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1 What is Euler’s group of a complex integer?

The ringZc of the complex integer numbers contains for each complegerz = x+ iy
(x€ Z,y € Z) the idealzZ¢ of the elements divisible by

The quotient ring (formed by the residues modala Z¢) consists of|z]2 = x2 + y?
elements:

Z,=1Zc/(ZLc).

The invertible elements of the quotient ring form (commiwegtmultiplicative)Euler’s
group of complex integer z

F(2)={re€Z;:3weZ,|rw=1}.

The number of elements of this group is Euler’s functionsigag ().

The present paper describes these groups, the complegiinteging a power of a prime
complex integer.

The prime complex integers are subdivided into three types.

I. The real prime number 2 is not prime from the complex pofntiew, having smaller
divisors:

2= (1+i)(1—i).
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Therefore, the even prime number 2 is replaced in the congale& by four complex prime
numbers
(£1i).

Il. The real prime number 3 remains prime from the complexipof view. Every real
prime number = 4k+ 3 is replaced in the complex case by four complex prime nusber

+r,  ir.
Ill. The real prime number 5 is no longer prime from the compieint of view:
5= (+2+i)(£2Fi) = (£1+2)(£1F2).

Every real prime number= 4k+1 is replaced in the complex case by eight complex prime
numbers

(£p*ig), (+qxip),

wherep? +? =r.
Euler’s groups of powers of complex prime numbers are ginghe following list.

l.z= (1+0)".
[(2) > Za X Zipa2 X Lpa1, n=2a, a> o6,
I_(Z) ~ 7.4 X Zzafl X Zzafl, n=2a+1, a>6.

In both the cases Euler’s function has the vajueg) = 2",
Il. z= (4k+3)", 4k+ 3 being a real prime number.

[(2)~Zyx(Zy)?  where u=(4k+3)2—1, v=(4k+3)"L.

Euler’s function has the valug(z) = (4k+3)?" — (4k + 3)2"~2 = 8(k+ 1) (2k + 1) (4k +
3)2"-2. In the case K+ 3 = 3 one getsp ((3+i0)") = 8-9"1, for 4k+ 3 = 7 one gets
¢ ((7+i0)") = 48-49" 1,

lll. z= (p+iq)™, the numben = p? + g2 = 4k+ 1 being a real prime.

F(@~Zp ge1,  $((p+ig)") =¢(n™) = (n—1n™ .

The proofs of these results are different in the three cadésihd Ill. The case Il has
been studied in [1], where the proof is given for the prinket8 = 3 with all the details
(other primes of this form, like 7 and so on, behave similarly

The proofs for the case | are contained belowg(@for n = 2a and in§ 3 forn=2a+1).

The proofs for the case Il are given belowgd.

For the powerg, = (1+i)", Euler's groupd (z,) for small evem, calculated explicitly
(being long for the large values aj, provide the following list:

n |2] 4 | 6 | 8 | 10 | 12
I_(Zn) || Zg | ZzXZ4 | ZQX(Z4)2 | (Z4)2><Zg | Z4XZSXZ16 | Z4><Z16><Z32

Theorem 1 Euler’s groupl” (z,), where n= 2a > 6, is isomorphic to the direct product of
three cyclical groups
I (zn) = Za X Zigp X Zopa,

where p=a—2,q=a— 1.

The list of the valueg, = (1+1i)" starts from
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n || 1 ]2] 3 |4] 5 | 6] 7 |38
zZ, [[1+i]2i] -2+2[ 4] 4-4]-8][8-8 ] 16
|20|? 2 | 4 8 16 32 64 | 128 | 256
o(z) || 1 |2 4 8 16 32 | 64 | 128

The fourth line contains the values of Euler’s function

¢ (z0) =T (z0)

it is the “number of the residues modutg, which are relatively prime witla,”, that is the
number of the invertible elements of the rifg, .

I

Lemmal A residue r= X-+1y € Zz, modulo z = (1+1i)" is invertible if and only if the
integer x+Y is odd.

Proof Consider the product
X+iy = (141)(u+iv)

(wherex=u—v, y=u-+V). If the integerx+Y is even, there exist integers
u=(x+y)/2, v=(y—x)/2.
In this case the element= x+ iy is not invertible, since
zw= (1+i)(u+iv)w# 1 (mod(1+i)).
Whenx+y is odd, we find the representation
z=1+tz;, t=u+iv,

whereu= (x—14Y)/2,v= (y+1—Xx)/2. This representation proves tlzs invertible in
Zy4,, SiNCE
w=z1=1—(tzy) + (tzz)? — (tz)%+---.

This geometrical progression is finite in the rifig,, wherez] = 0. O
The Lemma provides the values of Euler’s functipmat the complex points;:
¢ (2) = |Za| /2= za?/2 =271,

Therefore, the commutative groui(z,) is of order|I" (z,)| = 2"~*. Consequently, its rep-
resentation in the form of a product of cyclical groups is

[ (z0) ~ (Z2)® % (Z4)% x (Zg)® x -+,
the integelas being the multiplicity of the multiplieZ,s:
|,_(Zn) | _ 261+2E12+3E13+“‘.
We have thus proved

Lemma 2 The multiplicities of the cyclical multipliers of Euler'saup I (z,) satisfy the
relation
ay+2a+3a3+---=n—1
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2 The case of the even powers of the smallest complex prime @éger 1 +

We start from counting the solutions of each of the followeggiations
w=1l w=1 w=1 w=1

for the elementsv € I" (z,) of Euler’s group of(1+i)22.
For a cyclical groufZy these numbers of the solutions form the sequence

{1,2,22, 2%, ..., 2}.

It follows that for the product groufopr x Zo4, whereq = p+ s, the numbers of the
solutions form the sequence

{1,4,42, ..., 4P, 4P.2,4P. 22 | 4P.2%}

(the multiplier 4 being addegd times and the multiplier 2 being addetimes).
Similarly, for three multipliers

Zzp X qu X er

(wherep<g<r,gq=p+s,r=qg+t) the sequence of the numbers of the solutions takes
the form

{1,8,8% ...,8° 8°.4,8°.4% ... 8°.45 8°.4°.2 ... 8°.4°.2'}.

The products of more multipliers provide similar sequendéss reasoning yields the
following conclusion:

Lemma 3 The number of the square rootsbin the group
[~ (Zp)™ X (Z4)® x -+ X (Zpn)®

equals
231+E12+"'+ah

The number of the rootw of equationw? = 1 in Euler’s groupl (z,), wherez, =
(1+1i)", can be easily computed explicitly.

Lemma 4 The number of the square roots wiah Euler’s groupl” (z,), where g = (1+i)",
n=2a > 6, equals8.

Proof Two rootsw = 1 andw = —1 are obvious. Whemv is a root, the shifted version
w =w+ 221t is also a root:

(W)2=w?+2-w22 1t 42222 =w? (mod 2).

Choosing =0, 1, i, 1+i, we deduce from the roet = 1 four shifted versions/, and from
the rootw = —1 we deduce four more shifted roots.
We prove now that there exist no other square raotsx-+iy of 1 in our Euler’s group.

Indeed, we find
w2 =2 — y? + 2ixy,
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and therefore the complex congruenee= 1 (mod 2) implies two real congruences
¥ —-y?=1 (mod?), 2xy=0 (mod?).

The first congruence shows theandy are different modulo 2. Considering the residues
modulo 4, we see thatis odd,y being even:

x=2A+1 y=2B.
The second congruence shows that
(2A+1)B=0 (mod 2 2),

implying thatB = 22—2¢, y = 23 1c.
Now the congruencg? —y? =1 (mod 2) provides the condition

4N° +4A—4B%> =0 (mod 2),
A2+ A=0 (mod22).
This congruence implies the divisibility by*2? either ofA or of A+ 1:
eitherA=2%2g orA=2%?g—1,

and therefore
eitherx=22"1g+1 orx=22"1g—1.

To get all the possible values &f(mod 2), it suffices to choosg = 0 or 1, providing
totally 4 values.

In each of these 4 casgs= 22~1c (c being 0 or 1), providing the £ = 8 rootsw of the
equationw? = 1. We have thus proved that this equation has no other sotutivEuler’s
groupl (zn). O

Lemma 4 together with Lemma 3 imply

Corollary 1 Euler's groupl” (zn), zy = (1+1)" (where n= 2a > 6), has3 cyclical multipli-
ersZss, their multiplicities a satisfying the two conditions

yt+at---=3,
ay+2a+3a+--=n—-1

Study now the degree 4 roots of 1 in our Euler's grdu(z,) (wherez, = (1+i)",
n=2a> 6).

Lemma5 The number of the roots of degréérom 1 in this Euler group equal§4.
Proof The 8 square rootw of 1 all have one of the following two forms:
we {1+c&, —1+cé},

whereé =221 cc {0, 1, i, 1+i}.
For the case = 0 the square roots of these valwesire provided, first, by the evident
roots

vWwe {1, -1}, vwe {i, —i}.
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Each of these 4 values provides (being shifted’y which shift does not change the value
of the square modulo®? a quadruple of roots. This way we get 16 roots of degree 4 from
(their squares being 1 anell).

To move from,/wto \/w+ cé, note that

w+c& =w(1+c’€), wherec” =c/w.

The Newton binomial formula provides

1 11
(W+cé)2=wt/? (1+d—;+ 2 (2 2) (C”E)2+---> :

The denominator in the term containifg'& )X equals 8kl. The number of the factors 2 in
the prime multipliers decomposition of the intedeeequals
i(k)=[k/2]+ [k/4] +--- < k/2+k/4+--- < k:

|9 10 11 12 13 14 15 16
|7881010111115

k]2
ik |1
Therefore, the summand of the binomial series

(C//Zafl)k
2Kk

is divisible by 2a-Dk-k-k — 2(@-3k and thus this summand equals 0 modufo22(for
sufficiently largek). Thus, the binomial series has a finite number of terms, andet (for
every of the 4 values =0, 1, i, 1+i) an octagon of the square roots (similarly to the case
¢ = 0 considered above).

These computations provide 8 = 64 roots of degree 4 from 1 ifi(z,) (proving also
that there are no others). O

Comparing Lemma 5 which we have thus proved with the sequefite numbers of
roots (mentioned above, see the text preceding Lemma 3) diecdgfrom the numbers
(1, 8, 64) of the roots of degreed, 2, 4)) that the minimal multiplier i€p, wherep > 2.
The presence of the multipli&is is implied by the following reasoning: otherwise each root
of degree 4 from 1 were a square, while the equationiy)?> =i (mod2) is unsolvable,
the product y being even.

Therefore (fom = 2a > 6) we get the decomposition

I_(Zn) ~ 74 X Zipa ><er7
where 2< g < r, implying the relation
2+9g+r=n-1, qg+r=2a-3

As we will prove belowq=a—2,r =a— 1. The proof of these equalities starts from
the following fact.

Lemma 6 For every element z of the group of Eulefz,) (where n= 2a > 6), there holds
the relation 2 = 1 for every k> a.
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Proof The representation= 1+tz; (explained above, in the proof of Lemma 1) implies
for ze I (zy) the relation
Z=1+2z +t?2i =1+ 2.

Therefore, there hold also the relations

=144t + 4 =144,
A=1+8n+162 =1+8;,

and so on till
228 = l+23t3

Knowing that 2 = 0 in the quotient rindZ,,,, we findz" = 1. O

Lemma 6 implies that in the above factorization of the Eulerug into the cyclical
ones, the numbergandr do not exceed. Therefore, the relatiog+r = 2a— 3 might hold
only for the two cases:

eitherf(g=a—3,r=a) or(q=a—2,r=a-1).

We will prove now that the first case is impossible. To see ttossider the real Euler
groupl” (22). It is proved in my book [2] thaf (22) ~ Za 2 X Z,. The elements of the form
1+4c € I (22) form in this real Euler group a cyclical subgroup of ord&r2

If for the complex Euler group it were

I_(ZZa) ~ 74 X Zipg X Zgr7

where(q=a— 3, r = a), then the above cyclical real subgroup would lieZis, and its
elements would be squares.
Consider, however, its element 5. Ifi(z,) there were the relation

5= (x+iy)? (mod2),
one would have the real relations
¥ —y*=5 (mod?), 2xy=0 (mod2).
The first relation implies (considering the residues modilthatx is odd,y being even:
x=2A+1 y=2B.
The congruences take the form
AA? L AA—4B? =4 (modZ), (2A+1)B=0 (modZ2).
Therefore, one would have
A2t A=1 (modZ2), B=0 (modZ?).

The productA(A+ 1) being always even, the first congruence is impossible, diaiuthe
caser = a.
Thus,(q=a—2, r =a—1), proving Theorem 1. O
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3 The odd powers of the smallest complex prime number 1

This sequence of complex integers starts from the tdansz, ...}:

a || o | 1 | 2 | 3 | 4 | 5
Zoar1 || 1+1 |2-2| —4—4 | —8i+8| 16+16 32— 32
O(zar1) || 1 4 16 64 256 1024

MNzoas1) || {1} | Za | Zax(Z2)? | (Z4)® | Zax (Zg)? | Zax (Z16)?
The fundamental domain for the quotient ring
Zpayr = L/ (Z2ar1Zc)
may be chosen to be the square with sides
(Zoat1, 1Zoar1) = (2+i2%, =22 +i2%).
The area of this domain equal§?!. Therefore the quotient ring consists of

}ZZZaJrl } = 22a+l

elements.

The invertible elements+ iy are exactly those, for which the sums-y are odd (the
proof is similar to that of Lemma 1 if11). The area of the elementary square of the lattice
of the invertible elements equals 2. Therefore the numbéreinvertible elements equals

I (Z2as1)| = ¢ (z2as1) = 222 = 42,
In the casea = 1 one hasz = 2i — 2. The groupl” (z3) is therefore formed by the 4
residues{1, —1, i, —i}:
I_(Zg) ~ Z4.
In the case = 2, wherezs = —4 — 4i, the group’ (z5) consists of the 16 residues
X+iy : (0<x4+y<8, 0<y—x<8),
the integers andy being different modulo 2:
{1,3,5, 7,1, 3i, 5i, 7i, £1+2i, £2+ 3i, £2+45i, £1+6i}.
In their group, there hold the relations
P2=32=52=72=(+£1+2)? = (+x1+6i)> =1,
i2=(3)2=(5)2= (7)) = (£2+3I)> = (£2+5))° = -1="7.

The number of the elements of this commutative group beingleg 2 = 16, it is the
product of the cyclical group&.»:

I (25) = (Z2)™ x (Z4)% x (Zg)® x -+,
whence 21t2%2+3%+ = 24 and therefore

S +2%+33+--- =4
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The number of the square roots from 1 in this group being el
™1t RtBt =8 g 45453400 =3.
Therefore, there hold the relations
S+253=1, $3=0, =1 =2
We have thus proved the isomorphism
[(25) ~ (Z2)? X Za.

The calculation of the next groups(z,1) might be performed similarly, but it might
also be replaced by the following

Theorem 2 Euler’s groupl™ (zza+1), Where a> 3, is isomorphic to the product of three
cyclical groups,
F((A40)2) ~ Zg x (Zpa1)2.

Proof Reasoning as above, we get the relation
M =T ((1+0)2) = (Z2)™ x (Zg)% x -,
whence the identity
™) _ g2,
The number of the square roots from 1 in graupequals ES" (each multiplierZy

contributing 2 elements of the product-root, being encexgts; times).

Lemma 7 For each a> 2 the number of the square roots frdnin the complex Euler group
I ((1+i)%+1) equalss.

Proof It is easy to find 8 roots: one starts frams= 1, and starting from a roatof equation
7 = 1 one finds more roots, shifting the known root by the halfpsi

Z=z+c, where c=22"1(i+1).

Indeed,
(Z)? =2 +2cz+ ¢,

the terms 2 = 23(i 4 1) andc? = 232(i + 1)2%(i + 1) belonging to the idedl1 +i)%1Z¢
generated additively by?2i + 1), whena > 2. The elements®* andi 22+ belong to this
ideal.

Each rootz= 41 of equatiorz = 1 generates 4 shifted roots

Z=z+22u(i—1)+v(i+1)],

where(u,v) € {(0,0), (0,1), (1,0), (1,1)}.
There are no other square roots of 1 in Euler's gréi§1-+i)?™). Indeed, denote
such a root by = x+iy. The complex congruence

Z=1+22a(i—1)+B(i+1)]
means the pair of real congruences,

Ry =1+ 2(B—a), 2xy=22(a+p). ()
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The first congruence implies thatandy are different modulo 2. Studying the residues
modulo 4, we see thatis odd,y being even:

x=2A+1 y=2B.
The congruencesx) take now the form
AN +A-B?) =22(B—aq), 4B(2A+1)=22(a+p).

Thus,B is divisible by 272, and therefore B? is divisible by 222, being thus divisible by
28;
A2+ A=222D B=2*>7C.

The first congruence means that
eitherA=22"2p orA=222Q-1,

and therefore
eitherx=22"P+1 orx=221Q-1

We obtain therefore fox 8 possible values (inside one fundamental domain for theifac
ization modulo 2(i + 1)).

Fory = 2B the divisibility conditionB = 22-2C provides (in this fundamental domain)
at most 2 values, and thus one gets 16 possible pairs.

For each of these pairs one calculates (uging the values of the parameteff —
a, B+ a). These values are different modulo 2 in 8 cases from 16, whithpossible for
any integer values aff andf3.

There remain 8 cases (providing exactly the 8 shifts of tieéso= +1 studied above).
Lemma 7 is therefore proved. O

Corollary 2 Euler’'s groupl (z,), where n=2a+ 1 > 5, has 3 cyclical multipliersZs,
whose multiplicities asatisfy the two relations

a+at---=3,
a+2ap+3a3+---=2a

To find these multiplicities, calculate the roots of degrefofn 1 in Euler's group
r((1+i)%*1), wherea > 2.

Lemma 8 The number of the solutions of equatidhn=z1 in Euler’s groupl” ((1+1)%2*1)
equals6a.

Proof All the 8 square roots from 1, calculated above, are of the forms
we {1+c&, —1+cé},

where =2>1andce {0, 1, i, 1+i}.
Forc = 0 one finds immediately the roots

vwe {£1}, we {&i}.

Each of these four roots provides (by the shifts’dt, which do not change the squares,
modulo(1+i)%2*1) a quadruple of roots of equatiaf = 1.
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Thus we construct 16 roots of degree 4 from Ti(’(l+ i)za“), whose squares are 1
or—1.
To move from/Wto \/w+cé, &€ being 21, represent the sum as the product

w+cé =w(l+c’E), wherec” =c/w.
The Newton binomial formula has the form
(W+c&) Y2 =w2(1+¢"E/2— (€)% /8+-).

The degred term
(c"&)
2KK!

is divisible by a power of 2, which is growing witkk Therefore, the binomial series is a
finite polynomial, providing (for eack € {0, 1, i, 1+i}) eight shifted roots (similarly to
the situation foic = 0 described above).

These calculations provide-8 = 64 roots of degree 4 from 1 in Euler's grolp=
I ((1+i)%*1), proving also that there exist no other roots. O

The resulting numbers (1, 8, and 64) of the roots from 1 of eleg(1, 2, and 4) ifi
show that the lowest multiplier in the decomposition of gréuinto the cyclical ones is of
the formZgp, p > 2.

In fact p= 2, otherwise each root of degree 4 from 1 were a square, Widledngruence

(x+iy)2=i (mod(1+i)%*?)

has no solutions, the integexybeing even.
Therefore, we have (faa > 2) the representation

F((14+0)27) ~ Zyx Zoa x Zyr, 2< <,

whence 2-q+r =2a,q+r =2a—2.
We will prove below thagg=r =a—1.

Lemma 9 For each element z of Euler’s group((1+i)%*1) (where a> 2) there holds
the relation 2 = 1 (for every k= a).

Proof The relatiorz= 1+tz (wherez; = 1+1i), discussed in the above proof of Lemma 1,
provides, successively, the corollaries

Z =142z +t%2 =1+ 24,
=144ty 442 = 1+ 4t,
A=1+8p+162=1+8t3, ...,
228 = l+23ts.

The relation 2 = 0 in the quotient MngZ 1 jyza+1 implies the relation”Z” = 1, proving
Lemma 9. 0
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This Lemma implies that in the preceding decompositiont (pefore the Lemma) of
Euler’'s group™ ((l+ i)z""“) into the cyclical multipliers, the numbegsandr do not exceed
a. The relationg+r = 2a— 2 can be only realized in the two cases r:

(g=r=a-1), (q=a-2, r=a).

We will prove below that the second case never happens.
Consider the multiplicative group of the invertible readicies modulo 21,

ry=1{13 ..., 2" _1}.
This group is isomorphic to the product of two cyclical greup
(22 ~ 7o X Zga 1,

as it is proved in the book [2]. Moreover, it is proved therattbne may choose as the
generator of the second cyclical multiplier the element 5.
The above real Euler group forms a natural subgroup of ouptaEuler’'s group:

M2 C F((14i)%).
The complex group’s isomorphism to the product
ZaxZopaxZy (q=a—2, r=a)
would provide the projection of the subgroup
Zga1 C I (2211)

with no nontrivial kernel to the multiplieZ.,a, sending the generator&sI (23+1) to a full
square
5= (x+iy)? € I ((1+i)%).

However, the corresponding congruences
{x2y2—5+za</3a>,
2xy=22(B+a)
lead to the conclusions that (as above)
x=2A+1 y=2B,

AN+ A-BY) =5+22(B—q),
4B(2A+1) =2(B+a),

implying the congruence
A?+A=5 (mod2).

But the productA(A+ 1) is even, making the preceding congruence impossible. There
fore,(q, r) = (a—1, a— 1), and we obtain (foa > 3) the required isomorphism

F((141)%2) ~ Zy x Zpa 1 X Zpa 1

of Theorem 2. O
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4 Prime complex divisors of the real primesn=4k+1

Example The real prime numbar = 5 is not a complex prime number, since
5=(24+1)(2—1).

Every real prime number = 4k+ 1 has a similar representation

n=p’+qf = (p+ia)(p—ia),
being a product of two complex prime integepstiq € Z¢.

The complex Euler groups of the powersmf iq are calculated below.
Theorem 3 Complex Euler’s group
r((p+ia)™)
is cyclical, its order being equal to the value of the real &uunction¢ at point i™
I ((p+iq)™) ~ L (nm) = ZLp_1ynm-1

(provided that n= p? + ¢ is a prime integer, equal th modulo4).
Proof The proof starts from the following elementary fact.

Lemma 10 If the odd number g= p? 4-¢? is prime and(p+iq)™ = P+iQ, then the integers
P and Q are relatively prime.

Example 1For (n=5, p=2, q= 1) one gets, for instance, the following valueshof
andQ:

ml|1]/2|3] 4] 5 | 6
P(2|3|2]|-7|-38]| —-117
Q| l1|4]|11| 24| 41 44
Example 2For (n= 10, p= 3, q= 1) one gets, for instance, the following valueshof
andQ:
ml1]/2]3] 4
P|3|8]|18] 28
Q|l1]|6]|26]|96

The integersP and Q here are not relatively primen(= 10 being not an odd prime
number).

Proof of Lemma 10f there were a largest common divisbr> 1 of two integers® and
Q, the obvious relation
P2+Q2 — (p2+q2)m — nm
would imply thatd? is divisible by the prime numbem, and hence the integeBand Q

would be divisible byn.
This divisibility is, however, impossible for the followgnreason.

Lemma 11 If p? 4 ¢? = n, then there holds the congruence

(p+ig)™= (2p)™ *(p+iq) (modn).
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Proof Form= 2 it is obvious:
(p+ig)? = p? — o? +2ipq = 2p? —n+ 2ipg = 2p(p-+ig) (modn).
If the congruence holds fan = k, then one gets inductively
(p+ig)*"* = (2p)* *(p-+ia)(p+iq) = (2p)“(p+iq) (modn),
and therefore the congruence of Lemma 11 holds for all vaifies O
Applying Lemma 11 to the numbét+iQ = (p+iq)™, we conclude that
P+iQ = (2p)™ *(p+iq) (modn).

The right-hand side is not divisible by the prime numbéthe divisibility of p by the prime
n would imply the divisibility of ¢?, and hence ofj, by this primen, and then the sum
p? + g% = nwould be divisible by?).

We have proved th&® andQ cannot be both divisible by, and hence the largest com-
mon divisord of integersP andQ is d = 1, which proves Lemma 10. O

Consider now the quotient ring
L(ptiqm = Ze/((p+ia)™Zc).
The denominator lattice is generated by the sides of thersqua
P+iQ=(p+iq)™, i(P+iQ)=-Q+iP.

The area of this square equdls’ + g?)™ = n™, and thus the quotient ring consistsrét
elements.

Consider now the natural embeddiig- Zc of the ring of real integer numbers as of a
subring of the ring of the complex integers.

Lemma 12 The intersection
ZN (p+iq)"Zc
is exactly the ideal of the real integers that are divisibjerfy'.
Proof Consider an intersection point
a(P+iQ)+B(-Q+iP)=y+i0

(with real integersa, 3, y).
The second of these congruences

aP-BQ=y, aQ+BP=0

implies that(a = PA, B = —QA) for some real integeA (the numberd? and Q being
relatively prime, according to Lemma 10).
The first congruence takes the form

y=(P2+ QA =n",

proving that the intersection point belongsnttz.
For A = 1 we get the intersection point

y=P*+Q=n",

proving Lemma 12. O
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Lemma 13 A pointy € Z, that is relatively prime toH, defines an invertible element in the
quotient ringZy,.iqym-. There are no other invertible elements in this quotiengrin

Proof The inclusionZ — Z¢ induces the isomorphic mapping between tHeelements
quotient rings,
Zom — Ze [ ((p+ia)Zc ),

according to Lemma 12.

The invertible elements are sent by this isomorphism to tiwertible elements, and
therefore this isomorphism induces an isomorphism of taeEaler group and the complex
one,

r(n™ =r((p+ia)"),

provided thatp? + g = nis an odd prime number. O

This isomorphism proves Theorem 3 (see Fig. 1). O

7 8

13 1416
1921 22 23 24
1 2 3 46
911 12

17 18

i(2+i) &

0

Fig. 1 The isomorphism between the real and complex Euler grau(®§) ~ I ((2+1i)2). Due to technical
reasons, a box around the lowest zero is not drawn.
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