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A LEPSKIJ-TYPE STOPPING-RULE FOR SIMPLIFIED
ITERATIVELY REGULARIZED GAUSS-NEWTON

METHOD

AGAH D. GARNADI

Abstract. Iterative regularization methods for nonlinear ill-posed equations of the form

F (a) = y, where F : D(F ) ⊂ X → Y is an operator between Hilbert spaces X and

Y , usually involve calculation of the Fréchet derivatives of F at each iterate and at the

unknown solution a]. A modified form of the generalized Gauss-Newton method which

requires the Fréchet derivative of F only at an initial approximation a0 of the solution

a] as studied by Mahale and Nair [11]. This work studied an a posteriori stopping rule

of Lepskij-type of the method. A numerical experiment from inverse source potential

problem is demonstrated.
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1. INTRODUCTION

Nonlinear ill-posed problem usually posed as a non-linear operator equation

F : D(F ) ⊂ X → Y
between Hilbert spaces X and Y. We assume that F is one-to-one and Fréchet
differentiable on its domain D(F ) and denote the derivative at a point a ∈ D(F )
by F ′[a]. Since it is ill-posed, F does not have a bounded inverse.

In this work we will focus on the simplified iteratively regularized Gauss-
Newton method (sIRGNM) which is a variant of iteratively regularized Gauss-
Newton method (IRGNM), one of the most attractive iterative regularization meth-
ods. For an overview on iterative regularization methods for non-linear ill-posed
problem, we refer to the monograph by Kaltenbacher, Neubauer, and Scherzer [10]
or Bakushinsky, Kokurin, Kokurin, and Smirnova [1]. At (n + 1)−st iteration of
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the IRGNM, the iterate aδ
(n+1) ∈ X is defined as the unique global minimizer of the

quadratic functional a 7→ ‖F ′[aδ
n](a− aδ

n)+F (aδ
n)− yδ‖2

Y +αn‖(a− a0)‖2
X , n ∈ IN0.

Where a0 ∈ D(F ) is some initial guess, and αn is a regularization parameter, here
we chose αn = α0q

n, for some 0 < q < 1. The (n + 1)−st iterate aδ
(n+1) can be

expressed in a closed form

aδ
(n+1) := an+(F ′[aδ

n]∗F ′[aδ
n]+αnI)−1F ′[aδ

n]∗(yδ−F (aδ
n)+F ′[aδ

n](aδ
n−a0)). (1.1)

A variant of IRGNM, where we approximate F ′[aδ
n] by an equivalent linear operator

A, typically by F ′[a0]. Hence the previous formula at the (n + 1)−st iteration, we
use

aδ
(n+1) := aδ

n +(F ′[a0]∗F ′[a0]+αnI)−1F ′[a0]∗(yδ−F (aδ
n)+F ′[a0](aδ

n−a0)). (1.2)

This variant called the simplified IRGNM, which is widely used in practice, but
lacking in theoretical grounds. Kaltenbacher [9] initiated studying the methods,
and closely studied in details recently by Mahale & Nair [11], Jin [8] and George
[5].

One of important thing during iteration is when to terminate the steps as
the error ‖aδ

n − a]‖ experiencing deterioration as n → ∞ in the presence of noise.
One of the rule that widely use is the discrepancy principle, which is the iteration
terminated at the index N(δ, yδ) for the first time the criteria ‖F (aN )− yδ‖ ≤ τδ
satisfied with some parameter τ > 1. In [2, 3] the authors studied a Lepskij-type
stopping rule for IRGNM with deterministic and random noise, their studies showed
that both theoretically and numerically, compared to the discrepancy principle, the
proposed stopping rule yields at least as good, and at some point even better results.

In this work, we examine the stopping rule to the sIRGNM, fills a gap left
behind by [2] works on IRGNM and completing the works of Bauer & Lukas [4] on
extensive survey on stopping criteria in linear inverse problem.

2. LEPSKIJ STOPPING RULE FOR DETERMINISTIC NOISE.

To analyze the convergence of the sIRGNM, we follows analysis for IRGNM
closely. After the (n+1) iterations, the total error en+1 = aδ

n+1−a] is decomposed
into three components which are estimated one-by-one: the (modified) approxima-
tion error eapp

n+1 := αn(F ′[a0]∗F ′[a0] + αnI)−1e0, the (modified) propagated data
noise error enoi

n+1, and the (modified) nonlinearity error enoi
n+1.

The non-linearity component error always bounded by the two other error
components up to index Kmax, which is known a-priori in principle. A ’non-linearity
dominance (blow-up)’ may happened after that index. The optimal stopping index
N is roughly situated at the step when eapp

n and enoi
n are of the same order.

The (modified) propagated data noise error in sIRGNM can be bounded a-
priori by

‖enoi
n ‖ ≤ δ

2
√

αn
, (2.1)
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which is obtained by studying carefully the works of Mahale & Nair [11], Jin [8]
and [5]. This bound is also the same expression of the propagated noise error in
IRGNM, where the rate of decay of the approximation error, eapp

n , depends on the
smoothness of the unknown solution a], to be precise on the smoothness of (a]−a0).
With a slight modification, this is also true for sIRGNM, by utilizing the property
of F ′[a0], which is likely known apriori. The essence of the Lepskij stopping rule is
to extract information from the a-priori bound (2.1) to detect the point after which
the propagated data error is become dominant.In the following theorem as given
in [2], this situation stated precisely, as the proof is quite illustrative and short, we
reproduce it here.

Theorem 2.1. [2] Let aδ
n be the sequence of iterates produced by an iterative regu-

larization method for an initial guess a0 from some admissible set and data (δ, yδ)
satisfying

uobs := yδ = F (a]) + δξ. (2.2)
We assume that

• There exists an a-priori known index Kmax = Kmax(δ) such that aδ
n is well

defined for 0 ≤ n ≤ Kmax.
• There exists an ’optimal’ stopping index N = N(δ, yδ, a]) ∈ {0, 1, · · · ,Kmax},

and a known increasing function Φ : IN0 → [0,∞) such that

‖aδ
n − a]‖ ≤ Φ(n)δ, n = N, · · · ,Kmax. (2.3)

Then ther error at the Lepskij stopping index n∗ = n∗(δ, yδ) defined by

n∗ := min{n ∈ {0, · · · ,Kmax(δ)} : ‖aδ
n − a]‖ ≤ 2Φ(m)δ,∀m = n + 1, · · · ,Kmax},

is bounded by
‖aδ

n∗ − a]‖ ≤ 3Φ(N)δ.

Proof. Since Φ is increasing, we have

‖aδ
m − aδ

N‖ ≤ ‖aδ
m − a]‖+ ‖aδ

N − a]‖ ≤ Φ(m)δ + Φ(N)δ ≤ 2Φ(m)δ

for m = N + 1, · · · ,Kmax(δ). Consequently imply n∗ ≤ N. therefore,

‖aδ
n∗ − a]‖ ≤ ‖aδ

N − a]‖+ ‖aδ
N − aδ

n∗‖ ≤ Φ(N)δ + 2Φ(N)δ ≤ 3Φ(N)δ,

hence the assertion follows. �

Some observations should be made in order to highlights the above theorem.

• The bound (2.1) and the remark following on the bound, lead us to choose
Φ := κα

−1/2
n , for some constant κ > 1.

• Within the algorithm, the optimal stopping index N never appear ex-
plicitely. In the case of IRGNM, the explicit appearance of the optimal
stopping index for prescribed data is not necessary, since it is determined
by the some rule that a-priorily depends on the smoothness of a]. The
smoothness of the solution with respect to the smoothing properties of
non-linear operator F usually expressed in terms of source conditions

a0 − a] = Λ(F ′[a]]∗F ′[a]])w, ‖w‖ ≤ ρ.
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Analogous to this result in IRGNM, in the case of sIRGNM, we replace the
above source conditions, using modified source conditions

a0 − a] = Λ(F ′[a0]∗F ′[a0])w, ‖w‖ ≤ ρ.

If Λ(t) = tµ, we refer to a Hoelder-type source condition, if Λ(t) =
(log(t))−p, we mean a logarithmic source condition.

• The maximum iteration is chosen Kmax = CF +s logq
δ

α0
, for some constant

CF ∈ IR, and s = 2 if F satisfies a stronger non-linearity condition.

3. Inverse Source Problem.

We consider the identification of the support of an external force acting over
Ω ⊂ G from measurement of potential flux ∂u/∂n and the potential u on the bound-
ary Γ = ∂G. The situation can be rearranged such that u|Γ = 0, by subtracting to
a solution of the Laplace equation. Then the forward problem is described by the
boundary value problem

∆u = χΩ, u = 0 on Γ

where the domain Ω is the support of H, and χΩ = supp(H) denoted the char-
acteristic function of Ω, which we assume to be star-shaped with respect to the
origin. Then ∂Ω := {q(t)(cos t, sin t) : t ∈ [0, 2π]} for q which is a positive function
and 2π−periodic. The inverse problem consists in identifying the shape of Ω given
the Neumann data ∂u

∂n of the solution on Γ. Therefore, we define F as the operator
mapping q to ∂u

∂n .

In this case we consider the identification of the shape of a unit constant ex-
ternal force on Ω ⊂ G from measurement of potential flux ∂u/∂n and the potential
u on the boundary Γ = ∂G.

It has been shown in [7] that logarithmic source conditions are equivalent to
smoothness conditions in terms of Sobolev spaces if ∂Ω and Γ are concentric circles.

Numerical Result. We assume that the data are n noisy measurements of g] =
F (q])(t) at equidistant points t

(n)
j := j

n ,

Yj = g](t(n)
j ) + δξj , j = 1, · · · , n, (3.1)

where δ is error level, and ξj is randomly generated with ‖ξ‖ ≤ 1.

For numerical test, we have chosen Γ := {x : |x| = 1}, and we used an exact
solutions a] := q](t) := 0.5 ∗ (1 + 0.9 cos(t) + 0.1 sin(t))/(1 + 0.75 cos(t)), a bean
shaped inclusion.

The initial guess we choose a0 := q(0)(t) = 1, a unit circular inclusion, and
fixed F ′[a0].

We tested the rates of convergence with the balancing principle for the exact
solution a], by fixing n = 64.
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The results in figure (3) show the Lepskij rule based on the worst case bound
(2.1) and predicted optimal index (2.3). The performance of balancing principle
tested first for κ = 1.1 and κ = 0.3 .

Figure 1. Lepskij rule based on worst case bound. (Left column)
Lepskij & Optimal, L2-error versus Noise Level, and (Right col-
umn) reconstruction results with noise 5%
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