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Abstract:  In this paper, a novel reconstruction method is presented for 
Near Infrared (NIR) 2-D imaging to recover optical absorption coefficients 
from laboratory phantom data. The main body of this work validates a new 
generation of highly efficient reconstruction algorithms called “Globally 
Convergent Method” (GCM) based upon actual measurements taken from 
brain-shape phantoms. It has been demonstrated in earlier studies using 
computer-simulated data that this type of reconstructions is highly efficient 
and stable for imaging complex distributions of optical absorption. The 
results in this paper demonstrate the excellent capability of GCM in working 
well with experimental data measured from optical phantoms mimicking a 
rat brain with stroke.  
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1. Introduction  

The studies using Near Infrared light (NIR) for biomedical imaging have become quite 
extensive in the past 15-20 years. Earlier applications of NIR imaging started with breast 
imaging, see [1-4], since NIR has better penetration depths in soft tissues than visible light. 
Applications of NIR technologies have made tremendous progress, including the detection of 
brain injury/trauma, see [5], the determination of cerebrovascular hemodynamics and 
oxygenation, see [6-9], and functional brain imaging in response to a variety of neurological 
activations [10-12]. Recently, the technique was also successfully used for measuring the 
efficacy of photodynamic therapy for prostate cancer, see [13]. Among several common NIR 
imaging mechanisms Frequency Domain (FD) imagers were developed and used in patients, 
see [14], and Time Domain (TD) methods were  used for brain studies in [15, 16]. As a low-
cost alternative to the TD and FD imaging systems continuous-wave (CW) NIR imaging 
systems have become more commonly used in recent years.  We refer interested readers to 
review the references [17-20] for further reading of functional NIR brain studies. 
      To spatially quantify brain hemodynamic activities resulting from functional neuronal 
signals, it is desirable to extract distributions of light absorption from light intensity 
measurements through mathematical models. Since these optical properties are described by 
coefficients in the light diffusion model, see [21, 22], one needs to solve an inverse problem of 
the corresponding partial differential equation, the diffusion equation, to obtain diffuse optical 
tomography (DOT). 
      The inverse reconstruction for DOT has been mathematically challenging. The problem is 
nonlinear as well as ill-posed. As reviewed by Hielscher in [23], the majority of the inverse 
reconstruction algorithms used for DOT has utilized a perturbation approach involving the 
inversion of large Jacobian matrices, for examples see [24-26]. A common point of these 
mathematical schemes is the trial and error procedure in searching a reasonable approximation 
of the solution of the problem. Because DOT problem is ill-posed and under-determined by its 
nature, one may utilize a regularization scheme to approximate the solution. With 
regularization introduced in solving the problem, more than one local minima of residue 
function exist in general. The successful reconstruction of the unknown coefficients depends 
highly on the initial guess being close to the true solution. In other words, because the least-
square residues might have multiple local minima, see [27], the reconstruction may converge 
to a false solution (a different local minimum of the residue than the actual solution) if the 
initial point fails into its domain of attraction. One recent major advance in the field was done 
by Schotland and his collaborators using linearized equations to reconstruct see [28].  They 
were able to reconstruct in high resolution 3D NIR images without the use of iterative 
methods. Since their method is based on linear integral equations with explicit Green’s 
functions, they overcame the shortcoming of local methods and achieved precise solutions. 

However their phantom experiments used a large number of measurement points (3×10
8
) for 

a single experiment. Their mathematical approach was very different from our method which 
is a fully nonlinear model. 
      Our current focus of theoretical research is on numerical methods that have no restrictions 
on the initial guess, namely, the development of a Globally Convergent Method (GCM) as 
initiated by Klibanov and Timonov [27, 29].  Our earlier generation of a GCM is called a 
“convexification method,” as introduced in [29], based on modified residual error estimates. A 
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typical Carleman weight function is an exponential function that weights more on the light 
source side, and the decay coefficient needs to be chosen according to the problem to modify 
the second derivative of the error function. When a proper Carleman weight function is added 
to the error terms, those residues depend on the unknown variable in a convex manner. Since 
any convex function is known to attain its unique minimum mathematically, the modified 
problem is assured to have the global convergence to the unique minimizer, and the solution 
can be obtained by solving the “weight-modified” inverse problem from any initial guess. Our 
current approach (2

nd
 generation of a GCM) is called a continuation method or homotopy 

method, as defined in [30]. The homotopy connects the sought system with a similar system 
that is easier to solve.  In this approach, our inverse reconstruction is a continuation of 
reconstructions from a DOT problem where light sources are far away yielding a “tail 
function”, see [31, 32] for references to the “tail function”. This new generation method has 
achieved satisfactory results in reconstructions of simulated CW data, see [33]. A similar 
GCM was developed for the case of the reconstruction of a coefficient in a wave-like time 
dependent partial differential equation by Beilina and Klibanov [34, 35]. This paper proceeds 
to show the validity of this method based on physical measurements using laboratory optical 
phantoms with the shape of a rat head. The recovered parameters include the locations and 
imaging contrasts of unknown inclusions hidden within the phantoms.  Comparing with [36], 
the current paper reports the validation of GCM by reconstructing from the so called “Blind” 
data, i.e., reconstructing without assuming any prior knowledge of the total numbers, locations 
and the optical parameter values of inclusions. This is the main contribution of the paper to the 
DOT research community. 
      In this article we present the theory underlying the 2

nd
 generation GCM in section 2. 

Section 3 presents the experimental setup for the optical phantom study and its data 
acquisition scheme in 3-D geometry to be processed for 2-D tomography. In section 4 we 
describe the numerical reconstruction steps and then present results of reconstructed 
absorption coefficients.  We summarize by conclusions and discussions in section 5, in 
particular, compare GCM with a conventional DOT method which indicates the advantage of 
GCM in reconstructing the absolute values of inclusion absorption coefficients. 

2. The mathematical model 

2.1. The optical diffusion model 

An optical light source can be used in three forms in DOT: (1) the light is amplitude-
modulated at a radio frequency (RF) in Frequency-Domain NIR imaging, (2) the light has a 
short pulse with a pulse width of a few pico-seconds used in Time-Domain NIR imaging, and 
(3) the light has a continuous-wave (CW) form and the amplitude is independent of time. In 
this paper we only discuss the CW-based problem. The time-independent diffusion equation 
and boundary conditions of the CW case can be found in [21] for a source location parameter 
s:  

( ( ) ( , )) ( ) ( , )aD x,y   x, y s  μ x,y  x, y s     0( , ), ( , ) ,mx x y s x y     (1a) 

0

( , )
( , ) 0, ( , ) ,

x, y s
x, y s x y

n


  


   (1b) 

where 1/ (3 )sD  .  a and s are the absorption and reduced scattering coefficients in the 

tissue, respectively, and ( , , )x y s is the photon fluence rate or photon density. The locations 

of the light sources ( , )mx s  can be chosen at several points by varying s . For 2-dimenional 

inverse problem of Eq. (1), the source is modeled by a Dirac function in the domain 0  in the 

same 2-demensional plane. The forward problem domain 0  should in theory be the entire 2-

dimensional plane, but in calculation it is a truncated rectangle, see [35]. We call 0  the 

background domain throughout this paper. Equation (1b) is commonly known as Robin 
Boundary condition, see [21].  
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Note that in our problem, ( )aμ x, y  is the major unknown to be reconstructed. The optical 

absorption coefficient ( )aμ x, y  is closely related to oxygenated (HbO) and deoxygenated (HbR) 

hemoglobin concentrations. Specifically, the determination of ( )aμ x, y  at two wavelengths 

leads to the quantification of HbO, HbR, and total hemoglobin concentrations, see [16-20]. 
The total hemoglobin concentration is proportional to total blood volume, an useful 

physiological indicator. Thus ( )aμ x, y  is an important index for imaging in functional brain 

research. 

In real applications, the domain of interest is a bounded and irregularly shaped domain 

contained in the background domain 0 . We call it the physical domain and write it as , e.g. 

the cross section of a rat brain. The distribution of the absorption parameter ( , )a x y  is 

unknown in the physical domain  . The locations of the light sources are outside of the 
physical domain . When the forward problem (1) is restricted into the physical domain   
we have 

 ( ( , ) ( , , )) ( , ) ( , , ) 0, ( , ) ,aD x y x y s x y x y s x y       (2a) 

 ( , , ) ( , , ), ( , ) ,x y s x y s x y    (2b) 

where    , , , ,x y s x y   represents the light intensities that can be measured on the 

boundary of domain . The right hand side of (2a) is equal to 0 because the light sources are 
located outside of the physical domain  and the light source is reflected in Eq. (2b). 

We make a change of variable from ( , , )x y s  to ( , )x, y s   by letting 

( , ) ( , ) ( , )x, y s x, y s D x y  . Then Eq. (2) becomes 

 ( , , ) ( , ) ( , , ) 0, ( , ) ,x y s a x y x y s x y      (3a) 

 ( , , ) ( , , ), ( , ) ,x y s x y s x y    (3b) 

where    , , , , ( , )x y s x y s D x y   on the boundary of  and ( , )a x y is a new unknown 

coefficient, defined as: 

 ( , )1 1
( , ) (ln ( , )) (ln ( , )) (ln ( , )) ,

2 4 ( , )

a x y
a x y D x y D x y D x y

D x y


       (4)  

where  represents the Laplacian operator.  

For the rest of this paper the focus is on the reconstruction of the parameter 

distribution ( , )a x y . This parameter ( , )a x y  reflects both the light absorption and the reduced 

scattering coefficients with a unit of cm
-2

. In NIR CW modality, one cannot separate scattering 
coefficient and absorption coefficient in a single CW measurement [44]. Additional 
measurement in a different wave-length is needed, but that is more challenging in experiments.  
In practical NIR applications, especially for brain stroke studies, one chooses a NIR wave-
length that is not very sensitive to scattering changes. We only study the absorption coefficient 
that is related to oxygenated (HbO) and deoxygenated (HbR) hemoglobin concentrations in 
the blood. Under this assumption, we only reconstruct the absorption coefficient, by assuming 

the scattering coefficient is known. When the scattering coefficient ' '( , )s sμ x y μ  is uniform in 

space, the unknown coefficient reduces to '( ) ( , ) /  3 ( , ).a s aa x,y μ x y D μ μ x y  The Influence 

of inhomogeneity and discrepancy of scattering coefficient will be discussed in the last section. 
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2.2. The idea of reconstruction 

If ( , )x, y s is known in the whole physical domain   we can compute the 

coefficient ( , )a x y in Eq. (3) in a straightforward way by computing the second order 

derivative of ( , )x, y s . A better and more stable solution, see [31], which involves only the 

first order derivative of ( , )ix, y s  utilizes a finite element version of Eq. (3) 

 ( , ) ( ) ( , ) 0,  x, y s  a x, y  x, y s dxdy 

      (5)  

where   is taken as any quadratic finite element function.  

However, we only know ( , )x, y s  on the boundary of  in real applications. So the idea 

of the reconstruction for the coefficient ( , )a x y  is to construct an approximation of ( , )x, y s  

in the whole physical domain   from the boundary measurement data. In order to achieve 
this goal, a sequence of transformations of Eq. (3) is performed. The transformed equation can 
be solved in a regular domain, e.g. a rectangle domain which contains the physical domain  , 

see [37] for an example. Once we have an approximation of ( , )x, y s , we use Eq. (5) to 

compute the coefficient ( , )a x y .  

2.3. Transformations 

 The first transformation is to let ln ( , )u x, y s  . Then Eq. (3a) becomes the nonlinear 

elliptic equation 

 ( , , ) ( , , ) ( , , ) ( , ) 0.u x y s u x y s u x y s a x y      (6)  

Recall that ( , )
m
x s  are the locations of the light sources.  The second transformation is to 

let  2/v u s , and we obtain from Eq. (6) that 

 22

2

( , )
.

a x y
v s v

s
     (7)  

By letting ( , , ) ( , , )sq x y s v x y s   be the changes of ( , , )v x y s with respect to the location of 

the light source we obtain the following nonlinear integral differential equation. 

 22

3

( , )
2 2 2 ,

a x y
q s q v s v

s
         (8)  

where 

 
( , , ) ( , , ) ( , ), [ , ].

s

s
v x y s q x y d T x y s s s      (9)  

The term ( , )T x y  is the so-called “tail function" and is defined to be ( , ) ( , , )T x y v x y s . By 

using Eq. (7) again to eliminate ( , )a x y  on the right hand side of Eq. (8) and substituting Eq. 

(9) into Eq. (8), we obtain  

 

 

2

2
2

2
( , , ) 2 ( , , )

2
4 ( , , ) 2 .

s

s

s

s

q q x y d s q x y d
s

s q x y d T s T q T
s

   

 

    

         





 (10)  
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This is an integral-differential equation without the unknown coefficient ( , )a x y . If we are 

able to approximate well both functions T  and q , and their derivatives, then we can 

approximate well the target coefficient ( , )a x y via Eq. (5). We use the asymptotic relation in 

Section 2.4 to approximate ( , )T x y  and then solve a discrete version of Eq. (10) to solve the 

problem. For the details of the algorithm, we refer to [38]. 

2.4.   Asymptotic behavior 

The constructed approximation of T is called “asymptotic tail”. We outline the method below 
and refer the reader to [36] for its derivations. 

        We consider the asymptotic behavior of a solution ( , )u x, y s of Eq. (6) as s  . Assume 

that the value of function 2( , ) 0a x y k const    outside of the domain   and s is large 

enough, then the approximation for ( , , )u x y s  is 

 

 

1 1
( , ) ln ( , ) ,

2 2
u x, y s  k S  g x y O

S S

  
      

 
 (11)  

where the unknown function ( , )g x y is independent of the light source, as shown in [36]. 

Here  ( , , ) ( , ) ( , )mS x y s x y x s   is the distance from the point ( , )x y  to the light source. To 

obtain ( , )g x y , we first use light source 
1s  and the measurement of ( , )u x, y s from the 

opposite boundary of 
1  at 

0x x  to get  

0 1 0 1 1 0

0 1

1
( , , ) ( , , ) ln ( , ),

2 2 ( , , )
u x y s  k S x y s  g x y

S x y s


   

1 1 0( , ) : ( , ).g x y g x y  (12)  

Then we apply the similar steps for other light source locations and the measurements are 

taken on the opposite side to get
2 3 4( , ), ( , ), ( , )g x y g x y g x y . Finally we obtain 

 4

1

1
( , ) ( , ),

4
j

j

g x y g x y


 
 

 (13)  

and an initial tail function 

 4

1

1 1
( , ) ln ( , ).

2 2 4
j

j

T x y k S  g x y
S





    
 

(14)  

Once we have T (x, y), we use an iterative scheme to improve contrasts of inclusions and to 
smooth out noises in boundary conditions. We skip the details; instead, we refer interested 
readers to reference [32, 36] for its acceleration property that helps the efficiency of 
reconstruction algorithms. 

3. The phantom experiments 

Our DOT imaging system is set for surface data collection and 3-D reconstruction through 2-
D tomography of parallel cross-sections. The envisioned scenario is that of a rat brain which is 
covered with an optical mask that is filled with a “matching material”, a gelatin tissue 
phantom that has similar optical properties to those of the rat’s skull/skin. The purpose of the 
experiment is to determine the unknown location and severity of a stroke in the rat brain 
phantom.  
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3.1 The measurement setup 

Two optical phantoms are specifically designed and made for testing GCM-based imaging 
reconstructions, as a feasibility study for GCM applications in rat stroke models. The 3-D 
geometry of the phantoms is depicted in Fig. 1. Both phantoms are shaped as a hemisphere 
with a diameter of 13mm on top of a cube with dimensions 30 mm 30 mm  30 mm. The 
top hemisphere, the meshed shape in Fig. 1(a), mimics a rat head, and the cube of the phantom 
emulates an optical mask filled with the “matching material”. Spherical hollows of 2.5-3.0 
mm diameter are within the phantoms. Fig. 2 shows horizontal cross-sections of the 
hemispheres of two different phantoms that were used in the experiments. 

 

Fig. 1: (a) A schematic drawing for the 3-D geometry of an optical phantom. (b) A photograph of a 
spherical ink-intralipid gelatin phantom inclusion, shown with an actual ruler. 

 

Fig. 2: Cross-sections of hemispheres in two different phantoms, with locations of inclusions marked by 
small circles. The left panel shows a cross section of the first phantom with one inclusion. The right panel 
shows a cross section of the second phantom with two inclusions. 

The phantoms are made of gelatin mixed with the intralipid, a product for fat emulsion 
capable of mimicking light scattering in human or animal tissue when using light at 
wavelengths in the red and infrared ranges. The percentage of intralipid content is adjustable 
so that the phantoms can have the same optical parameters as the background medium of the 
target animal model. We fill the hollows with different spherical ink-intralipid mixed gelatin 
phantoms (Fig. 1(b)) acting as inclusions to model strokes due to blood clots. 

Fig. 3(a) is a photo of the measurement setup. The center of the picture displays the optical 
phantom which contains the hidden inclusions that are not visible in the photo. The four thin 
tube-like probes are laser fibers that provide the light sources. A diode laser (Coherent Inc. 
wavelength at 808 nm) is multiplexed to serve as the source by a multiplexer (Avantes Inc. 
Multiplex Channels 1x16), which delivers and controls light at four locations through the four 
laser fibers. The fiber on the right-hand side of Fig. 3(a) can be moved to other positions by 
adjusting the mechanical arm that controls the lateral distance. A Charge-Coupled Device 
(CCD) camera for light intensity measurements is mounted directly above the setup (not 
shown in photo) where the camera focuses on the top surface of the phantom. The field of 

view (FOV) of the camera is 1311 mm
2
. The CCD camera with its sensitivity and response 

range is commonly used for NIR imaging of animals. A schematic drawing of the 
experimental setup is shown in Fig. 3(b), and the procedures for calibration of the CCD 
camera can be found in [39]. 
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Fig. 3: (a) A photograph of the experimental setup (b) A 3-D schematic drawing of experimental setup for 
phantom study. 

Because the said cross section is obstructed by the top surface of the hemisphere in the 
CCD’s field of view, we can only collect the light intensity data at the boundary of a 2-D cross 
section of the presumed “animal head" as depicted in Fig. 4. The data extraction is done by an 
automated process as follow. 1) Export the data acquired by CCD camera (raw data format is 
exported by Matlab as a text file). 2) The light intensity at each of the grid points in the mesh 
is mapped into a matrix from the Matlab file. 3) Extract the light intensity data along the circle 
 , and the data set is used as the boundary condition  . 

The inverse reconstruction is performed in a 2-D plane, where the optical parameter 
distribution of the medium inside the circle (meshed area) is the unknown coefficient in the 
photon diffusion model. The 2-D tomographic treatment of the 3-D problem is similar to a 
successful treatment of experimental data in Electrical Impedance Tomography by a non-
locally convergent algorithm in [40]. 

 

Fig. 4: A 3-D schematic drawing showing the data acquisition process of  , ,x y s on the boundary of the 

physical domain   (meshed area) for Eq. (2b), from light intensity measurements of 3-D phantom 
surface by a CCD camera in experiments. 

In our experiments the optical coefficients of the phantoms are 1/ (3 ) 0.037sD     cm 

uniformly, 0.09a   cm-1 for the background phantom (excluding the inclusions), and a  

ranging from 0.18 to 0.4 cm-1 for the inclusions by adjusting the ink-Intralipid mix. An 

inclusion with pure black ink has a theoretical value of a  that tends towards infinity. These 

optical parameters are standard values used for our rat brain phantom experiments.  

The measurement procedure is straightforward. We follow a similar idea to that of 
frequency sounding, see [26, 34], but replace a changeable frequency with light sources 
located along a straight line. Our setting with 6 light source positions is adequate to obtain a 
reasonable reconstruction image. From previous tests with simulated data it was determined 
that more positions do not improve the quality of reconstructions significantly, see [37]. The 
relative convenience of the measurement procedure is one of the advantages of this method. 
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4. Reconstruction results 

We describe the calibration of the parameters for numerical reconstruction in 4.1 and the 
results in 4.2. There are a number of ways to process the data, we refer to [38] for the pre-
process procedure.  

4.1 Calibrations 

The optical properties of the phantom background without inclusions are known theoretically. 
However, there might be a discrepancy between the theoretical value and the actual 
measurement. Further, the scattering coefficient is also an important contributing factor in 

( , )a x y , and the result is sensitive to the discrepancy. We need to calibrate our model by 

adjusting the background value, 2k , to match the experimental data measured with the 

reference background medium. First, we numerically solve the forward problem with the 

source position 1s  in the background domain 0  without any inclusions, 

 2

1 0( , ), ,mk A x s y y x        (15)  

where 
2 3 a sk    is the background value. We calibrate the parameter a (fixing s ) as well 

as the amplitude 0A  of the light source in Eq. (11) to match the experimentally measured 

light intensity. We choose A  in such a way that max max 1 max max 1( , , ) ( , , ).comp measx y s x y s   

where max max 1( , , )comp x y s and max max 1( , , )meas x y s  are computed and measured light 

intensities, respectively. Here max max( ,x y ) is the brightest point, i.e., the farthest right point on 

  being closest to the light source Next, we approximate the constant 2k . To do this, we 

take another sampling point min min( , )x y with the minimum light intensity which is the farthest 

left point on  . We consider the ratios 
2( )compR k  and  measR  where 

max max 12 max max 1

min min 1 min min 1

( , , ) ( , , )
( ) , .

( , , ) ( , , )

comp meas

comp meas

comp meas

x y s x y s
R k R

x y s x y s

 
 
 

 

We chose 2k  such that 
2( )comp measR k R . As a result, the calibrated value was 2 2.43k  . This 

computed value matches quite well with the theoretical value of 2.4 for the intralipid solution 
we have used. For the case of small animal measurements we can use one standard intralipid 

for all samples. The calibration process for 2k is used to determine the “average” background 

absorption value of the target domain. 

4.2 “Blind data” test results from GCM reconstructions 

The reconstruction is done without assuming any prior knowledge of the total number, 
location or optical parameter values of the inclusions. We collected six groups of “blind data" 
with inclusions and an additional group of measurement data for the phantom without any 
inclusion as the background reference. Within the six groups, the first three have one inclusion 
each of which has different absorption contrasts; see the left panel of Fig. 2. The last three 
groups have two inclusions; see the right panel of Fig. 2, also with three different contrasts. 

Let ( , )
max ( , )

incl x y
a a x y be the peak value of the inclusion, and bka be the background value. 

Then the contrasts in our experiments are / 2,3
incl bk
a a  and 4 , respectively. 

 
 



11 
 

 

Fig. 5: Reconstructed a(x,y) for the six groups of data. In the upper panel, actual distributions a(x,y) have 
one inclusion, and in the lower panel, actual distributions a(x,y) have two inclusions. The contrasts are 
arranged in the order 2:1, 3:1 and 4:1, from left to right. The locations of the actual inclusions are marked 
out in the dashed circles. 

Fig. 5 shows the reconstructed images of all six groups of data.  The recovered positions 
in the first three groups are within the circle of the actual position of the single inclusion, the 
dashed circle. The recovered positions in the last three groups are also approximate to the 
actual locations of the inclusions, the two dashed circles, except that the distance between the 
two reconstructed inclusions is closer than the actual distance. However, we observe from the 
lower panel of Fig.5 that the distance between two reconstructed inclusions becomes larger 
when the contrast of the inclusions increases (from left to right in the figure). Especially, in 
the figure of two inclusions with contrast 4:1, the lower right panel, the two inclusions can be 
better resolved from each other. 

Listed in Table 1 are the maximal contrast values and relative errors for all six cases. It 
shows that we have imaged the contrast values of the inclusions in the same scale of 
magnitude. These contrast values are important as they can be further used to calculate HbO 
and HbR levels.  In Table 2, we show the localization errors of our reconstructions. The 

absolute localization error is defined as the distance between the actual center 
actualC  and the 

center location 
reconC  of a reconstructed inclusion where ( , )a x y  attains a maximal contrast 

value. The relative localization error is defined as /recon actualC C R where R  is radius of  . 

We have observed that the localization errors tend to increase with an increase in the number 
of inclusions.    

Table 1. Reconstructed maximal contrast values /
incl bk
a a  within imaged inclusions 

and relative errors of a(x, y) in terms of maximal contrast values. 

Actual contrast  

(# of inclusions) 
Reconstructed contrast Relative Errors 

2:1 (One inclusion) 2.33 16.7% 
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3:1 (One inclusion) 3.29 9.86% 

4:1 (One inclusion) 4.57 14.3% 

2:1 (Two inclusions) 2.29 14.8% 

3:1 (Two inclusions) 3.49 16.4% 

4:1 (Two inclusions) 4.58 14.7% 

Table 2.  Localization errors /recon actualC C R  of reconstructed a(x,y) by GCM method. 

Actual 
contrast 

One Inclusion Two Inclusion 

Left Right 

2:1 0.50mm 5.3% 1.6mm 17.1% 2.4mm 25.6% 
3:1 0.70mm 7.5% 1.7mm 18.2% 2.3mm 24.6% 
4:1 0.60mm 6.4% 1.4mm 15.0% 1.3mm 13.9% 

5. Conclusions and discussions 

We have applied the GCM of [38] for a Coefficient Inverse Problem to DOT phantom 
measurements. These data mimic imaging of a blood clot in a rat brain. Reconstructions are 
performed without any prior knowledge of the inclusions. In our 6 cases, we found that 
reconstructed images of inclusions from NIR experimental data are quite accurate, including 
both locations of inclusions and inclusions-to-background contrasts. The main contribution of 
this paper is the validation of GCM by reconstructing from the so called “Blind” data, i.e.,   
reconstructing without assuming any prior knowledge of the total numbers, locations and the 
optical parameter values of inclusions. 

Our GCM compares favorably with other conventional locally convergent methods. We 
have tested the same data sets with a conventional DOT reconstruction method. The 
conventional DOT method was performed using a publicly available software HomER 
(http://www.nmr.mgh.harvard.edu/PMI/resources/homer/home.htm) [43], as used in [41, 42].  

In Fig. 6, we show the reconstructed images by the conventional DOT reconstruction 
method for one-inclusion cases. The locally convergent method can identify the changes in the 
absorption coefficient well; however, note that the conventional DOT algorithm cannot 

reconstruct the absolute value of ( , )a x y  due to the limitations of the method. The images in 

Fig. 6 depict ( , )a x y , the change of the coefficient from the background in the range 
4 4[ 5 10 ,20 10 ], while the images in Fig. 5 depict ( , )a x y  in the range [1,10] which is in 

the same range as actual change. 

 

Fig. 6: Reconstructed results (changes of a(x,y) from background) for the first three groups of data (single 
inclusion) by using the conventional DOT algorithm. The contrasts are similarly arranged in the same 
order as 2:1, 3:1 and 4:1 from left to right. Actual positions of inclusions are marked out by dashed circles. 

 
Here we will briefly discuss the comparison of our phantom results with our early results 

in applying GCM to simulated data, see [37]. For a similar case with two inclusions with 3:1 
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contrast, the relative error in peak value was less than 15% for simulated data, while the 
relative error in peak value for phantom data is less than 17%. The relative localization errors 
are higher for the phantom studies, 3% (inclusion 1) and 12% (inclusion 2) for simulated data 
verses 18% and 24% for the phantom. 

The errors are contributed by several factors, noise in experiments, numerical errors as 
well as the discrepancy of the mathematical model and experiments. An anonymous referee 
suggested that using a mix of intralipid and non-scattering absorbers might yield to a better 
comparison for the purpose of method validation, as this will exactly correspond to the 
mathematical model. We plan to implement this experimentally in our future study. 

As stated in section 2, we focus on the reconstruction of the parameter 

distribution ( , )a x y which reflects both the light absorption and the reduced scattering 

coefficients. We assume the scattering coefficient 
' ( , )sμ x y  is known and uniform in our 

experiments. Under this assumption, the unknown coefficient ( )a x, y in Eq. (4) reduces to 
'3 ( , )s aμ μ x y . We also assume that 

'

sμ keeps unchanged during the background measurements 

and measurements with inclusions. The reconstructed contrast /
incl bk
a a reflects the change in 

absorption coefficients ( , )aμ x y . However, in application for small animal measurements the 

scattering coefficient is neither homogeneous or it remains unchanged with time. Further 
study based on an extensive number of numerical simulations was done to test applicability of 
the method to cases where scattering coefficient is in general not homogenous, changing with 
time, and unknown. The answer is favorable that GCM is capable of dealing with 
inhomogeneous scattering coefficient, or discrepancy and fluctuation in its values. In fact, the 
main advantage of GCM method is that it is independent of initial guess based on baseline 
scattering value, as iterations from any initial point are mathematically proven to converge to 
a true solution subject a margin of error.  

In order to quantify the errors in recovered contrasts in ( , )aμ x y  with respect to 

discrepancies in the assumed background scattering coefficient, numerical simulations has 
been done to provide the simulated data and to reconstruct. Three different error patterns have 
been studied, as shown in the upper panel of Fig. 7. The amount of errors in scattering 
coefficient ranges from -15.0% to 15.0%. The locations of the reconstructed inclusions are 
precise, where reconstructed inclusion patterns are similar to these of fig. 5.  The 
reconstructed contrasts are shown in the lower panel of Fig. 7. The results show that the errors 

in the recovered contrasts in ( , )aμ x y  are pretty accurate (less than 3.0%) for all the test cases.  

We then studied the case where the scattering coefficient changes after the background 
measurements were done. Its purpose is to test the capability of the method in dealing with 
animal data where scattering coefficient fluctuate with time during experiments. The changes 
of scattering coefficients occur in locations where inclusions are at. The error pattern is the 
same as the one shown in the middle of the upper panel in Fig. 7. The reconstructions were 
also successful: the locations of the inclusions are precise. However the relative peak errors 
change with the magnitude of fluctuations in scattering coefficients. The recovered contrasts 

in ( , )aμ x y  are shown in Fig. 8. It shows that in this case the errors in the recovered contrasts 

depend on the errors in the scattering coefficient linearly. The increasing of reconstruction 
errors is due to the sensitivity of the solution to the scattering coefficient variance.      
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Fig. 7: In the upper panel, three typical error patterns in the background scattering coefficient are shown. 
In the lower panel, the recovered contrasts (lines with square symbols) and actual contrasts in ( , )aμ x y  are 

shown in one figure for tests with contrasts 2, 3 and 4. In each case, 31 simulations are done with respect 
to the errors in the scattering coefficient that range from -15.0% to 15.0% with 1.0% step length. 

 

 

Fig. 8: The recovered contrasts (lines with square symbols) and actual contrasts in ( , )aμ x y  in the cases of 

that the scattering coefficient changes after the background measurements 

GCM is a rather robust numerical reconstruction algorithm, being able to deal with a 
wide range of inclusions.  (This is because GCM is based on an approach to solve a system of 
elliptic partial differential equations (more similar to a forward problem), where numerical 
methods are quite mature for large-scale computations.) Therefore, the method can provide 
stable results when it gets utilized for large data sets of 512X512 output pixels from a CCD 
camera.  Because of this unique property, we can deal with large data sets generated by 
several sources positions and have the capability to handle complex shapes using a large 
number of grid points, as shown in this paper. In contrary, a method that is not GCM will 
usually have increasing amounts of errors when the initial guess moves away from actual 
distribution, as shown in [31]. The computational times for both methods are similar, about 1-
2 minutes [35]. 

In summary, we have validated our GCM reconstruction algorithm based on real data 
acquired by a NIR CCD Camera using optical phantoms after testing the GCM method on 
computer simulated data in [33, 37, 38].  This study has confirmed the ability of GCM to 
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reconstruct improved DOT images using laboratory rat-head phantoms. We will soon publish 
our results on the related inverse problems and their applications in actual animal studies.  
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