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Abstract. In the present paper we study the weak lower semicontinuity of the functional

Φλ, γ(u) :=
1

2

∫
Rn×Rn

|u(x)− u(y)|2

|x− y|n+2s
dx dy − λ

2

∫
Ω

|u(x)|2 dx− γ

2

(∫
Ω

|u(x)|2
∗
dx
)2/2∗

,

where Ω is an open bounded subset of Rn, n > 2s, s ∈ (0, 1) , with Lipschitz boundary, λ
and γ are real parameters and 2∗ := 2n/(n−2s) is the fractional critical Sobolev exponent.

As a consequence of this regularity result for Φλ, γ we prove the existence of a nontrivial
weak solution for two different nonlocal critical equations driven by the fractional Laplace
operator (−∆)s which, up to normalization factors, may be defined as

−(−∆)su(x) :=

∫
Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy, x ∈ Rn.

These two existence results were obtained using, respectively, the direct method in the
calculus of variations and critical points theory.
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1.1. Motivations. Elliptic equations can be studied with a variety of methods and tech-
niques. In this paper we are interested in the variational approach, which allows to treat
a large classes of problems. The classical example for the problems studied via variational
methods is given by the Dirichlet Principle, namely the fact that the solution of a differ-
ential equation (of elliptic type) coupled with a boundary condition can be obtained as a
minimizer of an appropriate functional.

The fundamental idea behind the Dirichlet Principle is the interpretation of an abstract
differential problem F (u) = 0 as

I ′(u) = 0,

where I is a suitable functional defined on a set of functions, and I ′ is its derivative in
a suitable sense. In other words, zeros of F are seen as critical points (not necessarily
minima) of the functional I. The equation I ′(u) = 0 is the Euler-Lagrange equation
associated with I. Of course not all the differential problems can be written in the form
I ′(u) = 0. When this is possible, the problem is called variational.

Many times, it is much easier to find a critical point of I than to work directly on the
equation F (u) = 0. Furthermore, in many applications the functional I has a fundamental
physical meaning. Indeed, often I is an energy of some sort and hence finding a minimum
point means not only solving the differential equation, but also finding the solution of
minimal energy, which has particular relevance in concrete problems. The interpretation of I
as an energy explains why the functionals associated with differential problems are normally
called energy functionals, even when the problem has no direct physical applications.

The methods concerned with the minimization of functionals go under the name of direct
methods of the Calculus of Variations, while the ones related to finding critical points of
functionals give rise to a branch of nonlinear analysis known as Critical Point Theory.

The starting point of the so-called direct methods of the Calculus of Variations is the
Weierstrass Theorem (saying that a weakly lower semicontinuous and coercive functional
defined on a reflexive Banach space admits a global minimum), as well as in critical points
theory the crucial idea is that the existence of critical points is related to the topological
properties of the sublevels of the functional, provided some compactness properties are
satisfied.

Of course, when using direct minimization we need that the functional is bounded from
below and, in this case, we look for its global minima, which are the most natural criti-
cal points. In looking for global minima of a functional the two relevant notions are the
weakly lower semicontinuity and the coercivity, as stated in the Weierstrass Theorem (see
[1, Remark 1.5.7]). The coercivity of the functional assures that the minimizing sequence
is bounded, while the semicontinuity gives the existence of the minimum for the functional.

1.2. Aims of the paper. Along the present paper we study the weak lower semicontinuity
of the functional

(1.1) Φλ, γ(u) :=
1

2

∫
Rn×Rn

|u(x)− u(y)|2

|x− y|n+2s
dx dy− λ

2

∫
Ω
|u(x)|2 dx− γ

2

(∫
Ω
|u(x)|2∗ dx

)2/2∗

,

defined on the functional space X0 given by

(1.2) X0 :=
{
g ∈ Hs(Rn) : g = 0 a.e. in Rn \ Ω

}
.

Here Ω is an open bounded subset of Rn, n > 2s and s ∈ (0, 1), with Lipschitz boundary,
λ and γ are real parameters, the exponent 2∗ := 2n/(n−2s) is the fractional critical Sobolev
exponent (notice that when s = 1 it reduces to the classical critical Sobolev exponent 2∗ :=
2n/(n− 2)), and the functional space Hs(Rn) denotes the fractional Sobolev space defined
as the linear space of functions g ∈ L2(Rn) such that

the map (x, y) 7→ g(x)− g(y)

|x− y|n/2+s
is in L2(Rn × Rn, dxdy

)
.
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The space X0 was introduced in [32] in a general nonlocal framework, in order to give
a variational formulation for nonlocal integrodifferential equations of fractional type de-
pending on a suitable kernel K. When the kernel K is given by the model function
K(x) := |x|−(n+2s) we get the fractional Laplace operator. In this setting the space X0

can be characterized as in (1.2): for a proof of this we refer to [35, Lemma 7-b)]. Further
properties of the space X0 can be found in [29, 30, 33, 34, 35, 36, 37].

The main problem in proving the weak lower semicontinuity of the functional Φλ, γ relies

on the fact that the embeddings X0 ↪→ L2∗(Rn) and Hs(Rn) ↪→ L2∗(Rn) are continuous but
not compact: for this we refer to [33, Lemma 8] and [14, Theorem 6.5]. Thanks to these
results we can define the best fractional critical Sobolev constant Ss as follows

(1.3) Ss := inf
v∈Hs(Rn)\{0}

Ss(v) ,

where for any v ∈ Hs(Rn) \ {0} the function Ss(·) is given by

(1.4) Ss(v) :=

∫
Rn×Rn

|v(x)− v(y)|2

|x− y|n+2s
dx dy(∫

Rn
|v(x)|2∗dx

)2/2∗
.

We stress that Ss does not depend on Ω, because the minimization occurs on the whole
of Hs(Rn), and that Ss is a constant strictly positive.

In order to overcome the difficulties related to the lack of compactness we will perform
a Concentration–Compactness Principle for fractional Sobolev spaces (see [25]), which rep-
resents the nonlocal counterpart of the famous result of Lions given in [21, 22]. Using this
strategy we prove the following result:

Theorem 1. Let s ∈ (0, 1), n > 2s, Ω be an open bounded set of Rn with Lipschitz boundary
and let 2∗ = 2n/(n− 2s).

Then, the functional

X0 3 u 7→ Φλ, γ(u)

is weakly lower semicontinuous for any λ ∈ R and any γ ∈ [0, Ss], where Ss is the best
fractional critical Sobolev constant defined as in (1.3).

When λ = 0 Theorem 1 represents the fractional counterpart of [24, Theorem 2.1], where
the author studied the energy functional associated with quasilinear elliptic equations in
presence of critical nonlinearities.

As a consequence of Theorem 1 we have the following result:

Corollary 2. Let s ∈ (0, 1), n > 2s, Ω be an open bounded set of Rn with Lipschitz
boundary and let 2∗ = 2n/(n − 2s) . Let λ1, s be the first eigenvalue of the operator (−∆)s

with homogeneous Dirichlet boundary data.
Then, for any h ∈ L2(Ω) the functional Ih defined as

Ih(u) := Φλ, γ(u)−
∫

Ω
h(x)u(x) dx

admits a global minimum in X0, provided λ < λ1, s and γ ∈ [0, γλ) , where

γλ := Ss min
{

1, λ/λ1, s

}
,

and Ss is as in (1.3).

The proof of Corollary 2 relies on direct minimization and it is based on the Weierstass
Theorem. For a precise definition of λ1, s we refer to Section 2.
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1.3. Applications to nonlocal fractional critical equations. The functional Ih in-
troduced in Corollary 2 represents the Euler–Lagrange functional of the nonlocal critical
equation

(1.5)

 (−∆)su− λu = γ
(∫

Ω
|u(x)|2∗ dx

)2/2∗−1
|u|2∗−2u+ h in Ω

u = 0 in Rn \ Ω,

where (−∆)s is the fractional Laplace operator which, up to normalization factors, may be
defined as

−(−∆)su(x) :=

∫
Rn

u(x+ y) + u(x− y)− 2u(x)

|y|n+2s
dy, x ∈ Rn.

Moreover, λ and γ are real parameters and h is a perturbation. Also, the homogeneous
Dirichlet datum in (1.5) is given in Rn\Ω and not simply on the boundary ∂Ω, as it happens
in the classical case of the Laplacian, consistently with the nonlocal nature of the fractional
Laplacian operator (−∆)s .

Nonlocal fractional problems appear in many fields such as, among the others, opti-
mization, finance, phase transitions, stratified materials, anomalous diffusion, crystal dis-
location, soft thin films, semipermeable membranes, flame propagation, conservation laws,
ultra-relativistic limits of quantum mechanics, quasi-geostrophic flows, multiple scattering,
minimal surfaces, materials science and water waves. Recently, a lot of interest has been
devoted to this kind of problems and to their concrete applications; see, for instance the
seminal papers [9, 10, 11] and [2, 3, 8, 12, 15, 16, 17, 23, 31, 40] as well as the references
therein.

In the sequel we focus our attention on nonlocal critical equations of fractional type. A
great interest has been given to the study of equations with critical nonlinearities, both in the
standard Laplace setting (see [6, 26, 27] and, for an overview, [1, 19, 39]) and, more recently,
in the nonlocal fractional framework (see, e.g., the recent papers [3, 29, 30, 35, 36, 37, 40]).

As usual, when dealing with the critical setting (in the sense of the Sobolev embeddings)
the main difficulties in finding a solution are related to the lack of compactness.

As a byproduct of Corollary 2 we deduce the following existence result for problem (1.5):

Corollary 3. Let s ∈ (0, 1), n > 2s, Ω be an open bounded set of Rn with Lipschitz
boundary and let 2∗ = 2n/(n − 2s) . Let λ1, s be the first eigenvalue of the operator (−∆)s

with homogeneous Dirichlet boundary data and let h ∈ L2(Ω).
Then, problem (1.5) admits a weak solution u ∈ X0, for any λ < λ1, s and γ ∈ [0, γλ) ,

where γλ = Ss min
{

1, λ/λ1, s

}
and Ss is as in (1.3). Finally, u is not identically zero,

provided h 6≡ 0.

As usual, for a weak solution of problem (1.5), we mean a solution of the following
problem

(1.6)



∫
Rn×Rn

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|n+2s
dx dy − λ

∫
Ω
u(x)ϕ(x) dx

= γ
(∫

Ω
|u(x)|2∗ dx

)2/2∗−1
∫

Ω
|u(x)|2∗−2u(x)ϕ(x) dx

+

∫
Ω
h(x)ϕ(x)dx, ∀ ϕ ∈ X0

u ∈ X0.

The proof of Corollary 3 is based on direct minimization of the functional associated with
problem (1.6) (i.e. the functional Ih).
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Along this paper we are interested, in particular, in equations depending on parameters
which, in many cases, come from concrete applications. The existence of solutions for this
kind of problems is a relevant topic, as well as the study of how solutions depend on these
parameters. A recent result on the existence of solutions for nonlocal equations depending
on two real parameters with subcritical growth nonlinearities appeared in [23].

Motivated by this recent work, one of the aims of this paper is to study the existence
of solutions for the following general nonlocal critical equation depending on three real
parameters

(1.7)

 (−∆)su− λu = γ
(∫

Ω
|u(x)|2∗ dx

)2/2∗−1
|u|2∗−2u+ µf(x, u) in Ω

u = 0 in Rn \ Ω,

where λ, γ and µ are real parameters, while f is a lower order perturbation of the critical
power function. Precisely, f : Ω× R→ R is a Carathéodory function such that

(1.8) sup
{
|f(x, t)| : a.e. x ∈ Ω , t ∈ [0,M ]

}
< +∞ for any M > 0 ;

(1.9) lim
|t|→+∞

f(x, t)

|t|2∗−1
= 0, uniformly in x ∈ Ω .

Note that conditions (1.8) and (1.9) are the standard assumptions to be satisfied by the
perturbation in presence of critical terms (see, for instance, the seminal paper [6, Section 2]).

One of the aim of this paper is to prove the existence of a non-trivial weak solution for
problem (1.7). We stress that the trivial function u ≡ 0 in Rn is a solution of problem (1.7)
if and only if f(·, 0) = 0 . As a consequence of this, if f(·, 0) 6= 0 and problem (1.7) admits a
solution u, then we can immediately deduce that u 6≡ 0. While, in the case when f(·, 0) = 0,
we need some extra assumptions on f , in order to show the existence of non-trivial solutions.
Precisely, when f(·, 0) = 0 we assume the following extra condition:

(1.10)

there exist a non-empty open set D ⊆ Ω and a set B ⊆ D
of positive Lebesgue measure such that

lim sup
t→0+

essinfx∈B F (x, t)

t2
= +∞ and lim inf

t→0+

essinfx∈D F (x, t)

t2
> −∞,

where

(1.11) F (x, t) :=

∫ t

0
f(x, τ)dτ,

for a.e. x ∈ Ω and any t ∈ R , that is F is the primitive of the nonlinearity f with respect
to the second variable.

As a model for f we can take the functions f(x, t) := a(x)|t|r−2t + b(x)|t|q−2t + c(x),
with 1 < r < 2 6 q < 2∗ and a, b, c ∈ L∞(Ω) . If c ≡ 0 a.e. in Ω, we assume also that
essinfx∈Ω a(x) > 0 . We would like to stress that the nonlinearity f may behave like |t|ν ,
namely

f(·, t) ∼= |t|ν

as t → 0 and |t| → +∞ for any ν ∈ (0, 2∗ − 1) , that is f can be both sublinear and
superlinear at zero and at infinity.

Assumption (1.10) is a sort of subquadratical growth condition at zero. Note also that
condition (1.10) is trivially satisfied if the following stronger assumption holds true:

there exists a non-empty open set B ⊆ Ω

of positive Lebesgue measure such that

lim
t→0+

essinfx∈B F (x, t)

t2
= +∞.
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In this paper we will prove the existence of non-trivial weak solutions of problem (1.7)
using variational and topological methods. By a weak solutions of (1.7) we mean a solution
of the following problem

(1.12)



∫
Rn×Rn

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|n+2s
dx dy − λ

∫
Ω
u(x)ϕ(x) dx

= γ
(∫

Ω
|u(x)|2∗ dx

)2/2∗−1
∫

Ω
|u(x)|2∗−2u(x)ϕ(x) dx

+µ

∫
Ω
f(x, u(x))ϕ(x)dx, ∀ ϕ ∈ X0

u ∈ X0.

Problem (1.12) represents the Euler–Lagrange equation of the functional Jλ, γ, µ : X0 → R
defined as

(1.13)

Jλ, γ, µ(u) := Φλ, γ(u)− µ
∫

Ω
F (x, u(x))dx

=
1

2

∫
Rn×Rn

|u(x)− u(y)|2

|x− y|n+2s
dx dy − λ

2

∫
Ω
|u(x)|2 dx

− γ

2

(∫
Ω
|u(x)|2∗ dx

)2/2∗

− µ
∫

Ω
F (x, u(x))dx,

where F is the function defined in (1.11).
The main existence result of the present paper can be stated as follows:

Theorem 4. Let s ∈ (0, 1), n > 2s, Ω be an open bounded set of Rn with Lipschitz bound-
ary and let λ1, s be the first eigenvalue of the operator (−∆)s with homogeneous Dirichlet
boundary data and γλ := Ss min

{
1, λ/λ1, s

}
, with Ss as in (1.3). Let f : Ω × R → R be a

Carathéodory function verifying (1.8) and (1.9). In addition, if f(x, 0) = 0 for a.e. x ∈ Ω,
assume also (1.10).

Then, for any λ < λ1, s and any γ ∈ [0, γλ) there exists a positive constant µλ , depending
on λ, such that for any µ ∈ (0, µλ) problem (1.7) admits a weak solution uµ ∈ X0 which is
not identically zero.

Moreover, ∫
Rn×Rn

|uµ(x)− uµ(y)|2

|x− y|n+2s
dx dy → 0

as µ→ 0+ and the function
µ 7→ Jλ, γ, µ(uµ)

is negative and strictly decreasing in (0, µλ).

Actually, using a truncation argument, we can prove that problem (1.7) admits a non-
trivial non-negative weak solution, according to the following result:

Corollary 5. Let all the assumptions of Theorem 4 be satisfied and assume f(·, 0) = 0.
Then, for any λ < λ1, s and any γ ∈ [0, γλ) there exists a positive constant µλ, depending

on λ, such that, for any µ ∈ (0, µλ) problem (1.7) admits a non-trivial non-negative weak
solution u+ ∈ X0.

In general, when f(·, 0) 6= 0, problem (1.7) admits changing-sign solutions, as it happens
if we look at the classical critical case involving the Laplace operator.

Theorem 4 will be proved using variational and topological techniques, in particular
performing [4, Theorem 2.1; part a)] (see also [28]), which assures the existence of a critical
point (actually a minimum) for a functional, under suitable regularity assumptions on it.
For more details and related topics we refer to the recent monograph [20].



LOWER SEMICONTINUITY OF FUNCTIONALS OF FRACTIONAL TYPE AND APPLICATIONS 7

The main difficulty in proving Theorem 4 is related to the study of the regularity of
the functional associated with problem (1.7). This is mainly due to the fact that the
equation (1.7) contains a critical nonlinearity and the space X0 is not compactly embedded
into L2∗(Ω). In order to overcome this difficulty we will make use of Theorem 1.

Another difficulty is related to the proof of the non-triviality of the solution. Of course, if
f(·, 0) 6= 0, there is nothing to prove, since it it obvious that any solution of problem (1.7) is
not identically zero. On the other hand, when f(·, 0) = 0, the non-triviality of the solution
is more complicated to be proved: for this a crucial role will be played by the subquadratical
growth assumption (1.10).

Finally, we would like to note that Theorem 4 represents the nonlocal counterpart of
[5, Theorem 3], where the authors considered a critical equation driven by the p–Laplace
operator in a bounded domain of Rn .

The present paper is organized as follows. In Section 2 we give some notations and we
recall some properties of the functional space we work in. We also give some tools which
will be useful along the paper. Section 3 is devoted to the study of the lower semicontinuity
of the functional Φλ, γ : here we prove Theorem 1 and we give some applications of it. In
Section 4 we study problem (1.7) and we prove Theorem 4 and Corollary 5.

2. Some preliminaries

This section is devoted to the notations used along the paper. We also give some prelim-
inary results which will be useful in the sequel.

2.1. Notations and definitions. In this subsection we briefly recall some properties of
the functional space X0, firstly introduced in [32], and we give some notations. The reader
familiar with this topic may skip this section and go directly to the next one.

The space X0 is defined as in (1.2), where Hs(Rn) denotes the usual fractional Sobolev
space endowed with the norm (the so-called Gagliardo norm)

(2.1) ‖g‖Hs(Rn) = ‖g‖L2(Rn) +
(∫

Rn×Rn

|g(x)− g(y)|2

|x− y|n+2s
dx dy

)1/2
.

For further details on the fractional Sobolev spaces we refer to [14] and to the references
therein.

Of course, the space X0 is non-empty, since C2
0 (Ω) ⊆ X0 by [32, Lemma 11] and it

depends on the set Ω. Moreover, by [33, Lemma 6] and the fact that any function v ∈ X0

is such that v = 0 a.e. in Rn \ Ω, in the sequel we can take

(2.2) X0 3 v 7→ ‖v‖X0 =

(∫
Rn×Rn

|v(x)− v(y)|2

|x− y|n+2s
dx dy

)1/2

as norm on X0. Also (X0, ‖ · ‖X0) is a Hilbert space (for this see [33, Lemma 7]), with scalar
product

(2.3) 〈u, v〉X0 :=

∫
Rn×Rn

(
u(x)− u(y)

)(
v(x)− v(y)

)
|x− y|n+2s

dx dy.

In the sequel, we will denote by λ1, s the first eigenvalue of the operator (−∆)s with
homogeneous Dirichlet boundary data, namely the first eigenvalue of the problem{

(−∆)su = λu in Ω
u = 0 in Rn \ Ω.

For the existence and the basic properties of this eigenvalue we refer to [34, Proposition 9
and Appendix A], where a spectral theory for general integrodifferential nonlocal operators
was developed. Further properties can be also found in [29, 36, 38].
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When λ < λ1, s we can take as a norm on X0 the function

(2.4) X0 3 v 7→ ‖v‖X0, λ =

(∫
Rn×Rn

|v(x)− v(y)|2

|x− y|n+2s
dx dy − λ

∫
Ω
|v(x)|2 dx

)1/2

,

since for any v ∈ X0 it holds true (see [34, Lemma 10])

(2.5) mλ‖v‖X0 6 ‖v‖X0, λ 6Mλ‖v‖X0 ,

where

mλ := min
{√

1− λ/λ1, s , 1
}

and Mλ := max
{√

1− λ/λ1, s , 1
}
.

Note that (2.5) is a consequence of the variational characterization of λ1, s given in [34,
Proposition 9] and of the choice of λ.

Finally, we recall that in [33, Lemma 8] and in [35, Lemma 9] the authors proved that the
embedding j : X0 ↪→ Lν(Rn) is continuous for any ν ∈ [1, 2∗], while it is compact whenever
ν ∈ [1, 2∗). In the sequel for any ν ∈ [1, 2∗), we will denote by cν the positive constant such
that

(2.6) ‖v‖Lν(Rn) 6 cν‖v‖X0 , for any v ∈ X0.

Of course, by this and taking into account (2.5), it is easy to see that for any ν ∈ [1, 2∗)

‖v‖Lν(Rn) 6 cνm
−1
λ ‖v‖X0, λ, for any v ∈ X0.

Also, taking into account the definition of Ss in (1.3) we get

(2.7) ‖v‖L2∗ (Rn) 6 S
−1/2
s ‖v‖X0 6 S

−1/2
s m−1

λ ‖v‖X0, λ, for any v ∈ X0.

2.2. Some useful tools. The main tools used along this paper in order to prove the
existence results stated in Corollary 3 and in Theorem 4 are given by the Weierstarss
Theorem, which is the starting point of the direct minimization, and a result in critical
points theory due to Ricceri and stated in [28, Theorem 2.1]. For the sake of clarity, we
recall this last result, in the form given in [4], here below:

Theorem. ([4, Theorem 2.1; part a)]) Let Y be a reflexive real Banach space, let Φ,Ψ :
Y → R be two Gâteaux differentiable functionals such that Φ is strongly continuous, se-
quentially weakly lower semicontinuous and coercive in Y and Ψ is sequentially weakly
upper semicontinuous in Y .

Let Jµ be the functional defined as Jµ := Φ− µΨ, µ ∈ R , and for any r > inf
Y

Φ let ϕ be

the function defined as

ϕ(r) := inf
u∈Φ−1

(
(−∞,r)

)
sup

v∈Φ−1
(

(−∞,r)
)Ψ(v)−Ψ(u)

r − Φ(u)
.

Then, for any r > inf
Y

Φ and any µ ∈ (0, 1/ϕ(r))1, the restriction of the functional Jµ

to Φ−1
(
(−∞, r)

)
admits a global minimum, which is a critical point (precisely a local

minimum) of Jµ in Y .

In the sequel we also will need the following lemma, whose proof can be found in [35,
Lemma 5]:

Lemma 6. Assume f : Ω × R → R is a Carathéodory function satisfying conditions (1.8)
and (1.9). Then, for any ε > 0 there exists M(ε) > 0 such that a.e. x ∈ Ω and for any
t ∈ R
(2.8) |f(x, t)| 6 2∗ε|t|2∗−1 +M(ε)

1Note that, by definition, ϕ(r) > 0 for any r > inf
Y

Φ . Here and in the following, if ϕ(r) = 0, by 1/ϕ(r)

we mean +∞, i.e. we set 1/ϕ(r) = +∞ .
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and so, as a consequence,

(2.9) |F (x, t)| 6 ε |t|2∗ +M(ε)|t| ,

where F is defined as in (1.11).

3. Lower semicontinuity of functionals of fractional type

In this section we prove a semicontinuity property for the functional Φλ, γ . The argu-
ments used along this section are similar to the ones performed in [24, Theorem 2.1], where
functionals defined in the classical Sobolev spaces were considered when a critical term
occurs.

The difficulty is treating functional Φλ, γ is related to the presence of a critical term and

to the fact that the embedding of X0 into L2∗(Ω) is not compact. In order to overcome this
problem our proof relies on a Concentration-Compactness Principle in fractional Sobolev
spaces (see [25]).

3.1. Proof of Theorem 1. By [18] we known that C∞0 (Ω) is a dense subset of X0 . Hence,
using density arguments, in order to prove Theorem 1 it is enough to show that the func-
tional

(3.1) C∞0 (Ω) 3 u 7→ Φλ, γ(u) is weakly lower semicontinuous

for any λ ∈ R and any γ ∈ [0, Ss] .
For this let uj be a sequence in C∞0 (Ω) such that

(3.2) uj ⇀ u weakly in X0

as j → +∞. Then, by [32, Lemma 11] and [35, Lemma 9] we get that

uj ⇀ u weakly in L2∗(Rn)

as j → +∞ . Hence,

(3.3) |(−∆)s/2uj |2 dx
∗
⇀ µ̄

and

(3.4) |uj |2
∗
dx

∗
⇀ ν̄

as j → +∞ in the weak∗ convergence of measures.
Thus, by [25, Theorem 1.5] we have that there exist a finite set of distinct points

x1, . . . , xk ∈ Ω̄ and positive numbers µ1, . . . , µk and ν1, . . . , νk such that

(3.5) µ̄ > |(−∆)s/2u| dx+

k∑
j=1

µjδxj ,

(3.6) ν̄ = |u|2∗ dx+
k∑
j=1

νjδxj ,

and, finally,

(3.7) νj 6 S
−2∗/2
s µ

2∗/2
j , for any j = 1, . . . , k .

Here δx denotes the Dirac delta function at x, while Ss is the constant given in (1.3).
The continuity of the embedding X0 ↪→ L2(Ω) gives that

(3.8) uj → u in L2(Ω)

as j → +∞.
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By (3.4)–(3.6) and (3.8) we get

(3.9)

Φλ, γ(uj) =
1

2

∫
Rn×Rn

|uj(x)− uj(y)|2

|x− y|n+2s
dx dy − λ

2

∫
Ω
|uj(x)|2 dx

− γ

2

(∫
Ω
|uj(x)|2∗ dx

)2/2∗

>
1

2

∫
Rn×Rn

|u(x)− u(y)|2

|x− y|n+2s
dx dy +

k∑
j=1

µj

− λ

2

∫
Ω
|u(x)|2 dx

− γ

2

∫
Ω
|u(x)|2∗ dx+

k∑
j=1

νj

2/2∗

= Φλ, γ(u) +
1

2

k∑
j=1

µj

− γ

2


∫

Ω
|u(x)|2∗ dx+

k∑
j=1

νj

2/2∗

−
(∫

Ω
|u(x)|2∗ dx

)2/2∗

 .

Now, using the inequality

(a+ b)r 6 ar + br a, b > 0, r ∈ (0, 1),

the non-negativity of γ, (3.7) and (3.9) we obtain

(3.10)

Φλ, γ(uj) > Φλ, γ(u) +
1

2

k∑
j=1

µj −
γ

2

 k∑
j=1

νj

2/2∗

> Φλ, γ(u) +
1

2

k∑
j=1

µj −
γ

2

 k∑
j=1

(µj
Ss

)2∗/2

2/2∗

.

Now, applying the inequality

(a+ b)q > aq + bq a, b > 0, q > 1,

with q = 2∗/2 and using again the non-negativity of γ, by (3.10) we get

(3.11)

Φλ, γ(uj) > Φλ, γ(u) +
1

2

k∑
j=1

µj −
γ

2

k∑
j=1

µj
Ss

= Φλ, γ(u) +
1

2

(
1− γ

Ss

) k∑
j=1

µj

> Φλ, γ(u),

provided γ 6 Ss . Passing to the liminf as j → +∞ in (3.11) we obtain the assertion stated
in (3.1) for any λ ∈ R and γ ∈ [0, Ss].

Now, we can conclude the proof of Theorem 1 using density arguments. Let uj be a
sequence in X0 such that

(3.12) uj ⇀ u weakly in X0

as j → +∞. Then, since C∞0 (Ω) is a dense subset of X0, for any j ∈ N there exists
ukj ∈ C∞0 (Ω) such that

(3.13) ukj → uj in X0
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as k → +∞ .
By (3.12) and (3.13), recalling the definition given in (2.3), we have that for any ϕ ∈ X0

〈ukj − u, ϕ〉X0 = 〈ukj − uj , ϕ〉X0 + 〈uj − u, ϕ〉X0 → 0

as j, k → +∞, that is

ukj ⇀ u weakly in X0

as j, k → +∞.
Since ukj ∈ C∞0 (Ω) and (3.1) holds true, we deduce that

(3.14) lim inf
j, k→+∞

Φλ, γ(ukj ) > Φλ, γ(u)

for any λ ∈ R and any γ ∈ [0, Ss].
Moreover, by (3.13) and the definition of Φλ, γ it is easy to see that for any j ∈ N

lim
k→+∞

Φλ, γ(ukj ) = Φλ, γ(uj),

so that, passing to the liminf as j → +∞

(3.15) lim inf
j, k→+∞

Φλ, γ(ukj ) = lim inf
j→+∞

lim
k→+∞

Φλ, γ(ukj ) = lim inf
j→+∞

Φλ, γ(uj).

By (3.14) and (3.15) we get that

lim inf
j→+∞

Φλ, γ(uj) > Φλ, γ(u),

that is the functional

X0 3 u 7→ Φλ, γ(u)

is weakly lower semicontinuous for any λ ∈ R and any γ ∈ [0, Ss] . This concludes the proof
of Theorem 1.

3.2. Some applications. As applications of the result stated in Theorem 1 here we prove
Corollary 2 and Corollary 3.

Proof of Corollary 2: Let h ∈ L2(Ω) be fixed. First of all we show that

(3.16) the map u 7→
∫

Ω
h(x)u(x) dx is continuous in the weak topology of X0.

For this, let uj be a sequence in X0 such that uj ⇀ u weakly in X0 as j → +∞. Then, by
[33, Lemma 8], uj → u in L2(Ω) , and so∫

Ω
h(x)uj(x) dx→

∫
Ω
h(x)u(x) dx

as j → +∞. Hence, (3.16) is proved.
By (3.16) and Theorem 1 we get that the functional

Ih(u) = Φλ, γ(u)−
∫

Ω
h(x)u(x) dx

is weakly lower semicontinuous in X0 for any λ ∈ R and any γ ∈ [0, Ss].
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Now, let us show that Ih is coercive in X0 . By the definitions of Ih and Φλ, γ , the Hölder
inequality, (2.5), (2.6) and (2.7) we get that

(3.17)

Ih(u) =
1

2

∫
Rn×Rn

|u(x)− u(y)|2

|x− y|n+2s
dx dy − λ

2

∫
Ω
|u(x)|2 dx

− γ

2

(∫
Ω
|u(x)|2∗ dx

)2/2∗

−
∫

Ω
h(x)u(x) dx

>
1

2
‖u‖2X0, λ −

γ

2
‖u‖2

L2∗ (Ω)
− ‖h‖L2(Ω)‖u‖L2(Ω)

>
m2
λ

2
‖u‖2X0

− γ

2Ss
‖u‖2X0

− c2‖h‖L2(Ω)‖u‖X0

=
1

2

(
m2
λ −

γ

Ss

)
‖u‖2X0

− c2‖h‖L2(Ω)‖u‖X0 ,

provided γ > 0 and λ < λ1, s. Hence, choosing γ such that γ < m2
λSs, by (3.17) we deduce

that

Ih(u)→ +∞,
as ‖u‖X0 → +∞, namely, the functional Ih is coercive in X0, provided λ < λ1, s and
γ ∈ [0, γλ) , where, taking into account the definition of mλ, the constant γλ is given by

γλ := Ss min{1, 1− λ/λ1, s}.

Note that γλ 6 Ss . Thus, the functional Ih is weakly lower semicontinuous and coercive
in X0, for any λ < λ1, s and γ ∈ [0, γλ).

Also X0 is a Hilbert space (see [33, Lemma 7]) and so it is reflexive. Hence, by the
(generalized) Weierstrass Theorem (see [1, Remark 1.5.7]), Ih admits a global minimum in
X0 for any λ < λ1, s and γ ∈ [0, γλ) . This concludes the proof of Corollary 2. �

Now, we can prove our first existence result related to the critical problem (1.5) .

Proof of Corollary 3: First of all, note that Ih is the Euler–Lagrange functional associated
with problem (1.5). Also, Ih is Fréchet differentiable in X0 with

〈I ′h(u), ϕ〉 =

∫
Rn×Rn

(u(x)− u(y))(ϕ(x)− ϕ(y))

|x− y|n+2s
dx dy − λ

∫
Ω
u(x)ϕ(x) dx

− γ
(∫

Ω
|u(x)|2∗ dx

)2/2∗−1
∫

Ω
|u(x)|2∗−2u(x)ϕ(x) dx−

∫
Ω
h(x)ϕ(x)dx

for any ϕ ∈ X0.
By Corollary 2 we know that Ih admits a global minimum u in X0 for any λ < λ1, s

and γ ∈ [0, γλ) . It is easy to see that u is a critical point of Ih (for this see, e.g., [1,
Remark 1.5.1]) and so it is a weak solution of problem (1.5).

Of course, u is not identically zero, since the trivial function does not solve equation (1.5)
(unless h ≡ 0). �

4. A critical nonlocal fractional equation

This section is devoted to the study of the critical problem (1.7) . In this case we can
not use a direct minimization, as for problem (1.5), since in general the functional Jλ, γ, µ
naturally associated with (1.12) (which is the weak formulation of (1.7)) is unbounded from
below in X0. Indeed, if we consider the case when µ > 0 and f(·, τ) is superlinear (i.e.
F (·, τ) is superquadratic) at infinity, we have that for any u ∈ X0 \ {0}

Jλ, γ, µ(tu) =
t2

2
‖u‖2X0, λ −

γt2

2
‖u‖2

L2∗ (Ω)
− µ

∫
Ω
F (x, tu(x)) dx→ −∞,

as t→ +∞.
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Due to these reasons, we will study problem (1.12) performing the methods of the critical
points theory, i.e. looking for critical points of Jλ, γ, µ. In particular, along the present paper
we will apply [4, Theorem 2.1; part a)].

In the sequel, we will be able to overcome the problem related to the lack of compactness
thanks to our assumptions (1.8) and (1.9) and to the weak lower semicontinuity of the
functional Φλ, γ proved in Theorem 1 . As a consequence of this, we prove the existence of
a weak solution uµ for problem (1.7) for suitable values of the parameters λ , γ and µ .

On the other hand, the subquadratical growth condition (1.10) will be crucial, in the
case when f(·, 0) = 0, in order to show that uµ is not the trivial function. Notice that, if
f(·, 0) 6= 0, the trivial function does not solve equation (1.7) and so, obviously, uµ 6≡ 0.

4.1. Proof of Theorem 4. The idea of the proof consists in applying [4, Theorem 2.1;
part a)]) (recalled in Subsection 2.2) to the functional Jλ, γ, µ .

To this purpose, we write the functional Jλ, γ, µ as follows:

Jλ, γ, µ(u) = Φλ, γ(u)− µΨ(u), u ∈ X0,

where Φλ, γ is the functional given in (1.1), while

Ψ(u) :=

∫
Ω
F (x, u(x)) dx.

First of all, note that X0 is a Hilbert space (see [33, Lemma 7]) and the functionals Φλ, γ

and Ψ are Fréchet differentiable in X0.
Also, by Theorem 1 the map

u 7→ Φλ, γ(u)

is lower semicontinuous in the weak topology of X0 for any λ ∈ R and γ ∈ [0, Ss].
Now, we claim that

(4.1) the map u 7→
∫

Ω
F (x, u(x))dx is continuous in the weak topology of X0.

For this, let uj be a sequence in X0 such that uj ⇀ u weakly in X0 as j → +∞. Then,

uj is bounded in X0 and so, as a consequence of (2.7), it is bounded in L2∗(Rn), that is
there exists κ > 0 such that

(4.2) ‖uj‖2
∗

L2∗ (Ω)
6 κ, for any j ∈ N.

Here we used also the fact that uj = 0 outside Ω.

Since L2∗(Rn) is a reflexive space we have that, up to a subsequence

(4.3) uj ⇀ u∞ weakly in L2∗(Rn)

as j → +∞, while by [33, Lemma 8], up to a subsequence,

(4.4) uj → u∞ in Lν(Rn)

and

(4.5) uj → u∞ a.e. in Rn

as j → +∞ for any ν ∈ [1, 2∗) (see, for instance [7, Theorem IV.9]).
Now, let us fix δ > 0. By (2.9) (used here with ε = δ/(2κ), we have that

(4.6) |F (x, uj(x))| 6 δ

2κ
|uj(x)|2∗ +M(δ/(2κ))|uj(x)|, a.e. in Ω.

Then, since X0 is embedded in L2∗(Ω) and in L1(Ω), we have that F (·, uj(·)) ∈ L1(Ω) and,
putting

η(δ) :=

(
δ

2κ1/2∗M(δ/(2κ))

)2∗/(2∗−1)

,

for any measurable subset Ω′ of Ω such that

(4.7) meas(Ω′) 6 η(δ),
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we get

(4.8)

∫
Ω′
|F (x, uj(x))| dx 6 δ

2κ

∫
Ω′
|uj(x)|2∗ dx+M(δ/(2κ))

∫
Ω′
|uj(x)| dx

6
δ

2κ
‖uj‖2

∗

L2∗ (Ω)
+M(δ/(2κ))‖uj‖L1(Ω′)

6
δ

2
+M(δ/(2κ)) meas(Ω′)(2∗−1)/2∗‖uj‖L2∗ (Ω)

6
δ

2
+M(δ/(2κ))η(δ)(2∗−1)/2∗κ1/2∗

= δ,

thanks to (4.2), (4.6), (4.7) and Hölder inequality. Hence, F (·, uj(·)) is uniformly integrable2

in Ω . Moreover, by (4.5) and the fact that the map t 7→ F (·, t) is continuous in t ∈ R, we
get

(4.9) F (·, uj(·))→ F (·, u(·)), a.e. in Ω

as j → +∞. Thus, (4.8) and (4.9) and the Vitali Convergence Theorem yield∫
Ω
F (x, uj(x) dx→

∫
Ω
F (x, u(x) dx,

as j → +∞. Then, the claim (4.1) is proved.
Hence, the functionals Φλ, γ and Ψ have the regularity required by [4, Theorem 2.1;

part a)] (see Subsection 2.2). Also, arguing as in the proof of Corollary 2 (see formula (3.17)),
we get that

Φλ, γ(u) >
1

2

(
m2
λ −

γ

Ss

)
‖u‖2X0

,

that is Φλ, γ is coercive in X0 and inf
u∈X0

Φλ, γ(u) = 0, provided λ < λ1, s and γ ∈ [0, γλ) , with

γλ = Ss min
{

1, λ/λ1, s

}
.

From now on, let us fix λ < λ1, s and γ ∈ [0, γλ) . Let also r > 0 and ϕλ, γ be the function
defined as follows

(4.10) ϕλ, γ(r) := inf
u∈Φ−1

λ, γ

(
(−∞,r)

)
sup

v∈Φ−1
λ, γ

(
(−∞,r)

)Ψ(v)−Ψ(u)

r − Φλ, γ(u)
.

It is easy to see that ϕλ, γ(r) > 0 for any r > 0.
By [4, Theorem 2.1; part a)],

(4.11)

for any r > 0 and any µ ∈
(

0, 1/ϕλ, γ(r)
)

the restriction

of Jλ, γ, µ to Φ−1
λ, γ

(
(−∞, r)

)
admits a global minimum uµ, r,

which is a critical point (namely a local minimum) of Jλ, γ, µ in X0.

Remember that, when ϕλ, γ(r) = 0, by 1/ϕλ, γ(r) we mean +∞.
Let µλ be defined as follows

µλ := sup
r>0

1

ϕλ, γ(r)
.

Note that µλ > 0, since ϕλ, γ(r) > 0 for any r > 0.
Now, let us fix µ̄ ∈ (0, µλ) . First of all, thanks to the definition of µλ, it is easy to see

that

(4.12) there exists r̄µ̄ > 0 such that µ̄ 6 1/ϕλ, γ(r̄µ̄).

2Or, according to the different terminologies, absolutely continuous in Ω, uniformly with respect to j ∈ N .
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Then, by (4.11) applied with r = r̄µ̄, we have that for any µ such that

0 < µ < µ̄ 6 1/ϕλ, γ(r̄µ̄),

the function

uµ := uµ, r̄µ̄

is a global minimum of the functional Jλ, γ, µ restricted to Φ−1
λ, γ

(
(−∞, r̄µ̄)

)
, i.e.

(4.13) Jλ, γ, µ(uµ) 6 Jλ, γ, µ(u), for any u ∈ X0 such that Φλ, γ(u) < r̄µ̄

and

(4.14) Φλ, γ(uµ) < r̄µ̄ ,

and also uµ is a critical point of Jλ, γ, µ in X0 and so it is a weak solution of problem (1.7) .
In this way we have shown that for any λ < λ1, s, any γ ∈ [0, γλ) and any µ ∈ (0, µλ),

problem (1.7) admits a weak solution uµ ∈ X0.
Now, it remains to show that uµ is not the trivial function. Of course, when f(·, 0) 6= 0,

it easily follows that uµ 6≡ 0 in X0, since the trivial function does not solve problem (1.7).
Let us consider the case when f(·, 0) = 0 and let us fix µ̄ ∈ (0, µλ) and µ ∈ (0, µ̄) and let

uµ be as in (4.13) and (4.14) . In this setting, in order to prove that uµ 6≡ 0 in X0 , first we
claim that there exists a sequence wj in X0 such that

(4.15) lim sup
j→+∞

Ψ(wj)

Φλ, γ(wj)
= +∞.

By the assumption on the limsup in (1.10) there exists a sequence ξj in R+ such that
ξj → 0+ as j → +∞ and

(4.16) lim
j→+∞

essinfx∈B F (x, ξj)

ξ2
j

= +∞,

namely, we have that for any M > 0 and j sufficiently large

(4.17) essinfx∈B F (x, ξj) > Mξ2
j .

Now, let C be a set of positive Lebesgue measure such that C ⊂ B and let v ∈ X0 be a
function such that

i) v(x) ∈ [0, 1] for every x ∈ Rn;
ii) v(x) = 1 for every x ∈ C;
iii) v(x) = 0 for every x ∈ Ω \D.

Of course C exists since B has positive Lebesgue measure, while the function v exists thanks
to the fact that C2

0 (Ω) ⊆ X0 (see [32, Lemma 11]).
Finally, let wj := ξjv for any j ∈ N . It is easily seen that wj ∈ X0 for any j ∈ N

(actually, wj ∈ C2
0 (Ω) if v does) . Furthermore, taking into account the properties of v
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stated in i)–iii), the fact that C ⊂ B ⊆ D ⊆ Ω and F (·, 0) = 0, and (4.17) we have

(4.18)

Ψ(wj)

Φλ, γ(wj)
=

∫
Ω
F (x,wj(x)) dx

Φλ, γ(wj)

=

∫
C
F (x,wj(x)) dx+

∫
D\C

F (x,wj(x)) dx

Φλ, γ(wj)

=

∫
C
F (x, ξj) dx+

∫
D\C

F (x, ξjv(x)) dx

Φλ, γ(wj)

>

M meas(C)ξ2
j +

∫
D\C

F (x, ξjv(x)) dx

Φλ, γ(wj)
,

for j sufficiently large.
Moreover, note that by definition of Φλ, γ and the non-negativity of γ we get

(4.19) Φλ, γ(wj) =
1

2
‖wj‖2X0, λ −

γ

2
‖wj‖2L2∗ (Ω)

6
1

2
‖wj‖2X0, λ ,

so that, thanks to this, the definition of wj and (4.18) give

(4.20)
Ψ(wj)

Φλ, γ(wj)
>

2M meas(C)ξ2
j + 2

∫
D\C

F (x, ξjv(x)) dx

ξ2
j ‖v‖2X0, λ

.

Now we have to distinguish two different cases, i.e. the case when the liminf in (1.10) is
+∞ (and so the liminf is actually a limit) and the one in which the liminf in (1.10) is finite.

Case 1: lim
t→0+

essinfx∈D F (x, t)

t2
= +∞.

Then, there exists ρM > 0 such that

(4.21) essinfx∈D F (x, t) >Mt2,

for any 0 < t < ρM .
Since ξj → 0+ and 0 6 v 6 1 in Ω, then wj(x) = ξjv(x) → 0+ as j → +∞ uniformly

in x ∈ Ω. Hence, 0 6 wj(x) < ρM for j sufficiently large and for any x ∈ Ω. Hence, as a
consequence of (4.20) and (4.21) (used here with t = wj(x), j large), we deduce that

Ψ(wj)

Φλ, γ(wj)
>

2M meas(C)ξ2
j + 2

∫
D\C

F (x, ξjv(x)) dx

ξ2
j ‖v‖2X0, λ

>

2M meas(C)ξ2
j + 2Mξ2

j

∫
D\C

v2(x) dx

ξ2
j ‖v‖2X0, λ

=

2M meas(C) + 2M

∫
D\C

v2(x) dx

‖v‖2X0, λ

,

for j sufficiently large. The arbitrariness of M gives (4.15) and so the claim is proved.

Case 2: lim inf
t→0+

essinfx∈D F (x, t)

t2
= ` ∈ R.

Then, for any ε > 0 there exists ρε > 0 such that for any t with 0 < t < ρε

(4.22) essinfx∈D F (x, t) > (`− ε)t2.
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Arguing as above, we can suppose that 0 6 wj(x) = ξjv(x) < ρε for j large enough and any
x ∈ Ω. Thus, by (4.20) and (4.22) (used with t = ξjv(x) with j large) we get

(4.23)

Ψ(wj)

Φλ, γ(wj)
>

2M meas(C)ξ2
j + 2

∫
D\C

F (x, ξjv(x)) dx

ξ2
j ‖v‖2X0, λ

>

2M meas(C)ξ2
j + 2(`− ε)ξ2

j

∫
D\C

v2(x) dx

ξ2
j ‖v‖2X0, λ

=

2M meas(C) + 2(`− ε)
∫
D\C

v2(x) dx

‖v‖2X0, λ

,

provided j is sufficiently large.
Choosing M > 0 large enough, say

M meas(C) > max
{

0,−2`

∫
D\C

v2(x) dx
}
,

and ε > 0 small enough so that

ε

∫
D\C

v2(x) dx <
M meas(C)

2
+ `

∫
D\C

v2(x) dx,

by (4.23) we get

Ψ(wj)

Φλ, γ(wj)
>

2M meas(C) + 2(`− ε)
∫
D\C

v2(x)) dx

‖v‖2X0, λ

>
2

‖v‖2X0, λ

(
M meas(C) + `

∫
D\C

v2(x)) dx−M meas(C)/2− `
∫
D\C

v2(x) dx

)

=
M meas(C)

‖v‖2X0, λ

,

for j large enough. Also in this case the arbitrariness of M gives assertion (4.15).
Now, note that

‖wj‖X0, λ = |ξj | ‖v‖X0, λ → 0,

as j → +∞ , so that for j large enough

‖wj‖X0, λ <
√

2r̄µ̄,

where r̄µ̄ is given in (4.12). As a consequence of this and (4.19) we get that Φλ, γ(wj) < r̄µ̄ ,
that is

(4.24) wj ∈ Φ−1
λ, γ

(
(−∞, r̄µ̄)

)
,

provided j is large enough. Also, by (4.15) and the fact that µ > 0

(4.25) Jλ, γ, µ(wj) = Φλ, γ(wj)− µΨ(wj) < 0,

for j sufficiently large.
Since uµ is a global minimum of the restriction of Jλ, γ, µ to Φ−1

λ, γ

(
(−∞, r̄µ)

)
(see (4.13)),

by (4.24) and (4.25) we conclude that

(4.26) Jλ, γ, µ(uµ) 6 Jλ, γ, µ(wj) < 0 = Jλ, γ, µ(0),

so that uµ 6≡ 0 in X0 . Thus, uµ is a non-trivial weak solution of problem (1.7). The
arbitrariness of µ and µ̄ gives that uµ 6≡ 0 for any µ ∈ (0, µλ).
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Moreover, from (4.26) we get that the map

(4.27) (0, µλ) 3 µ 7→ Jλ, γ, µ(uµ) is negative.

Now, we claim that lim
µ→0+

‖uµ‖X0 = 0 . For this, first note that, arguing as in (3.17), we

have

(4.28)
1

2

(
m2
λ −

γ

Ss

)
‖uµ‖2X0

6 Φλ, γ(uµ),

so that, using (4.14), we get

1

2

(
m2
λ −

γ

Ss

)
‖uµ‖2X0

< r̄µ̄,

that is
‖uµ‖X0 < κλ,

where κλ is a suitable positive constant depending on λ (note that γ ∈ [0, γλ) and so it
depends on λ), but independent of µ.

As a consequence of this and by using Lemma 6 (see formula (2.8) with ε = 1), together
with the embedding properties (2.6) and (2.7) and the fact that uµ ∈ X0, it follows that

(4.29)

∣∣∣∣∫
Ω
f(x, uµ(x))uµ(x)dx

∣∣∣∣ 6 2∗‖uµ‖2
∗

L2∗ (Ω)
+M(1)‖uµ‖L1(Ω)

6
2∗

S
2∗/2
s

‖uµ‖2
∗
X0

+M(1)c1‖uµ‖X0

<
2∗

S
2∗/2
s

κ2∗
λ +M(1)c1 κλ =: Mλ.

Since uµ is a critical point of Jλ, γ, µ , then 〈J ′λ, γ, µ(uµ), ϕ〉 = 0, for any ϕ ∈ X0 and every

µ ∈ (0, µ̄) . In particular 〈J ′λ, γ, µ(uµ), uµ〉 = 0, that is

(4.30) 〈Φ′λ, γ(uµ), uµ〉 = µ

∫
Ω
f(x, uµ(x))uµ(x)dx,

for every µ ∈ (0, µ̄).
Then, (4.28)–(4.30) yield

0 <
(
m2
λ −

γ

Ss

)
‖uµ‖2X0

6 2Φλ, γ(uµ)

= 〈Φ′λ, γ(uµ), uµ〉 = µ

∫
Ω
f(x, uµ(x))uµ(x) dx < µMλ,

for any µ ∈ (0, µ̄) . Letting µ→ 0+, we get lim
µ→0+

‖uµ‖X0 = 0, as claimed.

Finally, we have to show that the map

µ 7→ Jλ, γ, µ(uµ) is strictly decreasing in (0, µλ).

For this we observe that for any u ∈ X0

(4.31) Jλ, γ, µ(u) = µ

(
Φλ, γ(u)

µ
−Ψ(u)

)
.

Now, let us fix 0 < µ1 < µ2 < µ̄ < µλ and let uµi be the global minimum of the func-

tional Jλ, γ, µi restricted to Φ−1
λ, γ

(
(−∞, r̄µ̄)

)
for i = 1, 2 (for this see (4.13)). Also, let

mµi :=

(
Φλ, γ(uµi)

µi
−Ψ(uµi)

)
= inf

v∈Φ−1
λ, γ

(
(−∞,r̄µ̄)

)(Φλ, γ(v)

µi
−Ψ(v)

)
i = 1, 2 .

Clearly, (4.27), (4.31) and the positivity of µ imply that

(4.32) mµi < 0 for i = 1, 2.
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Moreover,

(4.33) mµ2 6 mµ1 ,

thanks to the fact that 0 < µ1 < µ2 and Φλ, γ > 0 by (3.17). Then, by (4.31)–(4.33) and
again by the fact that 0 < µ1 < µ2, we get that

Jλ, γ, µ2(uµ2) = µ2mµ2 6 µ2mµ1 < µ1mµ1 = Jλ, γ, µ1(uµ1),

so that the map µ 7→ Jλ, γ, µ(uµ) is strictly decreasing in (0, µ̄) . The arbitrariness of µ̄ < µλ
shows that µ 7→ Jλ, γ, µ(uµ) is strictly decreasing in (0, µλ) . This concludes the proof of
Theorem 4.

4.2. Existence of a non-negative solution. In this subsection we show that, as in the
classical case of the Laplacian, it is possible to prove that the solution of problem (1.7)
given by Theorem 4 has constant sign.

Proof of Corollary 5: Here we can argue as in [23, Corollary 3] (where the subcritical
case was considered), with minor corrections related to the presence of the critical term.
We prefer to repeat here all the calculations, just for the sake of clarity and in order to
make the paper self contained.

As usual, our proof is based on a truncation argument. Let F+ and f+ be the functions
defined as

F+(x, t) :=

∫ t

0
f+(x, τ)dτ,

with

f+(x, t) :=

{
f(x, t) if t > 0

0 if t < 0

for a.e. x ∈ Ω and t ∈ R.
First of all, note that both f+ and F+ are well defined a.e. x ∈ Ω and t ∈ R . Furthermore,

since f(·, 0) = 0, then f+ is a Carathéodory function in Ω × R and so t 7→ F+(·, t) is
differentiable in R. Moreover, it is easily seen that f+ and F+ satisfy conditions (1.8), (1.9)
and (1.10), respectively.

Let J +
λ, γ, µ : X0 → R be the functional defined as follows

J +
λ, γ, µ(u) := Φλ, γ(u)− µΨ+(u),

with

Ψ+(u) :=

∫
Ω
F+(x, u(x)) dx.

It is easy to see that the functional Ψ+ is well defined, is Fréchet differentiable at any
u ∈ X0 (being F+ differentiable in R) and has the regularity properties required by [4,
Theorem 2.1; part a)] (see Subsection 2.2). Also, for any ϕ ∈ X0

(4.34)

〈(J +
λ, γ, µ)′(u), ϕ〉 =

∫
Rn×Rn

(
u(x)− u(y)

)(
ϕ(x)− ϕ(y)

)
|x− y|n+2s

dx dy − λ
∫

Ω
u(x)ϕ(x) dx

− γ
(∫

Ω
|u(x)|2∗ dx

)2/2∗−1
∫

Ω
|u(x)|2∗−2u(x)ϕ(x) dx

− µ
∫

Ω
f+(x, u(x))ϕ(x) dx.

Hence, by [4, Theorem 2.1; part a)], there exists a critical point u+ ∈ X0 of J +
λ, γ, µ , provided

λ < λ1, s , γ ∈ [0, γλ) and µ ∈ (0, µλ), for a suitable µλ > 0.
Also u+ 6≡ 0 in X0. Indeed, since f(·, 0) = 0, also f+(·, 0) = 0 and so, in order to prove

that u+ 6≡ 0, we can argue exactly as in the proof of Theorem 4, jus replacing f with f+,
F with F+ and Ψ with Ψ+ in formulas (4.15)–(4.26).

We claim that u+ is non-negative in Rn. For this we take ϕ := (u+)− in (4.34), where
v− is the negative part of v, i.e. v− := max{−v, 0}. We remark that, since u+ ∈ X0, we
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have that (u+)− ∈ X0, by [32, Lemma 12], and so the choice of such ϕ is admissible. In
this way, since u+ is a critical point of J +

k, λ, µ, we get

(4.35)

0 = 〈(J +
λ, γ, µ)′(u+), (u+)−〉

=

∫
Rn×Rn

(
u+(x)− u+(y)

)(
(u+)−(x)− (u+)−(y)

)
|x− y|n+2s

dx dy

− λ
∫

Ω
u+(x)(u+)−(x) dx

− γ
(∫

Ω
|u+(x)|2∗ dx

)2/2∗−1
∫

Ω
|u+(x)|2∗−2u+(x)(u+)−(x) dx

− µ
∫

Ω
f+(x, u+(x))(u+)−(x) dx

=

∫
Rn×Rn

(
u+(x)− u+(y)

)(
(u+)−(x)− (u+)−(y)

)
|x− y|n+2s

dx dy

− λ
∫

Ω

∣∣(u+)−(x)
∣∣2 dx

− γ
(∫

Ω
|u+(x)|2∗ dx

)2/2∗−1
∫

Ω
|(u+)−(x)|2∗ dx,

thanks to the definition of f+ and of negative part.
Now, we claim that for any w ∈ X0 the following relation holds true a.e. x, y ∈ Rn

(4.36)
(
w(x)− w(y)

)(
w−(x)− w−(y)

)
6 −

∣∣w−(x)− w−(y)
∣∣2.

Indeed, writing w = w+ − w− and taking into account that

w+(x)w−(x) = 0 and w+(x)w−(y) > 0, a.e. x, y ∈ Rn,
we get

(w(x)− w(y))(w−(x)− w−(y)) = (w+(x)− w+(y))(w−(x)− w−(y))− (w−(x)− w−(y))2

= −w+(x)w−(y)− w+(y)w−(x)− (w−(x)− w−(y))2

6 −
∣∣w−(x)− w−(y)

∣∣2,
a.e. x, y ∈ Rn . Hence, the claim (4.36) is proved.

Thus, by (4.35) and (4.36) applied here with w = u+, and the fact that γ > 0, we obtain

0 = 〈(J +
λ, γ, µ)′(u+), (u+)−〉

6 −
∫
Rn×Rn

∣∣(u+)−(x)− (u+)−(y)
∣∣2

|x− y|n+2s
dx dy − λ

∫
Ω

∣∣(u+)−(x)
∣∣2 dx

= −‖(u+)−‖2X0
− λ‖(u+)−‖2L2(Ω)

6 −κλ‖(u+)−‖2X0
,

where κλ := max
{

1, 1 + λ/λ1, s

}
> 0. Hence, ‖(u+)−‖X0 = 0, so that (u+)− ≡ 0 a.e. in

Rn, that is u+ > 0 a.e. in Rn. The assertion is proved. �

4.3. Final comments. As a remark we would like to note that, if we replace condi-
tion (1.10) with the following one

there exist a non-empty open set D ⊆ Ω and a set B ⊆ D
of positive Lebesgue measure such that

lim sup
t→0−

essinfx∈B F (x, t)

t2
= +∞ and lim inf

t→0−

essinfx∈D F (x, t)

t2
> −∞,

arguing as in Theorem 4, it is to show that problem (1.7) admits a non-trivial weak solution.
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In this case this solution is non-positive in Rn, provided f(·, 0) = 0. To this purpose, it
is enough to consider the functional

J −λ, γ, µ(u) := Φλ, γ(u)− µΨ−(u) , u ∈ X0

with

Ψ−(u) :=

∫
Ω
F−(x, u(x)) dx,

and

F−(x, t) :=

∫ t

0
f−(x, τ)dτ , f−(x, t) :=

{
0 if t > 0

f(x, t) if t 6 0

a.e. x ∈ Ω and t ∈ R , and argue as in the proof of Corollary 5.
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