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1. Introduction
Let us consider the problem

—Au+ V(x)u — au = f, (1.1)

withu € F = H*RY) andf € F = L*(R%), d € N, a is a constant an#/ ()

is a real valued function decaying @aat infinity. If « > 0, then the origin belongs
to the essential spectrum of the operator & — F' corresponding to the left side
of problem (1.1). Consequently, the operator fails to §atise Fredholm property.
Its image is not closed, faf > 1 the dimensions of its kernel and the codimension
of its image are not finite. In the present article we will stugrtain properties
of such operators. Let us note that elliptic equations dnimg operators without
Fredholm property were studied extensively in recent yésses [17], [18], [19],
[20], [21], [22], [23], [24], also [5]) along with their potaial applications to the
theory of reaction-diffusion equations (see [7], [8]). Bleams of that type arise
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also in the theory of embedded solitons of Nonlinear Samget like equations
(see e.g. [13], also [24]). In the particular case ef 0 the operator satisfies the
Fredholm property in certain properly chosen weighted epésee [1], [2], [3], [4],
[5]). However, the case af £ 0 is significantly different and the method developed
in these works cannot be applied.

One of the crucial questions concerning equations invglaperators without
Fredholm property is their solvability. We will investigathe problem as follows.
Supposef,, is a sequence of functions in the image of the operdtosuch that
fn — fin L*(R%) asn — oo. Letu,, be a sequence of functions fraff¥ (R¢) such
that

Au, = fn, n € N.

Due to the fact that the operater is non Fredholm, the sequenag may not
be convergent. Let us call a sequengesuch thatdu,, — f a solution in the
sense of sequences of equatidn = f (see [16]). If this sequence converges to
a functionu, in the norm of the spacé, thenu, is a solution of this equation.
Solution in the sense of sequences is equivalent in thisederthe usual solution.
However, in the case of operators without Fredholm propéis/convergence may
not hold or it can occur in a certain weaker sense. In this,@s®lution in the
sense of sequences may not imply the existence of the uduaibso In the present
article we determine sufficient conditions of equivalenteautions in the sense
of sequences to the usual solutions. In the other words aihdittons on sequences
f» under which the corresponding sequencgsre strongly convergent.

In the first part of the work we consider the equation

—Ayu+ V(z)u — Ayu+Uly)u —au = f(z,y), ,y € R?, (1.2)

wherea > 0is a constant and the right side is square integrable. AgendA, are
the standard three dimensional Laplacians acting andy variables respectively.
The potential function$’(z) andU(y) here are assumed to be shallow and short-
range and precise assumptions on their behavior will be dtated below. The
problem analogous to (1.2) involving a single non Fredhobthr8dinger operator
in its left side was studied recently in the context of thevability in the sense of
sequences in [25]. Note that for each of the operataks + V' (z) and—A, +U(y)
on L*(R?) the essential spectrum fills the nonnegative semi-@ixisxc) (see e.g.
[10]) such that the inverse of the whole operator in the iefit ®f (1.2) fromZ?(R%)
to H?(R%) is not bounded. We write down the corresponding sequenderatéd
equations witm € N anda > 0 as

— Aty + V(2)ty — Ayt + UY)u — auy, = folz,9), 7,y € R?, (1.3)

with their right sides convergent to the right side of (1r2].?(R®) asn — oo. The
inner product of two functions is denoted as

(F(x), 9(2)) 12gge) = / @)gla)dr, deN
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with a slight abuse of notations when these functions aresguoare integrable.
Indeed, whenf(z) € L'(RY) andg(z) € L*°(R?), then evidently the integral
above is well defined, like for example in the case of fundiamvolved in the
orthogonality relations of Theorems 2 and 3 below. In thecepz d dimensions
for a certainA(z) = (Ay(x), ..., Aa(x)), the inner productf (), A(x)) r2(ray is the

vector with the coordinates

f(2)Ap(z)dw, 1<k <d.
R4

Let us consider the standard spaé&R?) equipped with the norm

[l gy = lullZa@e) + [ Aull7age), d €N. (1.4)

The sphere of radius > 0 in R? centered at the origin will be designated¥s

Let us use the hat symbol to denote the standard Fouriefdrams
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f(p) = (z)e " dx, p e RY, d € N, (1.5)

In the second part of the article we will study the problem
—Ayu—Ayu+U(y)u—au= ¢(z,y), r € RY y e R} d €N, (1.6)

with the right side square integrable and the consianrt0. HereA, andA, are
the standard Laplace operators acting on the variablesd y respectively. The
corresponding sequence of iterated equations ferN will be given by

_A:Eun - Ayun + U(y)un — AUp = <Z)n(x7y>7 T e Rdu (7S R37 a > 07 (17)

with their right sides converging to the right side of (1.6)7i*(R**?) asn —
oo. We formulate the technical conditions on the scalar paninvolved in the
equations above. They will be analogous to those statedsnrmption 1.1 of [18]
(see also [19], [20]).

Assumption 1. The potential function® (z), U(y) : R* — R satisfy the bound

C C

Vi)l < —_—, U < ——+—
‘ ( )‘ ~1 + |x‘3.5+5 ‘ (y)‘ 14 |y|3-5+5

with somed > 0 andz,y € R? a.e. such that

g
9

19 2 1
49§(47T) VI Z oo @y V] <1, (1.8)

L3 (R)
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42 (4m) U s U1 (1.9

L5 (R)
and

\/CHLSHVHL%(RS) <A, \/CHLSHUHL%(RS) < Am.

Here and belove’ denotes a finite positive constant ang,s given on p.98 of [12]
is the constant in the Hardy-Littlewood-Sobolev ineqyalit

0 -
’/]ng R3 |x_ ‘2 5 dx dy <CHLSHf1”L2(R3) fl ELZ(R )

By virtue of Lemma 2.3 of [18], under Assumption 1 above on potential
functions, the operators A, + V(z) and—A, + U(y) considered ori?(R?) are
self-adjoint and unitarily equivalent te A, and —A, respectively via the wave
operators (see [11], [15])

it(—Ap+V (z)) JitA

Q‘i, =5 — lim_ o€ et Q[i] =85 — IimHjFooe”(*Ay*U(y))ezmy,

with the limits here understood in the strohgsense (see e.g. [14] p.34, [6] p.90).
Therefore the operatorsA, + V(z) and—A, + U(y) on L*(R?) possess only the
essential spectrat.ss(—A, + V(z)) = [0, c0) ando.ss(—A, + U(y)) = [0, o0).
The functions of the continuous spectrum satisfy

[—A, + V(2)]|or(z) = KPor(z), ke R?, (1.10)

[_Ay + U(y)]nq(?/) = Qan(y)a qc jo (1.11)

in the integral formulation the Lippmann-Schwinger eqoasi for the perturbed
plane waves (see e.g. [14] p.98)

@) = - L [ g 112
Tr) = s — — . .
o @n)}  dn Jus Jr gl T
elay 1 etlally—=|
= - — — Un,)(2)dz, 1.13
1q(Y) 23 47 Jw ly— 2] (Ung)(2) ( )
and the orthogonality conditions
(Spk(x)7 Spl(x»LQ(]RS) = 5(k - l)7 kal S R37 (114)
(M4(¥)s 1Y) 23y = (¢ —m), g, m € R”. (1.15)

In particular, when the vectors ¢ = 0, we havey,(z) andny(y). By virtue of
the Spectral theorem, the productsygf(x) andn,(y) form a complete system in



L*(R%). We denote the generalized Fourier transform with respetbieise products
using the double tilde symbol as

f(k,q) = (f(z, ), e(2)14(y)) L2ms), kyq € R, (1.16)

Clearly, (1.16) is a unitary transform ai¥ (R%), which can be easily seen via or-
thogonality relations (1.14) and (1.15). We designatertbegiral operators involved
in (1.12) and (1.13) as

gilkllz—y]

Q@ = 3= [ TVl ¢ e @),
etlally—=|

(Po) = ~3 [ T Uz we 7@,

and consideiQ, P : L*(R3) — L*>(R?). Under Assumption 1, by virtue of
Lemma 2.1 of [18] the operator normi€)|. < 1 and|Pll. < 1, in fact
they are bounded above by the left sides of inequalitie9 &8 (1.9) respectively,
which are quantities independentiodndg, expressed in terms of the corresponding
L*(R?) norms of the scalar potential function§z) andU(y). In the context of the
studies of equations (1.6) and (1.7), we will be using pré¢slot Fourier harmon-
ikx
ics W, k € R? and perturbed plane waveg(y) forming a complete system in
mT)2
L*(R?+3), such that the generalized Fourier transform with respetttese products
is given by
eikx

f(ka Q) = (f(xay)a —gnq(y))LQ(Rd+3)7 ke Rda qc R?. (117)
(2m)?

Obviously, (1.17) is a unitary transform aif(R¢*3), which can be trivially ob-
tained via orthogonality relation (1.15). We formulate ouwain statements.

Theorem 2. Let Assumption 1 hold;,y € R®*, n € Nand f,(z,y) € L*(R®),
such thatf,,(z,y) — f(z,y) in L?(R%) asn — oo. Assume also that|f,(z,y) €
LY(R®) and|y| f.(z,y) € LY(R®), such that

2| fu(x,y) = |2 f(2,9),  |ylfulz,y) = |yl f(z,y)

in L'(R%) asn — oo.
a) Whenu > 0 let the orthogonality relations

(a2, ), or(@)16(y)) 2@y = 0, (K, q) € SYg ace. (1.18)

hold for alln € N. Then equations (1.2) and (1.3) have unique solutigasy) €
H?*(R%) and u,(x,y) € H?*(R®) respectively, such that,(z,y) — u(z,y) in
H?*(R%) asn — .



b) Whena = 0 let u,(z,y) € H?(R%) be the unique solution of problem (1.3),
n € N and equation (1.2) possesses a unique solutiony) € H?*(R%). Then
un(z,y) = u(z,y) in H*(R®) asn — oo.

Note that according to the part b) of Theorem 3 of [19] (see al21]) for
our case b) whem = 0 the orthogonality conditions are not needed as distinct
from case a). Similarly in the case b) of the theorem below weat require any
orthogonality relations when the dimension of the problem is at least two (see
Theorem 6 of [19], also [21]).

Theorem 3. Let Assumption 1 hold for the potential functibity),y € R?,
re€RYd>1, neNandg,(r,y) € L?(R*?), such thatp, (z,y) — ¢(z,y) in
L*(R%3) asn — oo. Suppose as well that

|#lén(z,y) € LNRT?),  Jylgn(z,y) € L' (RT),

such that
2|z, y) = |z[o(z,y), |y|du(z,y) — |ylo(z,y)

in L1(R4™3) asn — oo.
a) Whena > 0 let the orthogonality conditions

ikx
(Dn(z, ), qu(y))Lz(Rd+3) =0, (k,q) € 5%3 a.e. (1.19)
)2
be valid for alln € N. Then equations (1.6) and (1.7) admit unique solutions
u(r,y) € H*(R¥3) andu,(x,y) € H*(R*3) respectively, such that,(z,y) —
u(x,y) in H2(R43) asn — oo.
b) Whem = 0 and the dimensiod = 1 let the orthogonality relations

(Dn(2,9), m0(Y)) L2®e) = 0 (1.20)

hold for all n € N and no orthogonality conditions are assumed in dimensions
d > 2. Then problems (1.6) and (1.7) possess unique solutibng)) € H?(R4*3)
andu,(z,y) € H*(R+3) respectively, such that,(z,y) — u(x,y) in H?(R3)

asn — oo.

Note that (1.18), (1.19) and (1.20) are the orthogonalityditbons involving
the functions of the continuous spectrum of our Schrodirmgerators, as distinct
from the Limiting Absorption Principle in which one needsaiwhogonalize to the
standard Fourier harmonics (see e.g. Lemma 2.3 and Primpo2i¢ of [9]). We
proceed with proving our first main result.



2. Solvability in the sense of sequences in six dimensions

Proof of Theorem 2Four our equations (1.2) and (1.3) the solvabilityZit\IR®)
follows from Theorem 3 of [19]. Since their right sides arei@ integrable and
the scalar potentialg (z) andU (y) involved there are bounded as assumed, we will
have the existence of their unique solutiongfiA(R®) as well.

Let us first start with the case b) of the theorem when the eothst= 0, such
that by means of the part b) of Theorem 3 of [19] the orthogbnebnditions are
not needed here. Then let(z,y) € H*(R%), n € Nandu(z,y) € H*(R®) be the
unique solutions of problems (1.3) and (1.2) respectively.

By applying the generalized Fourier transform (1.16) tchtsitles of problems
(1.2) and (1.3) withk, ¢ € R? we arrive at

_ Jalkyg)
k2 + q2 )

B f(k, q)

= € N.
k2+q2’ n

an(kv‘J)

u(k, q)

Let us write their difference as

 fulk q) — f(k,q)

’lin(k7 Q) - é<k7 Q) - k’Q + q2 X{(k7q)€R6:k2+q2§1}+

:n k7q - kuq
& k2)+qf2( )X{(k,q)eR6:k2+q2>1}- (2.21)

Here and below 4 will denote the characteristic function of a s&tC R and A°
will stand for the complement of this set. Evidently the setterm in the right
side of (2.21) can be estimated from above in the absoluteeviay | f,, (k, q) —

f(k,q)| and therefore, in thé&?(R®) norm by | f, — f|lz2@s) — 0, n — oo as
assumed. By means of our assumptions and via the Schwanzailitggve have
fu(z,y) € LY(R%), n € N. We estimate the norm from above using again the
Schwarz inequality as

[ fo = fllorgey < \// | fulz,y) — f(fc,y)lzdfcdy\// dxdy+
x24y2<1 z24y2<1

+/‘ Falesy) — (2, 9) V2 + Pdedy < Cllfa — Flligo+
x24y2>1

2l fo = @[ f | reey + [yl fa = [yl fll2wsy = 0, n— o0
due to the assumptions of the theorem. Hence

+

fulz,y) = fla,y) in LYR%), n— occ. (2.22)



Let us express

nwwzn@+A On o o).
. ' VI o
f%m=f®+A %@@@.

Here and beloww denotes the angle variables on the sphere. This enables us to
write the first term in the right side of (2.21) as

]%n 0) — f 0

%(];)X{(k,q)em:k%q?gfr

JV T B fals,w) = J(s,w))ds
k? + q?

By means of Corollary 2.2 of [18] (see also [19]) under ouuasgstions fork, ¢ €

R?* we havepi (), n,(y) € L>=(R?) due to the inequalities

_|_

X{(k,q)ER6:k2+¢2<1}- (2.23)

lor (@ < e @) ey < e
kax oo 3 ~ 5 ’I] y 0o 3 >~ .
P =1 Q) 2m)27 TMETEY =1 1P (20)3

(2.24)
This enables us to estimate from above in the absolute Viadugrst term in (2.23)
by

1 1 1 ”f _f” 1 6 X{(k;=q)6R6:k2+q2§1}
oy T Ll ey

which clearly yields the upper bound for it in tdé(R%) norm by

Y

1 1
C ||fn_f||L1 R6 —)0, n — oo
1= [|Qloc 1 = [[Plloo =
by virtue of (2.22) under our assumptions. Then we estinate fabove in the
absolute value the second term in (2.23) as

7 ; X{(k, 6:524q2<
[V + V) Faky @) = F(k, @)oo ey LI,

/k:2 + q2
which gives us the upper bound for it in tfié(R°) norm as

CI(Vr+ Vo) [Ffulk, @) — Fl, @)l ooy — 0, 1 — 00

due to the part a) of Lemma 5 below. Here and further down mots®/, andV,
stand for the gradients taken with respect @ndq variables respectively. Hence

||, — u||L2(R6) = ||2:Ln(l€,q) — ﬁ(k:,q)HLz(Ra) — 0, n— oo.
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By means of the part a) of Lemma 4 below,(z,y) — u(z,y) in H*(R®) as
n — oo, wWhich completes the proof of part b) of the theorem.

Then we turn our attention to establishing the results ofpidae a) of the the-
orem whena > 0, such that orthogonality conditions (1.18) hold. By meafs o
part a) of Theorem 3 of [19], equation (1.3) admits a uniquatsm u,(z,y) €
H*(R%), n € N. For(k,q) € S, a.c., using (2.24) we easily estimate

(F (@, 9), k()19 (Y)) 2@ey| = 1(F(2,9) = ful, y), or(2)0q (1)) £2(m0) |

from above by

1 1 1
2m)? 1 = [[Qllec 1 = [Pl
by means of (2.22). Hence in the limit the orthogonality tiela

(f (@), eu(@)ng (W) r2e) =0, (k,q) € Sy ace. (2.25)

is valid. By virtue of the part a) of Theorem 3 of [19], the limg problem (1.2)
has a unique solution(z,y) € H*(R®) whena > 0. Let us apply the generalized
Fourier transform (1.16) to both sides of equations (1.2)@m3). We easily arrive
at

||fn_f||L1(R6) —>0, n — 0o

. flha) - falk.q)
k,q) = ————+— nk,q) = ———"—
For technical purposes, let us introduce a layer in the spbs& dimensions as

Ag:={(k,q) R |Va—0 <K+ ¢ <Vato}, 0<o<Va

and express the differenégk, ¢) — u,(k, ¢) as

Fha) = fulka) ) = falv0) (2.26)

C .

Rr@—a Rt@—a %

, neN.

The second term in (2.26) can be trivially estimated fromvabim the absolute
value by

Jka) ~ ko)l
Vao .

which yields the following upper bound on it in tié(R%) norm

1F (k) = Fulk @)y 1S = Fulloesy

0, n— o0
Vao Vao '
according to one of the assumptions of the theorem. We wélthis identities
kg2 3J§n

Fulkog) = Fulv/a.w) + /

d
GG
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f(kv Q) - f(\/a,w) + 6—(S,w)d8.
Va S

Note that by virtue of orthogonality conditions (1.18) ad2g), the first terms in
the right sides of the formulas aboyg(,/a,w) and f(/a,w) vanish for(k, q) €
59, a.e. This enables us to estimate from above in the absollite e first term
in (2.26) by

. . /\/maf

(Vi + Vo)l (k,q) — fulk, Dl
\/a Ags

which clearly implies the upper bound on it in thé(R®) norm given by

CN(Vi+ VU (k. q) = fulk, )| Le@ey = 0, n— 00
according to the part a) of Lemma 5 below. Thus, we arrive at
[u = tn[r2®s) = (K, @) = tn (K, O lz2@sy =0, n— oo,

such thatu, (x,y) — u(z,y) in L*(R®) asn — oo. By virtue of the part a) of
Lemma 4 below, we obtain,(z,y) — u(x,y) in H*(R%) asn — oo, which
completes the proof of the part a) of the theorem. [ |

3. Solvability in the sense of sequences in d+3 dimensions

Proof of Theorem 3For our problems (1.6) and (1.7) the solvability iR(R**?)
stems from Theorem 6 of [19]. Due to the fact that the righesidf these equations
belong toL?(R4+3) and the potential functiofl (y) is bounded as assumed, we will
have then the existence of their unique solution& #iR+3),

The conditions of our theorem along with the Schwarz inaguahply that
bn(z,y) € LYRI3). We use the Schwarz inequality again to obtain the upper
bound for the normj|¢,, — || ;1 (ra+3) as

\/ / |¢n<x,y>—¢<x,y>|2dxdy\/ [ ey
z24+9y2<1 22 4y2<1

o V() — olay)ldedy < 6, = bl e+
Té4y>1

+lzlon — 2]l prwarsy + [[|ylon — Y@l L1arsy = 0, n— o0
by virtue of the assumptions of our theorem. Thusdor 1

bz, y) = O(x,y) in L' R, n— co. (3.27)
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First we start with the case b) of the theorem, such that theteata = 0. When
the dimension/ = 1, we have the orthogonality condition (1.20) which accogdin
to the part b) of Theorem 6 of [19] guarantees us the existehaeinique solution
un(z,y) € H*(R*) of problem (1.7) withn € N. Using (2.24), we estimate from
above

(@(2,y),m0(W) 2| = |(¢(2, ) = dnlx,¥), M0(Y)) 2@

s 1 1
n — 1psy = 0, n— 00
(QW)% 1 — ”PHooHd) ?Z)HL (R%)
via (3.27), such that in the limit we have the orthogonaléhation
(0(x,9),m0(y)) 2@y = 0. (3.28)

Then by virtue of the part b) of Theorem 6 of [19] under our aggtions, the
limiting equation (1.6) admits a unique solutiofw, y) € H?(R*) as well.

In higher dimensiong > 2 according to the part c) of Theorem 6 of [19], no
orthogonality conditions are needed, such that under cugliions problems (1.6)
and (1.7) possess unique solution(s, y) € H*(R3) andu,(z,y) € H*(RI*3)
respectively. Let us apply the generalized Fourier tramsf.17) to both sides of
(1.6) and (1.7) to obtain

~

X ;S(kja Q) = gbn(ka Q)
U(/f7Q)_k2+q2, Un(k,q) = g neN.
We write the difference, (k, ) — i(k, ¢) as
K+ ¢ X{(k,q)€Rd+3:k2+¢2<1} T K+ ¢ X{(k,q)€R4+3:k24¢q2>1} -

(3.29)
Clearly, the second termin (3.29) can be easily estimated &bove in the absolute

value by|¢, (k. q) — ¢(k, q)| and therefore in thé2(R4+3) norm by

~

|60 (k. q) — (K, )| L2ars) = [|dn — Bl r2assy = 0, 1 — 00

due to one of the assumptions of our theorem. Let us express



which enables us to write the first term in (3.29) as

~

6,(0) — 6(0)

[ER X{(k.q)€Rd+3:k24q2<1} T

~

JV T 2 (du(s,w) = d(s,w)]ds
k2 + ¢2
We easily estimate the second term in (3.30) from above ialiselute value by

" X{(k,q)€RH3:k24q2<1} - (3.30)

X{(k,q) €R¥+3:k24¢2<1}
/k;2 + q2

which trivially implies the upper bound for it in the?(R4") norm as

(Vi + Vo) [6n(k, 0) — 6k, )]l o s

~

Cl(Vi + Vo) [hn(k, @) — bk, )] | peqaray = 0, 1 — 00

by virtue of the part b) of Lemma 5 below. To investigate thstfierm in (3.30),
we recall that fom € N

1
d (¢(,y), 770(3/))L2(]Rd+3)-
(2m)?
) . (3.31)
Hence when the dimensiah= 1, we havep, (0) = 0, n € N and¢(0) = 0 by
virtue of orthogonality relations (1.20) and (3.28) redpety, such that the first

term in (3.30) then vanishes. For higher dimensi@ns 2, using (3.31) and (2.24),
we estimate the first term in (3.30) from above in the absolakee by

60(0) = = (9u(r.). (¥ 2y, 9(0) =

1 1 |fn — @l L1 (rea+s X{(k,q)ERM3:k2+¢2<1}
(om) 1= TPl TR k2 + g2

)

which gives us the upper bound for it in thié(R**3) norm as

1
O 6 — |l p1gars) — 0, 1 — 00
1= [Pl =

due to (3.27). Therefore, when= 0, we have
|tn(z,y) — U(I’,y)||L2(Rd+3) = ||2:Ln(k3, q) — ﬁ(k, q)||L2(Rd+3) — 0, n— oo,

By means of the part b) of Lemma 4 belaw(z,y) — u(x,y) in H*(R4*3) as
n — oo, which completes the proof of the part b) of the theorem.

We conclude the argument with establishing the resultseptrt a), when the
constant > 0. Orthogonality conditions (1.19) via the part a) of Theot®of [19]
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imply that problem (1.7) admits a unique solutiop(z,y) € H*(R**?), n € N.
For(k,q) € S‘f/;?’ a.e., using (2.24), we estimate the expression

ezkm

(2m)

(A, y), nq(y))L2(Rd+3) gnq(y))LQ(Rd”)

vl

= ’((b(lC,y) - <Z>n(:c,y),

from above by

1 1
(2m)2 1 — [Pl

¢ — ¢n||L1(Rd+3) —0, n—o0

by means of (3.27). Thus we arrive at the orthogonality iehat

eikx
(&(7,y), ——14(Y)) 2ma+sy =0, (k,q) € Sf‘/*a:?’ a.e., (3.32)

(2m)8
which by virtue of the part a) of Theorem 6 of [19] gives us thatblem (1.6)
possesses a unique solutiofr,y) € H?(R4*3). By applying the generalized
Fourier transform (1.17) to both sides of equations (1.6l @n7), we arrive at
X } k7
i(k.g) = 5200

- ok, q)
= ma in(k, q) =

SR AN VRS
k2 +q¢>—a

Let us introduce as a technical tool a spherical layer inpaes ofi+3 dimensions,
namely

By = {(k.q) ER™*|Va—0o < VI +¢*<Va+o}, 0<o<va

Then we can write the differendg, (k, ¢) — u(k, q) as

:nkfa _:k:7 :nka _:k:7
. (k;2 i)(p qzi(a q)XB” +2 (k2 i)qQ gi(a q)ng. (3:33)

The second term in (3.33) can be easily estimated from abovee absolute

|¢gn<k7 Q) B é(lﬁ Q)‘
Vao

L?*(R¥*3) norm as

value by , Which clearly gives us the upper bound for it in the

— ¢||L2(Rd+3) — 0, n — oo

1
%Héf)n

as assumed in our theorem. For the purpose of investigdtenfirst term in (3.33),
we will rely on the identities

b =ovaw)+ [ s

13



= = V kg 3:
¢n(k>Q) - ¢n(\/avw)+/ ;n
Va S
Orthogonality relations (1.19) and (3.32) imply thai(/a, w) and¢(y/a, w) van-
ish. Therefore, the first term in (3.33) can be estimated fatmve in the absolute
value by

(s,w)ds, mneN.

th+V0@Mh®—é@&»Mwwm%%,

which gives us the upper bound for it in thé(R***) norm as

~

C(Vi + Vo) (Gulk, @) — bk, )| pgassy = 0, 1 — o0

by means of the part b) of Lemma 5 below. Thus, when 0, we have

|un (2, y) — u(z, y)|| L2ma+s) = Hﬁn(k:, q) — ﬁ(k, q)|| r2ga+sy — 0, n — oo,

such that via the part b) of Lemma 4 below(z, y) — u(x,y) in H*(R43), n —
0o, which completes the proof of the part a) of the theorem. [ |

4. Auxiliary results

The trivial lemma below helps us to conclude the proofs ofdrems 2 and 3 by
telling that it is sufficient to prove the convergencelih of the solutions of the
studied equations as— oo.

Lemma 4. a) Let the conditions of Theorem 2 hold, such that, v), u,(x, y) €
H?(R%) with n € N are the unique solutions of equations (1.2) and (1.3) respec
tively andu,,(z,y) — u(z,y) in L?(R%) asn — co. Thenu,(z,y) — u(z,y) in
H?*(R%) asn — oc.

b) Let the assumptions of Theorem 3 be valid, such #faty), v, (z,y) €
H?(R43) withn € N andd € N are the unique solutions of equations (1.6)
and (1.7) respectively and,(z,y) — u(x,y) in L2(R*?) asn — oo. Then
un,(z,y) — u(z,y) in H*(R™*3) asn — oc.

Proof. a) Equations (1.2) and (1.3) with > 0 along with the assumptions of
Theorem 2 yield that the norff{A, + A, )(u, — )| r2rs) iS bounded above by

1o = fllez@s) + (V] Lo ey + Ul oo @3y + @) |[un — ullL2mey = 0, 0 — 0.
By virtue of definition (1.4) we obtain,,(z,y) — u(z,y) in H?(R%) asn — oo.

b) From equations (1.6) and (1.7) fer> 0 under the conditions of Theorem 3
we derive the estimate from above for the ndfft, + A,) (w,, — u)|| 2 (ga+s) given

by

||¢n — ¢||L2(Rd+3) + (a + ||U||L00(R3))||un — u||L2(Rd+3) — 0, n— oo

14



Thus, definition (1.4) implies that, (x,y) — u(z,y) in H2(R¥*3) asn — co. W

The L>(R%) and L>*(R4*3) norms studied in the following lemma are finite by
virtue of Lemmas 11 and 12 of [19] respectively. We go furthgrshowing that
they converge to zero.

Lemma 5. a) Let the assumptions of Theorem 2 be valid. Then

(Vi + Vo)l fulk, q) = f(k, @)]l|zogesy — 0, n — o0.

b) Let the conditions of Theorem 3 hold. Then we have

(Vi + V) 6n (ks g) — ok, )] poerasay — 0, 1 — 0o,

Proof. To prove the part a) of the lemma, we need to estimate the igpant

(vk‘ + VQ)[fn(kv Q> - f<k7 Q)] = (fn(ﬂf, y) - f(ﬂ?, y)7 nQ<y>vk(pk(x>>L2(R6)+

+(fal@,y) — f(2,9), 0x(2) Ve (y)) 12(rs).- (4.34)
By means of the Lippmann-Schwinger equations (1.12) ari8j1lwe have

_ -l e et L ik
Vipr(r) = 2m)s +(I-Q)Q 7T)%w+(l Q)Y (V:Q)(I — Q) gt
Vo) = iy (1 - Py iy (- PPy P

3
2

(27)3 o (2m)2
Here the operatory,Q, V,P : L>(R3) — L>(R3; C?) have the integral kernels

i ilk||x— k i { —2| 4
ka(x7y7 k) = _Ee H y|@v<y)7 qu(y,Z,Q) = _Ee ey |HU<Z)

respectively. Obviously, for the operator norms we havdahewing inequalities

1 1
IViQllee < —IIVlinirey <00, [IVePlloo < —lIUllr2ms) <00 (4.35)
by means of the rate of decay of the scalar potentidls) andU (y) given precisely
in Assumption 1. Thus, in order to establish the convergémeero as: — oo of

the L>*(R%) norm of the expression (4.34), we will need to estimate theesims
given below. The first one is

eilm

Tl,n(k:7 q) = <fn(l’, y) - f(xay)a —glan(y)> ; ka qc Rg'
(o)’ -
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We easily obtain via (2.24) that

1 1
(27)° 1 = [|P[loo

Tin(k, )] < ] fo = 2] f] 21 e),

suchthat|T' ,,(k, q)|| = ®e)y — 0, n — oo by virtue of the assumptions of Theorem
2. The second term which we need to estimate is given by

ik

TQ,n(kv Q) = <fn(xv y) - f(xay)a (I - Q)_lQe—:aixHQ(y)) ; k?, qc Rg-
L2(RS)

(2m)2
Evidently, we can find the upper bound for it in the absoluleeas

1 1
1 —@lloc 1 = [ Pllss
such that the normiTs ,,(k, q)|| L~ rsy — 0 asn — oo by means of the assumptions
of Theorem 2 and (2.22). Note that in the argument above we thgeupper bound

for the norm||Qe™**z|| ;= rs) obtained in the proof of Lemma 2.4 of [18] along
with (2.24). The third term we need to investigate is
ﬁq(y)> )
L2(R9)

with k, ¢ € R3. By virtue of (4.35) along with (2.24), we easily derive thequality

OV (@) || o) + CIV (@)l g o) HIfw = Fllzr@e),

ikx
1 €

(2m)

Tsn(k,q) = (fn(%y) = f2,y), (I - Q) (Vi@Q)( = Q)

[SI[oY

g Vs e
= P (1= TP - 1Ql)

such that the norm75 ,,(k, q)|| L rsy — 0 @asn — oo by means of the conditions
of Theorem 2 and (2.22). Let us take a look at the fourth termckwis

T5n(k, q) 5 | fr — f”Ll(]RS);

Run(kg) = (fn<sc,y> ~ f e y)ula) w) ,
1Y) e

wherek, ¢ € R3. Using (2.24), we obtain the upper bound

1 1
(27)° 1= [[Qllo

Hence|| Ry, (k, q)||L@sy — 0, n — oo via the assumptions of Theorem 2. The
fifth term to be estimated is given by

|R1,n(k7 q)| S

Wyl fr = |yl f || ws).-

ety

Ry u(k,q) == <fn(x,y)—f(x,y),sok(x)(f—P)‘lP giy> , k,qeR’
27)% ) ooy
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Evidently, via (2.24) it can be bounded from above in the alisosalue by
1 1
1= [|Qloc 1 = [[Plloo

such that| Ry, (k, q)|| 1 ®s) — 0 @asn — oo by virtue of the conditions of Theorem
2 and (2.22). We used the estimate from above for the fj@Pat¥y|| ;- =) derived
in the proof of Lemma 11 of [19]. Finally, it remains to invigstte

{CIU Y)Yl es) + CIU @Y 4 o) H Fn = Fllzres),

RB,n(kv(D = <fn(:13,y) - f('rvy)v(pk‘@j)([_ P>71(vqp)([_ P)il (26:;!%>
L2(RS)

with &, ¢ € R3. Bounds (2.24) and (4.35) imply

< Ul @)
—Ar(2m)? (1= (| Qllee) (1 = [[Plloc)

Thus, the assumptions of Theorem 2 along with (2.22) yiiétgl,, (k. ¢) || oo ®re) —
0 asn — oo, which completes the proof of the part a) of the lemma. Therune
our attention to establishing the result of the part b).

Obviously, fork € R? andgq € R?, we write(V,, + Vq)gg(k:, q) as

eikx eikx
(cb(x, Y), —éian(y)> + <¢(x, Y), —évqnq(y)>
(27T)2 L2(Rd+3) (27T)2 L2(Rd+3)

and(Vy + Vq)din(k, q) as

|R3,n(k7 q)

S = fllo s

ik

ikx
On(1,y), ——5 ixm@)) + (aﬁn(aﬁ, y), —— anq(y)> :
< (277-)E L2(Rd+3) (27T)§ L2(Rd+3)

Therefore, to conclude the proof of the lemma it remains v@stigate the four
terms given below. The first one is

ikx
e—gzan(y)> ’ ke Rd7 q € RBu
2

(27T) L2(Rd+3)

Ml,n(kv(D = <¢n(:c,y) - (b(SL’,y),

such that via (2.24)

1 1

My, (k,q)| <
Manll 01 < o TP

lz|¢n — ||| L2 a+s)-
Hence|| M, ,,(k, )| oo wa+sy — 0, n — oo due to the assumptions of Theorem 3.
The second expression is given by

eikx eiqy

MQ,n(k7Q) = (an(l’,y) - gb(:E,y), 9 %l

iy) . keRY geR3
L2(Rd+3)



Hence

1
(Mo (k@) < —z [[yldn — [y[@]| L1 mass)
(2m)"
and therefore||Ms . (k, q) || Lo (ra+3y — 0, n — oo by virtue of one of the con-
ditions of Theorem 3. The third term to be estimated foe R?, ¢ € R? will
be

ezkm 1 eiqy
MS,n(k7Q) = ¢n(xay) _¢(xay)7 g(I_P)_ P §iy .
(27T)2 (27T)2 LQ(Rd+3)

It can be bounded above in the absolute value by by

1

T IVl + CIUGII 4 o HIgn = s gosa),

such that the normiMs ,,(k, )| Lo (ra+sy — 0 @sn — oo by means of the assump-
tions of Theorem 3 and (3.27). When obtaining the estimat¥@bwe relied on
the upper bound for the norffPe’®y|| sy derived in the proof of Lemma 11 of
[19]. Finally, we consided/, ,,(k, q), defined fork € R?, ¢ € R? as

N

<¢n(xay) - ¢(:L‘,?/), ¢ x(l (I — P)—l(vqp)(l_ P)_l iy ) |
2 (27T> L2(Rd+3)

1\44,11 7q — ( ||P|| ) [ Ll(RS) ¢7’L d Ill(Rd 3)

and|| My (k, q)|| Lo wa+sy — 0 @asn — oo due to the conditions of Theorem 3 and
(3.27), which completes the proof of the part b) of the lemma. [ |
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