takesaki) modular objects of the pair (M,Ωg) are important for our further analysis. We write

∆g = e−βLg , Jg, and

Pg := {AJgAJgΩg : A ∈M}

respectively for the modular operator, the modular conjugation and the natural positive cone of the pair (M,Ωg).

Now, if the faithful state ωat is not the Gibbs state gat in (2.12) then, because Ωat is cylic for πat

(
B(Cd)

)
, a

GNS representation of

ω0 := ωat ⊗ ωR

1This section has been partially done in collaboration with M. Westrich during his PhD [13, Chapter 5].
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is also given by (H, π,Ω) where Ω = Ωat ⊗ ΩR for some Ωat ∈ Hat, see (2.6).

Observe that Ω = AJgAJgΩg ∈ Pg with

A = ρ
1/4
at ρ

−1/4
g ⊗ 1HR ,

where we recall that ρg is the density matrix (2.3) of the Gibbs state gat. Additionally, by cyclicity of Ω and

[15, Proposition 2.5.30 (1)], Ω is also separating for M. So, we can define the modular operator ∆ and the

modular conjugation J of the pair (M,Ω). By [15, Proposition 2.5.30 (2)], Jg = J .

Observe that Lg does not necessarily annihilate Ω, as in (4.5). But, from the Trotter–Kato formula,

∀t ∈ R, B ∈M′, A ∈M : τ t (A) = eit(Lg+B)Ae−it(Lg+B) ∈M .

Therefore, we can change the standard Liouvillean Lg by adding some appropriate element of the commutant

M′ = JMJ to annihilate Ω. With this aim, we define

L = Lg + J (Hat ⊗ 1HR)J − J∆1/2(Hat ⊗ 1HR)∆−1/2J . (4.8)

It is straighforward to verify that

LΩ = 0 (4.9)

(see (4.28)–(4.29)) as well as

∀t ∈ R, A ∈M : τ t (A) = eitLAe−itL ∈M .

The operators Lg and L are equivalent to each other. To see this, define the linear map Zat on Hat by

Zat (A) := Aρ
1/2
at , A ∈ Hat ≡ B(Cd) . (4.10)

Because ρat is the density matrix of a faithful state, Zat has an inverse and

L = (Zat ⊗ 1HR)Lg

(
Z−1
at ⊗ 1HR

)
. (4.11)

Observe that, if the density matrix ρat commutes with Hat, i.e., ρat ∈ D (cf. (3.4)), then LgΩ = 0. We could

take, in this case, L := Lg from the beginning. We discuss here the general case, for completeness.

In our setting, however, the free dynamics is perturbed by the pump and the atom–reservoir interaction.

Altogether, this leads to a perturbation Wt of L. For autonomous perturbations of the generator δ of the

dynamics {τ t}t∈R (on V) of the form i[W, · ] with some self–adjoint W ∈ V, one has

∀t ∈ R, A ∈ V : τWt (A) = eit(L+W )Ae−it(L+W ) ∈M ,

where {τWt }t∈R is the strongly continuous ∗–automorphism group on V generated by δ + i[W, · ]. Analogously

as above, {τWt }t∈R defines a σ–weakly continuous group on whole M. Nevertheless, in general, the operator

L +W does not annihilate anymore Ω. A way to get around this problem is presented in [12, Section 2.2] by

introducing the notion of C–Liouvilleans L, which is constructed such that LΩ = 0.

Observe that, in our case, the dynamics is non–autonomous. Using the C–Liouvilleans construction of [12,

Section 2.2] we can design the time–depending C–Liouvillean of the non–autonomous dynamics such that

LtΩ = 0. This is a very useful property for the analysis of the dynamics. Therefore, we now extend the

definition of C–Liouvilleans [12, Section 2.2] to non–autonomous evolutions.

Following [12, Section 2.2], we define the linear space

O := {AΩ : A ∈ V} ⊂ H .

Let ι be the map from V to O defined by ι (A) := AΩ. This map is an isomorphism of the linear spaces V
and O because Ω is a separating vector for M. In particular, ∥AΩ∥O := ∥A∥V defines a norm on the space

O, ι is an isometry w.r.t. this norm, and (O, ∥ · ∥O) is a Banach space. It is the so–called non–commutative

L∞ space associated with the (initial) state ω0. Any element A ∈ V also defines a bounded operator on O by
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left multiplication, i.e., A (BΩ) := (AB) Ω. Moreover, we define a strongly continuous two–parameter family

{Ts,t}s,t∈R acting on O by

Ts,t := ι ◦Ws,t ◦ ι−1 , s, t ∈ R . (4.12)

Note that, since {Ws,t}s,t∈R is a family of ∗–automorphisms, the operator Ts,t has a bounded inverse. Moreover,

∀s, t ∈ R, A ∈ V : Ts,t (Ω) = Ω and Ts,tAT
−1
s,t = Ws,t (A) . (4.13)

Here, A,Ws,t (A) ∈ V are seen as bounded operators on O defined by left multiplication, as explained above.

We would like now to extend the two–parameter family {Ts,t}s,t∈R to whole H. To this end, similarly as done

in [12, Eq. (2.5)] for the autonomous case, we define the time–dependent C–Liouvillean as follows:

Definition 4.3 (Time–dependent C–Liouvilleans)

For any self–adjoint family {Wt}t∈R ⊂ V, the time–dependent C–Liouvillean is the family of operators acting

on H defined by

Lt := L+Wt − J∆1/2Wt∆
−1/2J , t ∈ R .

Even if L = Lg, this time–dependent operator is not anymore self–adjoint. Note also that the term

Vt :=Wt − J∆1/2Wt∆
−1/2J ∈ B (O)

implements the commutator [Wt, · ] on O for any t ∈ R. Indeed, for any A ∈ V,

[Wt, A] Ω =WtAΩ− (WtA
∗)

∗
Ω (4.14)

and using J∆1/2AΩ = A∗Ω, ∆−1/2 = J∆1/2J , and J2 = 1,

J∆1/2Wt∆
−1/2JAΩ = (WtA

∗)
∗
Ω . (4.15)

In particular,

∥J∆1/2Wt∆
−1/2J∥B(O) = ∥Wt∥V <∞ (4.16)

and

∀t ∈ R : LtΩ = 0 . (4.17)

Note that the norm ∥·∥O on O is not equivalent to the Hilbert space norm on this subspace of H. In particular,

the boundedness of the operator

J∆1/2Wt∆
−1/2J

as an operator on H is unclear, in spite of (4.16). Therefore, for every t ∈ R, we assume some sufficient conditions

on the operator family {Vt}t∈R, like the boundedness of its elements as linear operators on the Hilbert space H,

in order to extend the elements of the two–parameter family {Ts,t}s,t∈R to whole H ⊃ O.

Proposition 4.4 (Extension of {Ts,t}s,t∈R–I)

Assume that {Vt}t∈R ∈ C1(R,B(H)). Then, there is a unique evolution family {Us,t}s,t∈R ⊂ B (H) with the

following properties:

(i) It satisfies the cocycle property

∀t, r, s ∈ R : Us,t = Us,rUr,t .

(ii) It is the unique fundamental solution of the abstract Cauchy initial value problem

∀s, t ∈ R : ∂sUs,t = −iLsUs,t, Ut,t = 1H .

(iii) It solves, in the strong sense on Dom(L), the Cauchy initial value problem

∀s, t ∈ R : ∂tUs,t = iUs,tLt, Us,s = 1H .

(iv) For any s, t ∈ R, Ut,s has a bounded inverse U−1
t,s .

(v) If {Wt}t∈R is periodic with period T > 0, then

∀s, t ∈ R, p ∈ Z : Us,t = Us+pT,t+pT .
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Proof. Since Lt = L+Vt, Assertions (i)–(iii) can easily be deduced from [17, Sect. 5.4, Theorem 4.8.]. To prove

that Ut,s has a bounded inverse U−1
s,t , it suffices to prove that U−1

s,t ∈ B (H) exists for small time differences

|t− s|, by the cocycle property (i). To this aim, we observe that

∀s, t ∈ R : Us,t = ei(t−s)Lg + i

∫ t

s

Us,r (L− Lg + Vr) e
i(r−t)Lgdr , (4.18)

in the strong sense. See, e.g., [17, Sect. 5.4, Lemma 4.5. and Theorem 4.6.]. Using that {L − Lg + Vt}t∈R ∈
C1(R,B(H)), it follows by standard arguments that ∥Ur,r′∥B(H) is uniformly bounded for r, r′ in compact subsets

of R. [To show this, Us,t can, for instance, be represented by Dyson–Phillips series.] Therefore, by unitarity of

ei(t−s)Lg , for any t ∈ R and sufficiently small |t− s| one has∥∥∥∥∫ t

s

Us,r (L− Lg + Vr) e
i(r−t)Lgdr

∥∥∥∥
B(H)

≤ 1

2
.

By using Neumann series to construct U−1
s,t ∈ B (H) for such times, Assertion (iv) holds for all s, t ∈ R because of

(i). If {Wt}t∈R is T–periodic, then both {Us,t}s,t∈R and {Us+pT,t+pT }s,t∈R satisfy the integral equation (4.18).

By uniqueness of solution of (4.18) (cf. [17, Sect. 5.4, Lemma 4.5.]), it follows that {Us,t}s,t∈R is T–periodic in

this case. 2

Combining this with Proposition 4.1, we deduce that the evolution family {Us,t}s,t∈R is the unique continuous

extension of the two–parameter family {Ts,t}s,t∈R to the Hilbert space H:

Proposition 4.5 (Extension of {Ts,t}s,t∈R–II)

Assume that {Wt}t∈R ∈ C1(R,V) and {Vt}t∈R ∈ C1(R,B(H)). Then, the evolution family of Proposition 4.4

satisfies Us,tΩ = Ω and

∀s, t ∈ R, A ∈ V : Ws,t (A) = Us,tAU
−1
s,t .

Here, A ≡ π(A) and Ws,t (A) ≡ π (Ws,t (A)) are seen as bounded operators on H, by left multiplication.

Proof. Note first that Us,tΩ = Ω is a direct consequence of (4.17) and Proposition 4.4 (iii). Using the isometry

between O and V,
T·,t(AΩ) ∈ C1(R;O) , Ts,·(AΩ) ∈ C1(R;O)

for any A ∈ Dom(δ) and s, t ∈ R, by Proposition 4.1 (ii). By using Proposition 4.1 (ii)–(iii), (4.1), (4.6)–(4.7)

with Ω replacing Ωg, (4.12), and (4.14)–(4.15), it follows that

∂sTs,t (AΩ) = −δWs (Ws,t (A))Ω = −iLs (Ts,t (AΩ)) , (4.19)

∂tTs,t (AΩ) = Ws,t (δWt (A))Ω = iTs,t (Lt (AΩ)) , (4.20)

for all s, t ∈ R and A ∈ Dom(δ). Meanwhile, since

∀A ∈ V : ∥AΩ∥H ≤ ∥A∥V = ∥AΩ∥O , (4.21)

we have

T·,t(AΩ) ∈ C1(R; (Dom (Lg) , ∥·∥H)) , Ts,·(AΩ) ∈ C1(R; (Dom (Lg) , ∥·∥H)) ,

and (4.19)–(4.20) also holds in the sense of H. By Proposition 4.4 (ii),

∀A ∈ Dom(δ) : Us,t (AΩ) = Ts,t (AΩ) := Ws,t (A) Ω . (4.22)

By density of Dom (δ) in V, for any A ∈ V, there is a sequence {An}∞n=1 ⊂ Dom(δ) converging in V to A. We

infer from (4.21) that this sequence {An}∞n=1 also converges to A in the sense of H. On the one hand, by the

boundedness of Us,t in H,

lim
n→∞

Us,t (AnΩ) = Us,t (AΩ) .

On the other hand, using (4.22) and the boundedness of Tt,s in O, one gets

lim
n→∞

Us,t (AnΩ) = lim
n→∞

Ts,t (AnΩ) = Ts,t (AΩ) .
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As a consequence, Us,t|O = Ts,t. In particular, from the uniqueness of the inverse, one has U−1
s,t |O = T−1

s,t . We

then use (4.13) to deduce that

∀s, t ∈ R, A ∈ V, x ∈ O : Ws,t (A)x = Us,tAU
−1
s,t (x) .

By density of O in H, we arrive at the assertion. 2

The use of C–Liouvilleans is advantageous because of the following identity:

∀s, t ∈ R, A ∈M : Us,tAU
−1
s,t Ω = Us,tAΩ .

4.3 Dynamics in an explicit GNS representation

To obtain the atomic Lindbladians (3.7) from the time–dependant C–Liouvilleans (Definition 4.3), we use a

convenient explicit GNS representation of the initial state (2.12). As already mentioned, this GNS representation

includes the GNS representation defined in Section 2.2 for the atomic initial state ωat. So, it remains to give

an explicit GNS representation (HR, πR,ΩR) for the
(
τR, β

)
–KMS state ωR of the fermionic reservoir at

inverse temperature β ∈ R+. As briefly discussed in [1, Section 6.1], we use the so–called Jakšić–Pillet glued

representation [12], because it is well–adapted to the application of spectral deformation methods, see Section

4.5.

Consider the Hilbert space

h2 := L2(R× S2,C) , (4.23)

where S2 ⊂ R3 is the two–dimensional unit sphere centered at the origin and R× S2 (spherical coordinates of

R3 × R3) is equipped with the measure dλ⊗d2s. Here, d2s is the usual rotation invariant measure induced by

the Euclidean norm of R3 on S2 and dλ is the Lebesgue measure. The Hilbert space of the Jakšić–Pillet glued

representation is the antisymmetric Fock space

HR := F−(h2) .

The cyclic vector ΩR is the vacuum of F−(h2). The representation map πR of the C∗–algebra VR is the

C∗–homomorphism uniquely defined by

∀f ∈ h1 : πR(Φ(f)) = Φ̃(gf ) , (4.24)

with Φ, Φ̃ being the field operators defined by (2.18) respectively on F−(h1) and F−(h2), and where gf ∈ h2 is

given, for (p, ϑ) ∈ R× S2 a.e., by

gf (p, ϑ) := |p|
(
1 + e−βp

)−1/2


f(pϑ) , p ≥ 0 ,

f(−pϑ) , p < 0 .

Compare with (2.14).

Note that ωR is faithful and we thus identify πR (A) and πR (VR) with A and VR, respectively. The weak

closure of the C∗–algebra πR (VR) ≡ VR is the von Neumann algebra MR := V ′′
R. The family {τRt }t∈R of Bo-

goliubov automorphisms on the algebra VR analogously defined as in (2.1) uniquely extends to an automorphism

group of the von Neumann algebra MR, again denoted by τR := {τRt }t∈R. (MR, τ
R) defines a W ∗–dynamical

system and ωR is a (τR, β)–KMS state. Hence, ΩR is cyclic and separating for MR.

As above, there is a unique unitary representation of τR by conjugation, the generator iLR of which satisfies

LRΩR = 0 and τRt (·) = eitL(·)e−itL for all t ∈ R. The standard Liouvillean LR is the second quantization

LR = dΓ(p) (4.25)

of the multiplication operator by p ∈ R, that is, the operator acting on h2 as (pf)(p, ϑ) = pf(p, ϑ).
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An explicit GNS representation of the initial state ω0 of the composite system is now easy to derive. Using

indeed the representations (Hat, πat,Ωat) (see Section 2.2) and (HR, πR,ΩR) of the states ωat and ωR, a GNS

representation (H, π,Ω) of ω0 is given by

H := Hat ⊗ HR , π := πat ⊗ πR , Ω := Ωat ⊗ ΩR . (4.26)

Since Hat is finite dimensional and V := B(Cd) ⊗ VR, we do not have to specify the meaning of the tensor

product. Recall that, for simplicity of notation, π (A) and π (V) are respectively identified with A and V.
M := V ′′ is the weak closure of the C∗–algebra π (V) ≡ V. In this explicit representation, M = B(Cd) ⊗MR,

where MR := V ′′
R.

As explained in Section 4.2, (2.11) defines a one–parameter group {τ t}t∈R of ∗–automorphisms on M. The

standard Liouvillean of {τ t}t∈R reads

Lg = iLat ⊗ 1HR + 1Hat ⊗ LR = (Hat−−→− Hat←−−)⊗ 1HR + 1Hat ⊗ dΓ(p) (4.27)

in the representation given above and satisfies (4.5). See also (2.8) and (4.25). Then, in order to satisfy (4.9)

instead of (4.5), we use the operator (4.8), that is here,

L = Lg +Hat←−−⊗ 1HR − ρ
−1/2
at Hatρ

1/2
at←−−−−−−−−−
⊗ 1HR . (4.28)

Indeed, for any A ∈ Hat ≡ B(Cd) and B ∈ Dom(e−βLR/2) ⊂ HR,

∆1/2 (A⊗B) = (ρ
1/2
at Aρ

−1/2
at )⊗ (e−βLR/2B) , J (A⊗B) = A∗ ⊗ (JRB) (4.29)

with JR being the modular conjugation associated with the pair (MR,ΩR). In fact,

JRΦ̃(gf )JR = (−1)dΓ(1h2
)Φ̃(g#f ) , f ∈ h1 , (4.30)

where

g#f (p, ϑ) := igf (−p, ϑ) , (p, ϑ) ∈ R× S2 (a.e.) .

Compare with (2.15). For more details, see [12, Theorem 3.3. and Proposition 3.4.].

In the same representation, the time–dependent C–Liouvillean Lt (Definition 4.3) then equals

Lt ≡ L(λ,η)
t := L+Wt − J∆1/2Wt∆

−1/2J (4.31)

with

Wt := η cos(ϖt)Hp−→
⊗ 1VR + λ

K∑
κ=1

m∑
ℓ1,...,ℓκ=1

Q(κ)
ℓ1,...,ℓκ−−−−−→

⊗ (4.32)

(
1√
2

)κ (
a+(g

(κ)
ℓ1

) + a(g
(κ)
ℓ1

)
)
· · ·
(
a+(g

(κ)
ℓκ

) + a(g
(κ)
ℓκ

)
)

and, by (4.29)–(4.30),

J∆1/2Wt∆
−1/2J = η cos(ϖt)ρ

−1/2
at Hpρ

1/2
at←−−−−−−−−−
⊗ 1VR − λ

K∑
κ=1

m∑
ℓ1,...,ℓκ=1

ρ
−1/2
at Q(κ)

ℓ1,...,ℓκ
ρ
1/2
at

←−−−−−−−−−−−−
⊗ (4.33)

(
−i√
2

)κ

(−1)dΓ(1h2
)
(
a
(
ie−βpg

(κ)
ℓ1

)
+ a+

(
ig

(κ)
ℓ1

))
· · · (−1)dΓ(1h2

)
(
a
(
ie−βpg

(κ)
ℓκ

)
+ a+

(
ig

(κ)
ℓκ

))
.

Recall that ρat ∈ B(Cd) is the (invertible) density matrix of the (faithful) state ωat and, for any κ = {1, . . . ,K}
and ℓ ∈ {1, . . . ,m} with K,m ∈ N,

g
(κ)
ℓ (p, ϑ) := g

(κ)
ℓ (p) , (p, ϑ) ∈ R× S2 , (4.34)
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where {g(κ)ℓ }mℓ=1 is the family of complex–valued functions defined on R by (2.14). Note that dΓ(1h2), the second

quantization of 1h2 , is the particle number operator acting on the antisymmetric Fock space HR := F−(h2).

{Wt}t∈R ∈ C∞(R,V) is 2πϖ−1–periodic and the operators

Vt :=Wt − J∆1/2Wt∆
−1/2J (4.35)

defines a smooth family {Vt}t∈R ∈ C∞(R,B(H)). Therefore, the assumptions of Proposition 4.5 are satisfied for

this explicit example. The evolution family {Us,t}s,t∈R is in this case 2πϖ−1–periodic, by Proposition 4.4 (v).

4.4 Evolution group of {U (λ,η)
s,t }t≥s

We now represent the non–autonomous evolution family {Us,t ≡ U
(λ,η)
s,t }s,t∈R of Proposition 4.4 as an au-

tonomous dynamics on the enlarged Hilbert space

H := L2(
[
0, 2πϖ−1

)
,H)

of 2πϖ−1–periodic H–valued functions. The scalar product on H is naturally defined by

⟨f, g⟩H :=
ϖ

2π

∫ 2π
ϖ

0

⟨f (t) , g (t)⟩H dt , f, g ∈ H .

In the sequel we identify H with the subspace of constant functions on
[
0, 2πϖ−1

)
. See also (4.26).

From the strongly continuous two–parameter family {Us,t}s,t∈R on H we define a strongly continuous one–

parameter group {Tα}α∈R on H by the condition

∀t ∈
[
0, 2πϖ−1

)
(a.e.) : Tα (f) (t) = Ut,t+αf (t+ α) , (4.36)

for all α ∈ R and f ∈ H. Because of (4.32) and Proposition 4.4 (v), Tα is an operator acting on H for any

α ∈ R. The strong continuity of α 7→ Tα follows from the strong continuity of t 7→ Us,t, and the group property

of {Tα}α∈R from the cocycle property of the two–parameter family {Us,t}s,t∈R, see Proposition 4.4 (i).

The Howland operator of the non–autonomous dynamics {Us,t}s,t∈R is, by definition, the generator G of the

strongly continuous group {Tα}α∈R. It is a closed unbounded operator acting on H. It is not a priori clear

whether the group {Tα}α∈R is contractive. In fact, it is quasi–contractive. Such a property can be useful to

analyze the domain of generators of semigroups.

We show that (±G − C) is dissipative, i.e.,

∀f ∈ Dom(G) : Re {⟨f, (±G − C) f⟩H} ≤ 0 ,

for a sufficiently large positive constant C. By the Lumer–Phillips theorem, (±G − C) generate contraction

semigroups.

Lemma 4.6 (Quasi–Contractivity of {Tα}α∈R)

There is C ∈ R+
0 such that (±G − C) is dissipative. In particular, {e−CαTα}α≥0 and {e−CαT−α}α≥0 are

contraction semigroups.

Proof. For any positive constant C ∈ R+
0 , we define the operators

U
(C)
s,t := Us,te

(s−t)C , s, t ∈ R .

By Proposition 4.4 and Equations (4.27), (4.28) and (4.31), {U (C)
s,t }s,t∈R is the fundamental solution on Dom(Lg)

of the Cauchy initial value problem

∀s, t ∈ R : ∂sU
(C)
s,t = − (iLs − C)U (C)

s,t , U
(C)
t,t = 1H ,

while it solves on Dom(Lg) the Cauchy initial value problem

∀s, t ∈ R : ∂tU
(C)
s,t = U

(C)
s,t (iLt − C) , U (C)

s,s = 1H .
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Choose

C := max
t∈R
∥L− Lg + Vt∥B(H) <∞ ,

where we recall that Vt is defined by (4.35). As Lg is self–adjoint, (iLt − C) is dissipative for all t ∈ R and

[17, Theorem 4.8.] implies that ∥U (C)
s,t ∥B(H) ≤ 1 for all t ≥ s. It follows that ∥e−CαTα∥B(H) ≤ 1 for all α ≥ 0.

Similarly, we show that ∥e−CαT−α∥B(H) ≤ 1 for all α ≥ 0. To finish the proof, one uses the fact that (±G − C)
is the generator of the contraction semigroup {e−CαT±α}α≥0 together with the Lumer–Phillips theorem. 2

Observe that H is unitarily equivalent – via the Fourier transform F – to the Hilbert space Ĥ := ℓ2(Z,H)
with scalar product

⟨f̂ , ĝ⟩Ĥ :=
∑
k∈Z

⟨f̂(k), ĝ(k)⟩H , f̂ , ĝ ∈ Ĥ .

It is indeed more convenient to analyze the Fourier transform FGF∗ instead of G directly. To this end, we define

the dense subspace

D̂ :=

{
f̂ ∈ Ĥ : f̂(Z) ⊂ Dom(L),

∑
k∈Z

(
k2∥f̂(k)∥2H + ∥Lg(f̂(k))∥2H

)
<∞

}

of the Hilbert space Ĥ as well as the (unbounded) operators kĤ, Lg,Ĥ and LĤ on D̂ by

∀k ∈ Z :
(
kĤf̂

)
(k) := kf̂(k) ,

(
Lg,Ĥf̂

)
(k) := Lgf̂(k) ,

(
LĤf̂

)
(k) := Lf̂(k) , (4.37)

see (4.27)–(4.28). By abuse of notation, we denote kĤ, Lg,Ĥ and LĤ respectively by k, Lg and L. In the same

way, let VH ≡ V be the bounded operator acting on H defined by

∀t ∈
[
0, 2πϖ−1

)
(a.e.) :

(
VHf

)
(t) := Vt

(
f(t)

)
. (4.38)

We prove below that the unbounded operator

Ĝ := i
(
ϖk + L+ V̂

)
(4.39)

defined on D̂ with V̂ := FV F∗ is the Fourier transform FGF∗ of G:

Theorem 4.7 (Explicit form of the Howland operator in Fourier space)

The Fourier transform of the generator G of the strongly continuous group {Tα}α∈R equals

FGF∗ = Ĝ .

Proof. The operator ϖk + Lg can be viewed as a tensor sum of self–adjoint operators acting on

Ĥ =
⊕
k∈Z

Hk , Hk ≡ H .

It is essentially self–adjoint on

D̂0 :=
{
f̂ ∈ Ĥ : f̂ (k) = 0 for k outside a finite set and f̂(Z) ⊂ Dom(Lg)

}
⊂ D̂ (4.40)

and D̂ is the graph norm closure of D̂0 w.r.t. the operator ϖk+Lg. Hence, ϖk+Lg is self–adjoint on D̂. The
operator L−Lg ∈ B(Ĥ) is bounded and, since {Vt}t∈R ∈ C∞(R,B(H)), the operator V̂ ∈ B(Ĥ) is also bounded.

Thus, Ĝ is closed on D̂. The unbounded part i(ϖk + Lg) of Ĝ is dissipative, as ϖk + Lg is self–adjoint. Hence,

by adding a sufficiently large constant C ≥ ∥L−Lg + V̂ ∥B(Ĥ), the operator (Ĝ −C) defined on the dense set D̂
is the dissipative generator of a strongly continuous semigroup. On the other hand, as FGF∗ = Ĝ on the core

D̂0 of (Ĝ − C), (FGF∗ − C) is a closed extension of (Ĝ − C) and generates a strongly continuous semigroup.

Choosing C sufficiently large, both generators (Ĝ −C) and (FGF∗−C) are dissipative, by Lemma 4.6. Using the

fact that generators of contraction semigroups have no proper dissipative extensions, it follows that Ĝ = FGF∗.

2
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We show next that – at small couplings – the quantity

⟨Ω, U0,t (A⊗ 1HRΩ)⟩H ,

which gives the time evolution of the atomic state, are well–approximated by

⟨Ω,Tt (A⊗ 1HRΩ)⟩H ,

provided the density matrix ρat of the initial atomic state as well as the atomic observable A are block diagonal

(cf. (3.4)):

Theorem 4.8 (Effective behavior of ρ(t))

For any initial faithful state ωat with density matrix ρat ∈ D ⊂ B(Cd), any observable A ∈ D, and α ∈ R,∣∣⟨Ω, U0,α (A⊗ 1HRΩ)⟩H − ⟨Ω,Tα (A⊗ 1HRΩ)⟩H
∣∣ ≤ C ∥A∥B(Cd) |λ|(1 + |λ|)ϖ

−1eD(1+|λ|)2 , (4.41)

where C,D ∈ R+
0 are finite constants not depending on ωat, A, λ, η, ϖ, and α.

Proof. Since

⟨Ω, U0,α (A⊗ 1HRΩ)⟩H − ⟨Ω,Tα (A⊗ 1HRΩ)⟩H =
ϖ

2π

∫ 2π
ϖ

0

⟨Ω, (U0,α − Ut,t+α) (A⊗ 1HRΩ)⟩H dt , (4.42)

we need to estimate the difference

⟨Ω, (U0,α − Ut,t+α) (A⊗ 1HRΩ)⟩H

for any α ∈ R and t ∈
[
0, 2πϖ−1

)
. Using Proposition 4.4 (i), note that

U0,α − Ut,t+α = U0,α (1H − Uα,t+α) + (U0,t − 1H)Ut,t+α .

By Proposition 4.5,

⟨Ω, (U0,α − Ut,t+α) (A⊗ 1HRΩ)⟩H = ⟨Ω,W0,α (A⊗ 1HR −Wα,t+α (A⊗ 1HR))Ω⟩H
+ ⟨Ω, (U0,t − 1H)Ut,t+α (A⊗ 1HRΩ)⟩H (4.43)

for any t ∈
[
0, 2πϖ−1

)
. On the one hand, for any B ∈ V,∣∣⟨Ω,W0,α (B −Wα,t+α (B))Ω⟩H

∣∣ ≤ ∥W0,α∥B(V)∥B −Wα,t+α (B) ∥V = ∥B −Wα,t+α (B) ∥V . (4.44)

By (4.3)–(4.4),

∥B −Wα,t+α (B) ∥V ≤ ∥Vt+α,α − 1V∥V ∥B∥V
∥∥V∗

t+α,α

∥∥
V + ∥B∥V

∥∥V∗
t+α,α − 1V

∥∥
V

+ ∥τ t (B)−B∥V
∥∥V∗

t+α,α

∥∥
V (4.45)

with

Vt+α,α = 1V+
∑
k∈N

ik
∫ t

0

ds1 · · ·
∫ sk−1

0

dskτsk+α (τα (Wsk+α)) · · · τ s1 (τα (Ws1+α)) . (4.46)

Since τ t (A⊗ 1HR) = A ⊗ 1HR for A ∈ D ⊂ B(Cd), it follows from (4.44)–(4.46) together with (4.32) and

Assumption 3 that ∣∣⟨Ω,W0,α (A⊗ 1HR −Wα,t+α (A⊗ 1HR))Ω⟩H
∣∣ ≤ |λ|(1 + |λ|)

ϖ
C ∥A∥V . (4.47)

On the other hand, for any B ∈ V,∣∣⟨Ω, (U0,t − 1H)Ut,t+α (BΩ)⟩H
∣∣ ≤ ∥∥(U∗

0,t − 1H

)
Ω
∥∥
H
∥B∥V . (4.48)
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Meanwhile, we deduce from (4.18) that

∀s, t ∈ R : U∗
s,t = ei(s−t)Lg − i

(∫ t

s

Us,r (L− Lg + Vr) e
i(r−t)Lgdr

)∗

(4.49)

while

∀s, t ∈ R : ei(s−t)LgΩ = Ω+ i

∫ s

t

e−irLgLgΩdr , (4.50)

because Ω ∈ Dom(Lg). If ρat ∈ D then LgΩ = 0. So, we can combine (4.48) with (4.49)–(4.50) and the upper

bound [17, Theorem 4.8.]

∥Ut,s∥B(H) ≤ Ce
D(t−s) ,

to arrive at ∣∣⟨Ω, (U0,t − 1H)Ut,t+α (A⊗ 1HRΩ)⟩H
∣∣ ≤ C ∥A∥V |λ|(1 + |λ|)ϖ−1eD(1+|λ|)2 . (4.51)

Finally, using (4.42), (4.43), (4.47), and (4.51) we obtain the assertion. 2

4.5 Resonances of the Howland operator

Similar to [12], we now perform an analytic deformation of the Howland operator in Fourier space, see (4.39)

and Theorem 4.7. Let

Ĝ0(θ) := i
(
ϖk + L+ θN̂

)
, θ ∈ C , (4.52)

where, for any f̂ ∈ Ĥ and k ∈ Z,
N̂(f̂)(k) := 1Hat ⊗ dΓ(1h2)(f̂(k)) . (4.53)

Recall that dΓ(1h2) is the second quantization of 1h2 , i.e., the particle number operator acting on HR := F−(h2).

By (4.10)–(4.11), Ĝ0 is equivalent to the operator

i
(
ϖk + Lg + θN̂

)
.

For all θ ∈ C such that Im{θ} > 0, the latter is a normal operator with domain

D̂ ∩Dom(N̂) = Dom(Ĝ0(θ))

and spectrum in the left half–plane. In particular, by the spectral theorem for normal operators, Ĝ0(θ) is the

generator of a strongly continuous contraction semigroup for all θ ∈ C such that Im{θ} ≥ 0. [It cannot be

extended to a group, as the (negative) real part of the spectrum of Ĝ0(θ) is unbounded.]

Similarly, we define the operator V̂ (θ) by replacing in Equations (4.32)–(4.35) the functions g
(κ)
ℓ with

g̃
(κ)
ℓ,θ (p, ϑ) := g

(κ)
ℓ (p+ θ, ϑ) , (p, ϑ) ∈ R× S2 ,

in the creation operators and with g̃
(κ)

ℓ,θ̄
in the annihilation operators for every κ ∈ {1, . . . ,K} and ℓ ∈ {1, . . . ,m},

see (4.34). By Assumption 1, there is rmax ∈ R+ such that, for all θ ∈ C such that | Im{θ}| < rmax, V̂ (θ) is a

well–defined bounded operator. The deformed Howland operator

Ĝ(θ) := Ĝ0(θ) + iV̂ (θ) , θ ∈ S , S := R+i[0, rmax) , (4.54)

is thus the generator of a strongly continuous semigroup {eĜ(θ)α}α≥0. Let Cθ ∈ R+
0 and Dθ ∈ [1,∞) be the

stability constants of Ĝ(θ), i.e.,
∥eĜ(θ)α∥Ĥ ≤ Dθe

αCθ . (4.55)

The family {Ĝ(θ)}θ∈S\R of closed operators is of type A (Definition 5.1). See also [18]. This property is an

obvious consequence of the following lemma:

Lemma 4.9 (Analyticity of V̂ (·))
The map θ 7→ V̂ (θ) from R+i(−rmax, rmax) ⊂ C to B(Ĥ) is analytic.
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Proof. Define, for all κ = {1, . . . ,K} and ℓ ∈ {1, . . . ,m}, the maps

ψ
(κ)
ℓ , ψ

(κ)
ℓ,+, ψ

(κ)
ℓ,− : R+i(−rmax, rmax)→ h2 := L2(R× S2,C)

by [
ψ
(κ)
ℓ (θ)

]
(p, ϑ) := g

(κ)
ℓ (p+ θ) ,[

ψ
(κ)
ℓ,+(θ)

]
(p, ϑ) := e

β
2 (p+θ)g

(κ)#
ℓ (p+ θ, ϑ) ,[

ψ
(κ)
ℓ,−(θ)

]
(p, ϑ) := e−

β
2 (p+θ)g

(κ)#
ℓ (p+ θ, ϑ) .

These three maps are weakly continuous. Indeed, by analyticity of g
(κ)
ℓ , for any fixed ψ ∈ h2, θ, θ

′ ∈
R+i(−rmax, rmax) and some sufficiently small radius r > 0 with |θ′ − θ| < r,⟨

ψ,ψ
(κ)
ℓ (θ′)

⟩
h2

=
1

2π

∫
R
dp

∫
S2

dϑ

∫ π

−π

dφ ψ(p, ϑ)g
(κ)
ℓ (p+ θ + reiφ, ϑ)

reiφ

reiφ + θ − θ′
.

By Assumption 1 and the Cauchy–Schwarz inequality,∫ π

−π

dφ

∫
S2

dϑ

∫
R
dp |ψ(p, ϑ)g(κ)ℓ (p+ θ + reiφ, ϑ)| <∞ . (4.56)

Thus, by the Fubini theorem and the Lebesgue dominated convergence theorem, the map θ 7→ ⟨ψ,ψ(κ)
ℓ (θ)⟩h2 is

continuous on R+i(−rmax, rmax). The weak continuity of ψ
(κ)
ℓ,+ and ψ

(κ)
ℓ,− is shown in the same way. Let γ be any

closed contour in the domain R+i(−rmax, rmax) ⊂ C (with finite length). For any fixed ψ ∈ h2, we infer from a

similar estimate as (4.56), the Fubini theorem and the analyticity of g
(κ)
ℓ (·, ϑ) that∫

γ

dz ⟨ψ,ψ(κ)
ℓ (z)⟩h2 =

∫
γ

dz

∫
R
dp

∫
S2

dϑ ψ(p, ϑ)g
(κ)
ℓ (p+ z, ϑ)

=

∫
R
dp

∫
S2

dϑ ψ(p, ϑ)

∫
γ

dz g
(κ)
ℓ (p+ z, ϑ) = 0 .

Thus, by Morera’s lemma, the map θ 7→ ⟨ψ,ψ(κ)
ℓ (θ)⟩h2 is analytic on R+i(−rmax, rmax). In other words, ψ

(κ)
ℓ is

weakly analytic and hence, by [10, Chap. III, Theorem 1.37], it is strongly analytic. The (strong) analyticity

of ψ
(κ)
ℓ,+, ψ

(κ)
ℓ,− is shown by the same arguments.

Finally, observe that

ie−βpg
(κ)
ℓ (p) = e−

β
2 pg

(κ)#
ℓ (p) , ig

(κ)
ℓ (p) = e

β
2 pg

(κ)#
ℓ (p) .

From the analyticity of ψ
(κ)
ℓ , ψ

(κ)
ℓ,+, ψ

(κ)
ℓ,− together with the bounds

∥a(f)∥H ,
∥∥a+(f)∥∥H ≤ ∥f∥h2

, f ∈ h2 ,

the linearity of f 7→ a+(f), the antilinearity of f 7→ a(f), and Equations (4.32) and (4.33), it then follows that

the map θ 7→ V̂ (θ) is analytic on the domain R+i(−rmax, rmax), in the sense of B(Ĥ). 2

The subspace D̂0 ⊂ Dom(Ĝ0(θ)) defined by (4.40) is a core of Ĝ0(θ) for all θ ∈ C. Hence, for all θ ∈ S, by the

boundedness of V̂ (θ), D̂0 is also core of Ĝ(θ). This fact implies the following:

Lemma 4.10 (Limit of semigroups)

For all f̂ ∈ Ĥ, α ∈ R+
0 , and θ ∈ S,

eĜ(θ)αf̂ = lim
θ′→θ

{
eĜ(θ

′)αf̂
}
.

In particular, for all f̂ ∈ Ĥ and ζ ∈ C with Re{ζ} > Cθ,

(ζ − Ĝ(θ))−1f̂ = lim
θ′→θ

{
(ζ − Ĝ(θ))−1f̂

}
.
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Proof. The first assertion follows from the Trotter–Kato approximation theorem [19, Chap. III, Theorem 4.8]

as Ĝ(θ′) converges strongly on the common core D̂0 when θ′ → θ, by Lemma 4.9. The second assertion results

from the integral representation of the resolvent [19, Chap. III, Eq. (5.18)]:

(ζ − Ĝ(θ))−1f̂ =

∫ ∞

0

eĜ(θ)αe−ζαf̂ dα , (4.57)

for all ζ ∈ C with Re{ζ} > Cθ. 2

Recall that Hat is defined by (2.4), while ΩR is the vacuum of HR := F−(h2) and F denotes the Fourier

transform. Using Lemma 4.10, we prove now that the dynamics given by {eĜ(θ)α}α≥0 restricted to the atomic

space

Ĥat := F (Hat ⊗ ΩR) ⊂ Ĥ (4.58)

does not depend on the choice of θ ∈ S, in the following sense:

Theorem 4.11 (Invariance of the evolution semigroup under analytic translations)

For all α ∈ R+
0 , ψ̂1, ψ̂2 ∈ Ĥat and θ, θ′ ∈ S,

⟨ψ̂1, e
Ĝ(θ)αψ̂2⟩Ĥ = ⟨ψ̂1, e

Ĝ(θ′)αψ̂2⟩Ĥ .

Proof. Using (4.57) applied to any vector f̂ ∈ Ĥat and the injectivity of the Laplace transform, we only need to

show that

⟨ψ̂1, (ζ − Ĝ(θ))−1ψ̂2⟩Ĥ = ⟨ψ̂1, (ζ − Ĝ(θ
′))−1ψ̂2⟩Ĥ (4.59)

for any ψ̂1, ψ̂2 ∈ Ĥat, θ, θ
′ ∈ S, and ζ ∈ (D,∞) with

D > sup
θ∈S

Cθ ,

see (4.55). Indeed,

sup
θ∈S

Cθ <∞ .

For any real parameter θ ∈ R, we define the unitary (translation) operator u(θ) from h2 to h2 by(
u(θ)f

)
(p, ϑ) := f(p+ θ, ϑ)

for any f ∈ h2 and (p, ϑ) ∈ R× S2 (a.e.). Consider now the unitary operator defined on Ĥ by(
U(θ)f̂

)
(k) :=

(
1Hat ⊗ Γ(u(θ)

)
(f̂(k))

for any θ ∈ R, f̂ ∈ Ĥ and k ∈ Z, where Γ(u(θ)) is the second quantization of u(θ) for θ ∈ R. Clearly

U(θ) = U(−θ)∗ for all θ ∈ R and

∀θ ∈ R : (ζ − Ĝ(θ))−1 = U(θ)(ζ − Ĝ(0))−1U(θ)∗ , (4.60)

while

∀θ ∈ R, ψ̂ ∈ Ĥat : U(θ)(ψ̂) = ψ̂ . (4.61)

It follows that the function

g (θ) := ⟨ψ̂1, (ζ − Ĝ(θ))−1ψ̂2⟩Ĥ
is constant on R, i.e.,

∀θ ∈ R : g (θ) = g (0) .

By Lemma 4.9, the family {Ĝ(θ)}θ∈S\R of closed operators is of type A, see Definition 5.1. Therefore, we infer

from Lemma 5.2 that the function g is analytic on S\R. Finally, using the Schwarz reflection principle, we

deduce that g is constant on S. 2
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Therefore, as soon as the restricted dynamics on the atom is concerned, we can analyze the evolution given

by the strongly continuous semigroup {eĜ(ir)α}α≥0 at a fixed r ∈ (0, rmax). The main advantage of studying

{eĜ(ir)α}α≥0 instead of {eĜ(0)α = eĜα}α≥0 is that the continuous spectrum of Ĝ (coming from the reservoir)

is shifted to the left half plane. Indeed, in contrast to Ĝ, if r > 0 is sufficiently large, the generator Ĝ(ir) has

discrete spectrum, as explained below. The effective atomic Lindbladian defined in (2.20) is related to Kato’s

perturbation theory at second order for the discrete spectrum of Ĝ(ir) near the origin.

From now on, let r ∈ (0, rmax). For λ = η = 0, i.e., in absence of pump and atom–reservoir interaction, the

discrete spectrum of the operator Ĝ0(ir) equals

σd(Ĝ0(ir)) = i (ϖZ+σ(iLat)) ,

see (2.10) and (4.52). By (4.28), the full spectrum of Ĝ0(ir) is

σ(Ĝ0(ir)) = σd(Ĝ0(ir)) ∪ {iR−rN} .

In particular, there is a strictly positive gap between the discrete and essential spectra of Ĝ0(ir):

dist
(
σd(Ĝ0(ir)), {iR−rN}

)
= r > 0 .

For r ∈ [0, rmax), let J ∈ B(Ĥ) and I(ir) ∈ B(Ĥ) be such that

Ĝ(ir) := Ĝ0(ir) + iV̂ (ir) = Ĝ0(ir) + ηJ + λI(ir) (4.62)

for any λ, η ∈ R, see (4.54). I.e., ηJ := V̂ (ir) |λ=0 and λI(ir) := V̂ (ir) |η=0 are the interaction parts of Ĝ(ir)
respectively related to the pump and the atom–reservoir interaction. By Kato’s perturbation theory for the

discrete spectrum, if |λ| , |η| are small, the deformed Howland generator Ĝ(ir) has discrete spectrum.

Indeed, for r ∈ (0, rmax), let r ∈ (0, 1/2) ∩ (0, r) be such that

∀p ∈ Z, ϵ ∈ σ(iLat) : dist
(
i(pϖ + ϵ), σ(Ĝ0(ir))\{i(pϖ + ϵ)}

)
≥ 2r (4.63)

and, for p ∈ Z, ϵ ∈ σ(iLat), the contour γp,ϵ be defined by

γp,ϵ (y) := i (pϖ + ϵ) + re2πiy ∈ C , y ∈ [0, 1] . (4.64)

Then, for every η ∈ R, p ∈ Z, ϵ ∈ σ(iLat), and sufficiently small |λ|, the operator

P(λ,η)
p,ϵ :=

1

2πi

∮
γp,ϵ

(ζ − Ĝ(ir))−1dζ (4.65)

is the well–known Kato projection associated with Ĝ(ir) and the discrete eigenvalue i (pϖ + ϵ) of Ĝ0(ir). Define

also

P̄(λ,η)
p,ϵ := 1Ĥ − P

(λ,η)
p,ϵ , λ, η ∈ R, p ∈ Z, ϵ ∈ σ(iLat) .

Lemma 4.12 (Perturbative expansions of the deformed Howland operator)

Let r ∈ (0, rmax). For all p ∈ Z, ϵ ∈ σ(iLat) and sufficiently small |λ|,

P(λ,η)
p,ϵ Ĝ(ir)P(λ,η)

p,ϵ = i (pϖ + ϵ)P(0,0)
p,ϵ + η P(0,0)

p,ϵ J P(0,0)
p,ϵ

+λ2 P(0,0)
p,ϵ I(ir) P̄(0,0)

p,ϵ

(
i(pϖ + ϵ)− Ĝ0(ir)

)−1P̄(0,0)
p,ϵ I(ir) P(0,0)

p,ϵ

+λ3 R

with R ≡ R(p,ϵ,λ,η) being an operator with norm ∥R∥B(Ĥ) ≤ C for some finite constant C ∈ R+ not depending

on p, ϵ, λ and η.
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Proof. We fix w.l.o.g. p = ϵ = 0. To simplify notation, in all the proof we denote by R ≡ R(λ,η) any operator

with norm ∥R∥ ≤ C for some fixed constant C ∈ R+ not depending on λ, η. Note that the operator R does not

need to be the same from one statement to another.

Assumption 3 yields, at small |λ|, ∥V̂ (ir) ∥ ≤ C|λ|, see (4.62). Hence, if |λ| is sufficiently small then the

resolvent (ζ − Ĝ(ir))−1 equals the absolutely convergent Neumann series

(ζ − Ĝ(ir))−1 =

∞∑
n=0

(ζ − Ĝ0(ir))−1
{
(ηJ + λI(ir)) (ζ − Ĝ0(ir))−1

}n

(4.66)

for all ζ ∈ γ0,0. By (4.65) and Assumption 3, it follows that

P(λ,η)
0,0 = P(0,0)

0,0 + ηP (1)
p + λP

(1)
at,R + λ2P

(2)
at,R + λ3R , (4.67)

where

P (1)
p :=

1

2πi

∮
γ0,0

(ζ − Ĝ0(ir))−1J (ζ − Ĝ0(ir))−1dζ ,

P
(1)
at,R :=

1

2πi

∮
γ0,0

(ζ − Ĝ0(ir))−1I(ir)(ζ − Ĝ0(ir))−1dζ ,

P
(2)
at,R :=

1

2πi

∮
γ0,0

(ζ − Ĝ0(ir))−1
{
I(ir)(ζ − Ĝ0(ir))−1

}2

dζ .

We infer from (4.66)–(4.67) that

P(λ,η)
0,0 Ĝ(ir)P

(λ,η)
0,0 (4.68)

=
(
P(0,0)
0,0 + ηP (1)

p + λP
(1)
at,R + λ2P

(2)
at,R

)
Ĝ(ir)

(
P(0,0)
0,0 + ηP (1)

p + λP
(1)
at,R + λ2P

(2)
at,R

)
+λ3R .

Note that, by Assumption 3, η = O(λ2). Thus, using the equality P(0,0)
0,0 Ĝ0(ir) = 0 and (4.62) we obtain(

P(0,0)
0,0 + ηP (1)

p + λP
(1)
at,R + λ2P

(2)
at,R

)
Ĝ(ir) = P(0,0)

0,0 (ηJ + λI(ir))

+(ηP (1)
p + λP

(1)
at,R + λ2P

(2)
at,R)Ĝ0(ir)

+λ2P
(1)
at,RI(ir) + λ3R . (4.69)

Furthermore, from Assumption 2 and similar analyticity arguments as used in the proof of Theorem 4.11, one

gets that

Ĝ0(ir)P(0,0)
0,0 = 0 and P(0,0)

0,0 I(ir)P
(0,0)
0,0 = 0 . (4.70)

We deduce from (4.68)–(4.70) that

P(λ,η)
0,0 Ĝ(ir)P

(λ,η)
0,0 = ηP(0,0)

0,0 JP
(0,0)
0,0 + λ2P(0,0)

0,0 I(ir)P
(1)
at,R

+λ2P
(1)
at,RI(ir)P

(0,0)
0,0 + λ2P

(1)
at,RĜ0(ir)P

(1)
at,R

+λ3R . (4.71)

Since P(λ,η)
0,0 is a projection, obviously,

P(λ,η)
0,0 Ĝ(ir)P

(λ,η)
0,0 = P(λ,η)

0,0

(
P(λ,η)
0,0 Ĝ(ir)P

(λ,η)
0,0

)
P(λ,η)
0,0

and, by (4.67) and (4.71),

P(λ,η)
0,0 Ĝ(ir)P

(λ,η)
0,0 = ηP(0,0)

0,0 JP
(0,0)
0,0 + λ2P(0,0)

0,0 I(ir)P
(1)
at,RP

(0,0)
0,0 + λ2P(0,0)

0,0 P
(1)
at,RI(ir)P

(0,0)
0,0

+λ2P(0,0)
0,0 P

(1)
at,RĜ0(ir)P

(1)
at,RP

(0,0)
0,0 + λ3R . (4.72)
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Now, using again P(0,0)
0,0 Ĝ0(ir) = 0 and (4.70) we observe that

P(0,0)
0,0 P

(1)
at,RĜ0(ir)P

(1)
at,RP

(0,0)
0,0 (4.73)

=
1

2πi

∮
γ0,0

{
ζ−1
1 P

(0,0)
0,0 I(ir)(ζ1 − Ĝ0(ir))−1 1

2πi

∮
γ0,0

Ĝ0(ir)(ζ2 − Ĝ0(ir))−1I(ir)P(0,0)
0,0 ζ−1

2 dζ2

}
dζ1 ,

while, by (4.70),

I(ir)P(0,0)
0,0 = (1Ĥ −P

(0,0)
0,0 )I(ir)P(0,0)

0,0 and P(0,0)
0,0 I(ir) = P

(0,0)
0,0 I(ir)(1Ĥ − P

(0,0)
0,0 ) . (4.74)

By analyticity of the map

ζ2 7→ Ĝ0(ir)(ζ2 − Ĝ0(ir))−1(1Ĥ − P
(0,0)
0,0 )I(ir)P(0,0)

0,0 ,

Equations (4.73) and (4.74) together imply that

P(0,0)
0,0 P

(1)
at,RĜ0(ir)P

(1)
at,RP

(0,0)
0,0 (4.75)

= − 1

2πi

∮
γ0,0

{
ζ−1P(0,0)

0,0 I(ir)(1Ĥ −P
(0,0)
0,0 )(ζ − Ĝ0(ir))−1(1Ĥ − P

(0,0)
0,0 )I(ir)P(0,0)

0,0

}
dζ .

We also remark that (4.74) together with P(0,0)
0,0 Ĝ0(ir) = 0 and (4.70) yields

P(0,0)
0,0 P

(1)
at,RI(ir)P

(0,0)
0,0 =

1

2πi

∮
γ0,0

{
ζ−1P(0,0)

0,0 I(ir)(1Ĥ − P
(0,0)
0,0 )(ζ − Ĝ0(ir))−1(1Ĥ − P

(0,0)
0,0 )I(ir)P(0,0)

0,0

}
dζ

= P(0,0)
0,0 I(ir)P

(1)
at,RP

(0,0)
0,0 . (4.76)

By analyticity of the map

ζ 7→ P(0,0)
0,0 I(ir)(1Ĥ − P

(0,0)
0,0 )(ζ − Ĝ0(ir))−1(1Ĥ −P

(0,0)
0,0 )I(ir)P(0,0)

0,0 ,

we then infer from (4.75)–(4.76) that

P(0,0)
0,0 I(ir)P

(1)
at,RP

(0,0)
0,0 + P(0,0)

0,0 P
(1)
at,RI(ir)P

(0,0)
0,0 + P(0,0)

0,0 P
(1)
at,RĜ0(ir)P

(1)
at,RP

(0,0)
0,0

= P(0,0)
0,0 I(ir)(1Ĥ − P

(0,0)
0,0 )(i0− Ĝ0(ir))−1(1Ĥ − P

(0,0)
0,0 )I(ir)P(0,0)

0,0 .

Using this and (4.72) we arrive at the assertion for p = ϵ = 0.

Up to some obvious changes in the above arguments, the general case with p ∈ Z and ϵ ∈ σ(iLat) is proven

in the same way. Note only that R is an operator with norm ∥R∥B(Ĥ) ≤ C for some finite constant C that does

not depend on p, ϵ because of (4.63)–(4.64). 2

Similar to the atom–reservoir Lindbladian L
(ε)
R ∈ B(Hat) (2.20), we define the operator L(ε,r,p)

R ∈ B(Ĥ) by

L(ε,r,p)
R :=

∑
ϵ∈σ(iLat)

[
P(0,0)
p,ϵ I(ir) P̄(0,0)

p,ϵ

(
ε+ i(pϖ + ϵ)− Ĝ0(ir)

)−1P̄(0,0)
p,ϵ I(ir) P(0,0)

p,ϵ

]∗
(4.77)

for any ε ∈ R+
0 , r ∈ [0, rmax) and p ∈ Z. This operator has the following important properties:

Lemma 4.13 (Properties of the operator L(ε,r,p)
R )

For any p ∈ Z, ε ∈ R+
0 and r1, r2 ∈ [0, rmax),

L(ε,r1,p)
R = L(ε,r2,p)

R .

Moreover, in the sense of B(Ĥ),
L(p)
R := L(0,0,p)

R = lim
ε↘0
L(ε,0,p)
R .
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Proof. Fix p ∈ Z and ε ∈ R+
0 . By using similar analyticity arguments to those used in the proof of Theorem

4.11, one shows that (L(ε,r1,p)
R )∗ = (L(ε,r2,p)

R )∗ for all r1, r2 ∈ [0, rmax), which is equivalent to the first assertion.

Choose now r ∈ (0, rmax). Then, by the first part of the lemma, L(ε,0,p)
R = L(ε,r,p)

R for all ε ∈ R+
0 . For r > 0,

lim
ε↘0

(
ε+ i(pϖ + ϵ)− Ĝ0(ir)

)−1
=
(
i(pϖ + ϵ)− Ĝ0(ir)

)−1
,

in the sense of B(Ĥ) and the second assertion follows. 2

We show below that L(p)
R acts – up to an equivalence transformation – as the Lindbladian LR defined in (2.20).

Recall that the eigenspaces of the atomic Hamiltonian Hat ∈ B(Cd) associated with the eigenvalues Ek, for

k ∈ {1, . . . , N}, and their dimensions are denoted by Hk ⊂ Cd and nk ∈ N, respectively. By taking any arbitrary

orthonormal basis {e(k)n }nk
n=1 of Hk for each k ∈ {1, . . . , N}, we define the elements

W
(k′,n′)
(k,n) ∈ Hat ≡ B(Cd)

for any k, k′ ∈ {1, . . . , N}, n ∈ {1, . . . , nk} and n′ ∈ {1, . . . , nk′} by the condition

∀k′′ ∈ {1, . . . , N}, n′′ ∈ {1, . . . , nk′′} : W
(k′,n′)
(k,n) (e

(k′′)
n′′ ) = δn,n′′δk,k′′e

(k′)
n′ . (4.78)

Then, for any p ∈ Z and ϵ ∈ σ(iLat), straightforward computations show that

ran(P(0,0)
p,ϵ ) = span

{
F
(
eitϖm(W

(k′,n′)
(k,n) ρ

1/2
at )⊗ΩR

)
: (m, k, k′) ∈ Op,ϵ, n ∈ {1, . . . , nk}, n′ ∈ {1, . . . , nk′}

}
(4.79)

with

Op,ϵ :=
{
(m, k, k′) ∈ Z× {1, . . . , N}2 : mϖ + Ek′ − Ek = ϖp+ ϵ

}
.

Recall that ρat ∈ B(Cd) is the density matrix of the initial state of the atom. The range ran(P(0,0)
p,ϵ ) of the Kato

projection P(0,0)
p,ϵ does obviously not belong to the atomic space Ĥat (4.58). We can remove oscillating terms by

using a unitary map Up,ϵ from ran(P(0,0)
p,ϵ ) to the atomic subspace

H
(p,ϵ)
at := span

{
W

(k′,n′)
(k,n) ρ

1/2
at : (k, k′) ∈ {1, . . . , N}2, n ∈ {1, . . . , nk}, n′ ∈ {1, . . . , nk′},

∃m with (m, k, k′) ∈ Op,ϵ

}
⊂ Hat (4.80)

for p ∈ Z and ϵ ∈ σ(iLat) as follows:

Up,ϵ

(
F
(
eitϖm(W

(k′,n′)
(k,n) ρ

1/2
at )⊗ ΩR

))
:=W

(k′,n′)
(k,n) ρ

1/2
at ∈ H

(p,ϵ)
at (4.81)

for any k, k′ ∈ {1, . . . , N}, n ∈ {1, . . . , nk} and n′ ∈ {1, . . . , nk′}. Let S be the bounded self–adjoint operator

on B(Ĥ) defined by (
Sf̂
)
(k) :=

1

2
(f̂(k + 1) + f̂(k − 1)) , k ∈ Z . (4.82)

Using the identification above of ran(P(0,0)
p,ϵ ) and H

(p,ϵ)
at ⊂ Hat, we can establish a relation between the deformed

Howland operator Ĝ(ir) and the Lindbladians Lp (2.13) and LR (2.20) via the linear map Zat (4.10) and the

adjoints L∗
p, L

∗
R w.r.t. the scalar product of Hat ≡ B(Cd) defined by (2.5). By abuse of notation, ZatL

∗
pZ

−1
at and

ZatL
∗
RZ−1

at can be seen as operators defined on ran(P(0,0)
p,ϵ ) like in (4.37) or (4.53): Let

Ĥim :=

{
f̂ := {f̂(k)}k∈Z : f̂(k) ∈ Hat ⊗ ΩR,

∞∑
k=−∞

∥f̂(k)∥2Hat
<∞

}
⊂ Ĥ . (4.83)

For any linear operator L ∈ B(Ĥim) and f̂ := û⊗ ΩR ∈ Ĥim, we define L̃ ≡ L ∈ B(Ĥim) by(
L̃f̂
)
(k) :=

(
Lû (k)

)
⊗ ΩR , k ∈ Z . (4.84)

Note that ran(P(0,0)
p,ϵ ) ⊂ Ĥim is an invariant subspace of L∗

R ≡ L̃∗
R.
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Theorem 4.14 (Effective microscopic dynamics)

For all p ∈ Z, ϵ ∈ σ(iLat), A ∈ H
(p,ϵ)
at and sufficiently small |λ|,

P(λ,η)
p,ϵ Ĝ(ir)P(λ,η)

p,ϵ U∗
p,ϵ(A) = i (pϖ + ϵ)U∗

p,ϵ(A) + ηP(0,0)
p,ϵ SZatL

∗
pZ

−1
at U

∗
p,ϵ(A)

+λ2ZatL
∗
RZ−1

at U
∗
p,ϵ(A) + RU∗

p,ϵ(A) ,

where R ≡ R(p,ϵ,λ,η) is an operator with norm ∥R∥B(Ĥ) ≤ C|λ|3 for some finite constant C ∈ R+ not depending

on p, ϵ, λ, η and A.

Proof. By Lemma 4.13, if A ∈ H
(p,ϵ)
at then

P(0,0)
p,ϵ I(ir) P̄(0,0)

p,ϵ

(
i(pϖ + ϵ)− Ĝ0(ir)

)−1P̄(0,0)
p,ϵ I(ir) P(0,0)

p,ϵ U∗
p,ϵ(A)

=
(
L(0,r,p)
R

)∗
U∗

p,ϵ(A) = lim
ε↘0

(
L(ε,0,p)
R

)∗
U∗

p,ϵ(A) , (4.85)

see (4.77). Straightforward computations show that, for all A ∈ H
(p,ϵ)
at and ε ∈ R+

L(ε,0,p)∗
R U∗

p,ϵ(A) = ZatL
(ε)∗
R Z−1

at U
∗
p,ϵ(A) .

Hence, by the definition (2.20) of LR together with (4.85),

P(0,0)
p,ϵ I(ir) P̄(0,0)

p,ϵ

(
i(pϖ + ϵ)− Ĝ0(ir)

)−1P̄(0,0)
p,ϵ I(ir) P(0,0)

p,ϵ U∗
p,ϵ(A) = ZatL

∗
RZ−1

at U
∗
p,ϵ(A)

for all A ∈ H
(p,ϵ)
at . Similarly, from straightforward computations, one gets that, for all A ∈ H

(p,ϵ)
at ,

P(0,0)
p,ϵ J P(0,0)

p,ϵ U∗
p,ϵ(A) = P(0,0)

p,ϵ SZatL
∗
pZ

−1
at U

∗
p,ϵ(A) . (4.86)

The theorem then follows from Lemma 4.12 combined with (4.85) and (4.86). 2

We are now in position to analyze the resonances of the Howland operator:

Theorem 4.15 (Resonances of the Howland operator)

Let r ∈ (0, rmax). There are constants λ0, C1, C2, C3, C4, C5 ∈ R+ such that the following properties holds for

all |λ| ≤ λ0:
(i) For any p ∈ Z, ipϖ is a non–degenerated eigenvalue of Ĝ(ir) with eigenvector f̂p defined by

f̂p (p
′) := δp,p′Ω , p′ ∈ Z , (4.87)

where δp,p′ is the Kronecker symbol.

(ii)
{
iR+

(
−C1λ

2,∞
)}
\iϖZ ⊂ ϱ(Ĝ(ir)). Here, ϱ(Ĝ(ir)) stands for the resolvent set of Ĝ(ir).

(iii) The spectrum of Ĝ(ir) in iR +
(
−C2 |λ| ,−C1λ

2
)
is discrete with algebraic multiplicity at most d2, where

C2 > C1 |λ|.
(iv) iR+ (−C3,−C2 |λ|) ⊂ ϱ(Ĝ(ir)), where C3 > C2 |λ|.
(v) For all ζ ∈ iR+ (−C3,−C4), where C3 > C4,

∥(ζ − Ĝ(ir))−1∥B(Ĥ) ≤ C5 .

(vi) For any D ∈ R+, there is CD ∈ R+ such that

sup
Re ζ>D

∥(ζ − Ĝ(ir))−1∥B(Ĥ) ≤ CD .

Proof. (i) For p1 ∈ Z, assume that ip1ϖ is an eigenvalue of Ĝ(ir) with eigenvector f̂p1 ∈ Ĥ. Then, for p2 ∈ Z,
the vector f̂p2 defined by

f̂p2 (p) := f̂p1 (p− p2 + p1) , p ∈ Z , (4.88)
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is an eigenvector of Ĝ(ir) with eigenvalue ip2ϖ. In fact, the map f̂ (p) 7→ f̂ (p− p2 + p1) is a unitary trans-

formation on Ĥ, whose conjugation with Ĝ(ir) is Ĝ(ir) + i(p2 − p1). Consequently, it suffices to prove that

Ĝ(ir)f̂0 = 0 and 0 is a non–degenerated eigenvalue of Ĝ(ir).
Remark that the vector f̂0 defined by (4.87) is an eigenvector of Ĝ(0) with eigenvalue 0. Using (4.60)–(4.61)

we then deduce that Ĝ(θ)f̂0 = 0 for all θ ∈ R. Recall that {Ĝ(θ)}θ∈S\R is of type A (cf. Lemma 4.9) and

f̂0 ∈ Dom(Ĝ(0)). It follows that, for all ψ̂ ∈ Ĥ, the continuous function

g (θ) := ⟨ψ̂, Ĝ(θ))f̂0⟩Ĥ , θ ∈ S ,

is analytic on S\R and is zero on the real line. We thus infer from the Schwarz reflection principle that g = 0

on S. In other words, Ĝ(ir)f̂0 = 0 ∈ Ĥ for r ∈ (0, rmax) and so, the vectors f̂p defined by (4.87) are, for any

p ∈ Z, eigenvector of Ĝ(ir) with eigenvalue ipϖ. It remains to prove that 0 is a non–degenerated eigenvalue.

By Assumption 3, |η| ≤ Cλ2 for some fixed constant C ∈ R+ and we can infer from (4.32), (4.33) and (4.35)

that, at small |λ|,
∀θ ∈ S : ∥V̂ (θ) ∥B(Ĥ) ≤ C |λ| . (4.89)

By (4.28) and (4.52), we observe that 0 is also an isolated eigenvalue of the unperturbed Howland operator

Ĝ0(ir) and by Kato’s perturbation theory, it is an isolated eigenvalue of Ĝ(ir) for sufficiently small |λ| at any

r ∈ (0, rmax). However, 0 is still a degenerated eigenvalue of Ĝ0(ir). The interaction part of Ĝ(ir) removes this

degeneracy.

Indeed, by (4.52),

∀f̂ ∈ Dom(Ĝ(ir)) : ⟨f̂ , Ĝ(ir)f̂⟩Ĥ = i
{
⟨f̂ , ϖk f̂⟩Ĥ + ⟨f̂ , Lf̂⟩Ĥ + ⟨f̂ , V̂ (ir) f̂⟩

}
− r⟨f̂ , N̂ f̂⟩Ĥ .

Suppose, for simplicity, that L = Lg. The operators ϖk, L, J (cf. (4.62)) are self–adjoint and thus,

i
{
⟨f̂ , ϖk f̂⟩Ĥ + ⟨f̂ , Lf̂⟩Ĥ + ⟨f̂ ,J f̂⟩Ĥ

}
∈ iR .

Then, using Assumption 2, we conclude that, for some finite constant C not depending on λ and r ∈ [0, rmax),

Re
{
⟨f̂ , I (ir) f̂⟩ − r⟨f̂ , N̂ f̂⟩Ĥ

}
< 0 ,

whenever r > C|λ| and f̂(k) /∈ Hat ⊗ ΩR for some k ∈ Z. This implies, in the special case L = Lg, that,

for fixed r ∈ (0, rmax) and sufficiently small |λ|, each eigenvector of Ĝ(ir) associated with a purely imaginary

eigenvalue y ∈ iR must be an element of the subspace Ĥim defined by (4.83). By using (4.10)–(4.10), we show,

with obvious modifications of the above argument, that the same is true for any general L.

Now, we need several definitions. Let

D̂im :=

{
f̂ ∈ Ĥim :

∞∑
k=−∞

k2∥f̂(k)∥2Hat
<∞

}

and the (unbounded) operator kim be defined on D̂im by(
kimf̂

)
(k) := kf̂(k) , k ∈ Z .

To simplify notation, we denote the operator kim by k. Define further the bounded operator L̂(λ,η)
im ∈ B(Ĥim)

by

L̂(λ,η)
im := Zat(L

∗
at + λ2L∗

R)Z−1
at + ηSZatL

∗
pZ

−1
at (4.90)

where L∗
at, L

∗
p and L∗

R the adjoints of Lat, Lp and LR, respectively. See (2.8), (2.13), (2.21) and (4.10) as well

as (4.83)–(4.84).

Similar to [1, Eq. (4.8)], define

Ĝ
(λ,η)
im := iϖk + L̂(λ,η)

im (4.91)
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with dense domain D̂im ⊂ Ĥim. We denote by

P
(λ,η)
0 :=

1

2πi

∮
γ0,0

(
z − Ĝ(λ,η)

im

)−1
dz (4.92)

the Kato projection associated with the closed operator Ĝ
(λ,η)
im defined by (4.91), for a sufficiently small enough

parameter r > 0 (cf. (4.63)–(4.64)).

From Theorem 4.14, ∥∥∥P(λ,η)
0,0 Ĝ(ir)P

(λ,η)
0,0 P

(0,0)
0,0 − P(0,0)

0,0 Ĝ
(λ,η)
im P(0,0)

0,0

∥∥∥
B(Ĥ)

≤ C |λ|3 .

Note that ran(P(0,0)
0,0 ) ⊂ Ĥim. Define

Λ
(λ,η)
im := P

(0,0)
0 Ĝ

(λ,η)
im P

(0,0)
0 .

By observing that

P(0,0)
0,0 = P

(0,0)
0 P(0,0)

0,0 , P(0,0)
0,0 |Ĥim

= P(0,0)
0,0 P

(0,0)
0 (4.93)

and using the bounds ∥∥∥P(λ,η)
0,0 − P(0,0)

0,0

∥∥∥
B(Ĥ)

≤ C|λ| ,
∥∥∥P(λ,η)

0,0 Ĝ(ir)P
(λ,η)
0,0

∥∥∥
B(Ĥ)

≤ Cλ2 ,

we deduce that ∥∥∥P(λ,η)
0,0 Ĝ(ir)P

(λ,η)
0,0 −P(0,0)

0,0 Λ
(λ,η)
im P(0,0)

0,0

∥∥∥
B(Ĥ)

≤ C |λ|3 . (4.94)

If Assumption 4 holds then, exactly like in [1, Lemma 6.3], for all (λ, η) ∈ R× R,

min
{
|Re {p}| : p ∈ σ(Λ(λ,η)

im )\{0}
}
≥ Cϖλ

2 (4.95)

with Cϖ ∈ R+ being a constant depending onϖ but not on λ, η. Similar to [1, Lemma 6.1] one proves, moreover,

that 0 is a non–degenerated eigenvalue of Λ
(λ,η)
im . Using this, the relations (4.93) and Kato’s perturbation theory

together with the bound (4.95), for small enough |λ|, Ĝ(ir) has a non–degenerated eigenvalue ε (λ, η) = O
(
λ3
)

with

min
{
|Re{p}| : p ∈ σ(Ĝ(ir))\{ε (λ, η)}

}
≥ Cϖλ

2 . (4.96)

[Lemma 5.4 applied to the pair of projections P(0,0)
0,0 and P(λ,η)

0,0 can be useful in this context.] As 0 is an

eigenvalue of Ĝ(ir), it follows that ε (λ, η) = 0 and 0 is a non–degenerated eigenvalue of Ĝ(ir), provided |λ|
is sufficiently small. As a consequence, the vectors f̂p defined by (4.87) for p ∈ Z are eigenvectors of Ĝ(ir)
associated with the non–degenerate eigenvalues ipϖ, for small enough |λ|.
(ii) As explained in the beginning of the proof, it suffices to prove this statement for the spectrum near 0.

Therefore, the assertion is a direct consequence of the estimate (4.96).

(iii) Recall that 0 is an isolated eigenvalue of the unperturbed Howland operator Ĝ0(ir) with algebraic mul-

tiplicity n ∈ N, n ≤ d2. By Kato’s perturbation theory and (4.89), there are at most n eigenvalues of Ĝ(ir)
within a ball of radius |λ| with algebraic multiplicity at most d2. Therefore, we arrive at the third assertion by

combining this observation with (i)–(ii).

(iv) and (v) are easy to verify for the case V = 0 because the operator Ĝ0(ir) is equivalent to a normal

operator with explicitly known spectrum. The general case is proved by using simple power expansion for the

resolvents of Ĝ(ir) as V̂ is a bounded operator of order O(λ).
(vi) To prove the last assertion, use the fact that the eigenvalues ipϖ, p ∈ Z, are non–degenerated. By Kato’s

perturbation theory, its resolvent near such spectral points behaves in the limit ζ → ipϖ as

∥(ζ − ipϖ − Ĝ(ir))−1∥B(Ĥ) ≤ C |ζ − ipϖ|
−1

,

where C ∈ R+ is a constant not depending on p ∈ Z. The uniformity of this last estimate is related to the fact

that the spectral spaces associated with the eigenvalues ipϖ are all unitarily equivalent, see Equation (4.88). 2
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4.6 Time–uniform approximations of {eαĜ(ir)}α≥0

Let r ∈ (0, rmax) (see Section 3.1). The strongly continuous one–parameter semigroup {eαĜ(ir)}α≥0 can be

represented as the inverse Laplace transform of the resolvent of Ĝ(ir). Indeed, by Theorem 4.15 (vi) and the

Gearhart–Prüss–Greiner Theorem [19, Chap. V, 1.11], for any D ∈ R+, there is CD ∈ R+ such that

∀α ∈ R+
0 : ∥eαĜ(ir)∥B(Ĥ) ≤ CDeDα ,

i.e., the growth bound of the semigroup {eαĜ(ir)}α≥0 is zero. Hence, by Lemma 5.3,

eαĜ(ir)f̂ = lim
N→∞

{
1

2πi

∫ w+iN

w−iN

eαζ(ζ − Ĝ(ir))−1f̂ dζ

}
(4.97)

for all f̂ ∈ Dom(Ĝ(ir)), w,α ∈ R+. Next, we modify the contour of integration to make Kato projections

appear.

To this end, define

P̃(λ,η)
p :=

1

2πi

∮
γ̃p

(ζ − Ĝ(ir))−1dζ , p ∈ Z , (4.98)

where, for any p ∈ Z, the contour γ̃p is defined by

γ̃p (y) :=


i (pϖ + r) + i (ϖ − 2r) y for y ∈ [0, 1] .

i ((p+ 1)ϖ − r)− C4 (y − 1) for y ∈ [1, 2] .

−C4 + i ((p+ 1)ϖ − r)− i (ϖ − 2r) (y − 2) for y ∈ [2, 3] .

−C4 + i (pϖ + r) + C4 (y − 3) for y ∈ [3, 4] .

(4.99)

Here, r ∈ (0, 1/2) ∩ (0, rmax) is a sufficiently small parameter, see (4.63)–(4.65), while C4 ∈ R+ is the constant

of Theorem 4.15 (v). For all f̂ ∈ Dom(Ĝ(ir)), w,α ∈ R+, and any negative real number v ∈ (−C3,−C4) (cf.

Theorem 4.15) we now observe that, for N ∈ ϖN+r ans sufficiently small |λ|,

1

2πi

∫ w+iN

w−iN

eαζ(ζ − Ĝ(ir))−1f̂ dζ =
∑

p∈Z: |p|ϖ<N

eαK
(λ,η)
p P(λ,η)

p,0 f̂

+
∑

p∈Z: pϖ,(p+1)ϖ∈[−N,N ]

eαK̃
(λ,η)
p P̃(λ,η)

p f̂

− 1

2πi

∫ v+iN

w+iN

eαζ(ζ − Ĝ(ir))−1f̂dζ

− 1

2πi

∫ v−iN

v+iN

eαζ(ζ − Ĝ(ir))−1f̂dζ

− 1

2πi

∫ w−iN

v−iN

eαζ(ζ − Ĝ(ir))−1f̂dζ , (4.100)

where

K(λ,η)
p := P(λ,η)

p,0 Ĝ(ir)P
(λ,η)
p,0 , p ∈ Z , (4.101)

K̃(λ,η)
p := P̃(λ,η)

p Ĝ(ir)P̃(λ,η)
p , p ∈ Z . (4.102)

We analyze in the three next lemmata each term of the right hand side (r.h.s.) of Equation (4.100), in the limit

N →∞.

Lemma 4.16

For all ψ̂, ψ̂
′
∈ Ĥat ⊂ Dom(Ĝ(ir)), w,α ∈ R+, and v ∈ (−C3,−C4),

lim
N→∞

∫ v±iN

w±iN

eαζ(ζ − Ĝ(ir))−1ψ̂dζ = 0 ,
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while

lim sup
N→∞

∣∣∣∣∣
⟨
ψ̂,

∫ v−iN

v+iN

eαζ(ζ − Ĝ(ir))−1ψ̂
′
dζ

⟩
Ĥ

∣∣∣∣∣ ≤ Cλ2evα∥ψ̂∥Ĥ∥ψ̂′
∥Ĥ .

Proof. Using the equality

∀f̂ ∈ Dom(Ĝ(ir)), ζ ∈ ϱ(Ĝ(ir)) : (ζ − Ĝ(ir))−1f̂ = ζ−1
(
(ζ − Ĝ(ir))−1Ĝ(ir)f̂ + f̂

)
, (4.103)

we deduce that, for any ψ̂ ∈ Ĥat,∫ v±iN

w±iN

eαζ(ζ − Ĝ(ir))−1ψ̂dζ =

∫ v±iN

w±iN

ζ−1eαζ(ζ − Ĝ(ir))−1Ĝ(ir)ψ̂dζ +
∫ v±iN

w±iN

ζ−1eαζψ̂dζ .

Recall that ϱ(Ĝ(ir)) stands for the resolvent set of Ĝ(ir). In the limit N → ∞, both integrals in the r.h.s. of

this last equality vanish.

We prove now the second inequality. Observe first that, for any ζ ∈ ϱ(Ĝ(ir)) and sufficiently small |λ|,

(ζ − Ĝ(ir))−1 = (ζ − Ĝ0(ir))−1 + λ(ζ − Ĝ0(ir))−1I(ir)(ζ − Ĝ0(ir))−1

+η(ζ − Ĝ0(ir))−1J (ζ − Ĝ0(ir))−1

+(ζ − Ĝ0(ir))−1 (ηJ + λI(ir)) (ζ − Ĝ0(ir))−1 (ηJ + λI(ir)) (ζ − Ĝ(ir))−1.

Because of Assumption 2, for all ψ̂, ψ̂
′
∈ Ĥat, ζ ∈ ϱ(Ĝ(ir)) and sufficiently small |λ|,⟨

ψ̂, (ζ − Ĝ0(ir))−1I(ir)(ζ − Ĝ0(ir))−1ψ̂
′⟩

Ĥ
= 0 ,

while, by using (4.78),

lim
N→∞

⟨
ψ̂,

∫ v−iN

v+iN

(ζ − Ĝ0(ir))−1ψ̂
′
dζ

⟩
Ĥ

=
∑

(n,k),(n′,k′)

⟨
ψ̂,F

(
(W

(k′,n′)
(k,n) ρ

1/2
at )⊗ ΩR

)⟩
Ĥ

⟨
F
(
(W

(k′,n′)
(k,n) ρ

1/2
at )⊗ ΩR

)
, ψ̂

′
⟩

Ĥ

× lim
N→∞

∫ v−iN

v+iN

eαζ(ζ − i(Ek′ − Ek))
−1dζ

= 0

for all α ∈ R+ and v < 0. Clearly, for ζ ∈ v + iR and ψ̂
′
∈ Ĥat,∥∥∥(ζ − Ĝ0(ir))−1J (ζ − Ĝ0(ir))−1ψ̂

′∥∥∥
Ĥ
≤ C

|ζ|2
∥ψ̂

′
∥Ĥ

with C ∈ R+ being some finite constant that only depends on v. Thus, using Assumption 3,∣∣∣∣∣
⟨
ψ̂,

∫ v−iN

v+iN

eαζη(ζ − Ĝ0(ir))−1J (ζ − Ĝ0(ir))−1dζ

⟩
Ĥ

∣∣∣∣∣ ≤ Cλ2eαv∥ψ̂∥Ĥ∥ψ̂′
∥Ĥ

for some constant C ∈ R+depending only on v.

Again by Assumption 3, note that, for all ζ ∈ v + iR and ψ̂ ∈ Ĥat,∥∥∥[(ζ − Ĝ0(ir))−1 (ηJ + λI(ir)) (ζ − Ĝ0(ir))−1 (ηJ + λI(ir))
]∗
ψ̂
∥∥∥
Ĥ
≤ Cλ2

|ζ|
∥ψ̂∥Ĥ

with C ∈ R+ being some finite constant only depending on v. On the other hand, by using Equality (4.103)

together with Theorem 4.15 (v), we obtain∥∥∥(ζ − Ĝ(ir))−1ψ̂
′∥∥∥

Ĥ
≤ C

|ζ|
∥ψ̂

′
∥Ĥ



30

for some constant C ∈ R+ that does not depend on ζ ∈ v + iR and ψ̂
′
∈ Ĥat. Hence,∣∣∣∣∣

⟨
ψ̂,

∫ v−iN

v+iN

eαζ(ζ − Ĝ0(ir))−1 (ηJ + λI(ir)) (ζ − Ĝ0(ir))−1 (ηJ + λI(ir)) (ζ − Ĝ(ir))−1ψ̂
′
dζ

⟩
Ĥ

∣∣∣∣∣
≤ Cλ2eαv∥ψ̂∥Ĥ∥ψ̂

′
∥Ĥ

for all ψ̂, ψ̂
′
∈ Ĥat, α ∈ R+ and some constant C ∈ R+ that does not depend on ψ̂, ψ̂

′
and α. 2

Lemma 4.17

There is a constant C ∈ R+ such that, for all ψ̂ ∈ Ĥat ⊂ Ĥ,

∀p ∈ Z\ {0} : ∥P(λ,η)
p,0 ψ̂∥Ĥ ≤ Cp−2ϖ−2∥ψ̂∥Ĥ ,

∀p ∈ Z\ {0,−1} : ∥P̃(λ,η)
p ψ̂∥Ĥ ≤ Cp−2ϖ−2∥ψ̂∥Ĥ .

Moreover, if ψ̂ ∈ F(D⊗ ΩR) then

∀p ∈ Z : ∥P̃(λ,η)
p ψ̂∥Ĥ ≤ C |λ|

(
1

ϖ2p2 + 1
+

1

ϖ2 (p+ 1)
2
+ 1

)
∥ψ̂∥Ĥ .

Proof. Using two times Equality (4.103), for any p ∈ Z\ {0} and ψ̂ ∈ Ĥat ⊂ Dom((Ĝ(ir))2), in the definition

(4.65) of the Kato projection P(λ,η)
p,0 , we obtain that

P(λ,η)
p,0 ψ̂ =

1

2πi

∮
γp,0

ζ−2(ζ − Ĝ(ir))−1(Ĝ(ir))2ψ̂dζ + 1

2πi

∮
γp,0

ζ−2Ĝ(ir)ψ̂dζ + 1

2πi

∮
γp,0

ζ−1ψ̂dζ

=
1

2πi

∮
γp,0

ζ−2(ζ − Ĝ(ir))−1(Ĝ(ir))2ψ̂dζ ,

by analyticity. There is C ∈ R+ such that, for p ∈ Z\ {0}, ζ ∈ γp,0 and sufficiently small |λ|,

∥(ζ − Ĝ(ir))−1∥B(Ĥ) ≤ C and ∥(Ĝ(ir))2ψ̂∥Ĥ ≤ C∥ψ̂∥Ĥ ,

see (4.39) and (4.54), while

|ζ|−2 ≤ Cp−2ϖ−2 . (4.104)

We thus arrive at the assertion

∥P(λ,η)
p,0 ψ̂∥Ĥ ≤ Cp

−2ϖ−2∥ψ̂∥Ĥ
with a constant C ∈ R+ not depending on p ∈ Z\ {0}.
To prove the second inequality, we proceed in the same way by using the fact that

∥(ζ − Ĝ(ir))−1∥B(Ĥ) ≤ C

for all p ∈ Z, ζ ∈ γ̃p and sufficiently small |λ|, by Theorem 4.15. Note also that (4.104) also holds for all

p ∈ Z\ {0,−1} and ζ ∈ γ̃p.

To prove the last assertion, observe that if ψ̂ ∈ F(D⊗ ΩR) then

∥(Ĝ(ir))2ψ̂∥Ĥ ≤ C |λ| ∥ψ̂∥Ĥ

for some constant C ∈ R+. 2

Lemma 4.18

There is a constant C ∈ R+ such that, for all p ∈ Z and α ∈ R+
0 ,∥∥eαKp

∥∥
B(Ĥ)

≤ C and ∥eαK̃p∥B(Ĥ) ≤ C .
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Proof. By Kato’s perturbation theory and Assumption 3, which implies (4.89), the operator

R(λ,η)
p :=

(
P(0,0)
p,0 − P(λ,η)

p,0

)2
, p ∈ Z ,

is bounded by

∥R(λ,η)
p ∥B(Ĥ) ≤ Cλ

2 < 1 (4.105)

for p ∈ Z, sufficiently small |λ| and some constant C ∈ R+ not depending on p, λ (cf. (4.63)–(4.64)). Therefore,

we can infer from Lemma 5.4 for P = P(0,0)
p,0 and Q = P(λ,η)

p,0 that there are two invertible, bounded operators

U (λ,η)
p :=

(
P(λ,η)
p,0 P

(0,0)
p,0 +

(
1− P(λ,η)

p,0

)(
1− P(0,0)

p,0

))(
1−R(λ,η)

p

)−1/2

and

V (λ,η)
p :=

(
P(0,0)
p,0 P

(λ,η)
p,0 +

(
1− P(0,0)

p,0

)(
1− P(λ,η)

p,0

))(
1−R(λ,η)

p

)−1/2

=
(
U (λ,η)
p

)−1

such that

P(λ,η)
p,0 = U (λ,η)

p P(0,0)
p,0 V (λ,η)

p .

By Kato’s perturbation theory and (4.89), there is C ∈ R+ such that, for all p ∈ Z and sufficiently small |λ|,

∥P(λ,η)
p,0 − P(0,0)

p,0 ∥B(Ĥ) ≤ C |λ| . (4.106)

Combined with (4.105), ∥P(0,0)
p,0 ∥ = 1 and the absolutely convergent binomial series

(1−R(λ,η)
p )−1/2 = 1Ĥ +

∞∑
n=1

(
−1/2
n

)
(−R(λ,η)

p )n ,

Inequality (4.106) implies that

∥U (λ,η)
p P(0,0)

p,0 −P(0,0)
p,0 ∥B(Ĥ) ≤ C |λ| , (4.107)

∥P(0,0)
p,0 V (λ,η)

p −P(0,0)
p,0 ∥B(Ĥ) ≤ C |λ| , (4.108)

for some constant C ∈ R+ not depending on p, λ (|λ| sufficiently small). By (4.101), it follows that

∥eαKp∥B(Ĥ) = ∥U (λ,η)
p eαP

(0,0)
p,0 V (λ,η)

p P(λ,η)
p,0 Ĝ(ir)P(λ,η)

p,0 U(λ,η)
p P(0,0)

p,0 V (λ,η)
p ∥B(Ĥ)

≤ C∥eαP
(0,0)
p,0 V (λ,η)

p P(λ,η)
p,0 Ĝ(ir)P(λ,η)

p,0 U(λ,η)
p P(0,0)

p,0 ∥B(Ĥ)

for all p ∈ Z and sufficiently small |λ|, with some constant C ∈ R+ not depending on p, λ. Meanwhile, by using

(4.107)–(4.108) as well as the Neumann series (4.66) and (4.70) extended to all p ∈ Z as it is done in Lemma

4.12 one verifies that

∥P(0,0)
p,0 V (λ,η)

p P(λ,η)
p,0 Ĝ(ir)P

(λ,η)
p,0 U (λ,η)

p P(0,0)
p,0 −P(0,0)

p,0 P
(λ,η)
p,0 Ĝ(ir)P

(λ,η)
p,0 P

(0,0)
p,0 ∥B(Ĥ)

≤ C|λ|3 (4.109)

for some finite constant C ∈ R+ not depending on p, λ, η. Using the operator Zat ∈ B(Hat) (4.10) and Theorem

4.14, it follows from (4.109) that, for all p ∈ Z, A ∈ Ĥ and sufficiently small |λ|,

P(0,0)
p,0 V (λ,η)

p

(
P(λ,η)
p,0 Ĝ(ir)P

(λ,η)
p,0

)
U (λ,η)
p P(0,0)

p,0 (A) = ipϖP(0,0)
p,0 (A)

+ηP(0,0)
p,0 SZatL

∗
pZ

−1
at P

(0,0)
p,0 (A)

+λ2ZatL
∗
RZ−1

at P
(0,0)
p,0 (A)

+P(0,0)
p,0 RP(0,0)

p,0 (A)
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with R ≡ R(p,λ,η) being an operator with norm ∥R∥B(Ĥ) ≤ C|λ|3 for some finite constant C ∈ R+ not depending

on p, λ, η and A. Hence, since, by (4.82),

Up,0P(0,0)
p,0 SZatL

∗
pZ

−1
at P

(0,0)
p,0 U∗

p,0 =
1

2
ZatL

∗
pZ

−1
at |H(p,0)

at
, Up,0ZatL

∗
RZ−1

at U
∗
p,0 = ZatL

∗
RZ−1

at |H(p,0)
at

, (4.110)

(see (4.10)), it suffices to bound the group on H
(p,0)
at (4.80) generated by

Mp := ipϖ +
η

2
L∗
p + λ2L∗

R +Θp

with

Θp := Z−1
at Up,0P(0,0)

p,0 RP(0,0)
p,0 U∗

p,0Zat .

Note that iϖp is a non–degenerated eigenvalue of Mp with associated Kato projection P satisfying

∥P∥B(H
(p,0)
at )

≤ 2 for sufficiently small |λ|. Hence,

eαMp = eipϖαP + (1
H

(p,0)
at
− P )eαM

′
p(1

H
(p,0)
at
− P ) (4.111)

with

M′
p := (1

H
(p,0)
at
− P )Mp(1H

(p,0)
at
− P ) .

Using spectral properties of the operator(
iϖp+ λ2L∗

R +
η

2
L∗
p

)
∈ B(H(p,0)

at )

and Kato’s perturbation theory we deduce that

σ

(
M′

p|ran(1
H

(p,0)
at

−P )

)
⊂ (−∞, Cλ2) + iR

for some constant C ∈ R+ and sufficiently small |λ|. [It is similar to (4.95) or [1, Lemma 6.3] and it results from

Assumption 4.] Since the generatorM′
p|ran(1

H
(p,0)
at

−P ) acts on a finite dimensional space, this spectral condition

implies that the corresponding semigroup is bounded. By (4.111), the semigroup
{
eαMp

}
α≥0

is thus bounded.

The proof of ∥eαK̃p∥B(Ĥ) ≤ C is performed in the same way. It is even simpler because the real part of the

spectrum of K̃p is strictly negative, by Theorem 4.15 (ii). 2

We now study the semigroup {eαĜ(ir)}α≥0 via (4.97) and (4.100):

Theorem 4.19 (Time–Uniform Approximations of {eαĜ(ir)}α≥0)

There is a constant C ∈ R+ such that, for all α ∈ R+
0 , ψ̂, ψ̂

′
∈ Ĥat and sufficiently small |λ|,∣∣∣⟨ψ̂, (eαĜ(ir) − eαK0P(λ,η)

0,0 − eαK̃0P̃(λ,η)
0 − eαK̃−1P̃(λ,η)

−1 )ψ̂
′⟩

Ĥ

∣∣∣ ≤ C (ϖ−2 + λ2evα
)
∥ψ̂∥Ĥ∥ψ̂

′
∥Ĥ .

Moreover, if ψ̂
′
∈ F(D⊗ ΩR) then∣∣∣⟨ψ̂, (eαĜ(ir) − eαK0)ψ̂

′⟩
Ĥ

∣∣∣ ≤ C ((1 +ϖ−2
)
|λ|+ λ2evα

)
∥ψ̂∥Ĥ∥ψ̂

′
∥Ĥ .

Proof. The assertion is a direct consequence of (4.97), (4.100) and (4.106) combined with Lemmata 4.16–4.18.

2

4.7 Proof of Theorem 3.1

1. Let

Λ(λ,η) :=
(
P(0,0)
0,0

(
ηSZatL

∗
pZ

−1
at + λ2ZatL

∗
RZ−1

at

)
P(0,0)
0,0

)∗
∈ B(Ĥ) .
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By (4.79), observe that ran(P(0,0)
0,0 ) is equivalent to the space H

(0,0)
0 of [1, Sections 4.4, 6.2]. In particular, Λ(λ,η)

can in this way be identified with the operator Λ(λ,η) ≡ Λ
(λ,η)
0 of [1, Section 6.2]. See also [1, Eq. (6.6)]. By

Theorem 4.14 and (4.110),

∥(Λ(λ,η))∗ −K0∥B(Ĥ) ≤ C|λ|
3 (4.112)

for some finite constant C ∈ R+ not depending on λ, η (|λ| sufficiently small). Using exactly the same arguments

as in the proofs of [1, Lemma 6.4, Theorem 4.4], one verifies that, for any ε ∈ (0, 1),∥∥∥eα(Λ(λ,η))∗ − eαK0

∥∥∥
B(Ĥ)

≤ Cmin
{
α|λ|3, |λ|+ e−Dαλ2

}
≤ C|λ|1−ε (4.113)

for some constants C,D ∈ R+ not depending on λ, η (|λ| sufficiently small).

2. Now, we combine (4.113) with Theorems 4.8, 4.11, 4.19 to deduce that, for any initial faithful state ωat with

density matrix ρat ∈ D ⊂ B(Cd), any observable A ∈ D ⊂ B(Cd), ε ∈ (0, 1) and sufficiently small |λ|,∣∣∣⟨Ω, U0,α (A⊗ 1HRΩ)⟩H −
⟨
Ω, eα(Λ

(λ,η))∗ (A⊗ 1HRΩ)
⟩
H

∣∣∣ ≤ Cϖ,ε ∥A∥B(Cd) |λ|
1−ε

, (4.114)

where Cϖ,ε ∈ R+
0 is a finite constant depending on ϖ, ε but not on ωat, A, λ, η, and α. Recall that {Us,t ≡

U
(λ,η)
s,t }s,t∈R is the non–autonomous evolution family of Proposition 4.4. By (3.3),

⟨Ω, U0,α (A⊗ 1HRΩ)⟩H = ωat (α) (A) . (4.115)

Moreover, for any observable A ∈ D ⊂ B(Cd),

ωat (α) (A) = ⟨ρat (α) , A⟩Hat
= ⟨PD(ρat (α)), A⟩Hat

, (4.116)

see (2.5). Recall also that ρat (α) is, by definition, the density matrix of ωat (α) and PD is the orthogonal

projection on the subspace D (3.4) of block–diagonal matrices. Meanwhile, we infer from (4.110) that

Λ(λ,η) =
(
P(0,0)
0,0 U∗

0,0Zat

(η
2
L∗
p + λ2L∗

R

)
Z−1
at U0,0P(0,0)

0,0

)∗
. (4.117)

[1, Theorem 4.6 (i)] implies that H
(0,0)
at is an invariant space of

Zat

(η
2
L∗
p + λ2L∗

R

)
Z−1
at ∈ B(Hat)

and we deduce from (4.117) that

eα(Λ
(λ,η))∗P(0,0)

0,0 = U∗
0,0Zate

α( η
2L

∗
p+λ2L∗

R)Z−1
at U0,0P(0,0)

0,0 .

By (4.81), it follows that, for any observable A ∈ D ⊂ B(Cd) and initial density matrix ρat ∈ D,⟨
Ω, eα(Λ

(λ,η))∗ (A⊗ 1HRΩ)
⟩
H

=
⟨
ρ
1/2
at ,Zate

α( η
2L

∗
p+λ2L∗

R)Z−1
at Aρ

1/2
at

⟩
Hat

=
⟨
ρat, e

α( η
2L

∗
p+λ2L∗

R)A
⟩
Hat

=
⟨
eα(

η
2Lp+λ2LR)ρat, A

⟩
Hat

=
⟨
PD(eα(

η
2Lp+λ2LR)ρat), A

⟩
Hat

=
⟨
PD(eαΛ̃

(λ,η)

ρat), A
⟩
Hat

, (4.118)

where

Λ̃(λ,η) =
η

2
Lp + λ2LR

is the operator of [1, Theorem 4.6 (i)]. We used in the second equality the identities

P(0,0)
0,0 ((Aρ

1/2
at )⊗ ΩR) = (Aρ

1/2
at )⊗ ΩR and U0,0((Aρ

1/2
at )⊗ ΩR) = Aρ

1/2
at
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when A ∈ D. [Cf. definition (4.81).]

3. Therefore, Theorem 3.1 follows from Equations (4.114)–(4.118) and [1, Corollary 4.5, Eqs. (4.37)–(4.38)].

5. Appendix

1. For the reader’s convenience, we review here one definition and a result from the theory of analytic families

of closed operators used in Section 4.5 to study the analytic deformation of the Howland operator G.

Definition 5.1 (Families of type A)

For an open subset S of C, a family {Fz}z∈S of closed operators defined on a Banach space X and with non–

empty resolvent set is of type A when Dom(Fz) = Y ⊂ X of Fz is independent of z ∈ S and the map z 7→ Fzx

is strongly analytic on S for all x ∈ Y.

Families of type A are useful in the context of Kato’s perturbation theory as they form a special case of analytic

family (in the sense of Kato). In our proofs, we use the following well–known result on type A families (see [10,

Sect. VII.1, Theorem 1.3]):

Lemma 5.2 (Type A families and analycity of resolvents)

Let {Fz}z∈S be a closed operator family of type A and let ζ ∈ ϱ(Fz0), where ϱ(Fz0) is the resolvent set of Fz0

with z0 ∈ S. Then the map z 7→ (ζ − Fz)
−1 is analytic in some neighborhood of z0.

2. We used a representation of strongly continuous one–parameter semigroups w.r.t. resolvents. Indeed,

resolvents and semigroups are related to each other through the Laplace transform (see, e.g., [19, Chap. III,

Corollary 5.15]):

Lemma 5.3 (Semigroups as Laplace transforms)

Let A be a (possibly unbounded) generator of a strongly continuous semigroup
{
eαA

}
α≥0

on a Banach space X
with growth bound ς ∈ R∪{−∞}. Then, for all x ∈ Dom(A), w > ς and α ∈ R+,

eαAx = lim
N→∞

{
1

2πi

∫ w+iN

w−iN

eαζ(ζ −A)−1xdζ

}
.

3. In Kato’s perturbation theory, a perturbed Kato projection P (y) is related to the (non–perturbed Kato)

projection P (0) through some bounded operator U (y) with bounded inverse V (y) by the relation P (y) =

U (y)P (0)V (y), provided the coupling constant y ∈ R measuring the strength of the perturbation is small

enough in absolute value. This fact is used to prove Lemma 4.18. The following relations between pairs of

projections (see [10, I.4.6. p. 33]) are important in that proof: Let P,Q be two projections acting on a Banach

space X . Then, the bounded operator

U ′ := QP + (1−Q) (1− P )

maps ran (P ) into ran (Q), whereas

V ′ := PQ+ (1− P ) (1−Q)

maps ran (Q) into ran (P ). Moreover, V ′U ′ = U ′V ′ = 1 − R, where R := (P −Q)
2
. In Kato’s perturbation

theory, the operator (P (y) − P (0)) has typically a small norm for small |y| and (1−R)−1/2
exists as an

absolutely convergent power series in R. Under this assumption and since R always commutes with P and Q,

we can relate both projections to each other, as explained above:

Lemma 5.4 (Pairs of near projections)

Let P,Q be two projections and R := (P −Q)
2
. If (1−R)−1/2

exists and is bounded then the bounded operator

U := U ′ (1−R)−1/2
= (1−R)−1/2

U ′
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maps ran (P ) into ran (Q), whereas

V := V ′ (1−R)−1/2
= (1−R)−1/2

V ′

maps ran (Q) into ran (P ). Moreover, V U = UV = 1, i.e., V = U−1, and P = V QU , Q = UPV .
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